JP6225829B2 - Water decomposition method and water decomposition apparatus - Google Patents

Water decomposition method and water decomposition apparatus Download PDF

Info

Publication number
JP6225829B2
JP6225829B2 JP2014105061A JP2014105061A JP6225829B2 JP 6225829 B2 JP6225829 B2 JP 6225829B2 JP 2014105061 A JP2014105061 A JP 2014105061A JP 2014105061 A JP2014105061 A JP 2014105061A JP 6225829 B2 JP6225829 B2 JP 6225829B2
Authority
JP
Japan
Prior art keywords
oxygen
hydrogen
scavenger
decomposition
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014105061A
Other languages
Japanese (ja)
Other versions
JP2015218099A (en
Inventor
英人 武田
英人 武田
近藤 和吉
和吉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014105061A priority Critical patent/JP6225829B2/en
Publication of JP2015218099A publication Critical patent/JP2015218099A/en
Application granted granted Critical
Publication of JP6225829B2 publication Critical patent/JP6225829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、水を水素と酸素に分解して水素や酸素を取り出す水の分解方法および水の分解装置に関する。   The present invention relates to a water decomposition method and a water decomposition apparatus for decomposing water into hydrogen and oxygen to extract hydrogen and oxygen.

従来、水を水素と酸素に分解して水素や酸素を取り出す方法についての研究が行われている。この種の方法としては、例えば、特許文献1に記載の水の分解方法が提案されている。この水の分解方法では、水を水素と酸素に分解する分解反応における反応速度を速める触媒(ここでは、アルミン酸イオン)を使用して水を酸素と水素に熱分解する。このような水の分解方法により、低温度(190〜200℃程度)で、尚且つ、ファラディー則から計算される以上の効率で、水素や酸素を取り出す。   Conventionally, research has been conducted on methods for decomposing water into hydrogen and oxygen to extract hydrogen and oxygen. As this type of method, for example, the water decomposition method described in Patent Document 1 has been proposed. In this water decomposition method, water is thermally decomposed into oxygen and hydrogen by using a catalyst (in this case, aluminate ions) that accelerates the reaction rate in the decomposition reaction that decomposes water into hydrogen and oxygen. By such a method of decomposing water, hydrogen and oxygen are extracted at a low temperature (about 190 to 200 ° C.) and more efficiently than calculated from the Faraday law.

特開2005−239488号公報JP 2005-239488 A

水素は活性が非常に強く、他の物質と結合し易い物質であるから、水が分解されて水素と酸素が生成されても、その直後に水素と酸素とが再結合し易い。このため、水を水素と酸素に分解して水素や酸素を取り出す方法においては、この再結合によって水素や酸素の生成効率が低下することが問題となる。しかしながら、特許文献1では、この問題に対する充分な解決手段が開示されていない。   Since hydrogen has a very strong activity and easily binds to other substances, even if water is decomposed to generate hydrogen and oxygen, hydrogen and oxygen are easily recombined immediately after that. For this reason, in the method of taking out hydrogen and oxygen by decomposing water into hydrogen and oxygen, a problem arises in that the recombination reduces the generation efficiency of hydrogen and oxygen. However, Patent Document 1 does not disclose a sufficient solution to this problem.

本発明は上記点に鑑みて、水が分解されて生成された水素と酸素との再結合を抑制することができる水の分解方法および水の分解装置を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a water decomposition method and a water decomposition apparatus that can suppress recombination of hydrogen and oxygen produced by decomposition of water.

上記目的を達成するため、請求項1に記載の発明では、水を水素と酸素に分解する分解反応における反応速度を速める触媒(21)を使用して水を酸素と水素に分解して、酸素を捕捉する機能を有する捕捉剤(23)によって分解により生じた酸素を捕捉しつつ、もしくは、水素を捕捉する機能を有する捕捉剤によって分解により生じた水素を捕捉しつつ、分解により生じた水素および酸素のうち捕捉剤に捕捉されていない方の物質を取り出す第1ステップと、第1ステップの後において、分解により生じた水素および酸素のうち捕捉剤に捕捉された方の物質を取り出す第2ステップと、を有することを特徴とする。具体的には、請求項1に記載の発明では、触媒として、粒子状物質で構成された触媒を使用すると共に、触媒を担持する担体を捕捉剤として使用し、捕捉剤として使用される触媒を担持する担体が、Fe で構成された基部の表面が部分的に還元されてFe とされた構成とされたものとしている。 In order to achieve the above object, in the invention described in claim 1, water is decomposed into oxygen and hydrogen by using a catalyst (21) that accelerates the reaction rate in the decomposition reaction in which water is decomposed into hydrogen and oxygen. while capturing the oxygen generated by the decomposition by the capture agent having the function of capturing (23), or, while capturing the hydrogen produced by the thus decomposed scavenger having the function of capturing the hydrogen, the hydrogen produced by the decomposition And a first step of taking out a substance not trapped by the scavenger out of oxygen and a second step of taking out the substance trapped by the scavenger out of hydrogen and oxygen generated by the decomposition after the first step. And a step. Specifically, in the invention described in claim 1, a catalyst composed of a particulate material is used as a catalyst, a carrier supporting the catalyst is used as a scavenger, and a catalyst used as a scavenger is used. It is assumed that the carrier to be supported has a configuration in which the surface of the base portion made of Fe 2 O 3 is partially reduced to Fe 3 O 4 .

