JP6234711B2 - Carburizing gas production method and carburizing gas production equipment used therefor - Google Patents

Carburizing gas production method and carburizing gas production equipment used therefor Download PDF

Info

Publication number
JP6234711B2
JP6234711B2 JP2013120086A JP2013120086A JP6234711B2 JP 6234711 B2 JP6234711 B2 JP 6234711B2 JP 2013120086 A JP2013120086 A JP 2013120086A JP 2013120086 A JP2013120086 A JP 2013120086A JP 6234711 B2 JP6234711 B2 JP 6234711B2
Authority
JP
Japan
Prior art keywords
gas
carburizing
carbon monoxide
pipe
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013120086A
Other languages
Japanese (ja)
Other versions
JP2014237868A (en
Inventor
吉野 明
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2013120086A priority Critical patent/JP6234711B2/en
Publication of JP2014237868A publication Critical patent/JP2014237868A/en
Application granted granted Critical
Publication of JP6234711B2 publication Critical patent/JP6234711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、鋼製部材に対する浸炭方法に用いる浸炭処理用ガスの製造方法およびそれに用いる浸炭処理用ガス製造設備に関するものである。 The present invention relates to a method for producing a carburizing gas used in a carburizing method for a steel member, and a carburizing gas production facility used therefor.

鋼製部材の表面硬化方法の一つとして、RXガス(浸炭処理用ガス)を用いた浸炭方法が知られている(例えば、特許文献1参照)。この浸炭方法におけるRXガス供給装置は、少量の酸素が含まれた窒素ガスを供給する窒素発生装置と、炭化水素ガスを供給する炭化水素供給装置と、所定の供給量に調整された窒素ガスと炭化水素ガスとが導入されて1次処理される低温反応槽と、1次処理ガスと所定の供給量に調整された炭化水素ガスとが導入されて混合される2次混合器とを有している。そして、その2次混合器でRXガスがつくられる。ここで、上記炭化水素供給装置としては、所定の容積を有する高圧容器に充填された液化高純度炭化水素を、気化して所望の供給圧に調整されて供給できる装置が用いられる。上記炭化水素の具体例としては、メタン,エタン,プロパン,ブタン等のパラフィン系の炭化水素があげられる。そして、RXガスの原料には、上記のように、メタン(天然ガス)等が使用されることから、RXガスの組成は、一酸化炭素ガス(CO):20〜25モル%、水素ガス(H2 ):30〜40モル%、残りが窒素ガス(N2 )となっている。 As one surface hardening method for steel members, a carburizing method using RX gas (carburizing gas) is known (for example, see Patent Document 1). The RX gas supply device in this carburizing method includes a nitrogen generator for supplying nitrogen gas containing a small amount of oxygen, a hydrocarbon supply device for supplying hydrocarbon gas, and a nitrogen gas adjusted to a predetermined supply amount, A low-temperature reaction vessel in which hydrocarbon gas is introduced and subjected to primary treatment, and a secondary mixer in which the primary treatment gas and hydrocarbon gas adjusted to a predetermined supply amount are introduced and mixed ing. And RX gas is made with the secondary mixer. Here, as the hydrocarbon supply device, a device capable of vaporizing liquefied high-purity hydrocarbon filled in a high-pressure vessel having a predetermined volume and adjusting the supply pressure to a desired supply pressure is used. Specific examples of the hydrocarbon include paraffinic hydrocarbons such as methane, ethane, propane, and butane. As described above, methane (natural gas) or the like is used as the raw material for the RX gas. Therefore, the composition of the RX gas is carbon monoxide gas (CO): 20 to 25 mol%, hydrogen gas ( H 2): 30 to 40 mol%, which is balance and nitrogen gas (N 2).

ところで、上記RXガスを用いた浸炭方法は、ガス浸炭法であり、真空浸炭法に比べ、浸炭速度が遅く、単位時間当たりの処理個数が少ない。   By the way, the carburizing method using the RX gas is a gas carburizing method, and has a lower carburizing speed and a smaller number of treatments per unit time than the vacuum carburizing method.

特開2012−32113号公報JP 2012-32113 A

ガス浸炭法を用いた浸炭方法は、先に述べたように、浸炭速度が遅いことから、生産性向上のため、浸炭速度の向上が求められている。   Since the carburizing method using the gas carburizing method has a low carburizing rate as described above, an improvement in the carburizing rate is required to improve productivity.

本発明は、このような事情に鑑みなされたもので、浸炭速度を速めることができる浸炭方法に用いる浸炭処理用ガスの製造方法およびそれに用いる浸炭処理用ガス製造設備の提供をその目的とする。 This invention is made | formed in view of such a situation, The objective is to provide the manufacturing method of the carburizing gas used for the carburizing method which can speed up carburizing speed, and the carburizing gas manufacturing equipment used therefor.

