JP6240298B2 - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP6240298B2
JP6240298B2 JP2016231563A JP2016231563A JP6240298B2 JP 6240298 B2 JP6240298 B2 JP 6240298B2 JP 2016231563 A JP2016231563 A JP 2016231563A JP 2016231563 A JP2016231563 A JP 2016231563A JP 6240298 B2 JP6240298 B2 JP 6240298B2
Authority
JP
Japan
Prior art keywords
power
amount
upper limit
charger
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016231563A
Other languages
Japanese (ja)
Other versions
JP2017051094A (en
Inventor
亮佑 横尾
亮佑 横尾
佑一 中重
佑一 中重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016231563A priority Critical patent/JP6240298B2/en
Publication of JP2017051094A publication Critical patent/JP2017051094A/en
Priority to JP2017213261A priority patent/JP6565086B2/en
Application granted granted Critical
Publication of JP6240298B2 publication Critical patent/JP6240298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Description

本発明は、充電器に関する。   The present invention relates to a charger.

太陽光発電システムにより発電された発電電力と、商用電源から購入した買電電力とを、電気自動車が備える蓄電池に充電可能な配電システムがある(例えば、特許文献1参照)。
短時間の間に大電力を要求する負荷があれば、商用電源系統に対して電力要求のピークが発生する為、電力需要の平滑化(ピークカット)が求められる。この解決手法として、太陽光発電システムや発電機等の発電電力と、電力需要が小さい時間帯の買電電力を定置型蓄電池に蓄電しておき、電力需要が増加する時間帯に定置型蓄電池の放電電力を利用することが知られている(例えば、特許文献2参照)。
また、充電器がデマンドレスポンスの対象となり、所定の時間帯において電力消費の削減が求められる場合があり、買電電力を減らした時に一定の負荷を動作させるための手段として、定置型蓄電池からの放電電力を利用することが知られている。
There is a power distribution system capable of charging a storage battery included in an electric vehicle with generated power generated by a solar power generation system and purchased power purchased from a commercial power source (see, for example, Patent Document 1).
If there is a load that requires a large amount of power in a short time, a peak of power demand occurs in the commercial power supply system, and thus smoothing of power demand (peak cut) is required. As a solution to this problem, the power generated by a photovoltaic power generation system or generator and the purchased power during a time period when the power demand is small are stored in the stationary storage battery, and the stationary storage battery is stored during the time when the power demand increases. It is known to use discharge power (for example, refer to Patent Document 2).
In addition, the charger is subject to demand response, and there is a case where reduction of power consumption is required in a predetermined time zone, and as a means for operating a certain load when the purchased power is reduced, a stationary battery is used. It is known to use discharge power.

近年、電気自動車の急速充電が注目されている。急速充電時には、比較的短い充電時間で電気自動車が備える蓄電池の充電する必要があるため、電気自動車に給電される給電電力は低速充電に比べて増大する。このため、急速充電を実現する場合には定置型蓄電池に十分な電力が蓄電されていることが望ましい。   In recent years, rapid charging of electric vehicles has attracted attention. At the time of rapid charging, since it is necessary to charge a storage battery provided in the electric vehicle with a relatively short charging time, the power supplied to the electric vehicle is increased as compared with low-speed charging. For this reason, when realizing quick charge, it is desirable that sufficient electric power is stored in the stationary storage battery.

特開2013−81290号公報JP 2013-81290 A 国際公開第2011/162025号International Publication No. 2011-162025

しかしながら、太陽光発電等の自然エネルギーによる発電電力は不安定であり、気象条件によっては定置型蓄電池に十分な電力が充電されない虞がある。この場合、上述のような、ピークカットや、デマンドレスポンスへの応答、急速充電ができない問題が生じ得る。また、太陽光発電だけでなく、商用電源による買電電力でも定置型蓄電池の充電をおこなう場合、太陽光発電により発電された発電電力を充電するときには既に定置型蓄電池が満充電となっており、発電電力を蓄電できない虞が生じ得る。このように、太陽光発電等の発電電力と買電電力とを組み合わせて定置型蓄電池を充電する場合、商用電源から購入する買電電力量を最適化することは困難であった。   However, power generated by natural energy such as solar power generation is unstable, and there is a possibility that sufficient power may not be charged in the stationary storage battery depending on weather conditions. In this case, there may arise a problem that peak cut, response to demand response, and quick charge cannot be performed as described above. In addition, when charging stationary storage batteries not only with solar power generation but also with purchased power from commercial power sources, the stationary storage battery is already fully charged when charging the generated power generated by solar power generation, There is a possibility that the generated power cannot be stored. Thus, when charging a stationary storage battery by combining generated power such as photovoltaic power generation and purchased power, it is difficult to optimize the amount of purchased power purchased from a commercial power source.

本発明は、このような事情に鑑みてなされたもので、その目的は、商用電源から受電する買電電力量を抑えることができる充電器を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the charger which can suppress the electric power purchase amount received from a commercial power source.

上記問題を解決するために、本発明に係る充電設備管理装置は、自然エネルギーにより電力を発電可能な発電機と、前記発電機からの発電電力及び商用電源からの買電電力を充電可能な定置型蓄電池と、前記発電機からの発電電力、前記商用電源からの買電電力及び前記定置型蓄電池からの放電電力の供給を受けて車両へ充電可能な充電器とを備える充電設備を管理する充電設備管理装置において、決められた予測期間内において前記充電器を利用することが予測される車両台数の予測値を示す利用台数予測値を取得する利用予測部と、前記利用予測部が取得した前記利用台数予測値に基づき、前記予測期間内に前記充電器から車両に給電され得る給電電力量を予測する給電電力量予測部と、前記予測期間内に前記発電機が発電可能な電力量を予測する発電予測部と、前記給電電力量予測部が予測した予測結果と前記発電予測部が予測した予測結果とに基づき、前記予測期間内に前記充電器から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求め、前記不足電力量に基づき、前記予測期間内に前記商用電源に要求する買電電力の上限値を決定する買電上限値決定部と、を備える。   In order to solve the above problems, a charging facility management device according to the present invention includes a generator capable of generating electric power using natural energy, and a stationary device capable of charging generated power from the generator and purchased power from a commercial power source. Charge management comprising a storage battery and a charger capable of charging a vehicle upon receipt of electric power generated from the generator, electric power purchased from the commercial power supply, and discharge electric power from the stationary storage battery In the facility management device, a usage prediction unit that acquires a usage number prediction value indicating a prediction value of the number of vehicles predicted to use the charger within a predetermined prediction period, and the usage prediction unit acquired Based on the predicted number of units used, a power supply amount prediction unit that predicts the amount of power supply that can be supplied from the charger to the vehicle within the prediction period, and the amount of power that the generator can generate within the prediction period Predicting power supply power to be supplied to the vehicle from the charger within the prediction period based on the power generation prediction unit to be predicted, the prediction result predicted by the power supply prediction unit and the prediction result predicted by the power generation prediction unit A power purchase upper limit determining unit that determines an insufficient power amount that is deficient when using the generated power and determines an upper limit value of the purchased power required for the commercial power source within the prediction period based on the insufficient power amount And comprising.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記利用予測部が取得した利用台数予測値を前記充電器の利用状況に応じて補足するための補足値を求める補足値算出部をさらに備え、前記給電電力量予測部は、前記利用予測部が取得した利用台数予測値を前記補足値に基づき補足した値に基づき、前記給電電力量を予測する。   Further, according to one aspect of the charging facility management apparatus according to the present invention, in the above-described invention, a supplemental value for supplementing the predicted number of used units acquired by the usage prediction unit according to the usage status of the charger is provided. A supplementary value calculation unit to be obtained is further provided, and the power supply power amount prediction unit predicts the power supply power amount based on a value obtained by supplementing the use number prediction value acquired by the use prediction unit based on the supplementary value.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記買電上限値決定部が決定した前記買電電力の上限値を、前記充電器が前記車両に給電していない期間において前記定置型蓄電池に充電する前記買電電力の値に設定する充電制御部をさらに備える。   In addition, according to one aspect of the charging facility management apparatus according to the present invention, in the above-described invention, the charger supplies the vehicle with the upper limit value of the purchased power determined by the power purchase upper limit determination unit. A charging control unit that sets the value of the purchased power to be charged in the stationary storage battery during a period when the stationary storage battery is not used.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記買電上限値決定部が、前記買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる前記予測期間内の前記買電電力の最大値よりも、決定した前記買電電力の上限値が高い場合、前記買電電力の上限値を前記閾値又は前記最大値とする。   Further, according to one aspect of the charging facility management device according to the present invention, in the invention described above, the power purchase upper limit determination unit is contractually determined as an upper limit value at which the charge of the purchased power is switched, Or, when the determined upper limit value of the purchased power is higher than the maximum value of the purchased power within the prediction period determined according to the request corresponding to the demand response, the upper limit value of the purchased power is The threshold value or the maximum value is used.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記給電電力量予測部が、前記商用電源からの買電電力が決められた最小値であるという前提の下、前記給電電力量を予測する。   Also, one aspect of the charging facility management device according to the present invention is based on the premise that in the above-described invention, the power supply power amount prediction unit is a minimum value in which the purchased power from the commercial power source is determined. The power supply amount is predicted.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記買電上限値決定部が、前記予測期間内に前記充電器が前記買電電力又は前記放電電力を前記車両に給電した場合、前記車両に給電された給電電力量に応じて前回求めた前記不足電力量を変更し、変更された不足電力量に基づき、前記買電電力の上限値を決定する。   Further, according to one aspect of the charging facility management device according to the present invention, in the above-described invention, the power purchase upper limit determination unit determines that the charger supplies the purchased power or the discharged power within the prediction period. When power is supplied to the vehicle, the insufficient power amount obtained last time is changed according to the supplied power amount supplied to the vehicle, and the upper limit value of the purchased power is determined based on the changed insufficient power amount.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記発電予測部が、前記予測期間内に前記発電機が発電可能な電力量を複数回予測し、前記買電上限値決定部は、前記発電予測部が前回の予測結果よりも発電可能な電力量が増加することを予測した場合、今回の予測結果に基づき前回求めた前記不足電力量を変更し、変更された不足電力量に基づき、前記買電電力の上限値を決定する。   Further, according to one aspect of the charging facility management device according to the present invention, in the invention described above, the power generation prediction unit predicts the amount of power that can be generated by the generator a plurality of times within the prediction period. When the power generation prediction unit predicts that the amount of power that can be generated increases from the previous prediction result, the power upper limit determination unit changes and changes the insufficient power amount obtained last time based on the current prediction result. The upper limit value of the purchased power is determined based on the amount of shortage of electric power.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記充電器から前記車両に対して給電が開始される場合、前記定置型蓄電池の蓄電残量に基づき、前記車両に供給可能な放電電力を算出する放電電力算出部と、前記放電電力算出部が算出した放電電力に基づき、前記充電器が前記車両に給電可能な給電電力の範囲を決定する給電範囲決定部と、をさらに備える。   Further, according to one aspect of the charging facility management device according to the present invention, in the above-described invention, when power supply is started from the charger to the vehicle, based on the remaining power of the stationary storage battery, A discharge power calculation unit that calculates discharge power that can be supplied to the vehicle, and a power supply range determination unit that determines a range of power supply power that the charger can supply to the vehicle based on the discharge power calculated by the discharge power calculation unit And further comprising.

また、本発明に係る充電設備管理装置の一態様は、上記に記載の発明において、前記定置型蓄電池の使用期間に基づき、前記放電電力算出部が算出する前記定置型蓄電池の蓄電残量を補正する充電量補正部をさらに備える。   Further, according to one aspect of the charging facility management device according to the present invention, in the above-described invention, the remaining storage amount of the stationary storage battery calculated by the discharge power calculation unit is corrected based on a usage period of the stationary storage battery. And a charge amount correction unit.

また、本発明に係る充電設備管理方法の一態様は、自然エネルギーにより電力を発電可能な発電機と、前記発電機からの発電電力及び商用電源からの買電電力を充電可能な定置型蓄電池と、前記発電機からの発電電力、前記商用電源からの買電電力及び前記定置型蓄電池からの放電電力の供給を受けて車両へ充電可能な充電器とを備える充電設備を管理する充電設備管理方法において、決められた予測期間内において前記充電器を利用することが予測される車両台数の予測値を示す利用台数予測値を取得する利用予測ステップと、前記利用予測ステップで取得した前記利用台数予測値に基づき、前記予測期間内に前記充電器から車両に給電され得る給電電力量を予測する給電電力量予測ステップと、前記予測期間内に前記発電機が発電可能な電力量を予測する発電予測ステップと、前記給電電力量予測ステップで予測した予測結果と前記発電予測ステップで予測した予測結果とに基づき、前記予測期間内に前記充電器から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求め、前記不足電力量に基づき、前記予測期間内に前記商用電源に要求する買電電力の上限値を決定する買電上限値決定ステップと、を備える。   Moreover, one aspect of the charging facility management method according to the present invention includes a generator capable of generating electric power by natural energy, a stationary storage battery capable of charging generated power from the generator and purchased power from a commercial power source, and A charging facility management method for managing a charging facility comprising: a generator capable of charging a vehicle by receiving supply of generated power from the generator, purchased power from the commercial power source, and discharged power from the stationary storage battery The usage prediction step of acquiring a usage number prediction value indicating a prediction value of the number of vehicles predicted to use the charger within a predetermined prediction period, and the usage number prediction acquired in the usage prediction step A power supply amount prediction step for predicting the amount of power supply that can be supplied from the charger to the vehicle within the prediction period based on the value; and the generator can generate power within the prediction period Based on the power generation prediction step for predicting power, the prediction result predicted in the power supply power amount prediction step, and the prediction result predicted in the power generation prediction step, the power supply power supplied to the vehicle from the charger within the prediction period A power purchase upper limit value for determining a power shortage amount that is deficient when using the generated power predicted as, and determining an upper limit value of the power purchase required for the commercial power source within the prediction period based on the power shortage amount A determination step.

