JP6231245B1 - 高圧水素の膨張タービン式充填システム - Google Patents

高圧水素の膨張タービン式充填システム Download PDF

Info

Publication number
JP6231245B1
JP6231245B1 JP2017161178A JP2017161178A JP6231245B1 JP 6231245 B1 JP6231245 B1 JP 6231245B1 JP 2017161178 A JP2017161178 A JP 2017161178A JP 2017161178 A JP2017161178 A JP 2017161178A JP 6231245 B1 JP6231245 B1 JP 6231245B1
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
expansion turbine
pressure
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017161178A
Other languages
English (en)
Other versions
JP2018021669A (ja
Inventor
吉田 純
純 吉田
高橋 強
強 高橋
幸博 三牧
幸博 三牧
門出 政則
政則 門出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Mechanics Co Ltd
Original Assignee
Hitachi Plant Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Mechanics Co Ltd filed Critical Hitachi Plant Mechanics Co Ltd
Priority to JP2017161178A priority Critical patent/JP6231245B1/ja
Application granted granted Critical
Publication of JP6231245B1 publication Critical patent/JP6231245B1/ja
Publication of JP2018021669A publication Critical patent/JP2018021669A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、さらに、水素ガス供給ユニットの構成部材に汎用の部材を用いることができる高圧水素の膨張タービン式充填システムを提供すること。【解決手段】高圧に蓄圧された水素ガスをタンク6へ加圧充填する際に、膨張タービン11を用いて水素ガスのエンタルピ降下を行う充填システムにおいて、膨張タービン11の出口に蓄冷器14を設ける。【選択図】図6