上記の目的を達成するため、本発明は、少なくとも一酸化炭素ガスと水素ガスとを含む浸炭処理用ガスの製造方法であって、天然ガスを第1ヒータで加熱してから、脱硫器に通し第1管路に送る第1工程と、酸素ガスを第2ヒータで加熱し第2管路に送る第2工程と、上記第1工程を経たガスと上記第2工程を経たガスとを混合し、その混合ガスを改質器に通すことにより、一酸化炭素ガスと水素ガスとを含むガスを生成する第3工程と、この第3工程により得られた上記一酸化炭素ガスと上記水素ガスとを含む上記生成したガスを、第3管路および冷却器に、この順で通した後、気液分離器で気液分離し、その気液分離された後の液体を排水管路から外部に排水し、上記気液分離された後の気体を圧縮機吸込ホルダに通してから、その気体を圧縮機により圧縮する第4工程と、この第4工程により圧縮された上記一酸化炭素ガスと上記水素ガスとを含む上記気体、第4管路に通してから圧力スイング吸着装置に通すことにより、それら一酸化炭素ガスと水素ガスの濃度を高める第5工程とを備え、上記一酸化炭素ガスの濃度が30〜60モル%の範囲内の浸炭処理用ガスを得る浸炭処理用ガス製造方法を第1の要旨とする。 In order to achieve the above object, the present invention is a method for producing a carburizing gas containing at least carbon monoxide gas and hydrogen gas, wherein natural gas is heated by a first heater and then passed through a desulfurizer. The first step for sending to the first pipe , the second step for heating oxygen gas with the second heater and sending to the second pipe, the gas that has passed through the first step and the gas that has passed through the second step are mixed. And passing the mixed gas through a reformer to generate a gas containing carbon monoxide gas and hydrogen gas, and the carbon monoxide gas and hydrogen gas obtained by the third step. The generated gas containing the gas is passed through the third pipe and the cooler in this order, and then gas-liquid is separated by the gas-liquid separator, and the liquid after the gas-liquid separation is externally discharged from the drain pipe. drained, the gas after it has been the gas-liquid separation from through a compressor suction holder, the gas A fourth step of compressing by the compressor, by passing the gas containing the fourth the carbon monoxide gas compressed by step and the hydrogen gas, the pressure swing adsorption system from through the fourth conduit And a fifth process for increasing the concentration of the carbon monoxide gas and hydrogen gas, and a carburizing gas production method for obtaining a carburizing gas having a carbon monoxide gas concentration in the range of 30 to 60 mol% This is the first gist.

また、本発明は、上記第1の要旨の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備であって、天然ガスを加熱する第1ヒータと、その加熱した天然ガスを脱硫する脱硫器と、この脱硫器で脱硫された天然ガスを通す第1管路と、酸素ガスを加熱する第2ヒータと、この第2ヒータで加熱された酸素ガスを通し、上記第1管路に連結する第2管路と、上記脱硫器で脱硫され上記第1管路を通って送られた天然ガスと上記第2ヒータで加熱され上記第2管路を通って送られた酸素ガスとの混合ガスから一酸化炭素ガスと水素ガスとを含むガスを生成する改質器と、この改質器で生成された上記一酸化炭素ガスと上記水素ガスとを含む上記生成ガスを通す第3管路と、この第3管路を通って送られた上記生成ガスを通す冷却器と、この冷却器を通ってその一部が液化した上記生成ガスを気液分離する気液分離器と、その気液分離された後の液体を上記気液分離器の外部に排水する排水管路と、上記気液分離された後の上記一酸化炭素ガスと上記水素ガスとを含む気体を通す圧縮機吸込ホルダと、この圧縮機吸込ホルダを通った上記気体を圧縮する圧縮機と、この圧縮機で圧縮された上記気体を通す第4管路と、この第4管路を通って送られた上記気体を通す圧力スイング吸着装置とを備えている浸炭処理用ガス製造設備を第2の要旨とする。 The present invention is also a carburizing gas production facility used in the carburizing gas production method of the first aspect, wherein the first heater for heating natural gas and a desulfurizer for desulfurizing the heated natural gas are provided. And a first pipe through which the natural gas desulfurized by the desulfurizer is passed, a second heater for heating the oxygen gas, and an oxygen gas heated by the second heater are passed through and connected to the first pipe. a second conduit, a gas mixture of the desulfurizer at desulfurized oxygen gas delivered through a heated said second conduit in natural gas and the second heater transmitted through said first conduit A reformer that generates a gas containing carbon monoxide gas and hydrogen gas from the gas generator, and a third pipe that passes the generated gas containing the carbon monoxide gas and hydrogen gas generated by the reformer. A cooler for passing the product gas sent through the third pipe, A gas-liquid separator that gas-liquid separates the product gas partially liquefied through the vessel, a drain pipe that drains the liquid after the gas-liquid separation to the outside of the gas-liquid separator, and A compressor suction holder through which a gas containing the carbon monoxide gas and the hydrogen gas after gas-liquid separation is passed, a compressor that compresses the gas that has passed through the compressor suction holder, and compression by the compressor A carburizing gas production facility including a fourth pipe for passing the gas and a pressure swing adsorption device for passing the gas sent through the fourth pipe is a second gist.