また、本発明に係るプログラムの一態様は、自然エネルギーにより電力を発電可能な発電機と、前記発電機からの発電電力及び商用電源からの買電電力を充電可能な定置型蓄電池と、前記発電機からの発電電力、前記商用電源からの買電電力及び前記定置型蓄電池からの放電電力の供給を受けて車両へ充電可能な充電器とを備える充電設備を管理する演算装置を、決められた予測期間内において前記充電器を利用することが予測される車両台数の予測値を示す利用台数予測値を取得する利用予測手段、前記利用予測手段が取得した前記利用台数予測値に基づき、前記予測期間内に前記充電器から車両に給電され得る給電電力量を予測する給電電力量予測手段、前記予測期間内に前記発電機が発電可能な電力量を予測する発電予測手段、前記給電電力量予測手段が予測した予測結果と前記発電予測手段が予測した予測結果とに基づき、前記予測期間内に前記充電器から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求め、前記不足電力量に基づき、前記予測期間内に前記商用電源に要求する買電電力の上限値を決定する買電上限値決定手段、として機能させるためのプログラムである。   One aspect of the program according to the present invention includes a generator capable of generating electric power by natural energy, a stationary storage battery capable of charging generated power from the generator and purchased power from a commercial power source, and the power generation An arithmetic unit that manages a charging facility that includes a charger capable of charging a vehicle by receiving generated power from a machine, purchased power from the commercial power supply, and discharged power from the stationary storage battery is determined. Based on the predicted usage number obtained by the usage prediction means, the usage prediction means for obtaining a predicted usage quantity indicating the predicted value of the number of vehicles predicted to use the charger within the prediction period, the prediction A power supply prediction unit that predicts a power supply amount that can be supplied to the vehicle from the charger within a period; a power generation prediction unit that predicts a power amount that can be generated by the generator within the prediction period; Based on the prediction result predicted by the power amount prediction means and the prediction result predicted by the power generation prediction means, the generated power predicted as the feed power supplied to the vehicle from the charger within the prediction period is used. A program for obtaining a shortage of shortage of electric power and for functioning as a power purchase upper limit determining means for determining an upper limit of power purchase required for the commercial power source within the prediction period based on the shortage of electric power .

また、本発明に係る充電器は、自然エネルギーにより電力を発電可能な発電機と、前記発電機からの発電電力及び商用電源からの買電電力を充電可能な定置型蓄電池と、前記発電機からの発電電力、前記商用電源からの買電電力及び前記定置型蓄電池からの放電電力の供給を受けて車両へ充電可能な前記充電器と、を管理する充電設備管理装置を備える。前記充電設備管理装置は、決められた予測期間内において前記充電器を利用することが予測される車両台数の予測値に基づき、前記予測期間内に前記充電器から車両に給電され得る給電電力量を予測する給電電力量予測部と、前記予測期間内に前記発電機が発電可能な電力量を予測する発電予測部と、前記給電電力量予測部が予測した予測結果と前記発電予測部が予測した予測結果とに基づき、前記予測期間内に前記充電器から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求め、前記不足電力量に基づき、前記予測期間内に前記商用電源に要求する買電電力の上限値を決定する買電上限値決定部と、を備える。   Further, the charger according to the present invention includes a generator capable of generating electric power using natural energy, a stationary storage battery capable of charging generated power from the generator and purchased power from a commercial power source, and the generator. A charging facility management device for managing the generated power, the purchased power from the commercial power supply, and the charger capable of charging the vehicle with the supply of the discharged power from the stationary storage battery. The charging facility management device can supply power to the vehicle from the charger within the prediction period based on a predicted value of the number of vehicles predicted to use the charger within a predetermined prediction period. Predicting the amount of power that can be generated by the generator within the prediction period, the prediction result predicted by the power supply amount prediction unit, and the power generation prediction unit predicting Based on the predicted result, the amount of power shortage obtained when using the generated power predicted as the feed power fed from the charger to the vehicle within the prediction period is determined, based on the amount of power shortage, A power purchase upper limit determination unit that determines an upper limit value of the power purchase required for the commercial power source within a forecast period.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記給電電力量予測部が、前記車両台数の予測値を補足した値に基づき、前記給電電力量を予測する。   Further, according to one aspect of the charger according to the present invention, in the above-described invention, the power supply power prediction unit predicts the power supply power based on a value obtained by supplementing a predicted value of the number of vehicles.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記買電上限値決定部が決定した前記買電電力の上限値を、前記充電器が前記車両に給電していない期間において前記定置型蓄電池に充電する前記買電電力の値に設定する充電制御部をさらに備える。   Moreover, the one aspect | mode of the charger which concerns on this invention is the above-mentioned invention. WHEREIN: The said charger is not supplying electric power to the said upper limit value of the said electric power purchased determined by the said electric power purchase upper limit value determination part. It further includes a charge control unit that sets the value of the purchased power to be charged in the stationary storage battery during the period.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記買電上限値決定部が、前記買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる前記予測期間内の前記買電電力の最大値よりも、決定した前記買電電力の上限値が高い場合、前記買電電力の上限値を前記閾値又は前記最大値とする。   Further, according to one aspect of the charger according to the present invention, in the above-described invention, the power purchase upper limit determination unit is a threshold that is contractually determined as an upper limit at which the charge of the purchased power is switched, or When the determined upper limit value of the purchased power is higher than the maximum value of the purchased power within the prediction period determined according to the request corresponding to the demand response, the upper limit value of the purchased power is set to the threshold value or The maximum value is used.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記給電電力量予測部が、前記商用電源からの買電電力が決められた最小値であるという前提の下、前記給電電力量を予測する。   Moreover, in one aspect of the charger according to the present invention, in the invention described above, the power supply power amount prediction unit is based on the premise that the purchased power from the commercial power supply is a minimum value determined. Predict the amount of power supply.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記買電上限値決定部が、前記予測期間内に前記充電器が前記買電電力又は前記放電電力を前記車両に給電した場合、前記車両に給電された給電電力量に応じて前回求めた前記不足電力量を変更し、変更された不足電力量に基づき、前記買電電力の上限値を決定する。   Further, according to one aspect of the charger according to the present invention, in the above-described invention, the power purchase upper limit determination unit is configured so that the charger supplies the purchased power or the discharged power to the vehicle within the prediction period. When the power is supplied, the insufficient power amount obtained last time is changed according to the supplied power amount supplied to the vehicle, and the upper limit value of the purchased power is determined based on the changed insufficient power amount.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記発電予測部が、前記予測期間内に前記発電機が発電可能な電力量を複数回予測し、前記買電上限値決定部が、前記発電予測部が前回の予測結果よりも発電可能な電力量が増加することを予測した場合、今回の予測結果に基づき前回求めた前記不足電力量を変更し、変更された不足電力量に基づき、前記買電電力の上限値を決定する。   Further, according to one aspect of the charger according to the present invention, in the invention described above, the power generation prediction unit predicts the amount of power that can be generated by the generator a plurality of times within the prediction period, and the power purchase upper limit When the value determining unit predicts that the amount of power that can be generated is larger than the previous prediction result, the power generation prediction unit changes the insufficient power amount obtained last time based on the current prediction result, and has been changed. The upper limit value of the purchased power is determined based on the insufficient power amount.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記充電器から前記車両に対して給電が開始される場合、前記定置型蓄電池の蓄電残量に基づき、前記車両に供給可能な放電電力を算出する放電電力算出部と、前記放電電力算出部が算出した放電電力に基づき、前記充電器が前記車両に給電可能な給電電力の範囲を決定する給電範囲決定部と、をさらに備える。   In addition, in one aspect of the charger according to the present invention, in the above-described invention, when power supply to the vehicle is started from the charger, the vehicle is based on a remaining storage amount of the stationary storage battery. A discharge power calculation unit that calculates a discharge power that can be supplied; and a power supply range determination unit that determines a range of power supply power that the charger can supply to the vehicle based on the discharge power calculated by the discharge power calculation unit; Is further provided.

また、本発明に係る充電器の一態様は、上記に記載の発明において、前記定置型蓄電池の使用期間に基づき、前記放電電力算出部が算出する前記定置型蓄電池の蓄電残量を補正する充電量補正部をさらに備える。   Further, according to one aspect of the charger according to the present invention, in the above-described invention, charging that corrects a remaining power amount of the stationary storage battery calculated by the discharge power calculation unit based on a usage period of the stationary storage battery. An amount correction unit is further provided.

この発明によれば、商用電源から受電する買電電力量を抑えることができる。   According to the present invention, it is possible to suppress the amount of purchased power received from a commercial power source.

本発明の一実施形態に係る充電設備管理システムの一例を示す概略図である。It is the schematic which shows an example of the charging equipment management system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電設備管理システムの電力系統の接続関係を示すブロック図である。It is a block diagram which shows the connection relation of the electric power grid | system of the charging equipment management system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電設備管理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the charging equipment management apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る買電上限値の設定処理の一例について説明するためのフローチャートである。It is a flowchart for demonstrating an example of the setting process of the power purchase upper limit which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る充電設備管理システム1の一例を示す。図1は、本発明の一実施形態に係る充電設備管理システム1の一例を示す概略図である。
図1に示す通り、充電設備管理システム1は、それぞれ動力ライン、又は通信ライン(例えば、LAN)を介して接続される充電設備管理装置100と、太陽光発電システム(発電機)200と、商用電源300と、定置型蓄電池400と、複数の充電器500と、を備える。充電設備管理装置100は、インターネット等を介して、電力管理装置600、電気自動車管理装置700、及び情報提供装置800と接続されている。本実施形態において、「充電設備」には、太陽光発電システム200、商用電源300、定置型蓄電池400、及び、充電器500が含まれる。
Hereinafter, an example of the charging equipment management system 1 which concerns on one Embodiment of this invention is shown. FIG. 1 is a schematic diagram illustrating an example of a charging facility management system 1 according to an embodiment of the present invention.
As shown in FIG. 1, the charging facility management system 1 includes a charging facility management device 100, a solar power generation system (generator) 200, and a commercial power supply that are connected via a power line or a communication line (for example, LAN). A power supply 300, a stationary storage battery 400, and a plurality of chargers 500 are provided. The charging facility management apparatus 100 is connected to the power management apparatus 600, the electric vehicle management apparatus 700, and the information providing apparatus 800 via the Internet or the like. In the present embodiment, the “charging facility” includes a solar power generation system 200, a commercial power source 300, a stationary storage battery 400, and a charger 500.

充電設備管理装置100は、充電設備を統括的に制御する。充電設備管理装置100は、単独の装置でもよく、充電器500内に搭載されるものでもよい。また、充電設備管理装置100は、各充電設備とインターネットを介して接続される外部サーバでもよい。   The charging facility management apparatus 100 controls the charging facility in an integrated manner. The charging facility management device 100 may be a single device or may be mounted in the charger 500. The charging facility management apparatus 100 may be an external server connected to each charging facility via the Internet.

太陽光発電システム200は、例えば太陽電池を用いて太陽光を電力に変換し、変換した発電電力を充電する蓄電池セルを備える。太陽光発電システム200は、自然エネルギーによる発電システムの一例であって、本発明はこれに限られず、風力発電システムであってもよい。   The solar power generation system 200 includes a storage battery cell that converts solar light into electric power using, for example, a solar battery and charges the converted generated electric power. The solar power generation system 200 is an example of a power generation system using natural energy, and the present invention is not limited to this, and may be a wind power generation system.

商用電源300は、電力会社等の電気事業者から提供される電力源である。
定置型蓄電池400は、太陽光発電システム200からの発電電力と、商用電源300からの買電電力によって充電し、放電電力を充電器500に供給する蓄電池セルを備える。
充電器500は、ある充電ステーションに設置される複数の充電器である。充電ステーションには、複数の充電器500が設定されている。本実施形態において、複数の充電器500は、充電器501〜510を含むが、充電器500の数は10個に限られず、また、1つであってもよい。なおこれに限られず、充電器500は、利用者の自宅に設置されるものであってもよい。
The commercial power supply 300 is a power source provided by an electric power company such as an electric power company.
The stationary storage battery 400 includes a storage battery cell that is charged by the generated power from the solar power generation system 200 and the purchased power from the commercial power source 300 and supplies the discharged power to the charger 500.
The charger 500 is a plurality of chargers installed at a certain charging station. A plurality of chargers 500 are set in the charging station. In the present embodiment, the plurality of chargers 500 include the chargers 501 to 510, but the number of the chargers 500 is not limited to ten and may be one. However, the present invention is not limited to this, and the charger 500 may be installed at the user's home.

電力管理装置600は、例えばCEMS(コミュニティエネルギーマネージメントシステム)やBEMS(ビルディングエネルギーマネージメントシステム)等であって、デマンドレスポンスに対応する要求等を配信する。電力管理装置600は、例えば、対象地域における30分毎の電力上限値を表わした情報を、インターネットを介して、充電設備管理装置100に配信する。デマンドレスポンスとは、電気事業者が時間帯(又は時間)別に料金を設定することで、需要家に自らの判断で、割高な料金が設定された高負荷時に需要抑制、割安な料金が設定された低負荷時に需要シフトを促す枠組みである。   The power management apparatus 600 is, for example, a CEMS (community energy management system), a BEMS (building energy management system), or the like, and distributes a request corresponding to a demand response. For example, the power management apparatus 600 distributes information representing the power upper limit value every 30 minutes in the target area to the charging facility management apparatus 100 via the Internet. Demand response means that electric utilities set charges for different time zones (or hours), and demands are set to be low, when demand is high and high charges are set at high prices. It is a framework that encourages demand shift at low load.

電気自動車管理装置700は、充電器500の利用状況に関する情報を、充電器500から受信し、例えば利用者ごとに保管する。
また、電気自動車管理装置700は、車両に搭載されている車載器901〜904と無線通信を行い、車両が備える車載蓄電池の電池残量を示す情報と、車両の現在位置を示す情報とを取得する。電気自動車管理装置700は、取得した情報を、利用者ごと(又は車載器ごと)に保管する。
電気自動車管理装置700は、例えば定期的に、保管している情報をインターネットを介して充電設備管理装置100に送信する。
The electric vehicle management apparatus 700 receives information on the usage status of the charger 500 from the charger 500 and stores the information for each user, for example.
In addition, the electric vehicle management apparatus 700 performs wireless communication with the vehicle-mounted devices 901 to 904 installed in the vehicle, and acquires information indicating the remaining battery level of the vehicle-mounted storage battery included in the vehicle and information indicating the current position of the vehicle. To do. The electric vehicle management apparatus 700 stores the acquired information for each user (or for each vehicle-mounted device).
For example, the electric vehicle management apparatus 700 periodically transmits stored information to the charging facility management apparatus 100 via the Internet.

情報提供装置800は、例えば、地域ごとの日照時間や気温等の天気に関する天気情報を収集している。情報提供装置800は、例えば定期的に、保管している情報をインターネットを介して充電設備管理装置100に送信する。   The information providing apparatus 800 collects weather information related to weather such as sunshine hours and temperature for each region, for example. For example, the information providing apparatus 800 periodically transmits the stored information to the charging facility management apparatus 100 via the Internet.

