JP6240943B2 - Polishing apparatus and GaN substrate polishing method using the same - Google Patents

Polishing apparatus and GaN substrate polishing method using the same Download PDF

Info

Publication number
JP6240943B2
JP6240943B2 JP2015226429A JP2015226429A JP6240943B2 JP 6240943 B2 JP6240943 B2 JP 6240943B2 JP 2015226429 A JP2015226429 A JP 2015226429A JP 2015226429 A JP2015226429 A JP 2015226429A JP 6240943 B2 JP6240943 B2 JP 6240943B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive
substrate
engineering plastic
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015226429A
Other languages
Japanese (ja)
Other versions
JP2017098322A (en
Inventor
利洋 伊東
利洋 伊東
山本 栄一
栄一 山本
久保 富美夫
富美夫 久保
Original Assignee
株式会社岡本工作機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社岡本工作機械製作所 filed Critical 株式会社岡本工作機械製作所
Priority to JP2015226429A priority Critical patent/JP6240943B2/en
Publication of JP2017098322A publication Critical patent/JP2017098322A/en
Application granted granted Critical
Publication of JP6240943B2 publication Critical patent/JP6240943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、窒化ガリウム(GaN)基板を0.1nm以下の表面粗さに研磨加工する方法およびそれに用いるCMP研磨装置に関わる。本発明方法によれば、窒化ガリウム基板の研磨速度を格段と向上することが可能である。 The present invention relates to a method for polishing a gallium nitride (GaN) substrate to a surface roughness of 0.1 nm or less and a CMP polishing apparatus used therefor. According to the method of the present invention, the polishing rate of the gallium nitride substrate can be remarkably improved.

結晶配向を有する硬脆性基板(サファイヤ基板、GaN基板、SiC基板など)は、LED、パワー半導体装置、抵抗器センサー等の基板として利用されている。この硬脆性基板は、オリフラが研削加工されたインゴットブロックを切断加工して得られた円盤状基板の反りが6インチ径基板でウエハ反り高さ5〜6mmと大きいので、この硬脆性基板の表裏両面を研削加工して平坦化加工基板とする沢山の加工方法、例えば、基板両面を同時に研磨加工する両面同時研磨方法、または、基板の表面を研削加工した後、基板裏面を研削加工する単葉研削加工方法が提案されている。 A hard and brittle substrate (sapphire substrate, GaN substrate, SiC substrate, etc.) having a crystal orientation is used as a substrate for LEDs, power semiconductor devices, resistor sensors, and the like. In this hard and brittle substrate, the warpage of the disc-shaped substrate obtained by cutting the ingot block in which the orientation flat is ground is 6 inches and the wafer warp height is as large as 5 to 6 mm. There are many processing methods to grind both sides to make a flattened substrate, for example, double-sided simultaneous polishing method that simultaneously polishes both sides of the substrate, or single-wafer grinding that grinds the back surface of the substrate after grinding the surface of the substrate Processing methods have been proposed.

また、特開2015−187043号公報(特許文献1)は、アモノサーマル法により得られ、窒化物半導体からなる第一の元結晶を準備し、ダイヤモンド研削砥石により1nm以下の表面粗さに研削加工して第二の元結晶を得る。得られた第二の元結晶をプラズマ処理した後に複数接合して第一の下地基板を得る。得られた第一の下地基板上に第一の窒化物半導体(GaN)層を形成する。形成された第一の窒化物半導体層の外周部をダイヤモンド研削砥石により1nm以下の表面粗さに研削、除去し、第一の下地基板から分離して第二の下地基板を得る。複数の第二の下地基板を接合し、第三の下地基板を得、これをダイヤモンド研削砥石により1nm以下の表面粗さに研削加工して第四の下地基板を得る。得られた第四の下地基板上に第二の窒化物半導体層を形成する。形成された第二の窒化物半導体層の外周部を研削、除去し、第四の下地基板から分離して最終基板を得、得られた最終基板を自立基板とする方法を提案する。 Japanese Patent Laying-Open No. 2015-187043 (Patent Document 1) provides a first original crystal made of a nitride semiconductor, obtained by an ammonothermal method, and is ground to a surface roughness of 1 nm or less with a diamond grinding wheel. Processing to obtain a second original crystal. The obtained second original crystal is subjected to plasma treatment and then joined together to obtain a first base substrate. A first nitride semiconductor (GaN) layer is formed on the obtained first base substrate. The outer periphery of the formed first nitride semiconductor layer is ground and removed to a surface roughness of 1 nm or less with a diamond grinding wheel, and separated from the first base substrate to obtain a second base substrate. A plurality of second base substrates are joined to obtain a third base substrate, which is ground to a surface roughness of 1 nm or less with a diamond grinding wheel to obtain a fourth base substrate. A second nitride semiconductor layer is formed on the obtained fourth base substrate. A method is proposed in which the outer peripheral portion of the formed second nitride semiconductor layer is ground and removed, separated from a fourth base substrate to obtain a final substrate, and the obtained final substrate is used as a free-standing substrate.

