JP6246499B2 - Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles - Google Patents

Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles Download PDF

Info

Publication number
JP6246499B2
JP6246499B2 JP2013109610A JP2013109610A JP6246499B2 JP 6246499 B2 JP6246499 B2 JP 6246499B2 JP 2013109610 A JP2013109610 A JP 2013109610A JP 2013109610 A JP2013109610 A JP 2013109610A JP 6246499 B2 JP6246499 B2 JP 6246499B2
Authority
JP
Japan
Prior art keywords
resistant
wear
powder
particle size
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013109610A
Other languages
Japanese (ja)
Other versions
JP2014227584A (en
Inventor
文宏 前澤
文宏 前澤
澤田 俊之
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013109610A priority Critical patent/JP6246499B2/en
Publication of JP2014227584A publication Critical patent/JP2014227584A/en
Application granted granted Critical
Publication of JP6246499B2 publication Critical patent/JP6246499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、耐食耐摩耗合金中の二次析出粒子径を制御した粉末冶金材の製造方法に関する。   The present invention relates to a method for producing a powder metallurgy material in which the diameter of secondary precipitate particles in a corrosion-resistant wear-resistant alloy is controlled.

一般に、Ni−Cr−Mo−B系耐食耐摩耗粉末冶金材はプラスチック押出成形機に用いられる従来材よりも高い耐食性を有し、腐食環境下での使用に優れている。例えば特許第4279029号公報(特許文献1)に開示されているように、合金鋼基材に、質量%で、Cr:5.0〜40%、Mo:15〜40%、B:0.5〜5.0%を含み、残部がNi及び不可避不純物であるNi基ホウ化物分散耐摩耗性合金が提案されている。   In general, Ni—Cr—Mo—B-based corrosion-resistant wear-resistant powder metallurgy has higher corrosion resistance than conventional materials used in plastic extruders, and is excellent in use in corrosive environments. For example, as disclosed in Japanese Patent No. 4279029 (Patent Document 1), the alloy steel base material is, in mass%, Cr: 5.0 to 40%, Mo: 15 to 40%, B: 0.5. Ni-based boride-dispersed wear-resistant alloys containing ˜5.0%, the balance being Ni and inevitable impurities, have been proposed.

特許第4279029号公報Japanese Patent No. 4279029

上述した特許文献1に開示されている合金は、従来材より高い耐食性を有している。しかしながら、2.0%を超えるB量において、靭性が大きく低下する問題があった。そのため、耐食性と強靭性を併せ持つ材料の開発が望まれていた。   The alloy disclosed in Patent Document 1 described above has higher corrosion resistance than conventional materials. However, when the amount of B exceeds 2.0%, there is a problem that the toughness is greatly reduced. Therefore, development of a material having both corrosion resistance and toughness has been desired.

上述した問題を解消するために、鋭意開発を進めた結果、質量%で、Cr:5.0〜40%、Mo:15〜40%、B:2.0〜4.0%を含み、残部がNiという成分のガスアトマイズ原料粉を篩で分級し、1000〜1200℃の温度で固化成形することにより解決したものである。   As a result of diligent development to solve the above-mentioned problems, the mass% includes Cr: 5.0 to 40%, Mo: 15 to 40%, B: 2.0 to 4.0%, and the balance. Is solved by classifying the gas atomized raw material powder having a component of Ni with a sieve and solidifying and molding at a temperature of 1000 to 1200 ° C.

その発明の要旨とするところは、
質量%で、Cr:5.0〜40%、Mo:15〜40%、B:2.0〜4.0%を含み、残部がNiおよび不可避的不純物からなる成分のガスアトマイズ原料粉末を下記式(1)に示す分級粒度Dの値(単位:μm)にて分級した篩いを通過した粉末を、1000〜1200℃の温度でHIP処理により固化成形することを特徴とする二次析出粒子を制御した耐食耐摩耗合金の製造方法である。
D≦1000/B−150 … (1)
ただし、Bは、前記ガスアトマイズ原料粉末におけるB元素の含有率(質量%)を示す
The gist of the invention is that
A gas atomized raw material powder containing, in mass%, Cr: 5.0 to 40%, Mo: 15 to 40%, B: 2.0 to 4.0%, the balance being Ni and unavoidable impurities is represented by the following formula: Controlling secondary precipitated particles characterized by solidifying and molding a powder that has passed through a sieve classified by the classification particle size D shown in (1) (unit: μm) at a temperature of 1000 to 1200 ° C. by HIP treatment A method for producing a corrosion-resistant and wear-resistant alloy.
D ≦ 1000 / B−150 (1)
However, B shows the content rate (mass%) of B element in the said gas atomization raw material powder .