次に、図2を参照して、本発明の一実施形態に係る充電設備管理システム1における、電力系統の接続関係について説明する。図2は、本発明の一実施形態に係る充電設備管理システム1の電力系統の接続関係を示すブロック図である。
太陽光発電システム200と、商用電源300と、定置型蓄電池400と、充電器500とは、直流バス1000と接続されている。
Next, with reference to FIG. 2, the connection relation of the electric power system in the charging equipment management system 1 which concerns on one Embodiment of this invention is demonstrated. FIG. 2 is a block diagram showing the connection relation of the power system of the charging facility management system 1 according to the embodiment of the present invention.
Solar power generation system 200, commercial power supply 300, stationary storage battery 400, and charger 500 are connected to DC bus 1000.

太陽光発電システム200は、DC/DC変換回路250を介して、直流バス1000と接続されている。DC/DC変換回路250は、発電電力制御回路251と動力回路252とを備える。発電電力制御回路251には、発電機用設定電圧VPVが設定されている。発電電力制御回路251は、直流バス1000の電圧を常時監視しており、直流バス1000の電圧と発電機用設定電圧VPVとの大小関係を比較している。発電電力制御回路251は、直流バス1000の電圧が発電機用設定電圧VPVを下回ったことを判定すると、太陽光発電システム200の発電電力を直流バス1000へ供給するよう動力回路252を制御する。動力回路252は、発電電力制御回路251により直流バス1000へ給電することが指示された場合に、太陽光発電システム200の発電電力の電圧を発電機用設定電圧VPVに変圧(DC/DC変換)し、直流バス1000に供給する。
また、発電電力制御回路251は、直流バス1000に発電電力を給電した場合に、発電電力を給電したことを示す情報を、充電設備管理装置100に送信する。
The solar power generation system 200 is connected to the direct current bus 1000 via the DC / DC conversion circuit 250. The DC / DC conversion circuit 250 includes a generated power control circuit 251 and a power circuit 252. In the generated power control circuit 251, a generator setting voltage V PV is set. Generated power control circuit 251 always monitors the voltage of the DC bus 1000, and compares the magnitude relation between the voltage of the DC bus 1000 and the generator set voltage V PV. When the generated power control circuit 251 determines that the voltage of the DC bus 1000 is lower than the generator setting voltage V PV , the generated power control circuit 251 controls the power circuit 252 to supply the generated power of the photovoltaic power generation system 200 to the DC bus 1000. . When the generated power control circuit 251 instructs the power circuit 252 to supply power to the DC bus 1000, the power circuit 252 transforms the voltage of the generated power of the photovoltaic power generation system 200 into the generator set voltage V PV (DC / DC conversion). ) And supply to the DC bus 1000.
In addition, when the generated power is supplied to the DC bus 1000, the generated power control circuit 251 transmits information indicating that the generated power is supplied to the charging facility management apparatus 100.

商用電源300は、AC/DC変換回路350を介して、直流バス1000と接続されている。AC/DC変換回路350は、買電電力制御回路351と動力回路352とを備える。買電電力制御回路351には、商用電源用設定電圧VACが設定されている。買電電力制御回路351は、直流バス1000の電圧を常時監視しており、直流バス1000の電圧と商用電源用設定電圧VACとの大小関係を比較している。買電電力制御回路351は、直流バス1000の電圧が商用電源用設定電圧VACを下回ったことを判定すると、商用電源300からの買電電力を直流バス1000へ給電するよう動力回路352を制御する。動力回路352は、買電電力制御回路351により直流バス1000へ給電することが指示された場合に、商用電源300からの買電電力を、直流から交流に変換して、直流バス1000に供給する。
また、買電電力制御回路351は、直流バス1000に買電電力を給電した場合に、買電電力を給電したことを示す情報を、充電設備管理装置100に送信する。
The commercial power supply 300 is connected to the DC bus 1000 via the AC / DC conversion circuit 350. The AC / DC conversion circuit 350 includes a purchased power control circuit 351 and a power circuit 352. In the purchased power control circuit 351, a commercial power set voltage VAC is set. Purchased electric power control circuit 351 always monitors the voltage of the DC bus 1000, and compares the magnitude relation between the voltage and the commercial power supply set voltage V AC DC bus 1000. Purchased electric power control circuit 351 has determined that the voltage of the DC bus 1000 is below the set voltage V AC commercial power, controlling the power circuit 352 to power the power purchase power from the commercial power supply 300 to the DC bus 1000 To do. The power circuit 352 converts the purchased power from the commercial power supply 300 from direct current to alternating current and supplies it to the direct current bus 1000 when the purchased power control circuit 351 instructs to supply power to the direct current bus 1000. .
In addition, when the purchased power control circuit 351 supplies the purchased power to the DC bus 1000, the purchased power control circuit 351 transmits information indicating that the purchased power is supplied to the charging facility management apparatus 100.

定置型蓄電池400は、DC/DC変換回路450を介して、直流バス1000と接続されている。DC/DC変換回路450は、充放電電力制御回路451と動力回路452とを備える。充放電電力制御回路451には、蓄電池用設定電圧VLiBが設定されている。充放電電力制御回路451は、直流バス1000の電圧を常時監視しており、直流バス1000の電圧と蓄電池用設定電圧VLiBとの大小関係を比較している。買電電力制御回路351は、直流バス1000の電圧が、蓄電池用設定電圧VLiBを下回ったことを判定すると、定置型蓄電池400からの放電電力を直流バス1000へ供給するよう動力回路452を制御する。動力回路452は、充放電電力制御回路451により直流バス1000へ給電することが指示された場合に、定置型蓄電池400からの放電電力の電圧を蓄電池用設定電圧VLiBに変圧(DC/DC変換)し、直流バス1000に供給する。
また、充放電電力制御回路451は、直流バス1000に放電電力を給電した場合に、放電電力を給電したことを示す情報を、充電設備管理装置100に送信する。
The stationary storage battery 400 is connected to the direct current bus 1000 via the DC / DC conversion circuit 450. The DC / DC conversion circuit 450 includes a charge / discharge power control circuit 451 and a power circuit 452. The charge / discharge power control circuit 451 is set with a storage battery setting voltage V LiB . The charge / discharge power control circuit 451 constantly monitors the voltage of the DC bus 1000, and compares the magnitude relationship between the voltage of the DC bus 1000 and the set voltage V LiB for the storage battery. When the purchased power control circuit 351 determines that the voltage of the DC bus 1000 is lower than the storage battery setting voltage V LiB , the purchased power control circuit 351 controls the power circuit 452 to supply the discharge power from the stationary storage battery 400 to the DC bus 1000. To do. When the charge / discharge power control circuit 451 instructs the power circuit 452 to supply power to the DC bus 1000, the power circuit 452 transforms the voltage of the discharge power from the stationary storage battery 400 into the storage battery setting voltage V LiB (DC / DC conversion). ) And supply to the DC bus 1000.
In addition, when charging power is supplied to the DC bus 1000, the charging / discharging power control circuit 451 transmits information indicating that the discharging power is supplied to the charging facility management apparatus 100.

充電器500は、DC/DC変換回路550を介して、直流バス1000と接続されている。DC/DC変換回路550は、充電電力制御回路551と動力回路552とを備える。充電電力制御回路551には、充電出力値PQCの範囲が設定されている。充電器500の利用者は、設定されている範囲内で、充電出力値PQCを選択することができる。
充電電力制御回路551は、選択された充電出力値PQCの電力を、直流バス1000から車両の車載蓄電池に供給するよう、動力回路552を制御する。本実施形態において、充電出力値PQCの範囲内は、最小値Plow<PQC≦(最小値Plow+放電可能電力値PBout)と設定されている。放電可能電力値PBoutは、充電設備管理装置100により、車両が充電器500からの充電を開始する前における、定置型蓄電池400の蓄電残量に基づき算出される。なお、(最小値Plow+放電可能電力値PBout)が、充電器500の定格出力の最大値を超える場合、充電電力制御回路551は、充電出力値PQCの範囲を、最小値Plow<PQC≦(充電器500の定格出力の最大値)とする。
また、充電電力制御回路551は、直流バス1000から充電電力の供給を受けた場合に、充電電力の供給を受けたことを示す情報を、充電設備管理装置100に送信する。
The charger 500 is connected to the DC bus 1000 via the DC / DC conversion circuit 550. The DC / DC conversion circuit 550 includes a charging power control circuit 551 and a power circuit 552. In the charging power control circuit 551, a range of the charging output value PQC is set. The user of the charger 500 can select the charging output value PQC within the set range.
The charging power control circuit 551 controls the power circuit 552 to supply the power of the selected charging output value PQC from the DC bus 1000 to the vehicle storage battery of the vehicle. In the present embodiment, the range of the charging output value P QC is set as the minimum value P low <P QC ≦ (minimum value P low + dischargeable power value P Bout ). The dischargeable power value P Bout is calculated by the charging facility management apparatus 100 based on the remaining amount of charge of the stationary storage battery 400 before the vehicle starts charging from the charger 500. When (minimum value P low + dischargeable power value P Bout ) exceeds the maximum value of the rated output of charger 500, charging power control circuit 551 determines the range of charging output value P QC as minimum value P low. <P QC ≦ (maximum value of rated output of charger 500).
When the charging power control circuit 551 receives charging power from the DC bus 1000, the charging power control circuit 551 transmits information indicating that charging power has been supplied to the charging facility management apparatus 100.

充電設備管理装置100は、発電電力制御回路251と、買電電力制御回路351と、充放電電力制御回路451と、充電電力制御回路551と、蓄電池状態監視装置430と、通信可能に接続されている。発電電力制御回路251、買電電力制御回路351、充放電電力制御回路451、及び充電電力制御回路551は、直流バス1000へ電力を給電したことを示す情報、又は、直流バス1000から電力の供給を受けたことを示す情報を、充電設備管理装置100に送信する。蓄電池状態監視装置430は、定置型蓄電池400の蓄電残量を常時監視しており、蓄電残量を示す情報を、充電設備管理装置100に送信する。   The charging facility management device 100 is communicably connected to a generated power control circuit 251, a purchased power control circuit 351, a charge / discharge power control circuit 451, a charge power control circuit 551, and a storage battery state monitoring device 430. Yes. The generated power control circuit 251, the purchased power control circuit 351, the charge / discharge power control circuit 451, and the charge power control circuit 551 are information indicating that power is supplied to the DC bus 1000 or supply of power from the DC bus 1000. Information indicating that it has been received is transmitted to the charging facility management apparatus 100. The storage battery state monitoring device 430 constantly monitors the remaining amount of electricity stored in the stationary storage battery 400 and transmits information indicating the remaining amount of electricity stored to the charging facility management device 100.

次に、発電電力制御回路251、買電電力制御回路351,充放電電力制御回路451の処理例について説明する。
本実施形態において、充電器500と接続された車両に給電する電力には、優先順位が決められていてもよい。給電の優先順位として、太陽光発電システム200からの発電電力が1番、商用電源300からの買電電力が2番、定置型蓄電池400からの放電電力が3番であると決められている。これを実現するため、発電機用設定電圧VPV>商用電源用設定電圧VAC>蓄電池用設定電圧VLiBと決められている。また、商用電源300からの買電電力の上限値P1は、充電設備管理装置100により予め決められている。太陽光発電システム200からの発電電力の上限値P2は、太陽光発電システム200の出力定格により決められる。これを実現するため、充電設備管理装置100は、蓄電池用設定電圧VLiBを、商用電源300から上限値P1の買電電力が直流バス1000に供給され、且つ、太陽光発電システム200から上限値P2の発電電力が直流バス1000に供給されている状態における直流バス1000の電圧値に設定する。また、充電設備管理装置100は、商用電源用設定電圧VACを、太陽光発電システム200から上限値P2の発電電力が直流バス1000に供給されている状態における直流バス1000の電圧値に設定する。
Next, processing examples of the generated power control circuit 251, the purchased power control circuit 351, and the charge / discharge power control circuit 451 will be described.
In the present embodiment, priority may be determined for the power supplied to the vehicle connected to the charger 500. As the power supply priority, it is determined that the generated power from the photovoltaic power generation system 200 is No. 1, the purchased power from the commercial power supply 300 is No. 2, and the discharged power from the stationary storage battery 400 is No. 3. In order to realize this, it is determined that the generator set voltage V PV > commercial power set voltage V AC > storage battery set voltage V LiB . In addition, the upper limit value P <b> 1 of purchased power from the commercial power source 300 is determined in advance by the charging facility management apparatus 100. The upper limit value P2 of the generated power from the solar power generation system 200 is determined by the output rating of the solar power generation system 200. In order to realize this, the charging facility management apparatus 100 supplies the set voltage V LiB for the storage battery from the commercial power supply 300 to the DC bus 1000 with the purchased power having the upper limit value P1, and the upper limit value from the photovoltaic power generation system 200. The voltage value of the DC bus 1000 in a state where the generated power of P2 is supplied to the DC bus 1000 is set. Further, the charging facility management device 100 sets the commercial power set voltage VAC to the voltage value of the DC bus 1000 in a state where the generated power of the upper limit value P2 is supplied from the solar power generation system 200 to the DC bus 1000. .

充電器500が車両の車載充電回路と接続された場合、直流バス1000の電圧が発電機用設定電圧VPVを下回る。発電電力制御回路251は、直流バス1000の電圧が発電機用設定電圧VPVを下回ったことを判定した場合に、太陽光発電システム200からの発電電力を直流バス1000に供給するよう、動力回路252を制御する。これにより、充電電力制御回路551は、直流バス1000に供給された太陽光発電システム200からの発電電力を、充電器500から車両の蓄電池に充電させる。 When the charger 500 is connected to the on-vehicle charging circuit of the vehicle, the voltage of the DC bus 1000 is lower than the generator set voltage V PV . The generated power control circuit 251 is configured to supply the generated power from the photovoltaic power generation system 200 to the DC bus 1000 when it is determined that the voltage of the DC bus 1000 is lower than the generator set voltage V PV. 252 is controlled. As a result, the charging power control circuit 551 charges the generated battery from the photovoltaic power generation system 200 supplied to the DC bus 1000 from the charger 500 to the storage battery of the vehicle.

