JP6232545B1 - Organic waste decomposition accelerator and microbial material containing the same - Google Patents

Organic waste decomposition accelerator and microbial material containing the same Download PDF

Info

Publication number
JP6232545B1
JP6232545B1 JP2016219368A JP2016219368A JP6232545B1 JP 6232545 B1 JP6232545 B1 JP 6232545B1 JP 2016219368 A JP2016219368 A JP 2016219368A JP 2016219368 A JP2016219368 A JP 2016219368A JP 6232545 B1 JP6232545 B1 JP 6232545B1
Authority
JP
Japan
Prior art keywords
organic waste
bacteria
mineral
garbage
humus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016219368A
Other languages
Japanese (ja)
Other versions
JP2018075530A (en
Inventor
光雄 小栗
光雄 小栗
良平 河野
良平 河野
Original Assignee
環境触媒科学株式会社
良平 河野
良平 河野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環境触媒科学株式会社, 良平 河野, 良平 河野 filed Critical 環境触媒科学株式会社
Priority to JP2016219368A priority Critical patent/JP6232545B1/en
Application granted granted Critical
Publication of JP6232545B1 publication Critical patent/JP6232545B1/en
Publication of JP2018075530A publication Critical patent/JP2018075530A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Fertilizers (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】生ゴミなどの有機廃棄物を短時間で、しかもできるだけ質量又は容積を減らして分解消滅させる。【解決手段】玄武岩質安山岩から抽出した鉄を含む複数のミネラルの存在下で有機物を腐植化させて得られるミネラル腐植複合体を含む、有機廃棄物の分解促進剤を提供する。【選択図】図1An organic waste such as garbage is decomposed and extinguished in a short period of time while reducing the mass or volume as much as possible. An organic waste decomposition accelerator comprising a mineral humus complex obtained by humifying organic matter in the presence of a plurality of minerals containing iron extracted from basaltic andesite. [Selection] Figure 1

Description

本発明は、微生物による有機廃棄物の分解促進剤に関し、特に、好機性細菌を含む微生物資材に添加して有機廃棄物の分解速度を高めるための分解促進剤に関するものである。また、当該分解促進剤を含む有機廃棄物分解用微生物資材及びこれを用いる有機廃棄物の分解処理方法にも関する。   The present invention relates to a decomposition accelerator for organic waste caused by microorganisms, and more particularly, to a decomposition accelerator for increasing the decomposition rate of organic waste by adding it to a microbial material containing microbial bacteria. The present invention also relates to a microbial material for decomposing organic waste containing the decomposition accelerator and a method for decomposing organic waste using the same.

これまで、生ゴミ処理のために様々な細菌の活用が探索されている。細菌は外界から物質を取り込み、分解消化することで生存に必要なエネルギーを獲得している。生ゴミ処理に用いられる細菌は、生ゴミの構成成分であるタンパク質、糖質及び脂質等を取り込み、生存に必要なエネルギーを獲得し、これにより生ゴミを分解消滅させる。   So far, the use of various bacteria for garbage disposal has been explored. Bacteria acquire energy necessary for survival by taking in substances from the outside world and digesting them. Bacteria used for garbage disposal capture proteins, carbohydrates, lipids, and the like, which are constituents of garbage, and acquire energy necessary for survival, thereby decomposing and extinguishing garbage.

しかしながら、生ごみ処理の実用化に関する大きな問題は、細菌による生ごみ分解に時間がかかることであり、長時間の処理条件下では、アンモニアをはじめとする臭気物質が発生することも問題である。   However, a major problem regarding the practical application of garbage treatment is that it takes time to decompose garbage by bacteria, and it is also a problem that odorous substances such as ammonia are generated under long-time treatment conditions.

有機性生ごみを短時間で分解消滅させるために、好気性細菌、通性嫌気性菌のパエニバチルス リゾスファエラ及びバチルス ノバリス、バチルス オレロニウス及び乳酸桿菌を用いて複合菌を培養する方法が報告されている(特許文献1参照)。本発明者らはこれらの複合菌の生ゴミ分解能を最大限に引き出すために、水分、温度、酸素濃度条件を最適に保つ必要があることを見出しているが、細菌を用いた生ゴミ処理技術の飛躍的な革新のためにはさらなる活性化剤の探索が必要である。   In order to break down organic garbage in a short time, a method of culturing complex bacteria using aerobic bacteria, facultative anaerobic bacteria Paenibacillus lysosphaera and Bacillus Novalis, Bacillus oreronius and Lactobacillus has been reported ( Patent Document 1). The present inventors have found that it is necessary to optimally maintain moisture, temperature, and oxygen concentration conditions in order to maximize the garbage resolution of these complex bacteria. In order to achieve dramatic innovation, it is necessary to search for further activators.

一方、土壌の残留農薬及び重金属などの汚染物質を除去し、保水性及び通気性に富む土壌の団粒構造を形成して微生物の活動環境を改善するために、フェリハイドライト腐植複合体を用いる技術が報告されている(特許文献2参照)。フェリハイドライト(Ferrihydrite)とは、一般式5Fe・9HOで表される非晶質鉄水和酸化物である。一般的には、地球表層において初期段階で形成される低結晶度の鉄鉱物として知られている。 On the other hand, ferrihydrite humus complex is used to remove soil pesticides and heavy metals and other pollutants, and to form soil aggregate structure with high water retention and air permeability to improve the microbial activity environment Technology has been reported (see Patent Document 2). Ferrihydrite is an amorphous iron hydrated oxide represented by the general formula 5Fe 2 O 3 · 9H 2 O. Generally, it is known as a low-crystallinity iron mineral formed at an early stage in the earth's surface layer.

上記、フェリハイドライト腐植複合体は、このようなフェリハイドライトを有機物で複合化したものであるが、その高いイオン交換能や触媒能は、重金属の不活性化、悪臭物質の分解除去、病原性微生物やウイルスの消毒効果に優れている。また、高いガス吸着能は硫化水素やメタン、アンモニア、塩素ガスの吸着効果があるが、有機物の分解については、好気的な一次発酵の後で、主に嫌気性菌による有機物の分解と合成とを繰り返しながら重縮合によって褐色又は黒褐色の無定型高分子物質である「腐植」を生成されることが知られている。また、完熟した腐植を生成するためには通常2〜6か月の期間を要し、これを用いて家畜糞を堆肥化する場合でも、数日〜2週間程度の製造期間を要することが報告されている(例えば、特許文献3、段落「0020」参照)。   The ferrihydrite humus complex described above is a composite of such ferrihydrite with an organic substance, but its high ion exchange ability and catalytic ability are inactivated heavy metals, decomposed and removed malodorous substances, pathogenic Excellent sterilizing effect on sexual microorganisms and viruses. In addition, the high gas adsorption capacity has the effect of adsorbing hydrogen sulfide, methane, ammonia, and chlorine gas, but the decomposition of organic matter is mainly due to anaerobic primary fermentation followed by decomposition and synthesis of organic matter by anaerobic bacteria. It is known that “humus” which is a brown or black-brown amorphous polymer substance is produced by polycondensation while repeating the above. In addition, it takes 2 to 6 months to produce fully humic humus, and even when composting livestock manure using this, it takes several days to 2 weeks for production. (See, for example, Patent Document 3, paragraph “0020”).

特開2014−117192号公報JP 2014-117192 A 再表02/079483号公報Table 02/077943 特開2013−136507号公報JP 2013-136507 A

本発明は、生ゴミなどの有機廃棄物を短時間で、しかもできるだけ質量又は容積を減らして分解消滅させることを課題とする。   An object of the present invention is to decompose and extinguish organic waste such as raw garbage in a short time and with as little mass or volume as possible.