以上述べたように、本発明による粗大なアトマイズ粉末粒子からの複硼化物を分級して除くことで粗大な複硼化物がなく、衝撃特性の優れた二次析出粒子を制御した耐食耐摩耗合金を製造可能としたものである。   As described above, the corrosion-resistant wear-resistant alloy that controls secondary precipitate particles having excellent impact characteristics without coarse double borides by classifying and removing double borides from coarse atomized powder particles according to the present invention. Can be manufactured.

以下、本発明について詳細に説明する。
本発明に係る成分組成の材料では内部組織に粗大な析出硼化物の粒子が散見され、材料の破壊はこの粗大な硼化物粒子が起点となっていることを突き止めた。一方、アトマイズ法により溶湯状態からガスもしくは水と衝突し飛散した粉末は、粒径が粗大なほど冷却速度が遅くなることから、組成と粉末粒子径によって析出物が発生する。この発生した析出物が靱性を低下させる。
Hereinafter, the present invention will be described in detail.
In the material of the component composition according to the present invention, coarse precipitated boride particles are scattered in the internal structure, and it was found that the destruction of the material originated from the coarse boride particles. On the other hand, the powder that collides with the gas or water from the molten state by the atomizing method and scatters has a slower cooling rate as the particle size is coarser. This generated precipitate reduces toughness.

そこで、例えば代表的な粉末冶金の高硬度材料として粉末ハイスがあるが、この粉末ハイスにおいても、やはり本発明に係る成分組成の材料と同様に粗大炭化物が生成すると、靭性が下がる。ただ、粉末ハイスの場合は、Fe−C系を基本としており、Feがγ相となる温度において、Cの固溶限が著しく大きくなる。適当な温度を選定して焼入れを行うことにより炭化物を基地に溶け込ませ、さらに適正な温度で焼戻すことで、粗大炭化物を消失させ、靭性を改善できる。   Thus, for example, there is powder high speed as a high hardness material of typical powder metallurgy, but also in this powder high speed, toughness is reduced when coarse carbides are generated as in the material of the component composition according to the present invention. However, the powder high speed is based on the Fe-C system, and the solid solubility limit of C is remarkably increased at a temperature at which Fe becomes a γ phase. By selecting an appropriate temperature and quenching, the carbide is dissolved in the base, and further tempering at an appropriate temperature can eliminate coarse carbide and improve toughness.

一方、本発明合金系は、Ni−B系を基本としているため、2元状態図からわかるとおり、Ni中へのBの固溶限は、ほとんどゼロである。したがって、粗大硼化物が生成した場合、熱処理によりBを基地に固溶させることで、その粗大硼化物を消失させ、靭性を回復することができない。このような状況のため、本発明者らは、本発明合金系において靭性を高めるためには、粗大硼化物の生成自体を抑制する必要があると考えた。   On the other hand, since the alloy system of the present invention is based on the Ni-B system, as can be seen from the binary phase diagram, the solid solubility limit of B in Ni is almost zero. Therefore, when a coarse boride is generated, by dissolving B in the base by heat treatment, the coarse boride disappears and toughness cannot be recovered. Under such circumstances, the present inventors considered that it was necessary to suppress the formation of coarse boride itself in order to increase the toughness in the alloy system of the present invention.