また、本願発明者らによる特開2015−090945号公報(特許文献2)は、半導体基板の表面をエッチング処理後にCMP処理加工、洗浄処理する半導体基板の再生方法において、次の工程を経ることを特徴とする再生半導体ウエハの製造方法を提案する。
1).使用済みの半導体基板の基盤上構造層表面をカップホイール型研削砥石により研削加工して前記基盤上構造層全層を除去して基盤面を露呈させる研削加工処理後にCMP処理加工、洗浄処理する半導体基板の再生方法において、次の工程を経ることを特徴とする再生半導体ウエハの製造方法。
1).使用済みの半導体基板の基盤上構造層表面に対して、カップホイール型研削砥石をインフィード送りするとともに、研削加工中に研削に供されていない前記カップホイール型研削砥石の刃先に向けて洗浄噴射装置のノズルより圧力3〜20MPaの高圧洗浄液を噴射角度5〜18度で扇型状に噴射する砥石洗浄を行う前記基板上構造層の全層を除去して基盤面を露呈させる研削加工処理工程。
2).前記研削加工処理された半導体基板の前記基盤表面に対して、コロイダル砥粒、塩基性化合物および純水を含むpH9.0以上の研磨剤スラリー組成物を用い、研磨パフを半導体基板表面に摺擦する化学機械研磨加工による第1のCMP研磨加工処理を実行する工程、
3).前記第1のCMP研磨加工処理された半導体基板の基盤表面に対して、カセイカリおよび水素ガスを純水に溶解させたpH12.0以上のアルカリ水素水を用い、研磨パフを半導体基板の基盤表面に摺擦する第2の仕上げCMP研磨加工処理および洗浄処理を実行する工程。
Japanese Patent Laying-Open No. 2015-090945 (Patent Document 2) by the inventors of the present invention describes a semiconductor substrate recycling method in which the surface of a semiconductor substrate is subjected to a CMP process and a cleaning process after an etching process. A feature of a method for manufacturing a recycled semiconductor wafer is proposed.
1). CMP processing and cleaning after grinding processing that exposes the substrate surface by grinding the surface of the substrate structure layer on the used semiconductor substrate with a cup wheel type grinding wheel to remove the entire layer on the substrate structure layer. In the method for reclaiming a semiconductor substrate to be processed, a method for producing a reclaimed semiconductor wafer comprising the following steps:
1). A cup wheel type grinding wheel is in-feed fed to the surface of the structure layer on the base of the used semiconductor substrate, and cleaning jet is directed toward the cutting edge of the cup wheel type grinding wheel that is not used for grinding during grinding. Grinding process step of removing the entire structure layer on the substrate to expose the base surface by performing grinding wheel cleaning in which a high-pressure cleaning liquid having a pressure of 3 to 20 MPa is sprayed in a fan shape at a spray angle of 5 to 18 degrees from the nozzle of the apparatus .
2). A polishing slurry composition having a pH of 9.0 or more containing colloidal abrasive grains, a basic compound and pure water is used to rub the polishing puff against the surface of the semiconductor substrate. Performing a first CMP polishing process by chemical mechanical polishing,
3). Using alkaline hydrogen water having a pH of 12.0 or higher obtained by dissolving caustic and hydrogen gas in pure water, the polishing puff is applied to the substrate surface of the semiconductor substrate. A step of performing a second finish CMP polishing process and a cleaning process to be rubbed.