本発明者は、浸炭速度を速くすべく、浸炭処理用ガスの組成について、研究を重ねた。その過程で、一酸化炭素ガスの濃度が高くなるにつれて浸炭速度が速くなることを突き止めた。また、水素ガスの濃度が浸炭速度に影響を及ぼし、水素ガスの濃度をある程度まで高くすると浸炭速度が速くなるが、それよりも高くすると逆に浸炭速度が遅くなることも突き止めた。そして、さらに研究を重ねた結果、一酸化炭素ガスの濃度を、従来よりも高く30〜60モル%の範囲内に設定すると、それに伴い、水素ガスも適度(35〜55モル%)に存在するようになり、浸炭速度が向上することを見出し、本発明に到達した。   The present inventor conducted research on the composition of the carburizing gas in order to increase the carburizing rate. In the process, it was found that the carburization rate increased as the concentration of carbon monoxide gas increased. It was also found that the concentration of hydrogen gas has an effect on the carburization rate, and that the carburization rate increases when the hydrogen gas concentration is increased to some extent, but conversely the carburization rate decreases when the concentration is higher. As a result of further research, when the concentration of carbon monoxide gas is set to be in the range of 30 to 60 mol%, which is higher than before, hydrogen gas is also present moderately (35 to 55 mol%). As a result, it was found that the carburization rate was improved, and the present invention was reached.

本発明の浸炭処理用ガス製造方法は、上記第1〜第5工程を備えているため、得られる浸炭処理用ガスにおける一酸化炭素ガスの濃度を、30〜60モル%の比較的高濃度の範囲内に設定することができる。そのような浸炭処理用ガスを用いた浸炭方法は、従来の浸炭方法よりも一酸化炭素ガスの濃度が高く、浸炭速度を速くすることができる。 Since the carburizing gas production method of the present invention includes the first to fifth steps, the concentration of carbon monoxide gas in the obtained carburizing gas is set to a relatively high concentration of 30 to 60 mol%. Can be set within range . The carburizing method using such a carburizing gas has a higher concentration of carbon monoxide gas than the conventional carburizing method, and can increase the carburizing rate.

上記浸炭処理用ガスにおける一酸化炭素ガスと水素ガスとの濃度比を、1:1に設定する場合には、一酸化炭素ガスと水素ガスの濃度がより適正化され、浸炭速度をより速めることができる。   When the concentration ratio of carbon monoxide gas and hydrogen gas in the carburizing gas is set to 1: 1, the concentration of carbon monoxide gas and hydrogen gas is more optimized, and the carburization rate is increased. Can do.

なお、上記「1:1」は、ガスの濃度比であるため、正確な「1:1」だけではなく、±5%の誤差の範囲〔「(0.95〜1.05):1」または「1:(0.95〜1.05)」〕も含む意味である。   Since “1: 1” is a gas concentration ratio, not only accurate “1: 1” but also an error range of ± 5% [“(0.95 to 1.05): 1” Or “1: (0.95 to 1.05)”].

また、本発明の浸炭処理用ガス製造設備は、上記圧力スイング吸着装置等の構成を備えているため、一酸化炭素ガスの濃度が30〜60モル%の比較的高濃度の範囲内に設定された浸炭処理用ガスを得ることができる。 In addition, since the carburizing gas production facility of the present invention includes the above-described configuration such as the pressure swing adsorption device , the concentration of carbon monoxide gas is set within a relatively high concentration range of 30 to 60 mol%. and carburizing gas can Rukoto give.

本発明の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備の第1の実施の形態を模式的に示す構成図である。The first embodiment of the carburizing process for gas Manufacturing equipment used in the carburizing treatment gas production method of the present invention is a configuration diagram schematically showing. 浸炭処理用ガス製造設備の第2の実施の形態を模式的に示す構成図である。It is a block diagram which shows typically 2nd Embodiment of the gas manufacturing equipment for carburizing treatment. 浸炭処理用ガス製造設備の第3の実施の形態を模式的に示す構成図である。It is a block diagram which shows typically 3rd Embodiment of the gas manufacturing equipment for carburizing treatment. 浸炭処理用ガス製造設備の第4の実施の形態を模式的に示す構成図である。It is a block diagram which shows typically 4th Embodiment of the gas manufacturing equipment for carburizing treatment.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備の第1の実施の形態を示す構成図である。この実施の形態では、その浸炭処理用ガス製造設備は、得られる浸炭処理用ガスが、一酸化炭素ガスの濃度も水素ガスの濃度も略50モル%となるようにするものである。 Figure 1 is a block diagram showing a first embodiment of the carburizing process for gas Manufacturing equipment used in the carburizing treatment gas production method of the present invention. In this embodiment, the carburizing gas production facility is such that the obtained carburizing gas has a carbon monoxide gas concentration and a hydrogen gas concentration of approximately 50 mol%.