車両の車載蓄電池への充電が発電電力では不足している場合、直流バス1000の電圧がさらに降下し、商用電源用設定電圧VACを下回る。買電電力制御回路351は、直流バス1000の電圧が商用電源用設定電圧VACを下回ったことを判定した場合に、商用電源300からの買電電力を直流バス1000に供給するよう、動力回路352を制御する。これにより、充電電力制御回路551は、直流バス1000に供給された太陽光発電システム200からの発電電力と商用電源300からの買電電量とを、充電器500から車両の蓄電池に充電させる。 If the charging of the vehicle-vehicle battery is insufficient in power generation, the voltage of the DC bus 1000 is further lowered, below the set voltage V AC commercial power supply. Purchased electric power control circuit 351, when the voltage of the DC bus 1000 is judged that falls below the set voltage V AC commercial power supply, to supply power purchase power from the commercial power supply 300 to the DC bus 1000, a power circuit 352 is controlled. As a result, the charging power control circuit 551 causes the battery 500 to charge the storage battery of the vehicle with the generated power from the solar power generation system 200 supplied to the DC bus 1000 and the amount of power purchased from the commercial power supply 300.

車両の車載蓄電池への充電が発電電力と買電電力では不足している場合、直流バス1000の電圧が降下し、蓄電池用設定電圧VLiBを下回る。充放電電力制御回路451は、直流バス1000の電圧が蓄電池用設定電圧VLiBを下回ったことを判定した場合に、定置型蓄電池400からの放電電力を直流バス1000に供給するよう、動力回路452を制御する。これにより、充電電力制御回路551は、直流バス1000に供給された太陽光発電システム200からの発電電力と商用電源300からの買電電量と定置型蓄電池400からの放電電量とを、充電器500から車両の蓄電池に充電させる。 When charging of the on-vehicle storage battery of the vehicle is insufficient for the generated power and the purchased power, the voltage of the DC bus 1000 drops and falls below the set voltage V LiB for the storage battery. When it is determined that the voltage of the DC bus 1000 is lower than the set voltage V LiB for the storage battery, the charge / discharge power control circuit 451 supplies the power circuit 452 to supply the discharge power from the stationary storage battery 400 to the DC bus 1000. To control. Thus, the charging power control circuit 551 uses the generated power from the photovoltaic power generation system 200 supplied to the DC bus 1000, the purchased power from the commercial power source 300, and the discharged power from the stationary storage battery 400 to the charger 500. To charge the vehicle storage battery.

車両の車載蓄電池が満充電に近づくと、直流バス1000の電圧が上昇し、蓄電池用設定電圧VLiBに到達する。充放電電力制御回路451は、直流バス1000の電圧が蓄電池用設定電圧VLiBに到達した場合、定置型蓄電池400からの放電を停止し、直流バス1000からの電力を定置型蓄電池400に充電するよう、動力回路452を制御する。これにより、太陽光発電システム200からの発電電力と商用電源300からの買電電量とが、直流バス1000から定置型蓄電池400に充電される。 When the in-vehicle storage battery of the vehicle approaches full charge, the voltage of the DC bus 1000 increases and reaches the storage battery setting voltage V LiB . When the voltage of the DC bus 1000 reaches the storage battery setting voltage V LiB , the charge / discharge power control circuit 451 stops the discharge from the stationary storage battery 400 and charges the stationary storage battery 400 with the power from the DC bus 1000. The power circuit 452 is controlled. As a result, the generated power from the solar power generation system 200 and the amount of power purchased from the commercial power supply 300 are charged to the stationary storage battery 400 from the DC bus 1000.

充放電電力制御回路451は、定置型蓄電池400の充電量が予め決められた閾値未満である場合、太陽光発電システム200からの発電電力と商用電源300からの買電電力とを組み合わせて、定置型蓄電池400を充電するよう制御する。定置型蓄電池400の充電量が閾値以上である場合、充放電電力制御回路451は、太陽光発電システム200からの発電電力だけで定置型蓄電池400を充電するよう制御する。充放電電力制御回路451は、例えば、定置型蓄電池400の充電量が閾値未満である場合、直流バス1000の電圧が蓄電池用設定電圧VLiBを維持するように、定置型蓄電池400への充電電力を調整する。また、充放電電力制御回路451は、例えば、定置型蓄電池400の充電量が閾値以上である場合、直流バス1000の電圧が商用電源用設定電圧VACを維持するように、定置型蓄電池400への充電電力を調整する。 When the charge amount of the stationary storage battery 400 is less than a predetermined threshold value, the charge / discharge power control circuit 451 combines the generated power from the solar power generation system 200 and the purchased power from the commercial power supply 300, and sets the stationary power storage battery 400. It controls so that the type | mold storage battery 400 may be charged. When the charge amount of the stationary storage battery 400 is equal to or greater than the threshold value, the charge / discharge power control circuit 451 controls to charge the stationary storage battery 400 only with the generated power from the solar power generation system 200. For example, when the charge amount of the stationary storage battery 400 is less than the threshold value, the charge / discharge power control circuit 451 charges the stationary storage battery 400 so that the voltage of the DC bus 1000 maintains the storage battery setting voltage V LiB. Adjust. Moreover, charge-discharge electric power control circuit 451, for example, when the charge amount of the stationary storage battery 400 is equal to or greater than the threshold, so that the voltage of the DC bus 1000 to maintain a set voltage V AC commercial power source, to the stationary storage battery 400 Adjust the charging power.

本実施形態において、買電電力の上限値P1が充電設備管理装置100により変更された場合、充放電電力制御回路451は、設定されている蓄電池用設定電圧VLiBを、変更後の上限値P1に応じて変更する。つまり、充放電電力制御回路451は、変更後の上限値P1の買電電力が直流バス1000に供給され、且つ、太陽光発電システム200から上限値P2の発電電力が直流バス1000に供給されている状態における直流バス1000の電圧値を、蓄電池用設定電圧VLiBに設定する。 In the present embodiment, when the upper limit value P1 of the purchased power is changed by the charging facility management device 100, the charge / discharge power control circuit 451 changes the set upper limit value P1 for the storage battery to the set voltage V LiB for the storage battery. Change according to. That is, the charge / discharge power control circuit 451 is supplied with the purchased power at the upper limit P1 after the change to the DC bus 1000, and the generated power at the upper limit P2 is supplied from the solar power generation system 200 to the DC bus 1000. In this state, the voltage value of the DC bus 1000 is set to the storage battery setting voltage V LiB .

次に、図3を参照して、本発明の一実施形態に係る充電設備管理装置100の構成例について説明する。図3は、本発明の一実施形態に係る充電設備管理装置100の構成例を示すブロック図である。   Next, with reference to FIG. 3, the structural example of the charging equipment management apparatus 100 which concerns on one Embodiment of this invention is demonstrated. FIG. 3 is a block diagram illustrating a configuration example of the charging facility management apparatus 100 according to an embodiment of the present invention.

充電設備管理装置100は、通信部11と、CPU(Central Processing Unit)等の演算部12と、記憶部13と、操作部14と、を備える。
通信部11は、LANを介して、太陽光発電システム200、商用電源300と連携しているAC/DC変換回路、定置型蓄電池400の蓄電池状態監視装置、及び充電器500との間で情報の送受信をする。また、通信部11は、インターネットを介して、電力管理装置600、電気自動車管理装置700、及び情報提供装置800から送信された情報を受信する。
The charging facility management apparatus 100 includes a communication unit 11, a calculation unit 12 such as a CPU (Central Processing Unit), a storage unit 13, and an operation unit 14.
The communication unit 11 communicates information between the photovoltaic power generation system 200, the AC / DC conversion circuit linked with the commercial power supply 300, the storage battery state monitoring device of the stationary storage battery 400, and the charger 500 via the LAN. Send and receive. In addition, the communication unit 11 receives information transmitted from the power management apparatus 600, the electric vehicle management apparatus 700, and the information providing apparatus 800 via the Internet.

演算部12は、充電設備管理装置100による情報処理を制御する制御部であって、利用予測部101と、給電電力量予測部102と、発電予測部103と、買電上限値決定部104と、補足値算出部105と、充電制御部106と、給電開始判定部107と、放電電力算出部108と、給電範囲決定部109と、充電量補正部110とを備える。   The calculation unit 12 is a control unit that controls information processing performed by the charging facility management apparatus 100, and includes a use prediction unit 101, a power supply amount prediction unit 102, a power generation prediction unit 103, and a power purchase upper limit determination unit 104. The supplementary value calculation unit 105, the charge control unit 106, the power supply start determination unit 107, the discharge power calculation unit 108, the power supply range determination unit 109, and the charge amount correction unit 110 are provided.

記憶部13には、買電電力の最小値Plow131と、買電電力のPmax132と、予測期間設定値133と、車両充電残量情報134と、車両位置情報135と、予測給電電力量Qexp136と、予測発電電力量PPV137と、が記憶される。
買電電力の最小値Plow131は、充電器500に応じて、買電上限値決定部104により設定される買電電力の最低保証値である。充電器500の買電電力の最低保証値とは、充電器500が出力する最低電力量を買電電力のみで給電する際に必要となる最低電量である。
買電電力のPmax132は、買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる予測期間内の買電電力の最大値である。
The storage unit 13 includes a minimum value P low 131 of purchased power, a P max 132 of purchased power, a predicted period setting value 133, vehicle remaining charge information 134, vehicle position information 135, and predicted feed power. The amount Q exp 136 and the predicted power generation amount P PV 137 are stored.
The minimum power purchase value P low 131 is a minimum guaranteed power purchase value set by the power purchase upper limit determination unit 104 in accordance with the charger 500. The minimum guaranteed value of the purchased power of the charger 500 is the minimum amount of electricity required when the minimum amount of power output from the charger 500 is supplied only by the purchased power.
The power purchase power P max 132 is a threshold value contractually determined as an upper limit value for switching the power purchase power, or the maximum value of the power purchase power within a forecast period determined according to a request corresponding to the demand response. It is.

予測期間設定値133は、現在設定されている予測期間を示す情報である。予測期間設定値133は、予測期間が変更される度に、更新される。
車両充電残量情報134は、電気自動車管理装置700が取得した、車両が備える車載蓄電池の電池残量を示す情報である。車両充電残量情報134は、車両(車載器)ごとに、車載蓄電池の電池残量を示す情報を対応付けて記憶する。
車両位置情報135は、電気自動車管理装置700が取得した、車両の現在位置を示す情報である。車両位置情報135は、車両(車載器)ごとに、車両の現在位置を示す情報を対応付けて記憶する。
The prediction period setting value 133 is information indicating the currently set prediction period. The prediction period setting value 133 is updated every time the prediction period is changed.
The remaining vehicle charge information 134 is information obtained by the electric vehicle management apparatus 700 and indicating the remaining battery level of the in-vehicle storage battery included in the vehicle. The vehicle charge remaining amount information 134 stores information indicating the battery remaining amount of the in-vehicle storage battery in association with each vehicle (on-vehicle device).
The vehicle position information 135 is information indicating the current position of the vehicle acquired by the electric vehicle management apparatus 700. The vehicle position information 135 stores information indicating the current position of the vehicle in association with each vehicle (on-vehicle device).

予測給電電力量Qexp136は、給電電力量予測部102が求めた予測給電電力量Qexpである。予測給電電力量Qexp136は、予測給電電力量Qexpが変更される度に、更新される。
予測発電電力量PPV137は、発電予測部103が求めた予測発電電力量PPVである。予測発電電力量PPV137は、予測発電電力量PPVが変更される度に、更新される。
The predicted power supply amount Q exp 136 is the predicted power supply amount Q exp obtained by the power supply power amount prediction unit 102. The predicted power supply amount Q exp 136 is updated every time the predicted power supply amount Q exp is changed.
The predicted power generation amount P PV 137 is the predicted power generation amount P PV obtained by the power generation prediction unit 103. The predicted power generation amount P PV 137 is updated every time the predicted power generation amount P PV is changed.

利用予測部101は、決められた予測期間内において充電器500を利用することが予測される車両台数の予測値を示す利用台数予測値を取得する。   The usage prediction unit 101 acquires a usage number predicted value indicating a predicted value of the number of vehicles predicted to use the charger 500 within the determined prediction period.

給電電力量予測部102は、利用予測部101が取得した利用台数予測値に基づき、予測期間内に充電器500から車両に給電される給電電力量を予測する。補足値算出部105が補足値を求めた場合、給電電力量予測部102は、利用予測部101が取得した利用台数予測値を補足値を用いて補足した値に基づき、給電電力量を予測してもよい。   The supplied power amount prediction unit 102 predicts the amount of supplied power supplied from the charger 500 to the vehicle within the prediction period based on the predicted number of used units acquired by the use prediction unit 101. When the supplementary value calculation unit 105 obtains the supplementary value, the power supply power amount prediction unit 102 predicts the power supply power amount based on a value obtained by supplementing the use number prediction value acquired by the use prediction unit 101 with the supplementary value. May be.

発電予測部103は、情報提供装置800から取得した天気情報等に基づき、予測期間内に太陽光発電システム200が発電可能な電力量を予測する。発電予測部103には、太陽光発電システム200に取り付けられたセンサー(日射量計や温度計,風速計等)の計測結果に基づき、太陽光発電システム200が発電可能な電力量を予測してもよい。   The power generation prediction unit 103 predicts the amount of power that can be generated by the solar power generation system 200 within the prediction period based on weather information acquired from the information providing apparatus 800. The power generation prediction unit 103 predicts the amount of power that can be generated by the solar power generation system 200 based on the measurement result of a sensor (a solar radiation meter, a thermometer, an anemometer, etc.) attached to the solar power generation system 200. Also good.

買電上限値決定部104は、給電電力量予測部102が予測した予測結果と発電予測部103が予測した予測結果とに基づき、予測期間内に充電器500から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求める。買電上限値決定部104は、予測期間内に不足電力量を定置型蓄電池400に充電可能な電力に基づき、予測期間内に商用電源300に要求する買電電力の上限値PBCを決定する。そして、充電制御部106が、買電上限値決定部104が決定した買電電力の上限値PBCを、充電器500が車両に給電していない期間における、買電電力の上限値P1に設定する。 Based on the prediction result predicted by the power supply power amount prediction unit 102 and the prediction result predicted by the power generation prediction unit 103, the power purchase upper limit determination unit 104 serves as power supply power supplied to the vehicle from the charger 500 within the prediction period. The amount of power shortage that is insufficient when the predicted generated power is used is obtained. The power purchase upper limit determination unit 104 determines an upper limit value P BC of the power purchase required for the commercial power supply 300 within the prediction period based on the power that can charge the stationary storage battery 400 with the insufficient power amount within the prediction period. . Then, setting the charge control unit 106, the upper limit value P BC of purchased power limit value determination unit 104 has determined power purchase power, the upper limit value P1 of the period the charger 500 is not supplying power to the vehicle, power purchase power To do.