さらに、特開平11−297647号公報(特許文献3)は、半導体基板表面の化学的機械研磨方法において、研磨粒子を含む研磨液と過酸化水素水溶液の混合比率が1:1〜10:1の範囲のpH3〜6の研磨剤スラリーを石英ガラス管内に通過させるときに紫外光発生源より波長150nm〜320nmの紫外線を照射して研磨剤スラリーを活性化させた後、直ちに半導体基板表面に供給分散塗布し、研磨パッドで研磨加工することを特徴とする化学的機械研磨液の供給方法を提案する。 Furthermore, Japanese Patent Laid-Open No. 11-297647 (Patent Document 3) discloses that in a chemical mechanical polishing method for a semiconductor substrate surface, the mixing ratio of the polishing liquid containing abrasive particles and the aqueous hydrogen peroxide solution is 1: 1 to 10: 1. When passing an abrasive slurry having a pH in the range of 3 to 6 into a quartz glass tube, the abrasive slurry is activated by irradiating ultraviolet rays having a wavelength of 150 nm to 320 nm from an ultraviolet light generation source, and immediately supplied and dispersed on the surface of the semiconductor substrate. A method for supplying a chemical mechanical polishing liquid is proposed, which is applied and polished with a polishing pad.

特開2015−187043号公報Japanese Patent Laying-Open No. 2015-187043 特開2015−090945号公報Japanese Patent Laying-Open No. 2015-090945 特開平11−297647号公報JP 11-297647 A

前記特許文献1のGaN基板の1nmRa以下の表面粗さの研削加工方法は、研削加工工程のみでも3工程必要であり、生産性が低い。 The grinding method with a surface roughness of 1 nmRa or less of the GaN substrate of Patent Document 1 requires three steps even in the grinding step alone, and the productivity is low.

前記特許文献2の脆弱性基板の再生方法では、基板がGaN基板やシリコンベア基板のときは、0.1nm以下の表面粗さを得るには研磨定盤の回転数を10〜30rpmで行う必要があり、無潜傷(0.1nmRa以下)の6インチ径GaN基板を得るには約20時間要する。 In the method for regenerating a fragile substrate disclosed in Patent Document 2, when the substrate is a GaN substrate or a silicon bare substrate, the polishing platen is rotated at 10 to 30 rpm to obtain a surface roughness of 0.1 nm or less. It takes about 20 hours to obtain a 6-inch diameter GaN substrate having no latent scratch (0.1 nm Ra or less).

前記特許文献3の半導体基板のCMP研磨方法では、研磨剤スラリー溶液の基盤面供給までの保管管理が難しく、また、研磨剤スラリー溶液の使用量が多大となる。さらに、研磨剤スラリー溶液のpHが3〜6を酸性であり、GaN基板用には利用できない。 In the CMP polishing method for a semiconductor substrate of Patent Document 3, it is difficult to store and manage the abrasive slurry solution until the substrate surface is supplied, and the amount of the abrasive slurry solution used is large. Further, the pH of the abrasive slurry solution is acidic from 3 to 6, and cannot be used for GaN substrates.