すなわち、上記浸炭処理用ガス製造設備は、天然ガス(多量のメタンガスと少量のエタンガス,プロパンガス,硫黄等からなる)を第1ヒータ1で加熱してから、脱硫器2に通し、第1管路Aに送るようになっている。そして、酸素ガスを第2ヒータ3で加熱し第2管路Bに送るようになっている。この第2管路Bは、第1管路Aと連結され、上記天然ガスと上記酸素ガスとが混合した状態になる。ついで、その混合ガスを改質器4に通し、高濃度の一酸化炭素ガスと水素ガスとを生成させ、第3管路Cに通すようになっている。このとき、同時に、二酸化炭素ガスおよび水蒸気も生成される。つづいて、それらを冷却器5に通した後、気液分離器6で気液分離し、気液分離された後の液体を排水管路から外部に排水し、気体を圧縮機吸込ホルダ7に通してから圧縮機8で圧縮し、第4管路Dに通すようになっている。その後、その圧縮機8で圧縮された気体を、圧力スイング吸着装置9に通し、上記一酸化炭素ガスと水素ガスの濃度を、いずれも略50モル%に高め、管路Eを経由し、RXガスとして、図示していない従来公知の浸炭炉に供給するようになっている。そして、圧力スイング吸着装置9に吸着させた二酸化炭素ガスを、真空ポンプ10を利用して脱着させ、フレアスタック13で焼却するようになっている。なお、図において、符号Vは弁を示す。 That is, the carburizing gas production facility is configured to heat natural gas (consisting of a large amount of methane gas and a small amount of ethane gas, propane gas, sulfur, etc.) with the first heater 1 and then through the desulfurizer 2 to the first pipe. It will be sent to Road A. The oxygen gas is heated by the second heater 3 and sent to the second pipe B. The second pipeline B is connected to the first pipeline A, and the natural gas and the oxygen gas are mixed. Next, the mixed gas is passed through the reformer 4 to generate high-concentration carbon monoxide gas and hydrogen gas, which are then passed through the third pipe C. At the same time, carbon dioxide gas and water vapor are also generated. Subsequently, after passing them through the cooler 5, gas-liquid separation is performed by the gas-liquid separator 6, the liquid after the gas-liquid separation is drained to the outside from the drain pipe G , and the gas is sucked into the compressor suction holder 7. And then compressed by the compressor 8 and passed through the fourth pipe D. Thereafter, the gas compressed by the compressor 8 is passed through the pressure swing adsorption device 9, and the concentrations of the carbon monoxide gas and the hydrogen gas are both increased to about 50 mol%. As gas, it supplies to the conventionally well-known carburizing furnace which is not illustrated. The carbon dioxide gas adsorbed by the pressure swing adsorption device 9 is desorbed by using the vacuum pump 10 and incinerated by the flare stack 13. In the figure, the symbol V indicates a valve.

ここで、上記圧力スイング吸着装置9で得られた略50モル%の一酸化炭素ガスと水素ガスとが、先に述べたように、浸炭処理用ガスとして浸炭炉で用いられる。このような浸炭処理用ガスを用いることにより、浸炭速度を速めることができる。   Here, approximately 50 mol% of carbon monoxide gas and hydrogen gas obtained by the pressure swing adsorption device 9 are used in the carburizing furnace as the carburizing gas as described above. By using such a carburizing gas, the carburizing speed can be increased.

図2は、上記浸炭処理用ガス製造設備の第2の実施の形態を示す構成図である。この実施の形態の浸炭処理用ガス製造設備は、上記第1の実施の形態(図1参照)において、水素ガスの管路と二酸化炭素ガスの管路を追加している。すなわち、天然ガスの管路に水素ガスの管路を連結し、天然ガスと水素ガスとを混合した後、第1ヒータ1で加熱してから、脱硫器2に通し、第1管路Aに送るようになっている。そして、酸素ガスの管路に二酸化炭素ガスの管路を連結し、酸素ガスと二酸化炭素ガスとを混合してから第2ヒータ3で加熱し第2管路Bに送るようになっている。この第2管路Bでは、上記天然ガスを含む混合ガスと、上記酸素ガスを含む混合ガスとが混合した状態になる。また、この実施の形態の浸炭処理用ガス製造設備は、上記第1の実施の形態(図1参照)において、真空ポンプ10とフレアスタック13との間に分岐する管路Fを追加している。すなわち、圧力スイング吸着装置9に吸着させた二酸化炭素ガスを、真空ポンプ10を利用して脱着させ、その大部分を管路Fに送り、圧縮機吸込ホルダ11に通してから圧縮機12で圧縮し、原料の一部として再利用し、残部をフレアスタック13で焼却するようになっている。 FIG. 2 is a configuration diagram showing a second embodiment of the carburizing gas production facility. The carburizing gas production facility of this embodiment is additionally provided with a hydrogen gas conduit and a carbon dioxide gas conduit in the first embodiment (see FIG. 1). That is, a hydrogen gas line is connected to a natural gas line, and after mixing natural gas and hydrogen gas, the gas is heated by the first heater 1 and then passed through the desulfurizer 2 to the first line A. To send. Then, a carbon dioxide gas pipe is connected to the oxygen gas pipe, the oxygen gas and the carbon dioxide gas are mixed, heated by the second heater 3 and sent to the second pipe B. In the second pipeline B, the mixed gas containing the natural gas and the mixed gas containing the oxygen gas are mixed. In addition, the carburizing gas production facility of this embodiment is additionally provided with a pipe F that branches between the vacuum pump 10 and the flare stack 13 in the first embodiment (see FIG. 1). . That is, carbon dioxide gas adsorbed by the pressure swing adsorption device 9 is desorbed by using the vacuum pump 10, most of the carbon dioxide gas is sent to the pipe F, passed through the compressor suction holder 11, and then compressed by the compressor 12. However, it is reused as a part of the raw material, and the remainder is incinerated by the flare stack 13.