そこでガスアトマイズにより製造した原料粉について、粒度ごとにミクロ組織を詳細に検討したところ、粗大硼化物は、概ね粒径の大きい粉に生成していることを見出した。さらに、B量が高いほど、より小さい径の粉に粗大硼化物が確認できることを見出した。そこで、B量に応じて、使用する原料粉末の最大径を適正化することで、高い靭性を維持できることを見出し、本発明に至った。なお、同じB量でも大粒径の方が粗大硼化物が多い理由について、詳細は不明であるが、ガスアトマイズ時に飛散した溶湯が、粒径によって冷却速度に差が生じたためと推測される。   Then, when the fine structure was examined in detail for each particle size of the raw material powder produced by gas atomization, it was found that the coarse boride was formed into a powder having a large particle size. Furthermore, it discovered that a coarse boride can be confirmed to the powder of a smaller diameter, so that B content is high. Then, it discovered that high toughness could be maintained by optimizing the maximum diameter of the raw material powder to be used according to the amount of B, and reached the present invention. Although the details of the reason why there are more coarse borides in the larger B particle size even with the same B amount are not clear, it is presumed that the molten metal scattered during gas atomization caused a difference in the cooling rate depending on the particle size.

以下、本発明についての成分組成その他の限定理由を詳細に説明する。
Cr:5.0〜40%
Crは、耐食性を向上させる元素である。しかし、5.0%未満ではその効果が十分でなく、また、40%を超える添加は抗折力が低下することから、その範囲を5.0〜40%とした。好ましくは10〜35%とする。
Hereinafter, the component composition and other reasons for limitation of the present invention will be described in detail.
Cr: 5.0-40%
Cr is an element that improves the corrosion resistance. However, if it is less than 5.0%, the effect is not sufficient, and addition exceeding 40% lowers the bending strength, so the range was made 5.0 to 40%. Preferably it is 10 to 35%.

Mo:15〜40%
Moは、Crと同様に、耐食性を向上させる元素である。しかし、15%未満ではその効果が十分でなく、また、40%を超える添加は抗折力が低下することから、その範囲を15〜40%とした。好ましくは15〜35%とする。
Mo: 15-40%
Mo, like Cr, is an element that improves corrosion resistance. However, if it is less than 15%, the effect is not sufficient, and addition exceeding 40% lowers the bending strength, so the range was made 15 to 40%. Preferably it is 15 to 35%.

B:2.0〜4.0%
Bは、硬さを向上させる耐摩耗性を改善する元素である。しかし、2.0%未満ではその効果が十分でない。一方、2%以上では、靭性が低下し、4.0%を超える添加はさらに靭性が大きく低下する。この理由は、この破面観察の結果、この原因はNi−Cr−Mo−B系粉末冶金材中の粗大硼化物である。なお、Niは、基材であり、高い耐食性を得るために必要な元素である。
B: 2.0 to 4.0%
B is an element that improves the wear resistance that improves the hardness. However, if it is less than 2.0%, the effect is not sufficient. On the other hand, if it is 2% or more, the toughness is lowered, and if it exceeds 4.0%, the toughness is further greatly lowered. This is because, as a result of the observation of the fracture surface, the cause is coarse borides in the Ni—Cr—Mo—B based powder metallurgy. Ni is a base material and is an element necessary for obtaining high corrosion resistance.

分級粒度Dを(D≦1000/B−150) … (1)
とし、原料粉末をDの値(単位:μm)以下の粒度に分級した粉末を使用する。ただし、上記Bは、B元素の含有率(質量%)を示す。分級粒度Dを(1)式のように設定した理由は、B量に応じた分級粒度を(1)式の右辺より小さく制御することにより高い靭性を得ることができる。しかし、分級粒度が(1)式の右辺を超える場合は、高い靱性を維持することができないことから、(1)式のように設定した。
Classification particle size D (D ≦ 1000 / B−150) (1)
And a powder obtained by classifying the raw material powder to a particle size of D value (unit: μm) or less. However, said B shows the content rate (mass%) of B element. The reason why the classification particle size D is set as in the equation (1) is that a high toughness can be obtained by controlling the classification particle size corresponding to the amount of B smaller than the right side of the equation (1). However, when the classified particle size exceeds the right side of the formula (1), high toughness cannot be maintained, so the formula (1) is set.