本願発明は、研磨速度が0.5μm/min以上で無潜傷(0.1nmRa以下)のGaN基板を得るCMP研磨加工方法を提案するもので、特許文献2記載の研磨剤スラリーを用い、また、研磨定盤として透明な固定板(強化ガラス板、エンジニアプラスチック板)上に紫外線を透光できるエンジニアプラスチック製研磨材を積層した構造の研磨定盤を用い、研磨定盤下方より前記エンジニアプラスチック製研磨材に向けて紫外線を高圧水銀灯より照射し、CMP研磨加工中に研磨材表面に供給される研磨剤スラリー溶液を活性化させてGaN基板の研磨速度を高めることを可能とした。 The present invention, which polishing rate suggest CMP polishing method for obtaining the GaN substrate of non-latent scratches (0.1NmRa hereinafter) on the 0.5 [mu] m / mi n than using an abrasive slurry of Patent Document 2 In addition, a polishing platen having a structure in which an engineered plastic polishing material capable of transmitting ultraviolet light is laminated on a transparent fixed plate (tempered glass plate, engineer plastic plate) as a polishing platen, the engineer from below the polishing platen is used. It was made possible to increase the polishing rate of the GaN substrate by irradiating ultraviolet rays from a high-pressure mercury lamp toward the plastic abrasive and activating the abrasive slurry solution supplied to the abrasive surface during the CMP polishing process.

請求項1の発明は、透明な固定板上に紫外線を透光できるエンジニアプラスチック製研磨材を積層した構造の研磨定盤、この研磨定盤下方に設置されて前記エンジニアプラスチック製研磨材に向かって紫外線を照射する紫外線照射光源、前記研磨定盤上方に設けられてGaN基板を保持する基板ホルダー前記エンジニアプラスチック製研磨材にアルカリ水素水研磨剤スラリー溶液を供給する研磨剤スラリー溶液供給ノズルと、を設けたことを特徴とする研磨装置を提供するものである。 According the invention of claim 1 includes a polishing surface plate structure formed by stacking engineering plastic abrasive ultraviolet able translucent on a transparent fixing plate, said engineering plastic abrasive is placed below the polishing table towards and an ultraviolet radiation source for irradiating the ultraviolet rays, the a substrate holder for holding a GaN substrate provided above the polishing plate, the polishing agent supplying alkaline hydrogen water abrasive slurry solution to said engineering plastic abrasive there is provided a polishing equipment which is characterized by providing a slurry solution supply nozzle, the.

請求項2の発明は、下面にGaN基板を保持する基板ホルダーを転させつつ下方に移動させて回転している研磨定盤の透明な固定板の上に積層された紫外線を透光できるエンジニアプラスチック製研磨材上面に前記GaN基盤を接触させて前記エンジニアプラスチック製研磨材の上面と前記GaN基板の下面との摺擦により研磨加工を開始するとともに、この研磨加工中に前記研磨定盤下方に設置された紫外線照射光源より前記エンジニアプラスチック製研磨材に向けて紫外線を照射し続けるとともに、研磨剤スラリー溶液供給ノズルよりカセイカリおよび水素ガスを純水に溶解させたスラリー溶液に砥粒を分散させたpH10〜13.5のアルカリ水素水研磨剤スラリー溶液を前記エンジニアプラスチック製研磨材上に供給することにより前記エンジニアプラスチック製研磨材の上面と前記GaN基板の下面間に前記アルカリ水素水研磨剤スラリー溶液を流布させることを特徴とする、GaN基板の研磨加工方法を提供するものである。 A second aspect of the present invention, by moving the substrate holder over which holds the GaN board under surface rotation of furuncle next lower side, stacked on a transparent fixing plate on a polishing machine that rotates starts the polishing by friction with the upper surface and the lower surface of the GaN substrate of the the upper surface of the engineering plastic abrasive ultraviolet capable translucent contacting the GaN foundation said engineering plastic abrasives, this towards from ultraviolet radiation light source installed below the polishing table during polishing before Symbol engineering plastic abrasive in continuing irradiation with ultraviolet rays, Ken Migakuzai slurry solution supplied nozzle Ri by Le potash and hydrogen gas the supplying alkaline hydrogen water abrasive slurry solvent solution pH10~13.5 dispersing the abrasive grains in the slurry solution obtained by dissolving in pure water on the engineering plastic abrasive Characterized in that for flooding the alkaline hydrogen water abrasive slurry solution between the lower surface of the GaN substrate and the upper surface of the engineering plastic abrasive by a, there is provided a method of polishing a GaN substrate.