図3は、上記浸炭処理用ガス製造設備の第3の実施の形態を示す構成図である。この実施の形態の浸炭処理用ガス製造設備は、上記第2の実施の形態(図2参照)において、液体窒素タンク20を追加し、その液体窒素を気化させた窒素ガスを、上記圧力スイング吸着装置9で得られた略50モル%の一酸化炭素ガスと水素ガスとの混合ガスに混合するようにしたものである。それ以外の部分は、上記第2の実施の形態と同様であり、同様の部分には同じ符号を付している。   FIG. 3 is a configuration diagram showing a third embodiment of the carburizing gas production facility. The carburizing gas production facility of this embodiment is the same as that of the second embodiment (see FIG. 2), except that a liquid nitrogen tank 20 is added and the nitrogen gas obtained by vaporizing the liquid nitrogen is absorbed by the pressure swing adsorption. The mixed gas of about 50 mol% carbon monoxide gas and hydrogen gas obtained by the apparatus 9 is mixed. Other parts are the same as those in the second embodiment, and the same reference numerals are given to the same parts.

この実施の形態では、上記液体窒素タンク20からの窒素ガスを混合することにより、浸炭処理用ガスの一酸化炭素ガスの濃度を、処理対象物に応じて、上記略50モル%から薄めるように調整することができる。なお、一酸化炭素ガスの濃度の下限値は30モル%である。このような浸炭処理用ガスを用いることにより、浸炭対象品の材質や厚み等に応じて一酸化炭素ガスの濃度を調節し、最適な浸炭を行うことができる。   In this embodiment, by mixing the nitrogen gas from the liquid nitrogen tank 20, the concentration of the carbon monoxide gas for carburizing treatment gas is reduced from about 50 mol% according to the object to be treated. Can be adjusted. The lower limit of the concentration of carbon monoxide gas is 30 mol%. By using such a carburizing gas, the concentration of carbon monoxide gas can be adjusted according to the material, thickness, etc. of the carburized object, and optimum carburizing can be performed.

図4は、上記浸炭処理用ガス製造設備の第4の実施の形態を示す構成図である。この実施の形態の浸炭処理用ガス製造設備は、図2に示す浸炭処理用ガス製造設備に、一酸化炭素ガス容器31を追加し、その一酸化炭素ガスを、図2に示す浸炭処理用ガス製造設備で得られたRXガスに混合し、一酸化炭素ガスの高濃度化を可能にしたものである。なお、参考形態として、従来のRXガス製造設備30に、上記と同様に、一酸化炭素ガス容器31を追加し、その一酸化炭素ガスを、従来のRXガス(一酸化炭素ガス:20〜25モル%)に混合し、一酸化炭素ガスを高濃度化してもよい。 FIG. 4 is a configuration diagram showing a fourth embodiment of the carburizing gas production facility. In the carburizing gas production facility of this embodiment, a carbon monoxide gas container 31 is added to the carburizing gas production facility shown in FIG. 2, and the carbon monoxide gas is used as the carburizing gas shown in FIG. It is mixed with RX gas obtained at the production facility, and the concentration of carbon monoxide gas can be increased. As a reference mode, a carbon monoxide gas container 31 is added to a conventional RX gas production facility 30 as described above, and the carbon monoxide gas is converted into conventional RX gas (carbon monoxide gas: 20 to 25). The carbon monoxide gas may be concentrated at a high concentration.

この実施の形態では、上記一酸化炭素ガスを混合することにより、先に述べたように、RXガスにおける一酸化炭素ガスの濃度を高めて改質RXガスとし、浸炭対象品の材質や厚み等に応じて、30〜60モル%の範囲内で調整することができる。このような浸炭処理用ガスを用いることにより、浸炭速度を速めることができる。また、図2に示す浸炭処理用ガス製造設備で得られたRXガスが濃度不足だったり、浸炭対象品が変わってより高濃度のものが求められる場合等に、迅速に対応することができるようになる。   In this embodiment, by mixing the carbon monoxide gas, as described above, the concentration of the carbon monoxide gas in the RX gas is increased to obtain a modified RX gas, and the material, thickness, etc. of the carburized object Depending on, it can be adjusted within the range of 30 to 60 mol%. By using such a carburizing gas, the carburizing speed can be increased. In addition, when the RX gas obtained at the carburizing gas production facility shown in FIG. 2 is insufficient in concentration, or when a carburized product is changed and a higher concentration is required, it can be quickly handled. become.

つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.

〔実施例1〜3および比較例1,2〕
日本工業規格(JIS)で規定されるSUS316(Cr含有18重量%,Ni含有12重量%,Mo含有2.5重量%,残部Fe)の2.5mm厚板片を準備し、それを浸炭炉に入れ、450℃まで加熱し、下記の表1に示す組成のRXガスを用いて浸炭処理した。その浸炭処理は、表面硬度が870〜890Hv、浸炭層の深さが20μmになるように行った。そして、その浸炭処理に要した時間を測定した。その結果を下記の表1に示した。
[Examples 1 to 3 and Comparative Examples 1 and 2]
A 2.5 mm thick plate of SUS316 (18% by weight of Cr, 12% by weight of Ni, 2.5% by weight of Mo, and the remainder of Fe) stipulated by Japanese Industrial Standards (JIS) is prepared and the carburizing furnace And heated to 450 ° C. and carburized using RX gas having the composition shown in Table 1 below. The carburizing treatment was performed so that the surface hardness was 870 to 890 Hv and the depth of the carburized layer was 20 μm. And the time required for the carburizing process was measured. The results are shown in Table 1 below.