なお、買電上限値決定部104は、買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる予測期間内の買電電力の最大値よりも、決定した買電電力の上限値PBCが高い場合、閾値又は最大値を、買電電力の上限値P1とする条件を付加してもよい。 The power purchase upper limit determination unit 104 determines the power purchase power within a forecast period determined according to a threshold value determined in the contract as an upper limit value at which the charge of the purchased power is switched or a request corresponding to the demand response. than the maximum value, if the upper limit value P BC of the determined power purchase power is high, a threshold or maximum value, may be added a condition that the upper limit value P1 power purchase power.

また、買電上限値決定部104は、予測期間内に充電器500が買電電力又は放電電力を車両に給電した場合、車両に給電された給電電力量に基づき、前回求めた不足電力量を変更し、変更された不足電力量を定置型蓄電池400に充電可能な電力量を、買電電力の上限値PBCとして決定してもよい。 In addition, when the charger 500 supplies the purchased power or the discharged power to the vehicle within the prediction period, the power purchase upper limit determination unit 104 determines the previously obtained insufficient power amount based on the supplied power amount supplied to the vehicle. change, the amount of power that can be charged a shortage amount of power was changed to stationary storage battery 400 may be determined as the upper limit value P BC power purchase power.

また、発電予測部103が予測期間内に太陽光発電システム200が発電可能な電力量を複数回予測し、発電予測部103が前回の予測結果よりも発電可能な電力量が増加することを予測した場合に、買電上限値決定部104は、今回の予測結果に基づき前回求めた不足電力量を変更する。買電上限値決定部104は、変更された不足電力量を定置型蓄電池400に充電可能な電力量を、買電電力の上限値PBCとして決定してもよい。 In addition, the power generation prediction unit 103 predicts the amount of power that can be generated by the photovoltaic power generation system 200 a plurality of times within the prediction period, and the power generation prediction unit 103 predicts that the amount of power that can be generated increases from the previous prediction result. In this case, the power purchase upper limit determination unit 104 changes the insufficient power amount obtained last time based on the current prediction result. Purchased power upper limit value determination unit 104, the amount of power that can be charged a shortage amount of power was changed to stationary storage battery 400 may be determined as the upper limit value P BC power purchase power.

補足値算出部105は、利用予測部101が取得した利用台数予測値を、充電器500の利用状況に応じて補足するための補足値を求める。   The supplementary value calculation unit 105 obtains a supplementary value for supplementing the predicted number of used units acquired by the usage prediction unit 101 according to the usage status of the charger 500.

充電制御部106は、買電上限値決定部104が決定した買電電力の上限値PBCを、充電器500が車両に給電していない期間において、定置型蓄電池400に充電する買電電力の値に設定する。 Charging control unit 106, the upper limit value P BC of purchased power limit value determination unit 104 has determined purchased electric power, in a period where the charger 500 is not supplying power to the vehicle, power purchase power for charging the stationary storage battery 400 Set to value.

給電開始判定部107は、商用電源300から買電電力を直流バス1000に給電したことを示す情報を、買電電力制御回路351から受信する。また、給電開始判定部107は、定置型蓄電池400から放電電力を直流バス1000に給電したことを示す情報を、充放電電力制御回路451から受信する。   The power supply start determination unit 107 receives information indicating that the purchased power is supplied to the DC bus 1000 from the commercial power supply 300 from the purchased power control circuit 351. In addition, the power supply start determination unit 107 receives information indicating that the discharge power is supplied from the stationary storage battery 400 to the DC bus 1000 from the charge / discharge power control circuit 451.

放電電力算出部108は、充電器500から車両の車載蓄電池に対して給電が開始される場合、定置型蓄電池400の蓄電残量に基づき、車両に供給可能な放電電力を算出する。放電電力算出部108は、通信部11を介して蓄電池状態監視装置430から定置型蓄電池400の蓄電残量を示す情報を受信している。   When power supply is started from the charger 500 to the on-vehicle storage battery of the vehicle, the discharge power calculation unit 108 calculates the discharge power that can be supplied to the vehicle based on the remaining storage amount of the stationary storage battery 400. The discharge power calculation unit 108 receives information indicating the remaining power storage amount of the stationary storage battery 400 from the storage battery state monitoring device 430 via the communication unit 11.

給電範囲決定部109は、放電電力算出部108が算出した放電電力に基づき、充電器500が車両に給電可能な給電電力の範囲を決定する。   Based on the discharge power calculated by the discharge power calculation unit 108, the power supply range determination unit 109 determines a range of power supply power that the charger 500 can supply to the vehicle.

充電量補正部110は、定置型蓄電池400の使用期間に基づき、放電電力算出部108が算出する定置型蓄電池400の蓄電残量を補正する。   The charge amount correction unit 110 corrects the remaining power storage amount of the stationary storage battery 400 calculated by the discharge power calculation unit 108 based on the usage period of the stationary storage battery 400.

操作部14は、充電設備管理装置100を操作する操作者からの操作を受け付け、受け付けた操作内容を示す情報を、演算部12に出力する。   The operation unit 14 receives an operation from an operator who operates the charging facility management apparatus 100 and outputs information indicating the received operation content to the calculation unit 12.

次に、図4を参照して、本発明の一実施形態に係る充電設備管理装置100による買電電力の上限値P1の設定処理の一例について説明する。図4は、本発明の一実施形態に係る買電電力の上限値P1の設定処理の一例について説明するためのフローチャートである。   Next, an example of processing for setting the upper limit value P1 of purchased power by the charging facility management apparatus 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 4 is a flowchart for explaining an example of a setting process of the upper limit value P1 of purchased power according to an embodiment of the present invention.

(ステップST101)
買電上限値決定部104は、買電電力の最小値Plow131と最大値Pmax132とを、記憶部13から読み出し、自身の記憶領域に一時的に保存する。
(Step ST101)
The power purchase upper limit determination unit 104 reads the minimum value P low 131 and the maximum value P max 132 of the purchased power from the storage unit 13 and temporarily stores them in its own storage area.

(ステップST102)
買電上限値決定部104は、予測期間を設定する。例えば、買電上限値決定部104は、現時点から予め決められたT時間後までの期間を予測期間と設定する。本実施形態において、予測期間は3時間であり、現時点が16:00である場合、買電上限値決定部104は、16:00〜18:59の期間を予測期間と決定する。買電上限値決定部104は、決定した予測期間を、予測期間設定値133として、記憶部13に書き込み、更新する。
(Step ST102)
The power purchase upper limit determination unit 104 sets a prediction period. For example, the power purchase upper limit determination unit 104 sets a period from the current time to a predetermined time T later as the prediction period. In the present embodiment, when the prediction period is 3 hours and the current time is 16:00, the power purchase upper limit determination unit 104 determines the period from 16:00 to 18:59 as the prediction period. The power purchase upper limit determination unit 104 writes and updates the determined prediction period in the storage unit 13 as the prediction period setting value 133.

(ステップST103)
買電上限値決定部104により予測期間設定値133が更新された場合、利用予測部101は、利用台数予測値として、更新された予測期間内で充電器500を利用することが予測される車両の台数を取得する。利用予測部101は、利用台数予測値を電気自動車管理装置700から受信してもよく、充電器500を利用する可能性が高い車両台数を自身で予測してもよい。前者の場合、電気自動車管理装置700が、充電器500を利用する可能性が高い車両台数を予測する。
(Step ST103)
When the prediction period setting value 133 is updated by the power purchase upper limit determination unit 104, the usage prediction unit 101 is predicted to use the charger 500 within the updated prediction period as the usage number prediction value. Get the number of units. The usage prediction unit 101 may receive the predicted usage number from the electric vehicle management apparatus 700, or may predict the number of vehicles that are likely to use the charger 500 by itself. In the former case, the electric vehicle management apparatus 700 predicts the number of vehicles that are likely to use the charger 500.

車両台数を予測する場合、利用予測部101(又は、電気自動車管理装置700)は、充電器500を利用可能な車両の充電残量と現在位置とに基づき、予測期間内で充電器500を利用する可能性の高い車両の台数を予測する。「充電器500を利用可能な車両」とは、例えば、充電器500が設置される地域内を走行する可能性がある充電式の車両である。利用予測部101は、「車両の充電残量と現在位置」を、電気自動車管理装置700に対して送信を要求することにより取得してもよく、電気自動車管理装置700から事前に送信された車両充電残量情報134と車両位置情報135とを、記憶部13から読み出して取得してもよい。
利用予測部101は、例えば、予測期間(16:00〜18:59)内において充電器500を利用する可能性の高い車両の台数=3台であることを示す利用台数予測値を取得する。
When predicting the number of vehicles, the usage prediction unit 101 (or the electric vehicle management device 700) uses the charger 500 within the prediction period based on the remaining charge of the vehicle that can use the charger 500 and the current position. Predict the number of vehicles likely to do. The “vehicle that can use the charger 500” is, for example, a rechargeable vehicle that may travel in an area where the charger 500 is installed. The usage prediction unit 101 may acquire the “remaining charge amount and current position of the vehicle” by requesting the electric vehicle management device 700 to transmit the vehicle, and the vehicle transmitted from the electric vehicle management device 700 in advance. The remaining charge information 134 and the vehicle position information 135 may be read from the storage unit 13 and acquired.
The usage prediction unit 101 acquires, for example, a predicted usage number indicating that the number of vehicles that are likely to use the charger 500 in the prediction period (16: 0 to 18:59) = 3.

(ステップST104)
補足値算出部105は、利用予測部101が取得した利用台数予測値を補足するための補足値αを求める。補足値αは、予測期間の時間帯又は曜日、充電器500が設定されている地域特性、充電器500の過去の利用状況等の充電器500の利用状況条件に応じて予め決められている。例えば、補足値算出部105は、利用状況条件に応じて決められた補足値αが定義されている利用状況条件テーブル(図示せず)を参照して、予測期間の利用台数予測値に応じた補足値αを取得してもよい。また、補足値算出部105は、利用状況条件に応じてそれぞれ重み付けされた係数の総和に基づき、補足値αを算出してもよい。さらに、補足値算出部105は、充電器500の過去の利用状況と過去の利用台数予測値とに基づき、予測した値の精度(ばらつき)に基づき、補足値αを決定してもよく、決定した補足値αで上述の利用状況条件テーブル(図示せず)を更新してもよい。
(Step ST104)
The supplementary value calculation unit 105 obtains a supplementary value α for supplementing the predicted number of used units acquired by the usage prediction unit 101. The supplementary value α is determined in advance according to usage conditions of the charger 500, such as the time period or day of the prediction period, the regional characteristics in which the charger 500 is set, the past usage status of the charger 500, and the like. For example, the supplementary value calculation unit 105 refers to a usage condition table (not shown) in which a supplementary value α determined according to the usage condition is defined, and corresponds to the predicted number of units used in the prediction period. You may acquire supplementary value (alpha). Further, the supplementary value calculation unit 105 may calculate the supplementary value α based on the sum of coefficients weighted according to the usage condition. Further, the supplementary value calculation unit 105 may determine the supplementary value α based on the accuracy (variation) of the predicted value based on the past usage situation of the charger 500 and the past use number predicted value. The above-described usage condition table (not shown) may be updated with the supplementary value α.

補足値算出部105は、例えば、予測期間(16:00〜18:59)において、2台の車両がさらに充電器500を利用することを補足する補足値(α=+2)を求める。
なお、予測期間によっては、補足値α=0であって、補足が不要である場合もある。
The supplementary value calculation unit 105 obtains a supplementary value (α = + 2) that supplements that two vehicles further use the charger 500 in the prediction period (16: 0 to 18:59), for example.
Depending on the prediction period, the supplementary value α = 0, and supplementation may not be necessary.

(ステップST105)
給電電力量予測部102は、利用予測部101が取得した利用台数予測値と補足値算出部105が求めた補足値αの合計値に基づき、予測期間内に充電器500から車両に給電される給電電力量を予測する。給電電力量予測部102が予測した予測結果を、予測給電電力量Qexpという。給電電力量予測部102の予測では、給電の優先順位として、太陽光発電システム200からの発電電力が1番、商用電源300からの買電電力が2番、定置型蓄電池400からの放電電力が3番であると決められている。また、給電電力量予測部102の予測では、買電電力が十分に購入できない状況に備えて、商用電源300からの買電電力が最低保証値の最小値Plowであると決められている。つまり、給電電力量予測部102は、商用電源300からの買電電力として最小値Plowの電力しか購入できないという前提の下で、車両に給電する給電電力量を予測する。そこで、給電電力量予測部102は、予測給電電力量Qexpとして、給電時に商用電源300から直接給電される買電電力を除き、給電時に太陽光発電システム200から直接給電される発電電力と、定置型蓄電池400から給電される放電電力との合計値を求める。さらに、給電電力量予測部102の予測では、電池容量が大きい車載蓄電池を備えた車両に対して給電する状況に備えて、1台当たりに必要とされる給電電力量(必要給電量)は、充電器500が設置される地域で利用されている充電式の車両の中で電池容量が最大である車両の電池容量に応じて決められている。
(Step ST105)
The power supply amount prediction unit 102 supplies power to the vehicle from the charger 500 within the prediction period based on the total value of the predicted number of used units acquired by the usage prediction unit 101 and the supplementary value α obtained by the supplementary value calculation unit 105. Predict the amount of power supply. The prediction result predicted by the feed power amount prediction unit 102 is referred to as a predicted feed power amount Q exp . In the prediction of the power supply amount prediction unit 102, the power generation priority from the photovoltaic power generation system 200 is No. 1, the power purchase power from the commercial power source 300 is No. 2, and the discharge power from the stationary storage battery 400 is It is decided to be number 3. Further, according to the prediction of the power supply power amount prediction unit 102, it is determined that the purchased power from the commercial power source 300 is the minimum guaranteed value P low in preparation for a situation where the purchased power cannot be sufficiently purchased. That is, the power supply power prediction unit 102 predicts the power supply power supplied to the vehicle on the premise that only power having a minimum value P low can be purchased as power purchased from the commercial power supply 300. Therefore, the power supply amount prediction unit 102, as the predicted power supply amount Q exp , excludes purchased power that is directly supplied from the commercial power source 300 during power supply, and generated power that is directly supplied from the solar power generation system 200 during power supply, The total value of the discharge power supplied from stationary battery 400 is obtained. Furthermore, in the prediction of the power supply power amount prediction unit 102, the power supply power amount (necessary power supply amount) required per vehicle is prepared in preparation for a situation where power is supplied to a vehicle equipped with an in-vehicle storage battery having a large battery capacity. It is determined according to the battery capacity of the vehicle having the maximum battery capacity among the rechargeable vehicles used in the area where charger 500 is installed.