本発明によれば、0.1nmRa表面粗さのGaN基板(6)を得るに要するCMP研磨加工時間を従来の研磨時間(1時間の研磨速度は10nm程度)の1/30〜1/100に短縮できた。 According to the present invention, the CMP polishing time required to obtain a GaN substrate (6) having a surface roughness of 0.1 nmRa is reduced to 1/30 to 1/100 of the conventional polishing time (the polishing rate per hour is about 10 nm). It was shortened.

研磨装置の断面図である。It is sectional drawing of a grinding | polishing apparatus. アルカリ水素水研磨剤スラリー溶液のpHと、0.1nmRaのGaN基板を得るに要した研磨速度(縦軸)と、研磨定盤の回転数(横軸)と、の相関図である。 And p H of alkaline hydrogen water abrasive slurry solution, and the polishing rate required for obtaining the GaN substrate 0.1NmRa (vertical axis), the rotational speed of the polishing platen (horizontal axis) is a correlation diagram.

図1に示す本発明の研磨装置(1)は、透明な固定板上に紫外線を透光できるエンジニアプラスチック製研磨材(2a)を積層した構造の研磨定盤(2)、この研磨定盤(2)下方に設置した紫外線照射光源(4)、前記研磨定盤(2)上方に設けた基盤ホルダー(3)前記エンジニアプラスチック製研磨材(2a)にアルカリ水素水研磨剤スラリー溶液を供給する研磨剤スラリー溶液供給ノズル(5)と、を設けた研磨装置(1)である。 The polishing apparatus (1) of the present invention shown in FIG. 1 includes a polishing surface plate (2) having a structure in which an engineer plastic polishing material (2a) capable of transmitting ultraviolet light is laminated on a transparent fixing plate , and this polishing plate. board and ultraviolet irradiation light source placed under the (2) (4), wherein the polishing surface plate (2) substrate holders provided above (3), wherein the engineering plastic abrasive (2a) to the alkaline hydrogen water abrasive the abrasive slurry solution supply nozzle for supplying a slurry solution (5), a polishing apparatus provided with (1).

図1において、研磨定盤の回転軸は、サーボモーター(図示されていない)により5〜200rpmの回転速度で回転される。同様に、基板ホルダー(3)の回転軸もサーボモーター(図示されていない)により10〜200rpmの回転速度で回転される。紫外線照射光源(4)としてオーク製作所製の高圧水銀灯を用い、250nm〜400nm波長の光線を利用した。 In FIG. 1, the rotating shaft of the polishing surface plate is rotated at a rotational speed of 5 to 200 rpm by a servo motor (not shown). Similarly, the rotation shaft of the substrate holder (3) is also rotated at a rotation speed of 10 to 200 rpm by a servo motor (not shown). A high pressure mercury lamp manufactured by Oak Seisakusho was used as the ultraviolet irradiation light source (4), and light having a wavelength of 250 nm to 400 nm was used.

固定板素材としては、強化ガラス板、PEEK、ポリアセタール、ナイロン6,6、ナイロン6,10、ポリブチレンフタレート、ポリアラミド等のエンジニアプラスチック製板を用いた。エンジニアプラスチック製研磨材(2a)としては、PEEK、ポリアセタール、ナイロン6,6、ナイロン6,10、ポリブチレンフタレート、ポリアラミド、ポリイミド等の軟化温度が200以上のエンジニアプラスチック製板が挙げられる。このエンジニアプラスチック製研磨材(2a)表面は凹凸模様(格子溝、渦巻き溝、蜘蛛の巣模様、不織布凹凸模様)を有しているのがアルカリ水素水研磨剤スラリー溶液の浸透、排出を促進させ、研磨速度を高めるので好ましい。 Engineered plastic plates such as tempered glass plate, PEEK, polyacetal, nylon 6,6, nylon 6,10, polybutylene phthalate, polyaramid, etc. were used as the material for the fixing plate. Examples of the engineer plastic abrasive (2a) include engineer plastic plates having a softening temperature of 200 ° C. or higher, such as PEEK, polyacetal, nylon 6,6, nylon 6,10, polybutylene phthalate, polyaramid, and polyimide. The surface of this engineered plastic abrasive (2a) has a concavo-convex pattern (lattice groove, spiral groove, spider web pattern, non-woven concavo-convex pattern) to promote the penetration and discharge of the alkaline hydrogen water abrasive slurry solution. This is preferable because it increases the polishing rate.