本発明の有機廃棄物の分解促進剤は、玄武岩質安山岩から抽出した鉄を含む複数のミネラルの存在下で腐植化された有機物であるミネラル腐植複合体を含むことを最も主要な特徴とする。   The organic waste decomposition accelerator of the present invention is characterized in that it contains a mineral humus complex, which is an organic substance humated in the presence of a plurality of minerals including iron extracted from basaltic andesite.

また、本発明の有機廃棄物分解用微生物資材は、好気性細菌及び/又は通性嫌気性細菌を含む単一又は複合細菌と、玄武岩質安山岩から抽出した鉄を含む複数のミネラルの存在下で腐植化された有機物であるミネラル腐植複合体とを含むことを特徴とする。   Moreover, the microbial material for decomposing organic waste of the present invention comprises a single or complex bacterium containing aerobic bacteria and / or facultative anaerobic bacteria, and a plurality of minerals containing iron extracted from basaltic andesite. It includes a mineral humus complex which is a humified organic substance.

本発明により有機廃棄物、特に、生ゴミが短時間で分解消滅処理することができる。また、分解過程で発生していた臭気も少なく、減質量率を向上してほとんどの生ゴミが消滅するという利点がある。   According to the present invention, organic waste, in particular, raw garbage can be decomposed and extinguished in a short time. In addition, there is an advantage that there is little odor generated in the decomposition process, and the weight loss rate is improved, and most garbage is lost.

実施例2における、しいたけ及びしいたけ菌床の分解処理テストの結果を示すグラフである。It is a graph which shows the result of the decomposition process test of a shiitake mushroom and a shiitake fungus bed in Example 2. 実施例3における、食品残渣の分解処理テストの結果を示すグラフである。It is a graph which shows the result of the decomposition process test of a food residue in Example 3.

(有機廃棄物の分解促進剤)
本発明の1つの実施形態は、ミネラル腐植複合体を含む、微生物による有機廃棄物の分解促進剤である。本実施形態の「ミネラル腐植複合体」とは、玄武岩質安山岩から抽出した鉄を含む複数のミネラルの存在下で、有機物を腐植化して得られる複合体からなる組成物をいう。また、「腐植」とは、本明細書では、食品廃棄物及び動植物遺体等の有機物が土壌微生物の作用による分解と合成とを繰り返しながら重縮合によって生じた褐色または黒褐色の無定形高分子物質を意味し、「堆肥」と同義である。
(Decomposition accelerator for organic waste)
One embodiment of the present invention is an organic waste degradation accelerator by microorganisms, comprising a mineral humus complex. The “mineral humus complex” of the present embodiment refers to a composition comprising a complex obtained by humifying an organic substance in the presence of a plurality of minerals including iron extracted from basaltic andesite. In addition, in this specification, “humus” refers to a brown or black-brown amorphous polymer substance produced by polycondensation while organic matter such as food waste and animal and plant remains are repeatedly decomposed and synthesized by the action of soil microorganisms. It is synonymous with “compost”.

用語「ミネラル」とは、医学、生物化学の分野で、生体を構成する元素のうち炭素、窒素、水素及び酸素の4元素以外の元素の総称であり、例えば、カリウム、カルシウム、マグネシウム、鉄、マンガン、銅、亜鉛等の金属元素が例示される。本実施形態で用いられるミネラルは玄武岩質安山岩から無機酸で抽出され少なくとも鉄を含む多くの金属元素をからなる。ミネラルの中には、一般式5Fe・9HOで表される非晶質鉄水和酸化物であるフェリハイドライト(Ferrihydrite)が含まれ、これは、一般的に地球表層において初期段階で形成される低結晶度の鉄鉱物として知られている。
フェリハイドライトは、有機化合物のカルボキシル基やカルボニル基のOH端、O端と配位結合する性質があり凝集体を形成する。比表面積が約200(m/g)と大きく、有機化合物のOH端、O端との反応に供される場が広いため、触媒能が高く、凝集体を形成する能力が高いことが分かっている。
The term “mineral” is a general term for elements other than the four elements of carbon, nitrogen, hydrogen and oxygen among the elements constituting the living body in the fields of medicine and biochemistry. For example, potassium, calcium, magnesium, iron, Examples of the metal element include manganese, copper, and zinc. Minerals used in the present embodiment are composed of many metal elements extracted from inorganic basaltic andesite with inorganic acid and containing at least iron. Among the minerals, ferrihydrite, which is an amorphous iron hydrated oxide represented by the general formula 5Fe 2 O 3 · 9H 2 O, is generally found in the Earth's surface. It is known as a low-crystallinity iron mineral formed in stages.
Ferrihydrite has the property of coordinating with the OH end and O end of a carboxyl group or carbonyl group of an organic compound, and forms an aggregate. The specific surface area is as large as about 200 (m 2 / g), and the field used for the reaction with the OH end and O end of organic compounds is wide, so the catalytic ability is high and the ability to form aggregates is high. ing.

本実施形態のミネラル腐植複合体は、玄武岩、安山岩等の堆積岩に、濃度10〜20重量%の硫酸水溶液を添加して酸可溶成分を抽出した天然由来のイオン化ミネラル濃縮液と、有機物との混合物とを原料として、下記の製造工程により製造される。
ミネラル液は、ナトリウム、カルシウム、マグネシウム等の無機イオンを含むが、とりわけ、鉄を1.9質量%程度含む(ICP発光分析による)。ミネラル液に含まれる鉄は、pHによって異なる形態で存在する。pH3以下では、鉄は、Fe3+、pH3〜pH4では、Fe3+とFe(OH)2+、pH4〜pH5では、Fe3+とFe(OH)2+とFe(OH) 、pH5より高いpHでは、Fe(OH)2+とFe(OH) とFe(OH)として存在する。フェリハイドライト形成のためには原料となる3価の鉄Fe(OH)が存在することが好ましい。しかしながら、酸性のミネラル濃縮液を用いても、有機廃棄物と混合することによりイオン状態の鉄が安定化され、その後の一次発酵、二次発酵の段階で有機物のpHが5以上となるため特にpH調整をする必要はない。マグネシウム及びカルシウムが多く含まれているとFe(OH)の形成が阻害されるため、上記ミネラル液に含まれるマグネシウム及びカルシウムの総含有量が、鉄の含有量の30質量%以下であることが好ましい。このようなミネラル液の1つとして、環境触媒科学株式会社から「アモル21(AMOR21)」(商品名)が販売されている。
The mineral humus complex of this embodiment is a natural ionized mineral concentrate obtained by adding an aqueous solution of sulfuric acid having a concentration of 10 to 20% by weight to sedimentary rocks such as basalt and andesite, and an organic substance. It is manufactured by the following manufacturing process using the mixture as a raw material.
The mineral liquid contains inorganic ions such as sodium, calcium, magnesium, etc., and especially contains about 1.9% by mass of iron (according to ICP emission analysis). Iron contained in the mineral liquid exists in different forms depending on pH. Below pH 3, iron is Fe 3+ , Fe 3+ and Fe (OH) 2+ at pH 3 to pH 4, Fe 3+ and Fe (OH) 2+ and Fe (OH) 2 + at pH 4 to pH 5, and pH higher than pH 5 is present as Fe (OH) 2+ and Fe (OH) 2 + and Fe (OH) 3. In order to form ferrihydrite, trivalent iron Fe (OH) 3 as a raw material is preferably present. However, even if an acidic mineral concentrate is used, the iron in an ionic state is stabilized by mixing with organic waste, and the pH of the organic matter becomes 5 or more in the subsequent primary fermentation and secondary fermentation stages. There is no need to adjust the pH. Since the formation of Fe (OH) 3 is inhibited when a large amount of magnesium and calcium is contained, the total content of magnesium and calcium contained in the mineral liquid is 30% by mass or less of the iron content. Is preferred. As one of such mineral liquids, “Amor 21” (trade name) is sold by Environmental Catalysis Science Co., Ltd.