Description

本発明は、燃料電池自動車等の水素自動車(以下、単に、「水素自動車」という場合がある。)の燃料となる水素ガスを、水素ガス供給源から水素自動車の燃料タンクに充填するための水素充填設備(以下、「水素ステーション」という場合がある。)の最終充填部におけるプレクーラ機能等の温度降下システム技術に適用される高圧水素の膨張タービン式充填システムに関するものである。
水素自動車の燃料として用いられる水素ガスは、水素ガスを充填する経路に設けられている膨張弁等の部分で高圧から断熱膨張(等エンタルピ膨張)すると、その性状から逆転温度(−58℃)よりも高い領域での膨張になるため、ジュールトムソン効果によって膨張後の温度が上昇するという性質を有している。
したがって、水素ステーションにおいて、水素自動車の燃料となる水素ガスを、水素ガス供給源から水素自動車の燃料タンクに充填する際に、水素ガスを充填する経路に設けられている膨張弁等の部分で水素ガスの温度が上昇する。
この水素ガスの温度の上昇は、水素ガスの膨張比が大きくなるほど顕著になることから、水素ステーションでの水素ガス供給源からの供給ガスの高圧力化、例えば、供給ガスの圧力(供給源のタンク圧)が、45→70MPa(G)、さらには、82MPa(G)と高圧力化するのに伴って、さらに自己温度上昇量が大きくなってくる。
一例として、水素ガスを、供給源のタンク圧である70MPa(G)、30℃から一段で膨張させたときの、各2次圧における自己温度変化の一例を図1に示す。
一方、現状で普及が開始された燃料電池車では、燃料タンクの材質による温度制限と、燃料電池本体セルの運用温度の制限から、水素充填時の最高温度上限は85℃とされている。
そして、上記水素の性質から、何の手段も施さずにそのまま水素ガスを充填すると、水素充填時の温度が、最高温度上限の85℃を越えてしまい、燃料タンクの材質による温度制限や燃料電池本体セルの運用温度の制限、さらには、充填後の冷却に伴う圧力降下等の問題が発生するため、水素ガスを充填する経路に熱交換器等の冷却手段を配置し、この冷却手段で水素ガスを冷却しながら水素自動車に充填する方法が提案され、実用化されている(例えば、特許文献1参照。)。
特開2004−116619号公報
ここで、図2に、現状の一般的な70MPa(G)の水素ステーションの構成図を示す。
この水素ステーションは、水素ガスを受け入れる圧縮機ユニットからなる圧縮機設備1と、圧縮機設備1から送られてきた水素ガスを蓄圧する蓄圧器ユニットからなる水素蓄圧設備2と、水素蓄圧設備2からの水素ガスを水素自動車の燃料タンク6に充填するための経路に設けられた膨張弁3及び水素ガスプレクーラ4と、この水素ガスプレクーラ4を介して水素ガスの冷却を行う水素プレクールシステム5とを備え、さらに、水素プレクールシステム5には、圧縮機、凝縮器、膨張弁、蒸発器、アキュムレータ等からなる冷凍機設備7と、ブラインタンク、1次ブラインポンプ、2次ポンプ等からなるブライン回路8を備えるようにしている。
そして、この水素ステーションは、オンサイト型、オフサイト型の水素ステーションの両者とも、受け入れた水素は圧縮機設備1で中間圧(図例では40MPa(G))や高圧(図例では82MPa(G))まで圧縮され、それぞれの圧力で水素蓄圧設備2の蓄圧ユニット内にて圧縮ガスの形で保持される。
これらの水素ガスを、需要側である車載の燃料タンク6へ充填するには、膨張弁3を介しての膨張により行われるが、その際に水素ガス自身の温度上昇を伴うため、外部設備である水素プレクールシステム5により−40℃まで冷却される。
現状の技術では、この水素プレクールシステム5は、フロン冷媒等の通常の冷凍機設備7と、−40℃近辺で動作するブライン回路8とを組み合わせて構成されているため、構成が複雑であり、また、冷凍機用冷媒圧縮機、1次ブラインポンプ、2次ブラインポンプ等の多くの回転機器も必要になる。
このため、従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムにおいては、以下の課題があった。
1)外部独立した水素プレクールシステムはそれ自体が外部電力で稼働するシステムである。一般的な水素ステーション(300Nm/h)で約40kWとなっており、水素プレクールシステムの運用自体が運転コストを上昇させる。
2)冷凍機の冷媒にフロン(代替えフロン)を使用するため法的な扱いを受け、このプレクーラ設備自体が高圧ガス保安法の冷凍保安則にかかり、設備や運用において制約を受ける。
3)フロンやブラインをステーション内に保有することは、フロンやブラインの外部漏洩に対する環境事故の予防対策が必要になる。
4)水素プレクールシステムが、冷凍回路とブライン回路の2段構成で複雑であることや、冷媒圧縮機やブラインポンプ等の回転機が複数存在するため、多くの保守管理役務が生じる。
5)ブラインを介したシステムのため、運転起動から定常状態になるまで時間を要する。このため、充填作業のかなり前から水素プレクールシステムを事前起動、系内を定常状態にしておく必要がある。
6)水素ステーション自体の設置スペースを小型化する際に、水素プレクールシステムの専有スペースがその制約となる。
7)現状の−40℃という温度では、さらなる水素の急速充填に制限が出てくる。将来において、さらに充填時間を短くするためには、現状の−40℃よりも低い温度に予冷が必要となる可能性もある。