カセイカリおよび水素ガスを純水に溶解させたスラリー溶液に砥粒を分散させたpH10〜13.5のアルカリ水素水研磨剤スラリー溶液の酸化還元電位としては−800〜1,200mがGaN基板(6)には好ましい。更に好ましくは、アルカリ水素水研磨剤スラリー溶液のpHは、pH11〜13である。 Potash and -800 is a hydrogen gas as the redox potential of the alkaline hydrogen water abrasive slurry solvent solution pH10~13.5 dispersing the abrasive grains in the slurry solution obtained by dissolving in pure water - 1,200m V is GaN We preferred the substrate (6). More preferably, the pH of the alkaline hydrogen water abrasive slurry solution is pH 11-13.

研磨砥粒としては、シリカ、ゼオライト、ジルコニア、アルミナ、ダイヤモンド、セライト等の粒子が基板の種類により選択される。研磨砥粒のアルカリ水素水研磨剤スラリー溶液中の濃度は、10〜30重量%が好ましい。GaN基板(6)には、シリカ粒子が好ましい。 As abrasive grains, particles such as silica, zeolite, zirconia, alumina, diamond, celite and the like are selected depending on the type of substrate. The concentration of the alkaline aqueous hydrogen abrasive slurry solvent solution of the abrasive grains is preferably 10 to 30 wt%. Silica particles are preferred for the GaN substrate (6) .

図1に示す研磨装置(1)、pHの異なるアルカリ水素水研磨剤スラリー溶液を用い、GaN基板(6)表面厚み500nmを1分間でCMP研磨加工して0.1nmRaの研磨加工GaN基板(6)を得ることを目標にして研磨定盤(2)の回転数を前記pHに応じて変えてGaN基板(6)のCMP研磨加工を行った。なお、使用した紫外線光源波長は、365nmと250〜325nm波長の2つの波長帯を有する光源であった。 Polishing apparatus shown in FIG. 1 (1), using a different alkaline hydrogen water abrasive slurry solvent solution of pH, polishing GaN substrate 0.1nmRa by CMP polishing a GaN substrate (6) surface thickness 500nm in 1 minute ( The GaN substrate (6) was subjected to CMP polishing by changing the rotational speed of the polishing platen (2) according to the pH with the goal of obtaining 6) . The used ultraviolet light source wavelength was a light source having two wavelength bands of 365 nm and 250 to 325 nm.

0.1nmRaの研磨加工GaN基板(6)を得る際のアルカリ水素水研磨剤スラリー溶液のpHと、研磨速度(縦軸)と、研磨定盤(2)の回転数(横軸)と、の相関図を図2に示す。 The pH of the alkaline hydrogen water abrasive slurry solution for obtaining a 0.1 nmRa polished GaN substrate (6) , the polishing rate (vertical axis) , the rotational speed of the polishing platen (2) (horizontal axis), The correlation diagram is shown in FIG.

本発明の研磨装置を用いるGaN基板のCMP研磨方法は、従来技術と比較して非常に短いCMP研磨加工時間で硬脆性基板の平坦化加工方法は、従来技術と比較して極めて高いCMP研磨速度で加工することが可能である。 The CMP polishing method for a GaN substrate using the polishing apparatus of the present invention has a very short CMP polishing time compared to the conventional technique, and the planarization method for a hard and brittle substrate is extremely high compared to the conventional technique. It is possible to process at a speed.