例えば、買電電力の最低保証値である最小値Plow=10kWであって、充電器500が設置される地域において最大の電池容量が30kWhである場合について説明する。
ここで、車両が28分間、充電器500から給電を受けたとする。この場合、給電電力量予測部102は、以下の式を演算することで、予測給電電力量Qexpを求める。給電電力量予測部102は、求めた予測給電電力量Qexpを、記憶部13の予測給電電力量Qexp136に書き込む。
<予測給電電力量Qexp
=利用台数(5台)×1台当たりの必要給電量(12kWh)×充電時間(0.5h)
=30kWh
For example, a case will be described in which the minimum value P low = 10 kW, which is the minimum guaranteed value of purchased power, and the maximum battery capacity is 30 kWh in the area where the charger 500 is installed.
Here, it is assumed that the vehicle receives power from the charger 500 for 28 minutes. In this case, the feed power amount prediction unit 102 calculates the predicted feed power amount Q exp by calculating the following equation. Feeding power amount prediction unit 102, a predicted feed power amount Q exp obtained, written in the predicted feed power amount Q exp 136 of the storage unit 13.
<Predicted power supply amount Q exp >
= Number of units used (5 units) x Required power supply per unit (12 kWh) x Charging time (0.5 h)
= 30kWh

(ステップST106)
発電予測部103は、例えば情報提供装置800から取得した天気情報に基づき、予測期間内に太陽光発電システム200が発電可能な電力量を予測する。発電予測部103は、例えば、予測期間(16:00〜18:59)内に太陽光発電システム200が9kWhを発電可能であることを予測する。発電予測部103が予測した予測結果を、予測発電電力量PPVという。発電予測部103は、求めた予測発電電力量PPVを、記憶部13の予測発電電力量PPV137に書き込む。
(Step ST106)
The power generation prediction unit 103 predicts the amount of power that can be generated by the solar power generation system 200 within the prediction period based on, for example, weather information acquired from the information providing apparatus 800. The power generation prediction unit 103 predicts, for example, that the solar power generation system 200 can generate 9 kWh within the prediction period (16: 0 to 18:59). The prediction result predicted by the power generation prediction unit 103 is referred to as a predicted power generation amount P PV . Generating prediction unit 103, the predicted power generation amount P PV obtained, written in the predicted power generation amount P PV 137 of the storage unit 13.

(ステップST107)
買電上限値決定部104は、給電電力量予測部102が予測した予測結果である予測給電電力量Qexpと、発電予測部103が予測した予測結果である予測発電電力量PPVとに基づき、予測期間内に充電器500から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求める。買電上限値決定部104は、例えば、予測期間(16:00〜18:59)内の不足電力量を、以下の式を演算することで求める。
<不足電力量>
=予測給電電力量Qexp(30kWh)−予測発電電力量PPV(9kWh)
=21kWh
(Step ST107)
Purchased power upper limit value determination unit 104, based on the predicted power supply power amount Q exp feeding power amount prediction unit 102 is a prediction result predicted, the predicted power generation amount P PV is a prediction result of the power generation prediction unit 103 predicts Then, an insufficient power amount that is insufficient when the generated power predicted as the power supplied from the charger 500 to the vehicle within the prediction period is used. The power purchase upper limit determination unit 104 calculates, for example, the amount of insufficient power within the prediction period (16: 0 to 18:59) by calculating the following expression.
<Insufficient power consumption>
= Predicted power supply amount Q exp (30 kWh) -Predicted power generation amount P PV (9 kWh)
= 21kWh

買電上限値決定部104は、予測期間内に不足電力量を定置型蓄電池400に充電可能な電力量を、予測期間内に商用電源300に要求する買電電力の上限値PBCとして決定する。買電電力の上限値PBCは、充電器500が車両に給電していない期間において商用電源300から購入する電力の上限値である。買電上限値決定部104は、例えば、予測期間(16:00〜18:59)内の1時間当たりにおける不足電力量を、以下の式を演算することで求めることにより、定置型蓄電池400の充電時の買電電力の上限値PBCとする。
<定置型蓄電池400の充電時の買電電力の上限値PBC
=不足電力量(21kWh)/予測時間(3h)
=7kW
買電上限値決定部104は、決定した上限値PBCを示す情報を、充電制御部106に出力する。
The power purchase upper limit determination unit 104 determines the amount of power that can be charged to the stationary storage battery 400 within the prediction period as the power purchase upper limit value P BC requested from the commercial power supply 300 within the prediction period. . The upper limit value PBC of purchased power is the upper limit value of power purchased from the commercial power supply 300 during the period when the charger 500 is not supplying power to the vehicle. The power purchase upper limit determination unit 104 determines the amount of insufficient power per hour within the prediction period (16: 0 to 18:59), for example, by calculating the following formula, so that the stationary storage battery 400 an upper limit value P BC of the purchased electric power during charging.
<Upper limit value P BC of purchased power when charging the stationary storage battery 400>
= Insufficient power (21 kWh) / Predicted time (3 h)
= 7kW
The power purchase upper limit determination unit 104 outputs information indicating the determined upper limit PBC to the charge control unit 106.

ここで、買電上限値決定部104は、買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる予測期間内の買電電力の最大値よりも、決定した買電電力の上限値PBCが高い場合、商用電源300の買電電力制御回路351に設定される買電電力設定値の上限値P1を閾値又は最大値とする条件を、買電電力の上限値PBCを示す情報に追加してもよい。例えば、買電上限値決定部104は、買電電力の上限値PBC=7kW(ただし、PBC≧Pmaxの場合、買電電力の上限値P1=Pmaxとする)という情報を、充電制御部106に出力する。 Here, the power purchase upper limit determination unit 104 determines the power purchase power within a prediction period determined according to a threshold value determined in a contract as an upper limit value at which the power purchase power charge is switched or a request corresponding to a demand response. than the maximum value of, if the upper limit value P BC of the determined power purchase power is high, the upper limit value P1 power purchase power setting value set in the purchased electric power control circuit 351 of the commercial power source 300 to a threshold or maximum value the condition may be added to the information indicating the upper limit value P BC power purchase power. For example, the power purchase upper limit determination unit 104 charges the information that the power purchase power upper limit P BC = 7 kW (however, if P BC ≧ P max , the power purchase power upper limit P1 = P max ). The data is output to the control unit 106.

(ステップST108)
充電制御部106は、買電上限値決定部104により決定された、買電電力の上限値P1=PBC[7kW](ただし、PBC≧Pmaxの場合、買電電力設定値の上限値P1=Pmaxとする)という情報を、通信部11を介して、充放電電力制御回路451に出力し、買電電力設定値の上限値P1を設定するよう指示する。言い換えると、充電制御部106は、蓄電池用設定電圧VLiBを、商用電源300から上限値P1の買電電力が直流バス1000に供給され、且つ、太陽光発電システム200から上限値P2の発電電力が直流バス1000に供給されている状態における直流バス1000の電圧値に設定する。
(Step ST108)
The charging control unit 106 determines the power purchase power upper limit value P1 = P BC [7 kW] determined by the power purchase upper limit value determination unit 104 (however, if P BC ≧ P max , the upper limit value of the power purchase power set value). (P1 = Pmax ) is output to the charge / discharge power control circuit 451 via the communication unit 11 to instruct to set the upper limit value P1 of the purchased power set value. In other words, the charging control unit 106 supplies the set voltage V LiB for the storage battery from the commercial power supply 300 to the DC bus 1000 with the purchased power having the upper limit value P1, and from the photovoltaic power generation system 200 to the generated power having the upper limit value P2. Is set to the voltage value of the DC bus 1000 in a state in which is supplied to the DC bus 1000.

(ステップST109)
買電上限値決定部104は、充電器500から車両に対して買電電力又は放電電力が給電されたか否かを判定する。給電開始判定部107が、商用電源300から買電電力を直流バス1000に給電したことを示す情報を買電電力制御回路351から、又は、定置型蓄電池400から放電電力を直流バス1000に給電したことを示す情報を充放電電力制御回路451から受信した場合、買電上限値決定部104は、買電電力又は放電電力が給電されたと判定する。
(ステップST110)
買電電力又は放電電力が給電されたと判定した場合(ステップST109:YES)、買電上限値決定部104は、車両に給電された給電電力量に応じて前回求めた不足電力量を変更し、変更された不足電力量を定置型蓄電池400に充電可能な電力量に基づき、買電電力の上限値を決定する。
(Step ST109)
The power purchase upper limit determination unit 104 determines whether or not purchased power or discharged power is supplied from the charger 500 to the vehicle. The power supply start determination unit 107 supplies information indicating that the purchased power is supplied from the commercial power source 300 to the DC bus 1000 from the purchased power control circuit 351 or the discharged power from the stationary storage battery 400 to the DC bus 1000. When the information indicating this is received from the charge / discharge power control circuit 451, the power purchase upper limit determination unit 104 determines that the purchased power or the discharge power is supplied.
(Step ST110)
When it is determined that the purchased power or the discharged power is supplied (step ST109: YES), the power purchase upper limit determination unit 104 changes the insufficient power amount obtained last time according to the supplied power amount supplied to the vehicle, The upper limit value of the purchased power is determined based on the amount of power that can be charged to the stationary storage battery 400 with the changed insufficient power amount.

(ステップST111)
買電電力又は放電電力が給電されていないと判定した場合(ステップST109:NO)、買電上限値決定部104は、予測発電電力量PPVが変化したか否かを判定する。発電予測部103は、例えば情報提供装置800から取得した天気情報に基づき、予測期間内に太陽光発電システム200が発電可能な電力量を再度予測し、求めた予測発電電力量PPVを買電上限値決定部104に出力する。買電上限値決定部104は、再度予測した予測発電電力量PPVと、記憶部13に記憶されている予測発電電力量PPV137とを比較し、今回の予測発電電力量PPVが前回の予測発電電力量PPV137から変化しているか否かを判定する。再度予測した予測発電電力量PPVが記憶部13に記憶されている予測発電電力量PPV137よりも大きい場合、買電上限値決定部104は、予測発電電力量PPVが増大したと判定する。一方、再度予測した予測発電電力量PPVが記憶部13に記憶されている予測発電電力量PPV137よりも小さい場合、買電上限値決定部104は、予測発電電力量PPVが減少したと判定する。
(Step ST111)
If purchased electric power or discharge power is determined not to be powered (step ST 109: NO), the power purchase upper limit determining unit 104 determines whether the prospective power generation amount of power P PV changes. The power generation prediction unit 103 re-predicts the amount of power that can be generated by the solar power generation system 200 within the prediction period based on, for example, weather information acquired from the information providing device 800, and purchases the calculated predicted power generation amount P PV. Output to the upper limit determination unit 104. The power purchase upper limit determination unit 104 compares the predicted power generation amount P PV predicted again with the predicted power generation amount P PV 137 stored in the storage unit 13, and the current predicted power generation amount P PV is It is determined whether or not the predicted power generation amount P PV 137 is changed. When the predicted power generation amount P PV predicted again is larger than the predicted power generation amount P PV 137 stored in the storage unit 13, the power purchase upper limit determination unit 104 determines that the predicted power generation amount P PV has increased. To do. On the other hand, when the predicted power generation amount P PV predicted again is smaller than the predicted power generation amount P PV 137 stored in the storage unit 13, the power purchase upper limit determination unit 104 decreases the predicted power generation amount P PV . Is determined.

(ステップST112)
予測発電電力量PPVが変化したと判定した場合(ステップST111:YES)、買電上限値決定部104は、発電予測部103が再度予測した予測発電電力量PPVに基づき、前回求めた不足電力量を変更する。買電上限値決定部104は、変更された不足電力量を定置型蓄電池400に充電可能な電力量に基づき、買電電力の上限値を決定する。例えば、予測発電電力量PPVが増大したと判定した場合、不足電力量が前回求めた不足電力量よりも減少するため、買電上限値決定部104は、買電電力の上限値を前回求めた上限値よりも下げることができる。予測発電電力量PPVが減少したと判定した場合、不足電力量が前回求めた不足電力量よりも増加するため、買電上限値決定部104は、買電電力の上限値を前回求めた上限値よりも上げることができる。
(Step ST112)
When it is determined that the predicted power generation amount P PV has changed (step ST111: YES), the power purchase upper limit determination unit 104 is based on the predicted power generation amount P PV predicted again by the power generation prediction unit 103, and is determined to be insufficient last time. Change the amount of power. The power purchase upper limit determination unit 104 determines the upper limit value of the power purchase power based on the amount of power that can charge the stationary storage battery 400 with the changed insufficient power amount. For example, when it is determined that the predicted power generation amount PPV has increased, the power shortage amount decreases below the power shortage obtained last time, so that the power purchase upper limit determination unit 104 obtains the power supply power upper limit value last time. It can be lower than the upper limit. When it is determined that the predicted power generation amount P PV has decreased, the power shortage amount increases more than the previously determined power shortage amount. Therefore, the power purchase upper limit determination unit 104 determines the power supply power upper limit value previously determined. Can be higher than the value.

(ステップST113)
予測発電電力量PPVが変化していないと判定した場合(ステップST111:NO)、買電上限値決定部104は、記憶部13の予測期間設定値133を参照して、予測期間が終了したか否かを判定する。例えば、買電上限値決定部104は、現在時刻が19:00に到達したか否かを判定し、現在時刻が19:00に到達した場合、予測期間が終了したと判定する。
予測期間が終了していないと判定した場合(ステップST113:NO)、買電上限値決定部104は、ステップST109の処理に戻って、処理を繰り返す。(ステップST114)
予測期間が終了したと判定した場合(ステップST113:YES)、買電上限値決定部104は、買電上限値の設定処理の終了が指示されたか否かを判定する。
終了が指示された場合(ステップST114:YES)、買電上限値決定部104は、処理を終了する。
終了が指示されていない場合(ステップST114:NO)、買電上限値決定部104は、ステップST102の処理に戻って、処理を繰り返す。
(Step ST113)
If the predicted power generation amount P PV is determined not to be changed (step ST111: NO), the power purchase upper limit determining section 104 refers to the prediction period setting 133 of the storage unit 13, the prediction period has expired It is determined whether or not. For example, the power purchase upper limit determination unit 104 determines whether or not the current time has reached 19:00, and determines that the prediction period has ended when the current time has reached 19:00.
When it is determined that the prediction period has not ended (step ST113: NO), the power purchase upper limit determination unit 104 returns to the process of step ST109 and repeats the process. (Step ST114)
When it is determined that the prediction period has ended (step ST113: YES), the power purchase upper limit determination unit 104 determines whether or not the end of the power purchase upper limit setting process has been instructed.
When the end is instructed (step ST114: YES), the power purchase upper limit determination unit 104 ends the process.
When the termination is not instructed (step ST114: NO), the power purchase upper limit determination unit 104 returns to the process of step ST102 and repeats the process.