1000〜1200℃の温度でHIP処理
1000℃未満のHIP処理では十分な耐食耐摩耗合金が得られず、また、1200℃を超えるHIP処理では耐食耐摩耗合金の硬さが低下することから、その範囲を1000〜1200℃とした。
HIP treatment at a temperature of 1000 to 1200 ° C. When the HIP treatment is less than 1000 ° C., a sufficient corrosion-resistant and wear-resistant alloy cannot be obtained. The range was 1000-1200 degreeC.

以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成のNi基合金を真空誘導溶解炉にて溶解し、溶解量25kgを出湯温度1600℃にてアルゴン噴霧ガスを使用してガスアトマイズ法で作製した粉末を(1)式を満たす分級粒度の篩で分級し、固化成形前の粗大粒子中に存在する粗大な硼化物を分級した後、表1に示す加熱温度で147MPa、5時間のHIP処理にて成形した。成形したHIP材を切削後試験片とした。
Hereinafter, the present invention will be specifically described with reference to examples.
A Ni-based alloy having the composition shown in Table 1 is melted in a vacuum induction melting furnace, and a powder produced by a gas atomization method using an argon atomizing gas with a melting amount of 25 kg at a tapping temperature of 1600 ° C. satisfies the formula (1). After classifying with a sieve having a classified particle size and classifying coarse borides present in the coarse particles before solidification and molding, they were molded by HIP treatment at 147 MPa for 5 hours at the heating temperature shown in Table 1. The molded HIP material was used as a test piece after cutting.

試験条件としては、シャルピー衝撃試験で評価した。シャルピー衝撃試験については、10RCノッチ衝撃試験片で実施した。シャルピー衝撃値(J/cm2 )の値が10以上を○、10未満を×として評価した。その結果を表1に示す。 As a test condition, the Charpy impact test evaluated. The Charpy impact test was carried out using 10RC notch impact test pieces. When the Charpy impact value (J / cm 2 ) was 10 or more, the evaluation was ○, and the evaluation was less than 10 and ×. The results are shown in Table 1.

Figure 0006246499
表1に示すように、No.1〜2、4、7〜8、10は本発明例であり、No.3、5〜6、9、11〜16は比較例である。
Figure 0006246499
As shown in Table 1, no. 1-2, 4, 7-8, and 10 are examples of the present invention. 3, 5-6, 9, 11-16 are comparative examples.

比較例No.3、5〜6、9、11〜12は分級粒度Dが1000/B−150の値より大きく、靱性が劣る。比較例No.13〜16は成分組成のB含有量が多く、かつ分級粒度Dが1000/B−150の値より大きいために靭性が劣る。これに対し、本発明例であるNo.1〜2、4、7〜8、10はいずれも、成分組成、分級粒度Dの値が本発明条件を満たしていることから、いずれも靭性が優れていることが分かる。   Comparative Example No. 3, 5-6, 9, 11-12, the classified particle size D is larger than the value of 1000 / B-150, and the toughness is inferior. Comparative Example No. In Nos. 13 to 16, the B content of the component composition is large, and the classified particle size D is larger than the value of 1000 / B-150, so that the toughness is inferior. On the other hand, No. which is an example of the present invention. It can be seen that 1-2, 4, 7-8, and 10 all have excellent toughness because the component composition and the value of classified particle size D satisfy the conditions of the present invention.

以上のように、ガスアトマイズにより製造した原料粉末をB量に応じて適正な粒度以下に分級することで、高い靭性を維持することを可能とした、衝撃特性の優れた二次析出粒子を制御した耐食耐摩耗合金の製造方法を提供することができる極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, by classifying the raw material powder produced by gas atomization to an appropriate particle size or less according to the amount of B, it was possible to maintain high toughness, and controlled secondary precipitated particles with excellent impact characteristics. It is possible to provide a method for producing a corrosion-resistant and wear-resistant alloy, which has an extremely excellent effect.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (1)