1 研磨装置
2 研磨定盤
2a エンジニアプラスチック製研磨材
3 基板ホルダー
4 紫外線照射光源
5 研磨剤スラリー溶液供給ノズル
6 GaN基板
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Polishing surface plate 2a Engineer plastic abrasive 3 Substrate holder 4 Ultraviolet irradiation light source 5 Abrasive slurry solution supply nozzle 6 GaN substrate

Claims (2)

透明な固定板上に紫外線を透光できるエンジニアプラスチック製研磨材を積層した構造の研磨定盤
この研磨定盤下方に設置されて前記エンジニアプラスチック製研磨材に向かって紫外線を照射する紫外線照射光源
前記研磨定盤上方に設けられてGaN基板を保持する基板ホルダー
前記エンジニアプラスチック製研磨材にアルカリ水素水研磨剤スラリー溶液を供給する研磨剤スラリー溶液供給ノズルと、を設けたことを特徴とする研磨装置。
A polishing platen structure obtained by stacking engineering plastic abrasive ultraviolet able translucent on a transparent fixing plate,
An ultraviolet radiation source for irradiating the ultraviolet rays toward the engineering plastic abrasive is placed below the polishing table,
A substrate holder for holding the GaN substrate provided above the polishing table,
Polishing equipment, characterized in that a, the abrasive slurry solution supply nozzle for supplying an alkaline aqueous hydrogen abrasive slurry solution to said engineering plastic abrasives.
面にGaN基板を保持する基板ホルダーを転させつつ下方に移動させて回転している研磨定盤の透明な固定板の上に積層された紫外線を透光できるエンジニアプラスチック製研磨材上面に前記GaN基板を接触させて前記エンジニアプラスチック製研磨材の上面と前記GaN基板の下面との摺擦により研磨加工を開始するとともに、この研磨加工中に前記研磨定盤下方に設置された紫外線照射光源より前記エンジニアプラスチック製研磨材に向けて紫外線を照射し続けるとともに、研磨剤スラリー溶液供給ノズルよりカセイカリおよび水素ガスを純水に溶解させたスラリー溶液に砥粒を分散させたpH10〜13.5のアルカリ水素水研磨剤スラリー溶液を前記エンジニアプラスチック製研磨材上に供給することにより前記エンジニアプラスチック製研磨材の上面と前記GaN基板の下面間に前記アルカリ水素水研磨剤スラリー溶液を流布させることを特徴とする、GaN基板の研磨加工方法。 By moving the substrate holder over which holds the GaN board under surface rotation of furuncle next lower side, engineering plastic which can translucency of laminated UV on a transparent fixing plate on a polishing machine that rotates starts the polishing by friction with the upper surface and the lower surface of the GaN substrate of the engineering plastic abrasive on the upper surface of the manufactured abrasive said contacting the GaN board, the polishing constant during this polishing with continuing irradiation with ultraviolet rays toward the front Symbol engineering plastic abrasive than the installed ultraviolet radiation light source panel of the lower and the Ken Migakuzai slurry solution supplied nozzle by Ri potash and hydrogen gas is dissolved in pure water wherein by supplying the alkaline hydrogen water abrasive slurry solvent solution pH10~13.5 dispersing the abrasive grains in the slurry solution on the engineering plastic abrasive ene Characterized in that for flooding the alkaline hydrogen water abrasive slurry solution on surface of the near-plastic abrasive and between the lower surface of the GaN substrate, a method of polishing a GaN substrate.
JP2015226429A 2015-11-19 2015-11-19 Polishing apparatus and GaN substrate polishing method using the same Active JP6240943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015226429A JP6240943B2 (en) 2015-11-19 2015-11-19 Polishing apparatus and GaN substrate polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226429A JP6240943B2 (en) 2015-11-19 2015-11-19 Polishing apparatus and GaN substrate polishing method using the same

Publications (2)

Publication Number Publication Date
JP2017098322A JP2017098322A (en) 2017-06-01
JP6240943B2 true JP6240943B2 (en) 2017-12-06

Family

ID=58804996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226429A Active JP6240943B2 (en) 2015-11-19 2015-11-19 Polishing apparatus and GaN substrate polishing method using the same

Country Status (1)