上述の通り、本実施形態に係る充電設備管理装置100は、予測期間内において充電器を利用することが予測される車両台数に基づき、商用電源300から車両に供給され得る給電電力量を予測する給電電力量予測部102と、予測期間内に太陽光発電システム200が発電可能な電力量を予測する発電予測部103とを備える。また、充電設備管理装置100は、給電電力量予測部102が予測した予測結果と発電予測部103が予測した予測結果とに基づき、予測期間内に充電器500から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求め、予測期間内に不足電力量を定置型蓄電池400に充電可能な電力に基づき、予測期間内に商用電源300に要求する買電電力の上限値を決定する買電上限値決定部104を備える。
この構成により、充電器500を利用する車両の台数に応じた電力を定置型蓄電池400に充電することができるとともに、太陽光発電システム200による発電電力に応じた電力を商用電源300から購入することができる。よって、商用電源300から購入する買電電力の電力量を最適化することができる。
As described above, the charging facility management apparatus 100 according to the present embodiment predicts the amount of power that can be supplied from the commercial power supply 300 to the vehicle based on the number of vehicles that are expected to use the charger within the prediction period. A power supply power prediction unit 102 and a power generation prediction unit 103 that predicts the amount of power that can be generated by the solar power generation system 200 within the prediction period. In addition, the charging facility management apparatus 100 is configured to supply power to the vehicle from the charger 500 within the prediction period based on the prediction result predicted by the power supply amount prediction unit 102 and the prediction result predicted by the power generation prediction unit 103. The power purchase required for the commercial power source 300 within the prediction period is determined based on the power that can be charged into the stationary storage battery 400 within the prediction period by obtaining the insufficient power amount that is insufficient when the predicted generated power is used. A power purchase upper limit determination unit 104 that determines an upper limit value of electric power is provided.
With this configuration, it is possible to charge the stationary storage battery 400 with electric power according to the number of vehicles using the charger 500, and to purchase electric power according to the electric power generated by the solar power generation system 200 from the commercial power supply 300. Can do. Therefore, the amount of purchased power purchased from the commercial power supply 300 can be optimized.

また、本実施形態に係る充電設備管理装置100は、利用予測部101が取得した利用台数予測値を充電器500の利用状況に応じて補足するための補足値を求める補足値算出部105をさらに備える。給電電力量予測部102は、利用予測部101が取得した利用台数予測値を補足値に基づき補足した値に基づき、給電電力量を予測する。
この構成により、充電器500の利用状況に応じて変化する、充電器500を利用する車両の台数の誤差を低減させることができる。
In addition, the charging facility management apparatus 100 according to the present embodiment further includes a supplementary value calculation unit 105 that calculates a supplementary value for supplementing the predicted number of used units acquired by the usage prediction unit 101 according to the usage status of the charger 500. Prepare. The feed power amount prediction unit 102 predicts the feed power amount based on a value obtained by supplementing the use number prediction value acquired by the use prediction unit 101 based on the supplement value.
With this configuration, it is possible to reduce an error in the number of vehicles using the charger 500 that changes according to the usage status of the charger 500.

また、本実施形態に係る充電設備管理装置100は、買電上限値決定部104が決定した買電電力の上限値を、充電器500が車両に給電していない期間において定置型蓄電池400に充電する買電電力の値に設定する充電制御部106をさらに備える。
この構成により、充電器500を利用する車両の台数に応じた電力を定置型蓄電池400に充電することができる。
In addition, the charging facility management apparatus 100 according to the present embodiment charges the stationary storage battery 400 with the upper limit value of the purchased power determined by the power purchase upper limit determination unit 104 during the period when the charger 500 is not supplying power to the vehicle. The charging control unit 106 is further provided to set the value of purchased power to be purchased.
With this configuration, it is possible to charge the stationary storage battery 400 with electric power corresponding to the number of vehicles using the charger 500.

また、本実施形態に係る充電設備管理装置100の買電上限値決定部104は、買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる予測期間内の買電電力の最大値よりも、決定した買電電力の上限値PBCが高い場合、買電電力の上限値P1を閾値又は最大値とする。
この構成により、ピークカットの実現や、デマンドレスポンスに対応する要求に応じた買電電力の制御を実現することができる。
In addition, the power purchase upper limit determination unit 104 of the charging facility management apparatus 100 according to the present embodiment responds to a request corresponding to a threshold or a demand response that is determined in a contract as an upper limit at which the charge of purchased power is switched. than the maximum value of the purchased electric power in the prediction period is determined Te, if the upper limit value P BC of the determined power purchase power is high, a threshold or maximum value the upper limit value P1 power purchase power.
With this configuration, it is possible to realize peak cut and control of purchased power according to a request corresponding to a demand response.

また、本実施形態に係る充電設備管理装置100の給電電力量予測部102は、商用電源300からの買電電力が決められた最小値であるという前提の下、給電電力量を予測する。
この構成により、商用電源300からの買電電力として最小値Plowの電力しか購入できない状況であっても、予測期間に充電器500を利用すると予測される車両台数に応じた供給電力量から算出した必要な蓄電量を定置型蓄電池400に充電することができる。
In addition, the power supply power prediction unit 102 of the charging facility management apparatus 100 according to the present embodiment predicts the power supply power on the assumption that the power purchased from the commercial power supply 300 is a determined minimum value.
With this configuration, even if it is a situation in which only the power of the minimum value P low can be purchased as the purchased power from the commercial power supply 300, it is calculated from the amount of power supplied according to the number of vehicles predicted to use the charger 500 during the prediction period. The required storage amount can be charged to the stationary storage battery 400.

また、本実施形態に係る充電設備管理装置100の買電上限値決定部104は、予測期間内に充電器500が買電電力又は放電電力を車両に給電した場合、車両に給電された給電電力量に応じて前回求めた不足電力量を変更し、変更された不足電力量を定置型蓄電池400に充電可能な電力量に基づき、買電電力の上限値を決定する。
この構成により、予測期間内の給電電力量が変化した場合であっても、不足電力量に応じた買電電力の上限値を決定することができる。
In addition, the power purchase upper limit determination unit 104 of the charging facility management apparatus 100 according to the present embodiment, when the charger 500 supplies the purchased power or the discharged power to the vehicle within the prediction period, the supplied power supplied to the vehicle. The insufficient power amount obtained last time is changed according to the amount, and the upper limit value of the purchased power is determined based on the power amount that can charge the stationary storage battery 400 with the changed insufficient power amount.
With this configuration, even if the amount of supplied power within the prediction period changes, the upper limit value of the purchased power according to the insufficient amount of power can be determined.

また、本実施形態に係る充電設備管理装置100の発電予測部103は、予測期間内に太陽光発電システム200が発電可能な電力量を複数回予測する。買電上限値決定部104は、発電予測部103が前回の予測結果よりも発電可能な電力量が増加することを予測した場合、今回の予測結果に基づき前回求めた不足電力量を変更し、変更された不足電力量を定置型蓄電池400に充電可能な電力量に基づき、買電電力の上限値を決定する。
この構成により、予測期間内の発電電力量が変化した場合であっても、不足電力量におじた買電電力の上限値を決定することができる。
Moreover, the power generation prediction unit 103 of the charging facility management apparatus 100 according to the present embodiment predicts the amount of power that can be generated by the solar power generation system 200 a plurality of times within the prediction period. When the power generation prediction unit 103 predicts that the amount of power that can be generated is larger than the previous prediction result, the power purchase upper limit determination unit 104 changes the insufficient power amount obtained last time based on the current prediction result, The upper limit value of the purchased power is determined based on the amount of power that can be charged to the stationary storage battery 400 with the changed insufficient power amount.
With this configuration, even when the amount of generated power within the prediction period changes, the upper limit value of the purchased power corresponding to the insufficient amount of power can be determined.

また、本実施形態に係る充電設備管理装置100は、充電器500から車両に対して給電が開始される場合、定置型蓄電池400の蓄電残量に基づき、車両に供給可能な放電電力を算出する放電電力算出部108と、放電電力算出部108が算出した放電電力に基づき、充電器500が車両に給電可能な給電電力の範囲を決定する給電範囲決定部109と備える。
この構成により、充電器500が車両に給電している途中で定置型蓄電池400が給電できなくなってしまい、車両の給電が中断されることを防止することができる。予測期間内において車両が何時に給電を開始するかがわからない状況においては、定置型蓄電池400にまだ十分な電力が充電されていない場合も想定されるため、このような場合に特に有益である。
In addition, the charging facility management apparatus 100 according to the present embodiment calculates the discharge power that can be supplied to the vehicle based on the remaining amount of charge of the stationary storage battery 400 when power supply is started from the charger 500 to the vehicle. Based on the discharge power calculated by the discharge power calculation unit 108 and the discharge power calculation unit 108, the charger 500 includes a power supply range determination unit 109 that determines a range of power supply power that can be supplied to the vehicle.
With this configuration, it is possible to prevent the stationary storage battery 400 from supplying power while the charger 500 is supplying power to the vehicle, and the power supply of the vehicle from being interrupted. In a situation where it is not known at what time the vehicle will start supplying power within the prediction period, it may be assumed that the stationary storage battery 400 has not yet been charged with sufficient power, which is particularly beneficial in such a case.

また、本実施形態に係る充電設備管理装置100は、定置型蓄電池400の使用期間に基づき、放電電力算出部108が算出する定置型蓄電池400の蓄電残量を補正する充電量補正部110を備える。
この構成により、定置型蓄電池400の蓄電池が経年劣化した場合であっても、劣化度合いに応じて給電可能範囲を決定することができる。定置型蓄電池400は、経年劣化により、最大充電容量が低下することが知られている。このため、定置型蓄電池400の蓄電池の蓄電量(SOC)のパーセンテージ表示が同じでも、経年時では、使用開示時に比べて蓄電量が少なく、パーセンテージ表示が示す電力量を放電できない可能性が高い。このような場合に特に有益である。
Moreover, the charging equipment management apparatus 100 according to the present embodiment includes a charge amount correction unit 110 that corrects the remaining amount of electricity stored in the stationary storage battery 400 calculated by the discharge power calculation unit 108 based on the usage period of the stationary storage battery 400. .
With this configuration, even if the storage battery of the stationary storage battery 400 has deteriorated over time, the power supply range can be determined according to the degree of deterioration. The stationary storage battery 400 is known to have a reduced maximum charge capacity due to aging. For this reason, even if the percentage display of the storage amount (SOC) of the storage battery of the stationary storage battery 400 is the same, the storage amount is smaller than that at the time of use disclosure over time, and there is a high possibility that the amount of power indicated by the percentage display cannot be discharged. This is particularly useful in such cases.

なお、本発明は上述の構成に限られない。例えば、電力管理装置600と電気自動車管理装置700とは、例えば、両方ともxEMS(CEMSやBEMS等)であって、同一構成でもよい。
また、利用予測部101等は、充電器500の予約情報等に基づき、利用台数予測値をもとめるものであってもよい。
また、利用予測部101、給電電力量予測部102、発電予測部103、買電上限値決定部104、及び補足値算出部105を備える構成部(買電上限値設定部)と、放電電力算出部108、給電範囲決定部109、及び充電量補正部110を備える構成部(給電範囲設定部)とは、それぞれ別部材の構成であってもよい。
The present invention is not limited to the configuration described above. For example, the power management apparatus 600 and the electric vehicle management apparatus 700 are both xEMS (CEMS, BEMS, etc.), for example, and may have the same configuration.
Further, the usage predicting unit 101 or the like may obtain a predicted number of used units based on reservation information of the charger 500 or the like.
In addition, a configuration unit (a power purchase upper limit setting unit) including a usage prediction unit 101, a power supply power prediction unit 102, a power generation prediction unit 103, a power purchase upper limit determination unit 104, and a supplementary value calculation unit 105, and a discharge power calculation The configuration unit (power supply range setting unit) including the unit 108, the power supply range determination unit 109, and the charge amount correction unit 110 may be a separate member.