ところで、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点に鑑み、本件出願人は、先に、特願2016−032072において、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にできる、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムを提案した。
この水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムは、水素ガスを膨張減圧する過程で膨張機(膨張タービン)により水素ガスの温度降下を行い、その冷熱エネルギを利用して水素ガスの予冷を行うものであり、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点を解消することができるものであった。
より具体的には、この水素プレクールシステムは、図3に示すように、水素ガス源ライン9を、膨張タービン11の回路に接続し、膨張タービン11にて最終的に水素ガスを膨張させて、エンタルピ降下(温度降下)させた水素ガスを、水素ガス供給ユニット13を介して、水素自動車の燃料タンク6に充填するようにした、高圧水素の膨張タービン式充填システム10として構成されている。
なお、図3に示す例は、膨張タービン11に、タービン11aとコンプレッサ11bとを同軸に配したタービン・コンプレッサを用いたものであるが、膨張タービンのみで構成することもできる。
ここで、図4及び図5に、水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による充填流量及び圧力並びに温度の変化を示す。
ところで、この高圧水素の膨張タービン式充填システム10において、膨張タービン11の出口の温度は、刻々と変化する膨張タービン11の膨張比により決まるため一定ではない。
すなわち、図5の典型的なタービン出口(=充填タンク入口)温度の計算事例に示すように(「Tin[新方式]」は、高圧水素の膨張タービン式充填システム10における膨張タービン11の出口温度(=充填タンク入口温度)の挙動例を示す。)、充填の初期段階においては、膨張タービン11の膨張比が高いために、短時間ではあるものの−70℃近くまで水素ガスの温度が降下する領域が生じる。
このように、水素ガスの温度が−40℃よりも降下する時間帯があるため、水素ガス供給ユニット13の構成部材、例えば、充填ホースのシール材を−70℃対応のものにする必要があり、設備コストの上昇につながるという問題があった(課題8)。
本発明は、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点に鑑み、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、さらに、水素ガス供給ユニットの構成部材に汎用の部材を用いることができる高圧水素の膨張タービン式充填システムを提供することを目的とする。
上記目的を達成するため、本発明の高圧水素の膨張タービン式充填システムは、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムにおいて、前記膨張タービンに、タービン・コンプレッサを用い、該膨張タービンの出口に接続された配管に、耐圧容器の内部に蓄冷体を保持して構成した蓄冷器を設けたことを特徴とする。
この場合において、前記蓄冷体に、リボンたわし状の金属を用いることができる。
本発明の高圧水素の膨張タービン式充填システムによれば、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンにて最終的に水素を膨張させて、エンタルピ降下(温度降下)させた水素ガスを調節タンク側へ充填するようにすることにより、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にできる、例えば、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムを提供することができる。
そして、膨張タービンの出口に蓄冷器を設けることにより、膨張タービンの膨張比が高い充填の初期段階における水素ガスの温度降下の度合いを緩和、平滑化して、水素ガス供給ユニットの構成部材に汎用の部材を用いることを可能にし、設備コストが上昇することを防止することができる。
また、前記膨張タービンに、タービン・コンプレッサを用いること、すなわち、回転軸の一方側に膨張用インペラ、他方側に圧縮用インペラを有するタービン・コンプレッサを用いることにより、膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がなく、さらに、タービン側にて得られた回転エネルギを利用してコンプレッサ側にて水素ガスの圧力を上昇させて、タービン入口へ導かれるようにすることによって、コンプレッサで昇圧された分、タービンの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができる。
水素ガスの膨張弁を用いた膨張(弁膨張)による充填流量及び圧力並びに温度の変化を示すグラフである。 従来の水素プレクールシステムを用いた水素ステーションの説明図である。 新方式の高圧水素の膨張タービン式充填システムの一例を示す説明図である。 水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による充填流量及び圧力の変化を示すグラフである。 水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による温度の変化を示すグラフである。 本発明の高圧水素の膨張タービン式充填システムの一実施例を示す説明図である。 同要部(蓄冷器)の説明図である。 同要部(蓄冷器)の断面図である。 同蓄冷器による充填の初期段階における水素ガスの温度降下の緩和効果を示すグラフである。