腐植の原料となる有機物としては、畜糞、生ゴミ、食品廃棄物、剪定枝や廃材チップ、浄化槽汚泥等の有機廃棄物を用いることができる。   Organic wastes such as livestock excrement, raw garbage, food waste, pruned branches and waste chips, septic tank sludge and the like can be used as organic materials for humus.

ミネラル腐植複合体の製造方法について説明する。
まず、公知のシュレッダーで破砕した有機物廃棄物に上述した鉄を含むミネラル液を滴下しながら攪拌、混合する。このとき、オガ粉のような水分調節材及び/又は米糠のようなC/N調節材を添加して適度な水分及びC/N比にすることが好ましい。この一次発酵段階では好気性菌の働きにより有機物が分解されるとともに発熱する。フェリハイドライトの形成を促進するためにpH調整を行う場合は、消石灰(水酸化カルシウム:Ca(OH))を添加して、有機物のpHを、5以上に調整してもよい。ミネラル濃縮液としてアモル21を使用する場合は、約1mの有機廃棄物に対して、総量約300ml程度添加すればよいが、有機物の種類や含有量によって適宜添加量を調整する。
The manufacturing method of a mineral humus composite is demonstrated.
First, stirring and mixing are carried out while dripping the mineral liquid containing iron mentioned above into the organic waste crushed with a known shredder. At this time, it is preferable to add a moisture adjusting material such as sawdust and / or a C / N adjusting material such as rice bran to obtain an appropriate moisture and C / N ratio. In this primary fermentation stage, organic matter is decomposed by the action of aerobic bacteria and heat is generated. When adjusting pH to promote the formation of ferrihydrite, slaked lime (calcium hydroxide: Ca (OH) 2 ) may be added to adjust the pH of the organic substance to 5 or more. When Amol 21 is used as the mineral concentrate, the total amount of about 300 ml may be added to about 1 m 3 of organic waste, but the amount added is appropriately adjusted depending on the type and content of the organic matter.

次いで、有機物の攪拌を中止し、二次発酵・完熟を行う。この工程では、有機物を、堆肥場内で堆積して発酵させる。有機物の温度が65℃〜70℃に達した時点で、ブルドーザ、ショベルカー等を用いた攪拌による切り返しを行う。
二次発酵・完熟工程開始から2〜6か月程度で有機物は完熟堆肥となる。この二次発酵の期間を短縮するために、完熟した腐植をリサイクルして、有機物を処理する際の母材として用いることが好ましい。これによりミネラル腐植複合体の製造期間を2か月間程度に短縮することもできる。
Next, stirring of the organic matter is stopped, and secondary fermentation / ripening is performed. In this process, organic matter is deposited and fermented in a compost. When the temperature of the organic substance reaches 65 ° C. to 70 ° C., turning over by stirring using a bulldozer, a shovel car or the like is performed.
The organic matter becomes fully matured compost in about 2 to 6 months from the start of secondary fermentation / ripening process. In order to shorten the period of this secondary fermentation, it is preferable to recycle the fully humus and use it as a base material for treating organic matter. Thereby, the manufacturing period of a mineral humus composite can also be shortened to about two months.

以上で、本実施形態で用いるミネラル(鉄)腐植複合体が完成する。このミネラル腐植複合体中のフェリハイドライト量は5ppm以上であることが好ましい。また、このフェリハイドライト腐植複合体のCEC(陽イオン交換容量)は約50(meq)(肥料分析法の酢酸アンモニウム法による測定)であるが、約100meq以上であることがさらに好ましい。
なお、本実施形態では、上記方法により製造されたミネラル腐植複合体を用いるが、これに限定されず、他の方法により製造されたものを用いてもよい。このミネラル腐植複合体による有機廃棄物の分解促進メカニズムについては後に詳述する。
Thus, the mineral (iron) humus complex used in the present embodiment is completed. The amount of ferrihydrite in this mineral humus complex is preferably 5 ppm or more. Further, the CEC (cation exchange capacity) of this ferrihydrite humus complex is about 50 (meq) (measured by the ammonium acetate method of the fertilizer analysis method), more preferably about 100 meq or more.
In addition, in this embodiment, although the mineral humus composite body manufactured by the said method is used, it is not limited to this, You may use what was manufactured by the other method. The mechanism for promoting the decomposition of organic waste by this mineral humus complex will be described in detail later.

(有機廃棄物分解用微生物)
有機廃棄物の分解に用いる微生物は特に制限されないが、増殖速度の速い細菌が有用である。特に有用な細菌は、自然界から採取したもので好気性細菌、通性嫌気性細菌からなる。細菌は容易に採取できる環境下で生育しており、安定供給に支障はない。単一の細菌種であってもよいが、複数の細菌種からなる複合細菌を用いることで、生ゴミの内容に左右されず安定的に高い処理効果を得ることができる。複合細菌の同定試験では、数種の分離菌が観察されるが、好気性菌が優勢支配しており形態は桿菌であることが好ましい。
(Microorganisms for organic waste decomposition)
Microorganisms used for decomposing organic waste are not particularly limited, but bacteria having a high growth rate are useful. Particularly useful bacteria are those collected from nature and consist of aerobic bacteria and facultative anaerobic bacteria. Bacteria grow in an environment where they can be easily collected, and there is no hindrance to stable supply. A single bacterial species may be used, but by using a complex bacterium composed of a plurality of bacterial species, a high treatment effect can be stably obtained regardless of the content of garbage. In the identification test of complex bacteria, several types of isolates are observed, but it is preferable that aerobic bacteria predominate and the form is gonococcus.

本発明の好ましい実施形態では、株式会社リ・クーブから販売されるクーブ菌(商品名)を用いることができる。クーブ菌に含まれる主たる分離菌3種について、生理的性状試験と、PCR法による16SrRNA領域のDNA塩基配列を解析した。その結果、1つの分離菌はパエニバチルス・リゾスファエラと考えられるが、近縁種にはパエニバチルス・シネリス及びパエニバチルス・ファビスポラスが近い。他の分離菌は、バチルス・ノバリスが最も近縁ながら、データベースにない新種の可能性が考えられる。さらに別の分離菌はバチルス・オレロニウスが考えられる。さらに他の分離菌として乳酸桿菌が同定され、これらの複数の細菌からなる複合菌により短時間分解菌が構成されている。クーブ菌の形態としては、複合菌としての総菌数が1×10〜1×10個/gとなるように米糠に分散させた状態で取り扱うことができる。 In a preferred embodiment of the present invention, a Kub fungus (trade name) sold by Re-Cub Co., Ltd. can be used. Physiological properties test and DNA base sequence of 16S rRNA region by PCR method were analyzed for three main isolates contained in Kub bacteria. As a result, one isolated bacterium is considered to be Paenibacillus lysosphaera, but closely related species are Paenibacillus sinelis and Paenibacillus fabisporus. Other isolates may be new species that are closely related to Bacillus Novalis but are not in the database. Yet another isolate may be Bacillus oreronius. Furthermore, lactobacillus has been identified as another isolated bacterium, and a short-time degrading bacterium is constituted by a complex bacterium composed of a plurality of these bacteria. As a form of Kub bacteria, it can be handled in the state disperse | distributed to the rice bran so that the total number of bacteria as a complex microbe may be set to 1 * 10 < 6 > -1 * 10 < 8 > / g.