質量%で、
Cr:5.0〜40%、
Mo:15〜40%、
B:2.0〜4.0%
を含み、残部がNiおよび不可避的不純物からなる成分のガスアトマイズ原料粉末を下記式(1)に示す分級粒度Dの値(単位:μm)にて分級した篩いを通過した粉末を、1000〜1200℃の温度でHIP処理により固化成形することを特徴とする二次析出粒子を制御した耐食耐摩耗合金の製造方法。
D≦1000/B−150 … (1)
ただし、Bは、前記ガスアトマイズ原料粉末におけるB元素の含有率(質量%)を示す。
% By mass
Cr: 5.0 to 40%,
Mo: 15-40%
B: 2.0 to 4.0%
The powder which passed the sieve which classified the gas atomization raw material powder of the component which consists of Ni and an unavoidable impurity with the value of the classification particle size D shown in following formula (1) (unit: micrometer) is 1000-1200 degreeC. A method for producing a corrosion-resistant and wear-resistant alloy with controlled secondary precipitation particles, characterized by solidifying and forming by HIP treatment at a temperature of 5 ° C.
D ≦ 1000 / B−150 (1)
However, B represents the B content elements definitive in the gas atomized raw material powder (mass%).
JP2013109610A 2013-05-24 2013-05-24 Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles Active JP6246499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109610A JP6246499B2 (en) 2013-05-24 2013-05-24 Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109610A JP6246499B2 (en) 2013-05-24 2013-05-24 Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles

Publications (2)

Publication Number Publication Date
JP2014227584A JP2014227584A (en) 2014-12-08
JP6246499B2 true JP6246499B2 (en) 2017-12-13

Family

ID=52127741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109610A Active JP6246499B2 (en) 2013-05-24 2013-05-24 Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles

Country Status (1)

Country Link
JP (1) JP6246499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020106433A1 (en) * 2019-03-18 2020-09-24 Vdm Metals International Gmbh Nickel alloy with good corrosion resistance and high tensile strength as well as a process for the production of semi-finished products
CN111570810B (en) * 2020-05-09 2022-10-11 中国航发北京航空材料研究院 Preparation method of corrosion-resistant alloy powder and part for deep-sea Christmas tree
JP7484875B2 (en) * 2020-12-11 2024-05-16 株式会社プロテリアル Method for producing melting raw material, and melting raw material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279029B2 (en) * 2003-04-01 2009-06-17 山陽特殊製鋼株式会社 Ni-based boride dispersion anti-corrosion and wear-resistant alloy composite method
JP5893331B2 (en) * 2011-10-18 2016-03-23 東芝機械株式会社 Method for producing Ni-based corrosion-resistant wear-resistant alloy

Also Published As

Publication number Publication date
JP2014227584A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6698280B2 (en) Alloy powder
JP5486093B2 (en) Wear-resistant cobalt base alloy and engine valve
WO2010122960A1 (en) High-strength copper alloy
JP2017036485A (en) Ni-BASED SUPERALLOY POWDER FOR LAMINATE MOLDING
CN108474085A (en) High temperature tool steel
JP6410515B2 (en) Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same
JP6189248B2 (en) Mold steel for plastic molding and manufacturing method thereof
JP6246499B2 (en) Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles
WO2012063511A1 (en) High-toughness cobalt-based alloy and engine valve coated with same
JP2007051341A (en) Steel with high young's modulus
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
JP5680461B2 (en) Hot work tool steel
JP2019116688A (en) Powder high speed tool steel
JP6671772B2 (en) High hardness and toughness powder
JP6698910B2 (en) Alloy powder
JP2004162100A (en) Copper alloy powder for cladding
JP7503634B2 (en) Metal Powders for Additive Manufacturing
WO2020110498A1 (en) Powder for laminate formation use, laminated article, and method for producing laminated article
JP2012224920A (en) Aluminum alloy material and method for producing the same
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JP6410488B2 (en) High hardness and tough powder excellent in manufacturability by atomizing method and method for producing the same
JP2020169378A (en) Aluminum alloy for compressor slide components and compressor slide component forging
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JP6179996B2 (en) Cu alloy with excellent machinability, extruded pipe member and Cu alloy synchronizer ring
JP2006322025A (en) Heat resistant cast alloy and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250