なお、本発明における充電設備管理装置100の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより工程を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。   The program for realizing the function of the charging facility management apparatus 100 according to the present invention is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed. May be performed. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer system” includes a WWW system having a homepage providing environment (or display environment). The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

100 充電設備管理装置
200 太陽光発電システム
300 商用電源
400 定置型蓄電池
500 充電器
600 電力管理装置
700 電気自動車管理装置
800 情報提供装置
901 車載器
902 車載器
903 車載器
904 車載器
250 DC/DC変換回路
251 発電電力制御回路
252 動力回路
350 AC/DC変換回路
351 買電電力制御回路
352 動力回路
450 DC/DC変換回路
451 充放電電力制御回路
452 動力回路
550 DC/DC変換回路
551 充電電力制御回路
552 動力回路
430 蓄電池状態監視装置
11 通信部
12 演算部
13 記憶部
14 操作部
101 利用予測部
102 給電電力量予測部
103 発電予測部
104 買電上限値決定部
105 補足値算出部
106 充電制御部
107 給電開始判定部
108 放電電力算出部
109 給電範囲決定部
110 充電量補正部
131 買電電力の最小値Plow
132 買電電力のPmax
133 予測期間設定値
134 車両充電残量情報
135 車両位置情報
136 予測給電電力量Qexp
137 予測発電電力量PPV
DESCRIPTION OF SYMBOLS 100 Charging equipment management apparatus 200 Solar power generation system 300 Commercial power supply 400 Stationary storage battery 500 Charger 600 Power management apparatus 700 Electric vehicle management apparatus 800 Information provision apparatus 901 Onboard equipment 902 Onboard equipment 903 Onboard equipment 904 Onboard equipment 250 DC / DC conversion Circuit 251 Power generation power control circuit 252 Power circuit 350 AC / DC conversion circuit 351 Power purchase power control circuit 352 Power circuit 450 DC / DC conversion circuit 451 Charge / discharge power control circuit 452 Power circuit 550 DC / DC conversion circuit 551 Charging power control circuit 552 Power circuit 430 Storage battery state monitoring device 11 Communication unit 12 Calculation unit 13 Storage unit 14 Operation unit 101 Use prediction unit 102 Power supply power prediction unit 103 Power generation prediction unit 104 Power purchase upper limit determination unit 105 Supplementary value calculation unit 106 Charging control unit 107 Power supply start determination unit 108 Electric power calculation unit 109 Power supply range determination unit 110 Charge amount correction unit 131 Minimum value of purchased power P low
132 P max of purchased power
133 Prediction period set value 134 Remaining vehicle charge information 135 Vehicle position information 136 Predicted power supply amount Q exp
137 Predicted power generation amount P PV

Claims (9)

充電器であって、
自然エネルギーにより電力を発電可能な発電機と、前記発電機からの発電電力及び商用電源からの買電電力を充電可能な定置型蓄電池と、前記発電機からの発電電力、前記商用電源からの買電電力及び前記定置型蓄電池からの放電電力の供給を受けて車両へ充電可能な前記充電器と、を管理する充電設備管理装置を備え、
前記充電設備管理装置は、
決められた予測期間内において前記充電器を利用することが予測される車両台数の予測値に基づき、前記予測期間内に前記充電器から車両に給電され得る給電電力量を予測する給電電力量予測部と、
前記予測期間内に前記発電機が発電可能な電力量を予測する発電予測部と、
前記給電電力量予測部が予測した予測結果と前記発電予測部が予測した予測結果とに基づき、前記予測期間内に前記充電器から車両に給電される給電電力として予測される発電電力を用いたときに不足する不足電力量を求め、前記不足電力量に基づき、前記予測期間内に前記商用電源に要求する買電電力の上限値を決定する買電上限値決定部と、
を備えることを特徴とする充電器。
A charger,
A generator capable of generating electric power using natural energy, a stationary storage battery capable of charging generated power from the generator and purchased power from a commercial power source, generated power from the generator, and purchased from the commercial power source A charging facility management device that manages electric power and the charger capable of charging a vehicle by receiving supply of discharge power from the stationary storage battery;
The charging facility management device includes:
Based on a predicted value of the number of vehicles that are predicted to use the charger within a predetermined prediction period, a power supply power prediction that predicts a power supply amount that can be supplied from the charger to the vehicle within the prediction period. And
A power generation prediction unit that predicts the amount of power that can be generated by the generator within the prediction period;
Based on the prediction result predicted by the power supply power amount prediction unit and the prediction result predicted by the power generation prediction unit, the generated power predicted as the power supplied from the charger to the vehicle within the prediction period was used. A power purchase upper limit determination unit that determines an insufficient power amount that is sometimes insufficient, and determines an upper limit value of the purchased power required for the commercial power source within the prediction period based on the insufficient power amount;
A charger comprising:
前記給電電力量予測部は、前記車両台数の予測値を補足した値に基づき、前記給電電力量を予測することを特徴とする請求項1に記載の充電器。   The charger according to claim 1, wherein the power supply amount prediction unit predicts the power supply amount based on a value obtained by supplementing a predicted value of the number of vehicles. 前記買電上限値決定部が決定した前記買電電力の上限値を、前記充電器が前記車両に給電していない期間において前記定置型蓄電池に充電する前記買電電力の値に設定する充電制御部をさらに備えることを特徴とする請求項1又は2に記載の充電器。   Charge control for setting the upper limit value of the purchased power determined by the purchased power upper limit determination unit to the value of the purchased power to be charged to the stationary storage battery during a period when the charger is not supplying power to the vehicle The charger according to claim 1, further comprising a unit. 前記買電上限値決定部は、前記買電電力の料金が切り替わる上限値として契約上決められている閾値、又は、デマンドレスポンスに対応する要求に応じて決められる前記予測期間内の前記買電電力の最大値よりも、決定した前記買電電力の上限値が高い場合、前記買電電力の上限値を前記閾値又は前記最大値とすることを特徴とする請求項1から3のうちいずれか一項に記載の充電器。   The power purchase upper limit determination unit is a threshold determined in a contract as an upper limit value for switching the power purchase power, or the power purchase power within the prediction period determined in response to a request corresponding to a demand response. The upper limit value of the purchased power is set to the threshold value or the maximum value when the determined upper limit value of the purchased power is higher than the maximum value. The charger according to item. 前記給電電力量予測部は、前記商用電源からの買電電力が決められた最小値であるという前提の下、前記給電電力量を予測することを特徴とする請求項1から4のうちいずれか一項に記載の充電器。   The power supply power amount prediction unit predicts the power supply power amount on the assumption that the power purchased from the commercial power supply is a determined minimum value. The charger according to one item. 前記買電上限値決定部は、前記予測期間内に前記充電器が前記買電電力又は前記放電電力を前記車両に給電した場合、前記車両に給電された給電電力量に応じて前回求めた前記不足電力量を変更し、変更された不足電力量に基づき、前記買電電力の上限値を決定することを特徴とする請求項1から5のうちいずれか一項に記載の充電器。   The power purchase upper limit determination unit determines the previous time according to the amount of power supplied to the vehicle when the charger supplies the vehicle with the purchased power or the discharged power within the prediction period. The charger according to any one of claims 1 to 5, wherein an amount of power shortage is changed, and an upper limit value of the purchased power is determined based on the changed amount of power shortage. 前記発電予測部は、前記予測期間内に前記発電機が発電可能な電力量を複数回予測し、
前記買電上限値決定部は、前記発電予測部が前回の予測結果よりも発電可能な電力量が増加することを予測した場合、今回の予測結果に基づき前回求めた前記不足電力量を変更し、変更された不足電力量に基づき、前記買電電力の上限値を決定することを特徴とする請求項1から6のうちいずれか一項に記載の充電器。
The power generation prediction unit predicts the amount of power that can be generated by the generator a plurality of times within the prediction period,
When the power generation prediction unit predicts that the amount of power that can be generated is larger than the previous prediction result, the power purchase upper limit determination unit changes the insufficient power amount obtained last time based on the current prediction result. The charger according to claim 1, wherein an upper limit value of the purchased electric power is determined based on the changed amount of insufficient power.
前記充電器から前記車両に対して給電が開始される場合、前記定置型蓄電池の蓄電残量に基づき、前記車両に供給可能な放電電力を算出する放電電力算出部と、
前記放電電力算出部が算出した放電電力に基づき、前記充電器が前記車両に給電可能な給電電力の範囲を決定する給電範囲決定部と、
をさらに備えることを特徴とする請求項1から7のうちいずれか一項に記載の充電器。
When power supply to the vehicle is started from the charger, a discharge power calculation unit that calculates discharge power that can be supplied to the vehicle based on the remaining amount of power stored in the stationary storage battery;
Based on the discharge power calculated by the discharge power calculation unit, the power supply range determination unit that determines the range of power supply power that the charger can supply to the vehicle;
The charger according to any one of claims 1 to 7, further comprising:
前記定置型蓄電池の使用期間に基づき、前記放電電力算出部が算出する前記定置型蓄電池の蓄電残量を補正する充電量補正部をさらに備えることを特徴とする請求項8に記載の充電器。   The charger according to claim 8, further comprising a charge amount correction unit that corrects a remaining storage amount of the stationary storage battery calculated by the discharge power calculation unit based on a usage period of the stationary storage battery.
JP2016231563A 2014-02-27 2016-11-29 Charger Active JP6240298B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016231563A JP6240298B2 (en) 2014-02-27 2016-11-29 Charger
JP2017213261A JP6565086B2 (en) 2016-11-29 2017-11-02 Charging equipment management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036553A JP6053711B2 (en) 2014-02-27 2014-02-27 Charging facility management apparatus, charging facility management method, and program
JP2016231563A JP6240298B2 (en) 2014-02-27 2016-11-29 Charger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014036553A Division JP6053711B2 (en) 2014-02-27 2014-02-27 Charging facility management apparatus, charging facility management method, and program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017213261A Division JP6565086B2 (en) 2016-11-29 2017-11-02 Charging equipment management device

Publications (2)

Publication Number Publication Date
JP2017051094A JP2017051094A (en) 2017-03-09
JP6240298B2 true JP6240298B2 (en) 2017-11-29

Family

ID=62193596

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014036553A Active JP6053711B2 (en) 2014-02-27 2014-02-27 Charging facility management apparatus, charging facility management method, and program
JP2016231562A Active JP6459074B2 (en) 2014-02-27 2016-11-29 Charging facility management system, vehicle-mounted device and electric vehicle
JP2016231563A Active JP6240298B2 (en) 2014-02-27 2016-11-29 Charger

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2014036553A Active JP6053711B2 (en) 2014-02-27 2014-02-27 Charging facility management apparatus, charging facility management method, and program
JP2016231562A Active JP6459074B2 (en) 2014-02-27 2016-11-29 Charging facility management system, vehicle-mounted device and electric vehicle

Country Status (1)

Country Link
JP (3) JP6053711B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6731607B2 (en) * 2016-03-25 2020-07-29 パナソニックIpマネジメント株式会社 Power conversion system
JP6565086B2 (en) * 2016-11-29 2019-08-28 三菱重工業株式会社 Charging equipment management device
CN111602159A (en) * 2018-03-20 2020-08-28 本田技研工业株式会社 Server and management system
CN110293869A (en) * 2019-06-28 2019-10-01 易事特集团股份有限公司 Intergration system is filled in a kind of storage of light
JP7347401B2 (en) 2020-11-24 2023-09-20 トヨタ自動車株式会社 Charging control system, charging control device and charging control program
JP2022110903A (en) * 2021-01-19 2022-07-29 パナソニックIpマネジメント株式会社 Distributed power supply system and power conversion device
US11554684B2 (en) * 2021-02-17 2023-01-17 AMPLY Power, Inc. Aggregating capacity for depot charging
JP7374231B2 (en) 2021-07-29 2023-11-06 寧徳時代新能源科技股▲分▼有限公司 Charging and discharging devices, battery charging and discharging methods, and charging and discharging systems
WO2023105624A1 (en) * 2021-12-07 2023-06-15 日本電気株式会社 Management device, management system, and management method
US11760224B1 (en) * 2022-08-03 2023-09-19 Electric Era Technologies, Inc. Vehicle charging system
CN115765041A (en) * 2022-11-18 2023-03-07 国网河北省电力有限公司营销服务中心 Electric energy scheduling method of photovoltaic charging station based on weather prediction

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206889A (en) * 2006-01-31 2007-08-16 Chugoku Electric Power Co Inc:The Power station power supply management system, method, and program
JP2010213507A (en) * 2009-03-11 2010-09-24 Chugoku Electric Power Co Inc:The Natural energy integrated power storage system and natural energy integrated power storage method
JP5430994B2 (en) * 2009-03-27 2014-03-05 株式会社日本総合研究所 Charge / discharge control device and charge / discharge control method
JP2010268576A (en) * 2009-05-13 2010-11-25 Toyota Motor Corp Power supply distribution control apparatus
JP5439242B2 (en) * 2010-03-18 2014-03-12 株式会社東芝 Energy navigation control device, energy navigation system, and energy navigator
KR101113508B1 (en) * 2010-05-06 2012-02-29 성균관대학교산학협력단 Apparatus and method for charging and discharging photovoltaic pcs integrated battery
JP2013165534A (en) * 2010-06-03 2013-08-22 Sanyo Electric Co Ltd Power supply control device
WO2011162025A1 (en) * 2010-06-22 2011-12-29 シャープ株式会社 Dc power distribution system
JP2012090382A (en) * 2010-10-15 2012-05-10 Sanyo Electric Co Ltd Charging system
JP5533788B2 (en) * 2010-12-24 2014-06-25 株式会社日立製作所 Charge control system
JP5372987B2 (en) * 2011-03-16 2013-12-18 三菱電機株式会社 Power management system
JP5214764B2 (en) * 2011-03-25 2013-06-19 株式会社東芝 Electric vehicle charging scheduling system
JP5541210B2 (en) * 2011-03-29 2014-07-09 株式会社デンソー Power distribution device
JP5686024B2 (en) * 2011-04-04 2015-03-18 株式会社デンソー Power supply system
JP5877479B2 (en) * 2011-11-01 2016-03-08 清水建設株式会社 Power management system, power management method, program
JP6053303B2 (en) * 2012-03-30 2016-12-27 三菱重工業株式会社 Power management apparatus, power management method and program

Also Published As

Publication number Publication date
JP2017051094A (en) 2017-03-09
JP2015162959A (en) 2015-09-07
JP2017060398A (en) 2017-03-23
JP6459074B2 (en) 2019-01-30
JP6053711B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6240298B2 (en) Charger
JP6565086B2 (en) Charging equipment management device
JP5677161B2 (en) Charge / discharge determination device and program
JP5072378B2 (en) Power storage device and system
JP5662877B2 (en) Battery system
JP5584763B2 (en) DC power distribution system
JP5490834B2 (en) Charge / feed device, charge / feed management device, energy management system, and charge / feed management method
JP5164184B2 (en) Energy management system
JP2012115003A (en) Control device and control method
JP2011101520A (en) Power demand and supply control system in microgrid
JP5994027B2 (en) Power supply system and energy management system used therefor
JP7032248B2 (en) Power management equipment and programs
WO2011105555A1 (en) Charging system, and control method and program therefor
JP5752069B2 (en) Power control system
JP6037678B2 (en) Storage battery charge / discharge control device and storage battery charge / discharge control system
JP6200728B2 (en) Power supply system, power supply management device, power supply management method, and program
JP6705652B2 (en) Battery control method
US20190103756A1 (en) Power storage system, apparatus and method for controlling charge and discharge, and program
JP2018170956A (en) Power storage system, control device, control method, and power generation/storage system
JP7406436B2 (en) Power interchange system
JP7303692B2 (en) POWER MANAGEMENT SYSTEM, POWER MANAGEMENT METHOD, POWER MANAGEMENT APPARATUS, AND PROGRAM
JP6161646B2 (en) Control device, control system, control method, and program
JP2022120610A (en) Power supply system, management device, management method and program
JP2022118638A (en) Storage battery management device and storage battery management method
JP2016015829A (en) Charging system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6240298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150