(微生物資材)
本発明の他の実施形態では、前記ミネラル腐植複合体と、好気性細菌及び/又は通性嫌気性細菌を含む単一又は複合細菌と、を含む有機廃棄物分解用微生物資材が提供される。本実施形態の微生物資材は、前記ミネラル腐植複合体に前記微生物を直接添加して菌床を形成することもできるが、主に保水性や水分の蒸発性改善のため、その他の菌床材を含んでもよい。例えば、木材を細かく破砕、又は細粒化した木質系チップやもみ殻、おがくず、ふすま、活性炭、セラミックビーズ、ポリビニルアルコール、ケイ酸カルシウム、ゼオライト、ビートモス、シリカゲルなどが挙げられる。したがって、本実施形態の微生物資材を構成するミネラル腐植複合体の含有量は、全体の少なくとも50%であり、70%以上が好ましく、80%以上がさらに好ましい。全体のほぼ100%が前記ミネラル腐植複合体であってもよい。微生物資材に含まれる細菌数は、特に制限されないが、通常、微生物資材の全体量に対して、1×10〜1×10個/g程度となるように上記単一又は複合細菌を含有することで処理効率の向上、及び悪臭の低減効果が得られる。
(Microbial materials)
In another embodiment of the present invention, there is provided a microbial material for decomposing organic waste, comprising the mineral humus complex and a single or complex bacterium comprising aerobic bacteria and / or facultative anaerobic bacteria. The microbial material of the present embodiment can also form a fungus bed by directly adding the microorganism to the mineral humus complex, but other fungus bed materials are mainly used for improving water retention and moisture evaporation. May be included. Examples thereof include wood chips, rice husks, sawdust, bran, activated carbon, ceramic beads, polyvinyl alcohol, calcium silicate, zeolite, beet moss, silica gel and the like obtained by finely pulverizing or pulverizing wood. Therefore, the content of the mineral humus complex constituting the microbial material of the present embodiment is at least 50%, preferably 70% or more, and more preferably 80% or more. Nearly 100% of the total may be the mineral humus complex. The number of bacteria contained in the microbial material is not particularly limited, but usually contains the above single or complex bacteria so as to be about 1 × 10 4 to 1 × 10 7 / g with respect to the total amount of the microbial material. By doing so, the improvement of processing efficiency and the reduction effect of malodor can be obtained.

本実施形態における「有機廃棄物」とは、一般家庭からの生ゴミや、レストラン厨房からの食品残滓物の他、食品加工工場からの加工残渣、スーパーマーケットからの食品廃棄物などを含む。   “Organic waste” in the present embodiment includes raw garbage from ordinary households, food residue from restaurant kitchens, processing residue from food processing factories, food waste from supermarkets, and the like.

細菌による有機廃棄物の分解は、例えば、生ゴミの成分であるタンパク質、糖質、脂質等を細菌細胞内に取り込み、これらを代謝することにより生存に必要なエネルギーを獲得することであり、分解により炭酸ガス、水、アンモニアなどを発生し、例えば、蛋白質はアミノ酸に、さらにチッ素分を含む有機物質へと分解される。   Degradation of organic waste by bacteria, for example, is to acquire energy necessary for survival by incorporating proteins, carbohydrates, lipids, etc., which are components of garbage, into bacterial cells and metabolizing them. Generates carbon dioxide, water, ammonia, etc., for example, proteins are decomposed into amino acids and further into organic substances containing nitrogen.

本発明の好ましい実施形態では、有機廃棄物の分解を促進するとは、処理対象となる有機廃棄物の減質量率を向上させることである。ここで、「減質量率」とは、最初に投入した有機廃棄物の質量に対し、所定の時間経過後に分解されて消失した有機廃棄物の質量の割合をいう。例えば、有機廃棄物と微生物資材とを混合し、所定時間経過後の残存廃棄物質量が1/2のときの減質量率は50%であり、1/4が残存した場合の減質量率は75%である。   In a preferred embodiment of the present invention, promoting the decomposition of organic waste means improving the weight loss rate of the organic waste to be treated. Here, the “weight loss ratio” refers to the ratio of the mass of organic waste that has been decomposed and disappeared after a lapse of a predetermined time with respect to the mass of the organic waste initially charged. For example, when organic waste and microbial materials are mixed and the amount of residual waste after a lapse of a predetermined time is 1/2, the weight loss rate is 50%, and the weight loss rate when 1/4 remains is 75%.

さらに好ましい実施形態における微生物資材は、有機廃棄物の分解速度を促進させるものである。有機廃棄物の減質量率は高いほど好ましいが、そのために長時間の分解処理を行うとエネルギーコストや臭気の発生などの問題が起こる。そこで、できるだけ短時間に有機廃棄物を消滅させることが好ましい。例えば、本発明の微生物資材は、当該微生物資材と、ほぼ等容量の有機廃棄物とを混合して12時間分解処理したときの前記有機廃棄物の減質量率が、少なくとも80%であり、より好ましくは85%であり、さらに好ましくは90%である。   In a further preferred embodiment, the microbial material promotes the rate of decomposition of organic waste. The higher the weight loss rate of organic waste, the better. However, long-time decomposition treatment causes problems such as energy costs and generation of odors. Therefore, it is preferable to eliminate the organic waste as quickly as possible. For example, the microbial material of the present invention has a weight loss rate of the organic waste of at least 80% when the microbial material and organic waste of approximately equal volume are mixed and decomposed for 12 hours, Preferably it is 85%, more preferably 90%.

本発明では、前記分解促進剤により、有機廃棄物の分解過程で細菌中の遺伝子と酵素の働きが活性化されると考えられる。その理由は必ずしも明らかではないが、分解促進剤としてのミネラル腐植複合体が、非晶質で表面積が大きく、保水性及び通気性に富むため、有機廃棄物を分解するための微生物の活動環境を最適化するためではないかと推測される。また、硫化水素やメタン、アンモニア、塩素、炭素系のガスの吸着分解にも優れ、脱臭効果も有する。臭気については、ミネラル腐植複合体の作用に加え、好気性条件下において微生物酵素の働きでアンモニアを亜硝酸→硝酸に脱窒するため臭気の発生が抑制される。   In the present invention, it is considered that the functions of genes and enzymes in bacteria are activated by the degradation accelerator in the process of decomposing organic waste. The reason for this is not necessarily clear, but the mineral humus complex as a decomposition accelerator is amorphous, has a large surface area, and is rich in water retention and breathability. Presumably for optimization. It also excels in adsorptive decomposition of hydrogen sulfide, methane, ammonia, chlorine, and carbon-based gases, and has a deodorizing effect. Regarding odor, in addition to the action of the mineral humus complex, generation of odor is suppressed because ammonia is denitrified from nitrous acid to nitric acid by the action of microbial enzymes under aerobic conditions.

(有機廃棄物の分解処理方法)
本発明の有機廃棄物の分解処理方法は、前述した微生物資材を生ゴミと共に撹拌槽内で、十分な酸素が存在する好気的条件下、50℃〜90℃の温度で処理することにより、悪臭の生じることが無く、迅速に生ゴミを分解する。短時間の分解消滅を達成するためには、適度な水分調整システムと、撹拌槽内に死角をつくらない構造であることも重要である。
(Method for decomposing organic waste)
The organic waste decomposition treatment method of the present invention is performed by treating the above-described microbial material with raw garbage in a stirring tank at a temperature of 50 ° C. to 90 ° C. under aerobic conditions in which sufficient oxygen is present. Quickly decomposes garbage without causing bad odor. In order to achieve short-term decomposition and extinction, it is also important to have an appropriate moisture adjustment system and a structure that does not create a blind spot in the stirring tank.