Figure 0006234711
Figure 0006234711

上記の結果から、RXガスの一酸化炭素ガスの濃度が30〜60モル%である実施例1〜3は、一酸化炭素ガスの濃度が25モル%と低い比較例1と比較して、浸炭速度が速いことがわかる。なかでも、一酸化炭素ガスの濃度も水素ガスの濃度も50モル%である実施例2が最も速いことがわかる。また、比較例2のように、一酸化炭素ガスの濃度を65モル%と高くし過ぎても、水素ガスの濃度が35モル%と低くなるため、浸炭速度が遅くなることがわかる。   From the above results, Examples 1 to 3 in which the concentration of carbon monoxide gas in RX gas is 30 to 60 mol% are carburized compared to Comparative Example 1 in which the concentration of carbon monoxide gas is as low as 25 mol%. You can see that the speed is fast. In particular, Example 2 in which the concentration of carbon monoxide gas and the concentration of hydrogen gas are 50 mol% is the fastest. In addition, as in Comparative Example 2, it can be seen that even if the concentration of the carbon monoxide gas is made too high, such as 65 mol%, the concentration of hydrogen gas becomes as low as 35 mol%, so that the carburization rate becomes slow.

本発明は、浸炭速度を速めることに利用することができる。   The present invention can be used to increase the carburization rate.

1 第1ヒータ
3 第2ヒータ
4 改質器
9 圧力スイング吸着装置
DESCRIPTION OF SYMBOLS 1 1st heater 3 2nd heater 4 Reformer 9 Pressure swing adsorption device

Claims (11)