以下、本発明の高圧水素の膨張タービン式充填システムの実施の形態を、図面に基づいて説明する。
この高圧水素の膨張タービン式充填システムは、図6に示すように、本発明の高圧水素の膨張タービン式充填システムを、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用したものであって、高圧に蓄圧された水素ガスをタンク6へ加圧充填する際に、膨張タービン11を用いて水素ガスのエンタルピ降下を行う充填システムにおいて、膨張タービン11の出口に蓄冷器14を設けるようにしたものである。
ここで、膨張タービン11は、膨張タービンのみで構成することもできるが、本実施例においては、タービン・コンプレッサ、すなわち、従来、例えば、冷媒の圧縮と膨張を行うために汎用されている回転軸の一方側に膨張用インペラ、他方側に圧縮用インペラを有するタービン・コンプレッサを用いるようにしている。
具体的には、図6に示す、水素ステーションの水素ガスの最終膨張機構のように、この高圧水素の膨張タービン式充填システム10は、水素ガス源ライン9を、膨張タービン11の回路に接続して構成され、膨張タービン11にて最終的に水素ガスを膨張させて、エンタルピ降下(温度降下)させた水素ガスを、水素ガス供給ユニット13を介して、水素自動車の燃料タンク6に充填するようにしている。
ここで、膨張タービン11は、回転軸の一方側に膨張用インペラを有するタービン11aを、他方側に圧縮用インペラを有するコンプレッサ11bを備えるようにし、タービン11a側にて得られた回転エネルギを利用してコンプレッサ11b側にて水素ガスの圧力を上昇させて、タービン11aの入口へ導かれるようにする(水素ガスは、コンプレッサ11bに供給され、その後、タービン11aに供給される。)ことによって、コンプレッサ11bで昇圧された分、タービン11aの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができるものとなる。
また、膨張タービン11のタービン11a側の入口部に冷却器12を設けることができる。
冷却器12の冷熱源12aには、水冷方式のものやチラーユニット方式のものを好適に用いることができる。
また、図示は省略するが、同様の冷却器を、コンプレッサ11b側の入口部に設けることができる。この場合、タービン11a側の入口部に設けた冷却器12は省略することもできる。
これにより、水素ガスの温度降下を補助することができる。
図4及び図5に、水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による充填流量及び圧力並びに温度の変化を示す。
高圧水素の膨張タービン式充填システム10を、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用することによって、水素ガス源ライン9の高圧(82MPa)(元圧)の水素ガスから水素自動車の燃料タンク6に対して、圧力差を利用して膨張タービン11を駆動して、膨張した水素ガスを直接的に充填することができる。
この場合、充填初期においては、元圧と燃料タンク6の内圧の差が大きいことから、タービン11aでの膨張比及びコンプレッサ11bによる膨張比が比較的大きく取れるため、より多くの寒冷を発生することができる。
充填が進むにつれて燃料タンク6の内圧は上昇していき、膨張タービン11による発生寒冷は小さくなっていくが、最終的に85℃以下で充填を終えることができる。
ところで、高圧水素の膨張タービン式充填システム10は、何の対処もしないと、図5に示すように、充填の初期段階においては、膨張タービン11の膨張比が高いために、短時間ではあるものの−70℃近くまで水素ガスの温度が降下する領域が生じる。
そこで、本実施例の高圧水素の膨張タービン式充填システム10においては、膨張タービン11の出口に蓄冷器14を設けるようにしている。
蓄冷器14は、図7に示すように、膨張タービン11の出口に接続された配管に対して接続継手15を介して、着脱可能に組み込むようにする。
この蓄冷器14は、膨張タービン11の膨張比が高い充填の初期段階における水素ガスの温度降下の度合いを緩和、平滑化して、具体的には、−40〜−45℃で動作するようにして、水素ガス供給ユニット13の構成部材、例えば、充填ホースのシール材に、−70℃対応のものではなく、汎用の部材を用いることを可能にするためのもので、特に、低温に対して対応可能な蓄冷器を用いることができる。
ここで、蓄冷器14は、図8に示すように、耐圧容器14aで構成した槽構造をし、外部からの入熱/放熱を抑制するように、耐圧容器14aには断熱構造14bを施こし、内部に蓄冷体14c1〜14c3を保持するようにしている。
蓄冷体14c1〜14c3には、特に限定されるものではないが、図8(a)に示すように、銅、ステンレススチール等のハニカム構造の金属を用いた金属ハニカム式蓄冷体14c1、図8(b)に示すように、銅、ステンレススチール等のリボンたわし状の金属を用いた金属(リボンたわし状)充填式蓄冷体14c2、図8(c)に示すように、イソプロピルアルコールのビーズやジェル(所定の目的温度で固化熱の形で熱を出し入れするビーズやジェルで構成された低温蓄冷体をいう。例えば、「PlusICE」(商品名)(Phase Change Material Products Limited製。)を用いたアルコールビーズ(ジェル)内臓式蓄冷体14c3を好適に用いることができる。