本発明の有機廃棄物の分解処理方法を実践するための生ゴミ処理装置は、生ゴミと前記微生物資材とを収容する生ゴミ撹拌槽を有し、撹拌槽内を好気状態に保つために生ゴミと微生物資材とを攪拌する攪拌手段と、攪拌槽内温度を50℃〜90℃にコントロールする温度管理手段とを備える。攪拌手段としては、攪拌槽自体を回動したり、攪拌槽内に配備された攪拌杆を駆動することにより攪拌するものであれよいが、撹拌槽内に死角をつくらない掻き羽根構造であることが好ましい。攪拌手段の駆動は連続的に行ってもよく、一定時間毎に間欠的に行ってもよく、一定の酸素濃度を下回った際に行ってもよい。   A garbage disposal apparatus for practicing the organic waste decomposition method of the present invention has a garbage agitation tank that accommodates garbage and the microbial material, and keeps the agitation tank in an aerobic state. Stirring means for stirring raw garbage and microbial material, and temperature management means for controlling the temperature in the stirring tank to 50 ° C. to 90 ° C. are provided. The stirring means may be a stirring blade structure that does not create a blind spot in the stirring tank, although it may be agitated by rotating the stirring tank itself or by driving a stirring bowl provided in the stirring tank. Is preferred. The stirring means may be driven continuously, intermittently at regular intervals, or when the oxygen concentration is below a certain level.

生ゴミ処理槽内の温度としては、本発明で使用する細菌が活性を示す温度であればよく、通常50℃〜90℃の範囲、特に50℃〜75℃の範囲が良く、更に55℃〜65℃であれば細菌の活性が高く、ごみの処理効率が高くなり好ましい。50℃未満であると、菌体が十分に活性化しない上、悪臭の原因の一つと考えられている処理槽内の寄生虫や有害微生物を十分に不活性化することができず、衛生面及び悪臭低減効果の点で好ましくない。一方、90℃より高い温度であると焦げ臭が生じる上、細菌の活性も低下し、好ましくない。   The temperature in the garbage treatment tank may be any temperature at which the bacteria used in the present invention are active, and is usually in the range of 50 ° C to 90 ° C, particularly in the range of 50 ° C to 75 ° C, and more preferably from 55 ° C to 55 ° C. If it is 65 degreeC, the activity of bacteria is high and the processing efficiency of refuse becomes high, and it is preferable. When the temperature is lower than 50 ° C, the bacterial cells are not sufficiently activated, and the parasites and harmful microorganisms in the treatment tank, which is considered to be one of the causes of bad odor, cannot be sufficiently inactivated. And it is not preferable in the point of a bad smell reduction effect. On the other hand, when the temperature is higher than 90 ° C., a burning odor is generated and the activity of the bacteria is also lowered, which is not preferable.

攪拌槽内の加温、及び温度調整としては、通常使用されている方法であれば特に限定するものではなく、例えば、攪拌槽内にヒーターユニットが装着されている攪拌装置を使用するなどの方法が挙げられるが、本発明の微生物資材の場合には、分解が進むに従い、細菌の代謝による発熱で、攪拌槽内の温度が60℃以上に上昇する。このため、ヒータの使用はほとんど生ゴミの初期投入時のみとなる。   The heating in the stirring tank and the temperature adjustment are not particularly limited as long as it is a commonly used method. For example, a method of using a stirring device in which a heater unit is mounted in the stirring tank. However, in the case of the microbial material of the present invention, as the decomposition proceeds, the temperature in the stirring tank rises to 60 ° C. or more due to heat generation due to bacterial metabolism. For this reason, the heater is mostly used only at the time of initial charging of garbage.

生ゴミ処理槽内の湿度としては、使用する菌種にあわせて適宜調整、或いは未調整のまま処理をおこなうことができるが、菌体の活性や処理効率の点から80%以下であることが好ましく、特に50%〜60%であることが好ましい。このような湿度の調整方法としては通常用いられている方法であれば特に限定するものではなく、例えば処理槽内に設けた湿度計と連動させて加温装置のON/OFFを切り替える方法や、散水装置を設けるなどの方法が挙げられる。また、処理槽に投与する前に日干し或いは乾燥等の前処理を行い、生ゴミの含水量を低減させた後に投与することもできる。   The humidity in the garbage treatment tank can be adjusted as appropriate or not adjusted according to the type of fungus to be used, but can be 80% or less from the viewpoint of fungal cell activity and treatment efficiency. It is preferably 50% to 60%, in particular. Such a humidity adjustment method is not particularly limited as long as it is a commonly used method, for example, a method of switching ON / OFF of the heating device in conjunction with a hygrometer provided in the treatment tank, A method such as providing a watering device can be mentioned. Moreover, it can also administer after carrying out pretreatment, such as sun drying or drying, before reducing to the treatment tank, and reducing the moisture content of garbage.

本発明で使用する菌株の使用量としては、対象となる生ゴミが十分に処理できる量であれば特に限定されるものではなく、例えば1×10個以上、特に好ましくは、攪拌槽容量に対し1×10個/L以上、好ましくは1×10〜1×1010個/L程度、或いは、1回に投与する生ゴミの量に対し、5×10個/kg以上、特に好ましくは5×10〜5×1010個/kg程度となる量であればよい。 The amount of the strain used in the present invention is not particularly limited as long as the target garbage can be processed sufficiently. For example, 1 × 10 7 or more, and particularly preferably, the stirring tank capacity. 1 × 10 7 pieces / L or more, preferably about 1 × 10 7 to 1 × 10 10 pieces / L, or 5 × 10 7 pieces / kg or more with respect to the amount of garbage to be administered at one time, The amount is preferably about 5 × 10 7 to 5 × 10 10 pieces / kg.

これらの菌株は、数ヶ月または数年に1度など、定期的に新しい種菌を投与して使用することができ、また、処理済の堆肥中には一定量の菌株が生存している為、稼動当初に単回投与するだけで継続して使用することも可能である。   These strains can be used by regularly administering a new inoculum, such as once every several months or years, and because a certain amount of strain is alive in the treated compost, It is possible to continue to use it by only a single administration at the beginning of operation.

本発明の生ゴミ処理装置に用いる攪拌槽としては、通常用いられるものであれば特に限定するものではないが、例えば生ゴミを1日50kg、毎日投与する場合には、攪拌槽の容量として100L以上、好ましくは200〜1500L程度、特に200〜500L程度の容量の攪拌槽を用いることで、撹拌等も好適に行なわれ、処理効率も維持できる。   The stirring tank used in the garbage processing apparatus of the present invention is not particularly limited as long as it is normally used. For example, in the case where 50 kg of garbage is administered daily, the capacity of the stirring tank is 100 L. As described above, by using a stirring tank having a capacity of preferably about 200 to 1500 L, particularly about 200 to 500 L, stirring and the like are suitably performed, and the processing efficiency can be maintained.