少なくとも一酸化炭素ガスと水素ガスとを含む浸炭処理用ガスの製造方法であって、天然ガスを第1ヒータで加熱してから、脱硫器に通し第1管路に送る第1工程と、酸素ガスを第2ヒータで加熱し第2管路に送る第2工程と、上記第1工程を経たガスと上記第2工程を経たガスとを混合し、その混合ガスを改質器に通すことにより、一酸化炭素ガスと水素ガスとを含むガスを生成する第3工程と、この第3工程により得られた上記一酸化炭素ガスと上記水素ガスとを含む上記生成したガスを、第3管路および冷却器に、この順で通した後、気液分離器で気液分離し、その気液分離された後の液体を排水管路から外部に排水し、上記気液分離された後の気体を圧縮機吸込ホルダに通してから、その気体を圧縮機により圧縮する第4工程と、この第4工程により圧縮された上記一酸化炭素ガスと上記水素ガスとを含む上記気体、第4管路に通してから圧力スイング吸着装置に通すことにより、それら一酸化炭素ガスと水素ガスの濃度を高める第5工程とを備え、上記一酸化炭素ガスの濃度が30〜60モル%の範囲内の浸炭処理用ガスを得ることを特徴とする浸炭処理用ガス製造方法。 A method of manufacturing a carburizing gas containing at least carbon monoxide gas and hydrogen gas, was heated natural gas in the first heater, a first step of sending to the first conduit and passing the desulfurizer, The second step of heating the oxygen gas with the second heater and sending it to the second pipe, the gas having passed through the first step and the gas having passed through the second step are mixed, and the mixed gas is passed through the reformer. The third step of generating a gas containing carbon monoxide gas and hydrogen gas, and the generated gas containing the carbon monoxide gas and the hydrogen gas obtained by the third step are supplied to a third pipe. After passing through the passage and the cooler in this order, gas-liquid separation is performed by the gas-liquid separator, and the liquid after the gas-liquid separation is drained to the outside from the drain pipe, and after the gas-liquid separation is performed gas from the through compressor suction holder and a fourth step of compressing by the compressor to the gas, this The gas containing the said carbon monoxide gas and the hydrogen gas compressed by the fourth step, by passing through a pressure swing adsorption system from through the fourth conduit, the concentration of which carbon monoxide gas and hydrogen gas A carburizing gas production method comprising: obtaining a carburizing gas having a carbon monoxide gas concentration in the range of 30 to 60 mol%. 上記第1工程が、上記第1ヒータによる天然ガスの加熱に先立って、その天然ガスに水素ガスを混合し、その混合ガスを上記第1ヒータで加熱してから、上記脱硫器に通し上記第1管路に送る工程である請求項1記載の浸炭処理用ガス製造方法。 The first step is, prior to the heating of the natural gas by the first heater, mixed with hydrogen gas to the natural gas, the mixed gas is heated by the first heater, and passed to the desulfurizer above The gas production method for carburizing treatment according to claim 1, wherein the method is a step of sending to the first pipeline . 上記第2工程が、上記第2ヒータによる酸素ガスの加熱に先立って、その酸素ガスに二酸化炭素ガスを混合し、その混合ガスを上記第2ヒータで加熱し上記第2管路に送る工程である請求項2記載の浸炭処理用ガス製造方法。 The second step is a step of mixing carbon dioxide gas with the oxygen gas prior to heating of the oxygen gas by the second heater, heating the mixed gas with the second heater, and sending the mixed gas to the second conduit. The method for producing a carburizing gas according to claim 2. 上記第5工程が、上記圧力スイング吸着装置により濃度が高められた一酸化炭素ガスと水素ガスとを含む上記気体に、窒素ガスを混合する工程である請求項2または3記載の浸炭処理用ガス製造方法。 The carburizing gas according to claim 2 or 3, wherein the fifth step is a step of mixing nitrogen gas into the gas containing carbon monoxide gas and hydrogen gas whose concentration is increased by the pressure swing adsorption device. Production method. 上記第5工程により得られた、一酸化炭素ガスと水素ガスとを含む上記気体に、さらに一酸化炭素ガスを混合する工程を備えている請求項2または3記載の浸炭処理用ガス製造方法。 The gas production method for carburizing treatment according to claim 2 or 3, further comprising a step of mixing carbon monoxide gas with the gas containing carbon monoxide gas and hydrogen gas obtained in the fifth step. 上記浸炭処理用ガスにおける一酸化炭素ガスと水素ガスとの濃度比を、1:1に設定する請求項1〜5のいずれか一項に記載の浸炭処理用ガス製造方法。   The gas production method for carburizing treatment according to any one of claims 1 to 5, wherein a concentration ratio of carbon monoxide gas to hydrogen gas in the carburizing treatment gas is set to 1: 1. 上記請求項1記載の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備であって、天然ガスを加熱する第1ヒータと、その加熱した天然ガスを脱硫する脱硫器と、この脱硫器で脱硫された天然ガスを通す第1管路と、酸素ガスを加熱する第2ヒータと、この第2ヒータで加熱された酸素ガスを通し、上記第1管路に連結する第2管路と、上記脱硫器で脱硫され上記第1管路を通って送られた天然ガスと上記第2ヒータで加熱され上記第2管路を通って送られた酸素ガスとの混合ガスから一酸化炭素ガスと水素ガスとを含むガスを生成する改質器と、この改質器で生成された上記一酸化炭素ガスと上記水素ガスとを含む上記生成ガスを通す第3管路と、この第3管路を通って送られた上記生成ガスを通す冷却器と、この冷却器を通ってその一部が液化した上記生成ガスを気液分離する気液分離器と、その気液分離された後の液体を上記気液分離器の外部に排水する排水管路と、上記気液分離された後の上記一酸化炭素ガスと上記水素ガスとを含む気体を通す圧縮機吸込ホルダと、この圧縮機吸込ホルダを通った上記気体を圧縮する圧縮機と、この圧縮機で圧縮された上記気体を通す第4管路と、この第4管路を通って送られた上記気体を通す圧力スイング吸着装置とを備えていることを特徴とする浸炭処理用ガス製造設備。 A carburizing treatment gas production facilities used in the claim 1 carburizing gas production method according a first heater for heating the natural gas, a desulfurizer for desulfurizing the heated natural gas, in this desulfurizer A first pipe for passing desulfurized natural gas; a second heater for heating oxygen gas; a second pipe for passing oxygen gas heated by the second heater and connected to the first pipe; Carbon monoxide gas from a mixed gas of natural gas desulfurized by the desulfurizer and sent through the first pipe and oxygen gas heated by the second heater and sent through the second pipe A reformer for generating a gas containing hydrogen gas, a third pipe for passing the produced gas containing the carbon monoxide gas and the hydrogen gas produced by the reformer, and the third pipe A cooler that passes the product gas sent through the A gas-liquid separator that gas-liquid separates the partly liquefied product gas, a drain line that drains the liquid after the gas-liquid separation to the outside of the gas-liquid separator, and the gas-liquid separation a compressor suction holder through a gas containing the above-described carbon monoxide gas and the hydrogen gas after a compressor for compressing the gas having passed through the compressor suction holder, the gas compressed in the compressor A carburizing gas production facility comprising a fourth pipe passing therethrough and a pressure swing adsorption device through which the gas sent through the fourth pipe passes . 上記請求項2記載の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備であって、上記第1ヒータの上流に、上記天然ガスの管路に水素ガスの管路が連結した連結管路を備え、その連結管路が上記第1ヒータに接続されている請求項7記載の浸炭処理用ガス製造設備。   A carburizing gas production facility for use in the carburizing gas production method according to claim 2, wherein a hydrogen gas pipe is connected to the natural gas pipe upstream of the first heater. The gas production facility for carburizing treatment according to claim 7, wherein the connecting pipe line is connected to the first heater. 上記請求項3記載の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備であって、上記第2ヒータの上流に、上記酸素ガスの管路に二酸化炭素ガスの管路が連結した連結管路を備え、その連結管路が上記第2ヒータに接続されている請求項8記載の浸炭処理用ガス製造設備。   A carburizing gas production facility for use in the carburizing gas production method according to claim 3, wherein the carbon dioxide gas pipe is connected to the oxygen gas pipe upstream of the second heater. The carburizing gas production facility according to claim 8, further comprising a passage, the connecting pipe of which is connected to the second heater. 上記請求項4記載の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備であって、上記圧力スイング吸着装置の下流の、一酸化炭素ガスと水素ガスとを含む上記気体の管路に、液体窒素タンクが接続されている請求項8または9記載の浸炭処理用ガス製造設備。 A carburizing treatment gas production facilities used in the claim 4 carburizing gas production method according to the pipe of the gas containing the downstream of the pressure swing adsorption unit and a carbon monoxide gas and hydrogen gas, The gas production facility for carburizing treatment according to claim 8 or 9, wherein a liquid nitrogen tank is connected. 上記請求項5記載の浸炭処理用ガス製造方法に用いる浸炭処理用ガス製造設備であって、上記圧力スイング吸着装置の下流の、一酸化炭素ガスと水素ガスとを含む上記気体の管路に、一酸化炭素ガス容器が接続されている請求項8または9記載の浸炭処理用ガス製造設備。 A carburizing treatment gas production facility used for the carburizing treatment gas producing method of the fifth aspect, the conduit of the gas containing the downstream of the pressure swing adsorption unit and a carbon monoxide gas and hydrogen gas, The carburizing gas production facility according to claim 8 or 9, wherein a carbon monoxide gas container is connected.
JP2013120086A 2013-06-06 2013-06-06 Carburizing gas production method and carburizing gas production equipment used therefor Active JP6234711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120086A JP6234711B2 (en) 2013-06-06 2013-06-06 Carburizing gas production method and carburizing gas production equipment used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013120086A JP6234711B2 (en) 2013-06-06 2013-06-06 Carburizing gas production method and carburizing gas production equipment used therefor