このうち、金属ハニカム式蓄冷体14c1や金属(リボンたわし状)充填式蓄冷体14c2は、金属からなる蓄冷体の空隙部を水素ガスが通過することによって、蓄冷体の熱容量をそのまま蓄冷エネルギの授受に利用する方式であるため、より多くの充填密度と、より多くのガス/金属接触面積を得ることができる。
この金属としては、上記の銅、ステンレススチール等の通常の金属で構成する場合もあるが、水素吸蔵合金を用いることもできる。
水素吸蔵合金を用いた場合には、蓄冷体としての効果に加えて、低温で水素吸蔵、高温で水素放出の特性が加わるため、膨張タービン11の運転の初期においては、温度が低く、かつ、圧力が低いことから水素の放出が行われる。これにより、水素をより効率的に充填することができる。
また、膨張タービン11の運転の終盤においては、温度は比較的高くなり、かつ、圧力が増すため、水素の吸蔵が行われる。これにより、充填完了時の配管内部のガス放出を低減できることになるため、蓄冷効果による温度緩和の実現のみならず、さらに効率的な水素充填を実現できる。
そして、このように、膨張タービン11の出口に蓄冷器14を設けるようにすることによって、図9に示すように、膨張タービン11の膨張比が高い、充填の初期段階において、膨張タービン11の出口で−70℃近くまで温度が降下した水素ガスを、蓄冷器14を通過させることによって、寒冷を吸収し、−40℃前後にして供給するようにする。蓄冷器14に蓄冷された寒冷エネルギは、充填プロセスの後半、すなわち、膨張タービン11の出口の温度が上昇していくにつれて、寒冷を放出し、全体の温度挙動を平滑化することができる。
本発明の高圧水素の膨張タービン式充填システムを、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用することによって、従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの課題を、以下のとおり解決することができる。
課題1)については、膨張タービン自体の稼働には外部電力を必要としないため、従来の水素プレクールシステムの運転コスト(電気代)に対して、ほとんど電力は必要としない。
課題2)については、冷媒が存在しないので、別個には冷凍則にかからないシステムとなる。水素ステーション全体の高圧ガス保安法のなかで対処することができる。
課題3)については、フロン冷媒やブライン自体が存在しないので、環境事故に対するリスクはなくなる。
課題4)については、かなりシンプルなシステム構成となるため、運転コストのみならず保守コストも大幅に低減できる。
課題5)については、膨張タービンの起動と同時に温度降下状態が作れるため、系内の時定数が非常に小さい。事前起動の時間はわずかになる。
課題6)については、膨張タービンのコールドボックスのみでよいので大幅な省スペース化が図れる。従来のものに対して体積比率で10%程度になる。
課題7)については、膨張タービンを複数台組み合わせたり、最適な流量の膨張タービンを用いることにより、容易に設備流量を増加させることができ、大きなプレクール冷却器なしに、大型の燃料電池バスやトラックの充填設備を構成することが可能である。
課題8)については、膨張タービンの出口に蓄冷器を設けることにより、膨張タービンの膨張比が高い充填の初期段階における水素ガスの温度降下の度合いを緩和、平滑化して、水素ガス供給ユニットの構成部材に汎用の部材を用いることを可能にし、設備コストが上昇することを防止することが可能になる。
さらに、膨張タービンにタービン・コンプレッサを用いることにより、膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がなく、さらに、膨張タービン側にて得られた回転エネルギを利用してコンプレッサ側にて水素ガスの圧力を上昇させて、タービン入口へ導かれるようにすることによって、コンプレッサで昇圧された分、タービンの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができる。
以上、本発明の高圧水素の膨張タービン式充填システムについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
本発明の高圧水素の膨張タービン式充填システムは、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、さらに、水素ガス供給ユニットの構成部材に汎用の部材を用いることができるという特性を有していることから、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの用途に好適に用いることができる。
1 圧縮機設備
2 水素蓄圧設備
3 膨張弁
4 水素ガスプレクーラ
5 水素プレクールシステム
6 燃料タンク(タンク)
7 冷凍機設備
8 ブライン回路
9 水素ガス源ライン
10 高圧水素の膨張タービン式充填システム
11 膨張タービン(タービン・コンプレッサ)
11a タービン
11b コンプレッサ
12 冷却器
12a 冷熱源
13 水素ガス供給ユニット
14 蓄冷器
14a 耐圧容器
14b 断熱構造
14c1〜14c3 蓄冷体
15 接続継手