[実施例1]ミネラル腐植複合体の製造
本例では、ミネラル液として環境触媒科学株式会社製のアモル21(AMOR21)を用いた。
(1)使用する材料
イ)ミネラル腐植複合体(ヒューミック25):50重量部(1.5m)、
ロ)おがくず(長いもの出荷時のクッション材):25重量部(0.75m)、及び
ハ)規格外品の傷物の野菜や果物(破砕して水分を絞ったもの):25重量部(0.75m
[Example 1] Manufacture of mineral humus complex In this example, Amor 21 (AMOR21) manufactured by Environmental Catalysis Science Co., Ltd. was used as the mineral liquid.
(1) Materials a) mineral humus complexes using (human Yumikku 25): 50 parts by weight (1.5 m 3),
B) Sawdust (cushion material at the time of long shipment): 25 parts by weight (0.75 m 3 ), and c) Non-standard damaged vegetables and fruits (crushed and squeezed water): 25 parts by weight ( 0.75m 3 )

(2)材料の混合方法
回転式の混合機の上部から、ミネラルを滴下する散布装置を付けた混合機に、あらかじめ上記イ)の母材と、ロ)のおがくずを投入して混合した。これを攪拌しながら約30〜40分の間、ミネラル液を散布しつつ、上記ハ)の野菜及び果物の破砕物を投入した。ミネラルが材料とよく混じるようにすべての材料投入後、約10分間混合機を攪拌しながらミネラル散布を行った。用いたミネラル液の総量は約900mlであった。
30〜40分放置した後、混合気の排出口から上記混合物を排出し、ダンプカーにて堆積場まで搬送した。
(2) Material mixing method From the upper part of the rotary mixer, the above-mentioned base material of a) and sawdust from b) were added and mixed in a mixer equipped with a spraying device for dripping minerals. While being stirred, the crushed material of vegetables and fruits in the above (c) was added while spraying the mineral liquid for about 30 to 40 minutes. After all the materials were added so that the minerals were well mixed with the materials, mineral spraying was performed while stirring the mixer for about 10 minutes. The total amount of mineral liquid used was about 900 ml.
After leaving for 30 to 40 minutes, the mixture was discharged from the mixture outlet and conveyed to a deposition site by a dump truck.

(3)堆積場での作業
5日分の混合処理済みの材料を一つの山となるように堆積した。堆積物の発酵により温度上昇が始まり、70℃になった時点で一度切り返しを行った。すると、いったん温度は低下するが、2、3日後にまた70℃以上の高温に上昇したため、その時点で2回目の切り返しを行った。この操作を約2か月間繰り返した。その頃から、枯草菌などの好気性細菌の活動が終了し、堆積物の温度は徐々に低下し、それに代わって乳酸菌などの嫌気性菌の働きが始まる。
その後、切り返しをしないで約2か月間、堆積したまま放置した。この時点で、鉄物質(鉄イオン)が触媒作用により、分解された代謝物の還元反応が進み、有機物の重縮合反応が起こると考えられる。このようにして製造したミネラル腐植複合体は、商品名「ヒューミック25」として、環境触媒科学株式会社から販売されている。
(3) Work in the sedimentation field The material that had been mixed for 5 days was deposited in one mountain. When the temperature started to increase by fermentation of the sediment and reached 70 ° C., turning was performed once. Then, although temperature fell once, since it rose to 70 degreeC or more again after 2 or 3 days, the 2nd turn was performed at that time. This operation was repeated for about 2 months. From that time, the activity of aerobic bacteria such as Bacillus subtilis ends, the temperature of the sediment gradually decreases, and instead the work of anaerobic bacteria such as lactic acid bacteria begins.
After that, it was left as it was for about 2 months without turning over. At this point, it is considered that a reduction reaction of the metabolite decomposed by the iron substance (iron ion) catalyzed and a polycondensation reaction of the organic substance occurs. The mineral humus composite produced in this way is sold by Environmental Catalytic Science Co., Ltd. under the trade name “ Humic 25”.

(4)生成したミネラル腐植複合体(ヒューミック25)の用途及び使用方法
このようにして生成したミネラル腐植複合体の半分は商品(ヒューミック25)として販売する。用途としては、土壌改良剤、例えば、重金属や有害高分子有機物等で汚染された土壌の処理剤として使用されている。残りの半分は、上述した製造方法におけるミネラル腐植複合体材料(母材)として再利用する。
(4) half of the produced mineral humus complex (Hugh Mick 25) application and using this way mineral humus complex which is generated in is sold under the trade (Hugh Mick 25). As an application, it is used as a soil conditioner, for example, a treatment agent for soil contaminated with heavy metals or harmful polymer organic substances. The other half is reused as a mineral humus composite material (base material) in the above-described production method.

完成したミネラル腐植複合体50gをサンプルとして肥料分析法の酢酸アンモニウム法でCEC(陽イオン交換容量)を測定したところ、CECは78(meq)であった。
CECが30(meq)以上のものは、フェリハイドライトを含むことが一般的に知られていることから、本例の製造方法で得られたミネラル腐植複合体にフェリハイドライトが含まれることが実証された。なお、このようにして製造した「ミネラル腐植複合体」は、以下の実施例における「鉄腐植複合体」と同義である。

When 50 g of the completed mineral humus complex was used as a sample and the CEC (cation exchange capacity) was measured by the ammonium acetate method of fertilizer analysis, the CEC was 78 (meq).
Since it is generally known that a CEC of 30 (meq) or more contains ferrihydrite, the mineral humus complex obtained by the production method of this example may contain ferrihydrite. Proven. The “mineral humus composite” produced in this manner is synonymous with the “iron humus composite” in the following Examples.

[実施例2]しいたけ及びしいたけ菌床の分解処理テスト
本実施例では、株式会社リ・クーブで販売するバイオロボ・クーブ50Rを処理機として、しいたけ及びしいたけ菌床を分解処理した。実施例1で調製した鉄腐植複合体に、株式会社リ・クーブで販売するクーブ菌を約3.3×10個/gとなるように調整、混合した初期投入菌床材50kgをあらかじめ処理機に投入した。これに、しいたけ26kg及びしいたけ菌床29kgの総量55kgの廃棄物を投入し、12時間後、及び24時間後に処理機内の残渣の総重量を測定した。また、次に示す計算式に基づいて、廃棄物の残存量及び減質量率を算出した。
[Example 2] Decomposition test of shiitake mushroom and shiitake mushroom beds In this example, the shiitake mushroom and shiitake mushroom beds were decomposed using the Bio-Robo Cove 50R sold by Re-Cube Co., Ltd. as a processing machine. The iron humus composite prepared in Example 1 was previously treated with 50 kg of the initial fungus bed material prepared by adjusting and mixing the Kub bacteria sold at Re-Cub Co., Ltd. to about 3.3 × 10 5 cells / g. I put it in the machine. To this, waste of 26 kg of shiitake and 29 kg of shiitake fungus bed was added in a total amount of 55 kg, and the total weight of the residue in the processing machine was measured after 12 hours and 24 hours. Moreover, the residual amount of waste and the weight loss rate were calculated based on the following calculation formula.

残存量(kg)=残渣総重量−初期投入菌床材の重量 (1)
減質量率(%)=(生ゴミ総投入量−残存量)/生ゴミ総投入量 (2)
Residual amount (kg) = total weight of residue−weight of initial input fungus bed material (1)
Weight loss rate (%) = (Total amount of garbage input-Remaining amount) / Total amount of garbage input (2)

本実施例におけるこれらの値を、残存量A、及び減質量率Aで示す。
なお、比較例として、実施例1で調製した鉄腐植複合体の代わりにおがくずを使用して初期投入菌床材を調整した。この場合の上記式による計算結果を、残存量B及び減質量率Bで表した。その結果を、表1及び図1に示す。
These values in this example are indicated by a residual amount A and a weight loss rate A.
As a comparative example, an initial fungus bed material was prepared using sawdust instead of the iron humus composite prepared in Example 1. The calculation result by the above formula in this case is represented by the residual amount B and the weight loss rate B. The results are shown in Table 1 and FIG.