Publications (2)

Publication Number Publication Date
JP2014237868A JP2014237868A (en) 2014-12-18
JP6234711B2 true JP6234711B2 (en) 2017-11-22

Family

ID=52135234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120086A Active JP6234711B2 (en) 2013-06-06 2013-06-06 Carburizing gas production method and carburizing gas production equipment used therefor

Country Status (1)

Country Link
JP (1) JP6234711B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306919A (en) * 1980-09-04 1981-12-22 Union Carbide Corporation Process for carburizing steel
JP4155658B2 (en) * 1999-03-04 2008-09-24 大陽日酸株式会社 Manufacturing method of carburizing atmosphere gas and carburizing method using the gas
JP3984103B2 (en) * 2002-06-03 2007-10-03 大陽日酸株式会社 Carburizing atmosphere gas generator and method
JP2004332080A (en) * 2003-05-12 2004-11-25 Koyo Thermo System Kk Method and device for generating atmospheric gas for carburizing
JP2005200695A (en) * 2004-01-14 2005-07-28 Onex Corp Gas carburizing method
JP4488782B2 (en) * 2004-04-02 2010-06-23 中外炉工業株式会社 Carburizing gas production equipment
JP4587719B2 (en) * 2004-07-07 2010-11-24 中外炉工業株式会社 Carburizing gas production equipment
JP4823670B2 (en) * 2005-12-13 2011-11-24 大陽日酸株式会社 Carburizing atmosphere gas generation method
JP2008057039A (en) * 2006-08-02 2008-03-13 Ntn Corp Carburization method, steel product and heat treatment equipment

Also Published As

Publication number Publication date
JP2014237868A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
WO2019102094A3 (en) Process and device for the combined production of hydrogen and carbon dioxide from a hydrocarbon mixture
RU2019128252A (en) METHOD FOR AMMONIA SYNTHESIS WITH LOW CO2 EMISSIONS INTO THE ATMOSPHERE
MX2011013415A (en) Reformed gas-based reduction method with return of the waste reduction gases and decarbonisation of the waste gas component used as combustion gas for the reformer.
TW200720185A (en) Plasma-induced hydrogen production from water
CN104449920A (en) Method for joint production of natural gas and liquid ammonia by using coke oven gas and blast-furnace gas
US9938594B2 (en) Methods and systems for producing direct reduced iron and steel mill fuel gas using coke oven gas and basic oxygen furnace gas
EA202193148A1 (en) METHOD OF OPERATION OF BLAST FURNACE
JP5551181B2 (en) Utilization of a degassing gas mixture from a degasser associated with a syngas production unit and plant for its implementation
EP2319958A4 (en) Liquid material comprising hydrogen and oxygen, regasified gas comprising hydrogen and oxygen produced from the liquid material, process and apparatus for producing the liquid material and regasified gas, and fuel that does not evolve carbon dioxide and comprises the liquid material and regasified gas
RU2013134616A (en) METHOD FOR COMMISSIONING AUTOMATIC REFORMING REACTORS
JP6234711B2 (en) Carburizing gas production method and carburizing gas production equipment used therefor
CN1140097A (en) Process and plant for generating nitrogen for heat treatment
EP3488165B1 (en) Method for separating a synthesis gas
FR2891538B1 (en) PROCESS FOR PRODUCING HYDROGEN-ENRICHED GAS STREAM FROM HYDROGENATED GASEOUS FLOWS COMPRISING HYDROCARBONS
RU2014153237A (en) METHOD FOR PRODUCING SYNTHETIC LIQUID HYDROCARBONS FROM NATURAL GAS
KR20100016342A (en) Carbon monoxide gas generation apparatus and method and carburization atmosphere gas generation apparatus and method
MX2024006066A (en) Apparatus for hydrogen production.
KR20180026258A (en) Method for producing reducing gas from by-product gas of ironmaking process and the device
DE50209387D1 (en) METHOD AND DEVICE FOR CONVERTING A FUEL
JP2014018776A (en) Carbon dioxide separation system and carbon dioxide separation method
JP2012251012A (en) Method and apparatus for separating carbon dioxide
JP2017214269A (en) Hydrogen production method
US20110272637A1 (en) Method for Producing a Gaseous Atmosphere for Treating Metals
JP6773411B2 (en) Carburizing system and manufacturing method of surface hardened steel
JP2021536417A (en) A method for producing a synthetic gas by treating a gas stream containing CO2 and one or more hydrocarbons.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6234711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250