Claims (2)

  1. 高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムにおいて、前記膨張タービンに、タービン・コンプレッサを用い、該膨張タービンの出口に接続された配管に、耐圧容器の内部に蓄冷体を保持して構成した蓄冷器を設けたことを特徴とする高圧水素の膨張タービン式充填システム。
  2. 前記蓄冷体に、リボンたわし状の金属を用いたことを特徴とする請求項1に記載の高圧水素の膨張タービン式充填システム。
JP2017161178A 2017-08-24 2017-08-24 高圧水素の膨張タービン式充填システム Active JP6231245B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161178A JP6231245B1 (ja) 2017-08-24 2017-08-24 高圧水素の膨張タービン式充填システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161178A JP6231245B1 (ja) 2017-08-24 2017-08-24 高圧水素の膨張タービン式充填システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016139250A Division JP6708505B2 (ja) 2016-07-14 2016-07-14 高圧水素の膨張タービン式充填システム

Publications (2)

Publication Number Publication Date
JP6231245B1 true JP6231245B1 (ja) 2017-11-15
JP2018021669A JP2018021669A (ja) 2018-02-08

Family

ID=60321120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161178A Active JP6231245B1 (ja) 2017-08-24 2017-08-24 高圧水素の膨張タービン式充填システム

Country Status (1)

Country Link
JP (1) JP6231245B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009651A (ja) * 2016-07-14 2018-01-18 株式会社日立プラントメカニクス 高圧水素の膨張タービン式充填システム
CN114122458A (zh) * 2021-09-28 2022-03-01 东风汽车集团股份有限公司 氢燃料电池车辆及其供氢系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116619A (ja) * 2002-09-25 2004-04-15 Nippon Sanso Corp 燃料充てん装置および方法
JP2008215505A (ja) * 2007-03-05 2008-09-18 Mitsubishi Heavy Ind Ltd 水素供給ステーション
JP2010032053A (ja) * 2008-07-24 2010-02-12 Linde Ag 圧縮媒体貯留装置及び車両燃料補給方法
WO2011013214A1 (ja) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 ガス充填システム
JP2011174528A (ja) * 2010-02-24 2011-09-08 Iwatani Internatl Corp 水素ガス充填設備での水素ガス充填方法
JP2013015156A (ja) * 2011-06-30 2013-01-24 Kobe Steel Ltd 水素ステーション

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116619A (ja) * 2002-09-25 2004-04-15 Nippon Sanso Corp 燃料充てん装置および方法
JP2008215505A (ja) * 2007-03-05 2008-09-18 Mitsubishi Heavy Ind Ltd 水素供給ステーション
JP2010032053A (ja) * 2008-07-24 2010-02-12 Linde Ag 圧縮媒体貯留装置及び車両燃料補給方法
WO2011013214A1 (ja) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 ガス充填システム
JP2011174528A (ja) * 2010-02-24 2011-09-08 Iwatani Internatl Corp 水素ガス充填設備での水素ガス充填方法
JP2013015156A (ja) * 2011-06-30 2013-01-24 Kobe Steel Ltd 水素ステーション

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009651A (ja) * 2016-07-14 2018-01-18 株式会社日立プラントメカニクス 高圧水素の膨張タービン式充填システム
CN114122458A (zh) * 2021-09-28 2022-03-01 东风汽车集团股份有限公司 氢燃料电池车辆及其供氢系统
CN114122458B (zh) * 2021-09-28 2023-09-19 东风汽车集团股份有限公司 氢燃料电池车辆及其供氢系统

Also Published As

Publication number Publication date
JP2018021669A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2018012320A1 (ja) 高圧水素の膨張タービン式充填システム
US10138810B2 (en) Method and apparatus for power storage
JP4932525B2 (ja) 水素ステーション
WO2017145769A1 (ja) 高圧水素の膨張タービン・コンプレッサ式充填システム及びその制御方法
WO2016152339A1 (ja) 水素プレクールシステム
CN111749743A (zh) 一种灵敏适于调频的压缩空气储能系统
JP6231245B1 (ja) 高圧水素の膨張タービン式充填システム
KR20210126800A (ko) 수소 액화 및 자연기화가스 억제 시스템
JP6525262B2 (ja) 水素プレクールシステム
JP2017150661A (ja) 高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法
CN106089336A (zh) 一种利用循环压缩机提效的深冷液化空气储能系统
CN105937416A (zh) 一种余热溴化锂制冷的深冷液态空气储能系统
CN106150574A (zh) 一种空气级间冷却的深冷液态空气储能系统
WO2020100486A1 (ja) 高圧水素の膨張タービン式充填システム
KR20240019273A (ko) 액화 가스 저장을 위한 증발 관리 시스템 및 방법
JP2017150660A (ja) 高圧水素の膨張タービン・コンプレッサ式充填システム
KR102248672B1 (ko) 고효율 수소 압축 냉각 시스템
RU2062412C1 (ru) Установка снабжения природным газом
CN113266437B (zh) 基于一体式冷箱的液态空气储能装置
CN113417710B (zh) 基于紧凑式冷箱的液态空气储能装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170824

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6231245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250