Country Link
JP (1) JP6240943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866084A (en) * 2019-04-08 2019-06-11 北京建筑大学 A kind of UV photocatalysis assistant chemical mechanical polishing apparatus and polishing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641835B (en) * 2017-10-23 2019-11-26 大连理工大学 A kind of method of semiconductor wafer optical electro-chemistry mechanical polishing
CN113334242B (en) * 2021-06-24 2022-11-04 大连理工大学 Processing device and process for diamond wafer ultraviolet light assisted chemical mechanical polishing
WO2023277103A1 (en) * 2021-06-30 2023-01-05 京セラ株式会社 Method for producing group 13 element nitride crystal substrate
JP2023064373A (en) * 2021-10-26 2023-05-11 株式会社Screenホールディングス Substrate processing method and substrate processing system
CN114393503B (en) * 2021-12-20 2023-05-02 浙江工业大学 Jet polishing device and method based on ultraviolet light response self-assembly system
WO2024069972A1 (en) * 2022-09-30 2024-04-04 Sanoh Industrial Co.,Ltd. Device for planarizing semiconductor layers and method for manufacturing semiconductor devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355799B2 (en) * 2002-04-22 2009-11-04 株式会社エム光・エネルギー開発研究所 Polishing method of silicon wafer
JP2006024910A (en) * 2004-06-08 2006-01-26 Matsushita Electric Ind Co Ltd Method and apparatus for treating surface
JP2007160496A (en) * 2005-11-15 2007-06-28 Shinshu Univ Workpiece polishing device, and workpiece polishing method
JP5130740B2 (en) * 2007-02-23 2013-01-30 富士通株式会社 Manufacturing method of semiconductor device and apparatus used for the method
JP5552648B2 (en) * 2009-12-15 2014-07-16 国立大学法人大阪大学 Polishing method and polishing apparatus
JP5103631B2 (en) * 2010-03-24 2012-12-19 国立大学法人 熊本大学 Processing method
JP6205619B2 (en) * 2013-11-07 2017-10-04 株式会社岡本工作機械製作所 Manufacturing method of recycled semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866084A (en) * 2019-04-08 2019-06-11 北京建筑大学 A kind of UV photocatalysis assistant chemical mechanical polishing apparatus and polishing method

Also Published As

Publication number Publication date
JP2017098322A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6240943B2 (en) Polishing apparatus and GaN substrate polishing method using the same
JP6312976B2 (en) Manufacturing method of semiconductor wafer
TW399254B (en) Method of manufacturing semiconductor wafers
US9991110B2 (en) Method for manufacturing semiconductor wafer
TWI460777B (en) Verfahren zum schleifen einer halbleiterscheibe
JP5916513B2 (en) Processing method of plate
JP2008246654A (en) Polishing device and polishing pad regeneration treatment method
JP6027346B2 (en) Manufacturing method of semiconductor wafer
JP2009124153A (en) Method for producing semiconductor wafer with polished edge part
CN104842225A (en) Wet processing method for large-dimension sapphire substrate surface
JP2013247132A (en) Method for processing plate-like object
CN104827592A (en) Processing method of large-sized sapphire substrate slice
JP6192778B2 (en) Silicon wafer processing equipment
JP2006100786A (en) Method for manufacturing wafer
CN114290132A (en) Surface treatment method for silicon carbide wafer
CN106736881A (en) Wafer surface processing and treating method
JP2009111094A (en) Wafer mirror polishing method
CN102814725A (en) Chemical mechanical polishing method
JP2002016025A (en) Method and apparatus for manufacturing semiconductor wafer
JP2013129023A (en) Method for manufacturing sapphire substrate, and sapphire substrate
JPWO2007063873A1 (en) Polishing method and polishing apparatus
CN108290268B (en) Double-side grinding method for wafer
JP2010135524A (en) Cleaning method of silicon wafer having completed grinding process
JP6616171B2 (en) Polishing apparatus and polishing processing method
WO2013027762A1 (en) Method for manufacturing semiconductor wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171013

R150 Certificate of patent or registration of utility model

Ref document number: 6240943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250