Figure 0006232545
Figure 0006232545

表1及び図1に示したように、本発明の分解促進剤を用いると、処理時間12時間ですでに90%以上の減質量率を達成し、きわめて短時間でしいたけ及びしいたけ菌床を分解することが分かった。これに対し、本発明の分解促進剤の代わりにおがくずを使用して菌床を調製した比較例では、図1から実施例に比べて初期分解速度が有意に低く、24時間経過後における減質量率でも劣っていることが分かる。   As shown in Table 1 and FIG. 1, when the decomposition accelerator of the present invention is used, a weight loss rate of 90% or more is already achieved in a treatment time of 12 hours, and the shiitake mushroom and shiitake mushroom beds are decomposed in a very short time. I found out that In contrast, in the comparative example in which the fungus bed was prepared using sawdust instead of the degradation accelerator of the present invention, the initial degradation rate was significantly lower than that of the example from FIG. 1, and the weight loss after 24 hours had elapsed. You can see that the rate is also inferior.

[実施例3]食品残渣の分解処理テスト
本実施例では、株式会社リ・クーブで販売するバイオロボ・クーブ50Rを処理機として使用し、約50kgの食品残渣(野菜、果物、魚のあら)を分解処理した。実施例2と同様に、株式会社リ・クーブで販売するクーブ菌を約3.3×10個/g含む鉄腐植複合体からなる初期投入菌床材50kgをあらかじめ処理機に投入した。これに、野菜及び果物29kg及び魚のあら28kgの総量57kgの廃棄物を投入し、12時間後、及び24時間後に処理機内の残渣の総重量を測定した。また、実施例2で用いた計算式(1)及び(2)に基づいて、廃棄物の残存量及び減質量率を算出した。
[Example 3] Decomposition treatment test of food residue In this example, Biorobo Couve 50R sold by Re-Cube Co., Ltd. was used as a processing machine, and about 50 kg of food residue (vegetables, fruits, fish) was decomposed. Processed. In the same manner as in Example 2, 50 kg of an initial input fungal bed material composed of an iron humus complex containing about 3.3 × 10 5 Kub bacteria sold at Re-Cub Co., Ltd. was previously charged into the processing machine. To this, waste of 29 kg of vegetables and fruits and 28 kg of fish was added in a total amount of 57 kg, and the total weight of the residue in the processing machine was measured after 12 hours and 24 hours. Further, based on the calculation formulas (1) and (2) used in Example 2, the remaining amount of waste and the weight loss rate were calculated.

本実施例におけるこれらの値を、残存量A、及び減質量率Aで示す。
なお、比較例として、実施例1で調製した鉄腐植複合体の代わりにおがくずを使用して初期投入菌床材を調整した。この場合の上記式による計算結果を、残存量B及び減質量率Bで表した。その結果を、表2及び図2に示す。
These values in this example are indicated by a residual amount A and a weight loss rate A.
As a comparative example, an initial fungus bed material was prepared using sawdust instead of the iron humus composite prepared in Example 1. The calculation result by the above formula in this case is represented by the residual amount B and the weight loss rate B. The results are shown in Table 2 and FIG.

Figure 0006232545
Figure 0006232545

表2及び図2に示したように、本発明の分解促進剤を用いると、処理時間12時間ですでに93%以上の減質量率を達成し、きわめて短時間で食品残渣を分解することが分かった。これに対し、本発明の分解促進剤の代わりにおがくずを使用して菌床を調製した比較例では、図2から実施例に比べて初期分解速度が有意に低く、24時間経過後における減質量率でも劣っていることが分かる。   As shown in Table 2 and FIG. 2, when the decomposition accelerator of the present invention is used, a weight loss rate of 93% or more is already achieved in a treatment time of 12 hours, and food residues can be decomposed in a very short time. I understood. In contrast, in the comparative example in which the fungus bed was prepared using sawdust instead of the degradation accelerator of the present invention, the initial degradation rate was significantly lower than that of the example from FIG. 2, and the weight loss after 24 hours had elapsed. You can see that the rate is also inferior.

[実施例4]にんにくの分解処理テスト
本実施例では、株式会社リ・クーブで販売するバイオロボ・クーブ15R−P1を処理機として使用し、約15kgのにんにく残渣を3日間毎日投入した。実施例2及び3と同様に、株式会社リ・クーブで販売するクーブ菌を約3.3×10個/g含む鉄腐植複合体からなる初期投入菌床材20kgをあらかじめ処理機に投入した。これに、にんにく残渣を1日目は15.3kg、2日目は15.3kg及び3日目は15kgの総量45.6kgを投入し、4日目に装置を停止させて上記計算式(1)及び(2)に基づいて、廃棄物の残存量及び減質量率を算出した。
[Example 4] Decomposition test of garlic In this example, Biorobo Couve 15R-P1 sold by Re-Cube Co., Ltd. was used as a processing machine, and about 15 kg of garlic residue was added every day for 3 days. In the same manner as in Examples 2 and 3, 20 kg of an initial input fungus bed material composed of an iron humus complex containing about 3.3 × 10 5 pieces / g of Kub bacteria sold at Re-Cub Co., Ltd. was previously charged into the processing machine. . A total amount of 45.6 kg of 15.3 kg on the first day, 15.3 kg on the second day and 15 kg on the third day is added to the garlic residue, and the apparatus is stopped on the fourth day, and the above formula (1 ) And (2), the residual amount of waste and the weight loss rate were calculated.

本実施例におけるこれらの値を、残存量A、及び減質量率Aで示す。
なお、比較例として、実施例1で調製した鉄腐植複合体の代わりにおがくずを使用して初期投入菌床材を調整した。この場合の上記式による計算結果を、残存量B及び減質量率Bで表した。その結果を、表3に示す。
These values in this example are indicated by a residual amount A and a weight loss rate A.
As a comparative example, an initial fungus bed material was prepared using sawdust instead of the iron humus composite prepared in Example 1. The calculation result by the above formula in this case is represented by the residual amount B and the weight loss rate B. The results are shown in Table 3.

Figure 0006232545
表3に示した通り、装置稼動中は良好な分解効果を示し、悪臭も発生しなかった。また、処理より得られた残存物は実施例では2.26kgであり、減質量率も95%と比較例に比べ、10%程度高い効果が得られた。得られた残存物の色は茶褐色であったが、パウダー状で臭いも無く、肥料等に好適に再利用できるものであった。
Figure 0006232545
As shown in Table 3, during the operation of the apparatus, a good decomposition effect was exhibited and no bad odor was generated. In addition, the residue obtained from the treatment was 2.26 kg in the example, and the weight loss rate was 95%, which was about 10% higher than the comparative example. The color of the obtained residue was brown, but it was powdery and had no odor and could be suitably reused as a fertilizer.

Claims (1)

玄武岩質安山岩から抽出されたFe3+を含む複数のミネラルと、有機廃棄物とを混合して、約70℃で2か月間攪拌しながら前記有機廃棄物を分解した後、さらに少なくとも2か月間堆積させたまま放置して土壌微生物の作用により腐植化させた、フェリハイドライトを含むミネラル腐植複合体を製造し、
当該ミネラル腐植複合体を、好気性細菌及び通性嫌気性細菌を含む生ゴミ分解用微生物と共に、分解処理対象である生ゴミに投入し、好気的条件下、50℃〜90℃の温度で攪拌及び混合することを含む生ゴミの分解処理方法。
After mixing organic waste with a plurality of minerals containing Fe 3+ extracted from basaltic andesite and decomposing the organic waste with stirring at about 70 ° C. for 2 months, it is further deposited for at least 2 months To produce a mineral humus complex containing ferrihydrite, which is left to stand and humusified by the action of soil microorganisms ,
The said mineral humus complex is thrown into the garbage which is a decomposition target together with the microorganisms for decomposing garbage including aerobic bacteria and facultative anaerobic bacteria, and the temperature is 50 ° C. to 90 ° C. under aerobic conditions. A method for decomposing garbage including stirring and mixing.
JP2016219368A 2016-11-10 2016-11-10 Organic waste decomposition accelerator and microbial material containing the same Active JP6232545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219368A JP6232545B1 (en) 2016-11-10 2016-11-10 Organic waste decomposition accelerator and microbial material containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219368A JP6232545B1 (en) 2016-11-10 2016-11-10 Organic waste decomposition accelerator and microbial material containing the same

Publications (2)

Publication Number Publication Date
JP6232545B1 true JP6232545B1 (en) 2017-11-22
JP2018075530A JP2018075530A (en) 2018-05-17

Family

ID=60417430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219368A Active JP6232545B1 (en) 2016-11-10 2016-11-10 Organic waste decomposition accelerator and microbial material containing the same

Country Status (1)

Country Link
JP (1) JP6232545B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403223A (en) * 2021-05-28 2021-09-17 福建农林大学 Composite high-temperature microbial inoculum and application thereof in plastic degradation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238887A (en) * 1990-12-28 1992-08-26 Kunio Shinoda Active humus-based agricultural material and its production
JP2504364B2 (en) * 1992-08-07 1996-06-05 忠彦 秋田 Liquid livestock waste treatment method
JPH091116A (en) * 1995-06-22 1997-01-07 Matsushita Electric Ind Co Ltd Packing material for decomposition treatment of garbage
JPH0929217A (en) * 1995-07-24 1997-02-04 Aoki Denki Kogyo Kk Garbage treatment method in food factory, etc.
JP2001087746A (en) * 1999-09-27 2001-04-03 Matsushita Electric Works Ltd Method for treating garbage
WO2002079483A1 (en) * 2001-03-28 2002-10-10 Lion Corporation Process for producing ferryhydrite humus complex and ferryhydrite fumus complex
JP2003136044A (en) * 2001-10-30 2003-05-13 Denso Corp Garbage treatment device
JP2003200137A (en) * 2001-11-05 2003-07-15 Denso Corp Garbage treatment apparatus
JP2003285030A (en) * 2002-03-27 2003-10-07 Shin Meiwa Ind Co Ltd Garbage disposal method, garbage disposal apparatus and garbage disposal apparatus loaded vehicle
JP2005262107A (en) * 2004-03-19 2005-09-29 Internat Center For Environmental Technol Transafer Method for cleaning matter contaminated with organochlorine compound
JP2011140436A (en) * 2011-02-07 2011-07-21 Toyota Motor Corp Basalt fiber material
JP2014117192A (en) * 2012-12-13 2014-06-30 Reqoobu Co Ltd Culture of a combination of bacteria having excellent ability to decompose and erase organic garbage and method for using it
JP2014144440A (en) * 2013-01-30 2014-08-14 Keiichiro Asaoka Treating method of harmful waste, producing method of compost using the treating method and treating system of harmful waste

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238887A (en) * 1990-12-28 1992-08-26 Kunio Shinoda Active humus-based agricultural material and its production
JP2504364B2 (en) * 1992-08-07 1996-06-05 忠彦 秋田 Liquid livestock waste treatment method
JPH091116A (en) * 1995-06-22 1997-01-07 Matsushita Electric Ind Co Ltd Packing material for decomposition treatment of garbage
JPH0929217A (en) * 1995-07-24 1997-02-04 Aoki Denki Kogyo Kk Garbage treatment method in food factory, etc.
JP2001087746A (en) * 1999-09-27 2001-04-03 Matsushita Electric Works Ltd Method for treating garbage
WO2002079483A1 (en) * 2001-03-28 2002-10-10 Lion Corporation Process for producing ferryhydrite humus complex and ferryhydrite fumus complex
JP2003136044A (en) * 2001-10-30 2003-05-13 Denso Corp Garbage treatment device
JP2003200137A (en) * 2001-11-05 2003-07-15 Denso Corp Garbage treatment apparatus
JP2003285030A (en) * 2002-03-27 2003-10-07 Shin Meiwa Ind Co Ltd Garbage disposal method, garbage disposal apparatus and garbage disposal apparatus loaded vehicle
JP2005262107A (en) * 2004-03-19 2005-09-29 Internat Center For Environmental Technol Transafer Method for cleaning matter contaminated with organochlorine compound
JP2011140436A (en) * 2011-02-07 2011-07-21 Toyota Motor Corp Basalt fiber material
JP2014117192A (en) * 2012-12-13 2014-06-30 Reqoobu Co Ltd Culture of a combination of bacteria having excellent ability to decompose and erase organic garbage and method for using it
JP2014144440A (en) * 2013-01-30 2014-08-14 Keiichiro Asaoka Treating method of harmful waste, producing method of compost using the treating method and treating system of harmful waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403223A (en) * 2021-05-28 2021-09-17 福建农林大学 Composite high-temperature microbial inoculum and application thereof in plastic degradation

Also Published As

Publication number Publication date
JP2018075530A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
Waqas et al. Optimization of food waste compost with the use of biochar
Nguyen et al. Evaluate the role of biochar during the organic waste composting process: A critical review
US6793704B2 (en) Weak alkaline organic fertilizer from organic waste including food waste and its manufacturing method
CN102030570B (en) Self-propelled turning device for sludge compost and treatment method
CN103626600B (en) A kind of organic fertilizer produced from sludge generated and preparation method thereof
JP2004248618A (en) Bacterial group symbiotically living with fungus used for treating organic material and its application
KR20130123276A (en) Method for treating wastewater and composting of organic wastes
KR102319965B1 (en) Recycling method of organic waste and eco friendly-high functional Neo Humus Soil produced by the method
CN104672035A (en) Ecological nitrogenous fertilizer and preparation method thereof
CN109851451A (en) A kind of 80 percent sludge of moisture content production organic compound fertilizer and manufacturing method
KR101588817B1 (en) Manufacturing method of organic fertilizers using food industrial wastewater sludge
CN114988965A (en) Sludge and derivative with water content of eighty percent treated at high speed and preparation method thereof
KR100785849B1 (en) Manufacture methods of fertilizer about organic waste in excrements of livestock
CN110540481A (en) Novel method for reducing nitrogen loss in perishable garbage composting process
KR100785735B1 (en) Method of fertilizing food garbage using minenal and blood meal,phyllite,olivine
CN105820976A (en) Sludge compost thermophilic microbial agent and application
CN109694169A (en) Organic sludge and solid waste biological treatment
JP6232545B1 (en) Organic waste decomposition accelerator and microbial material containing the same
KR20130123799A (en) Method for treating organic waste matter
KR101976009B1 (en) Composition for treating solid organic wastes, treatment method of solid organic waste using thereof and compost manufactured by the same
JP7233722B2 (en) Method for producing soil conditioner, method for producing fertilizer, and method for improving soil
KR100727123B1 (en) Method of fertilizing sewage sludge using minenal and blood meal, phyllite,olivine,complex microbial
Noor et al. Recent Trends and Advances in Additive-Mediated Composting Technology for Agricultural Waste Resources: A Comprehensive Review
RU2644013C2 (en) Method for producing environmentally friendly mineral-organic fertilisers with methane fermentation at biogas stations
KR101097854B1 (en) An Organic Fertilizer and Manufacturing Method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6232545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250