このため、水が分解されて生成された水素と酸素との再結合を抑制しつつ、効率よく水素や酸素を取り出すことができる。   For this reason, hydrogen and oxygen can be taken out efficiently while suppressing recombination of hydrogen and oxygen produced by the decomposition of water.

本発明の第1実施形態における水の分解装置の全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the decomposition device of water in 1st Embodiment of this invention. 図1に示す水の分解装置において、触媒および酸素捕捉剤が担体によって担持された状態を模式的に示す図である。FIG. 2 is a diagram schematically showing a state in which a catalyst and an oxygen scavenger are supported by a carrier in the water decomposition apparatus shown in FIG. 1. 本発明の第1実施形態における水の分解方法のフローを示す図である。It is a figure which shows the flow of the decomposition method of the water in 1st Embodiment of this invention. 本発明の第1実施形態における水の分解方法において、酸素(酸素イオン)が酸素捕捉剤に捕捉される様子を模式的に示す図である。It is a figure which shows typically a mode that oxygen (oxygen ion) is capture | acquired by the oxygen scavenger in the decomposition method of water in 1st Embodiment of this invention. 本発明の第1実施形態における水の分解方法において、酸素(酸素イオン)が酸素捕捉剤から離脱する様子を模式的に示す図である。It is a figure which shows typically a mode that oxygen (oxygen ion) detach | leaves from an oxygen scavenger in the decomposition method of water in 1st Embodiment of this invention.

以下、本発明の実施形態について図1〜図5に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.

(第1実施形態)
本発明の第1実施形態における水の分解装置1および水の分解方法について図1〜図5を参照して説明する。
(First embodiment)
The water decomposing apparatus 1 and the water decomposing method in the first embodiment of the present invention will be described with reference to FIGS.

本実施形態における水の分解装置1は、図1に示すような構成とされている。装置1は、反応容器2と、熱交換器3とを備え、反応容器2の内部において、触媒21、触媒21を担持する担体22、および酸素を捕捉する機能を有する酸素捕捉剤23を備える。また、装置1は、触媒21を挟んで配置された電極(以下、第1電極という)4aおよび電極(以下、第2電極という)4bと、第1、2電極4a、4b同士を繋ぐ配線に接続された電源(以下、第1電源という)4cを有する。また、装置1は、酸素(酸素イオン)を伝導する固体電解質(イオン伝導体)5と、第2電極4bとの間に固体電解質5を挟んで配置された電極(以下、第3電極という)4dと、第2、3電極4b、4c同士を繋ぐ配線に接続された電源(以下、第2電源という)4eを有する。   The water decomposition apparatus 1 in the present embodiment is configured as shown in FIG. The apparatus 1 includes a reaction vessel 2 and a heat exchanger 3, and includes a catalyst 21, a carrier 22 that supports the catalyst 21, and an oxygen scavenger 23 having a function of trapping oxygen inside the reaction vessel 2. In addition, the apparatus 1 has wiring for connecting the electrodes (hereinafter referred to as first electrodes) 4a and the electrodes (hereinafter referred to as second electrodes) 4b, and the first and second electrodes 4a and 4b, with the catalyst 21 interposed therebetween. It has a connected power source (hereinafter referred to as a first power source) 4c. In addition, the device 1 includes an electrode (hereinafter referred to as a third electrode) disposed with a solid electrolyte 5 sandwiched between a solid electrolyte (ion conductor) 5 that conducts oxygen (oxygen ions) and a second electrode 4b. 4d and a power source (hereinafter referred to as a second power source) 4e connected to the wiring connecting the second and third electrodes 4b and 4c.

図1に示すように、反応容器2は、水を反応容器2の内部に導入するための入口2aと、入口2aから導入された水を水素と酸素に分解する場所である分解サイト2bと、水素を外部に導出するための出口2cと、酸素を導出するための出口2dとを有する。なお、以下において、出口2cを第1出口2cといい、出口2dを第2出口2dという。また、分解サイト2bに、触媒21、担体22、および酸素捕捉剤23が備えられている。   As shown in FIG. 1, the reaction vessel 2 includes an inlet 2a for introducing water into the reaction vessel 2, a decomposition site 2b that is a place where water introduced from the inlet 2a is decomposed into hydrogen and oxygen, It has an outlet 2c for deriving hydrogen to the outside and an outlet 2d for deriving oxygen. In the following, the outlet 2c is referred to as a first outlet 2c, and the outlet 2d is referred to as a second outlet 2d. The decomposition site 2b is provided with a catalyst 21, a carrier 22, and an oxygen scavenger 23.

触媒21は、水を水素と酸素に分解する分解反応における反応速度を速める物質であり、例えば、Pt、Pdなどの白金族元素などを主成分とする物質が採用される。ここでは、特に、触媒21として、粒子状物質で構成された触媒を使用している。熱交換器3は、反応容器2の内部に導入された水を水素と酸素に分解するために触媒21を加熱する加熱手段として設けられたものである。本実施形態における水の分解方法では、触媒21および熱交換器3によって水の分解が促進される。   The catalyst 21 is a substance that accelerates the reaction rate in a decomposition reaction for decomposing water into hydrogen and oxygen. For example, a substance whose main component is a platinum group element such as Pt or Pd is adopted. Here, in particular, a catalyst composed of a particulate material is used as the catalyst 21. The heat exchanger 3 is provided as a heating means for heating the catalyst 21 in order to decompose water introduced into the reaction vessel 2 into hydrogen and oxygen. In the water decomposition method in this embodiment, the decomposition of water is promoted by the catalyst 21 and the heat exchanger 3.

図2に示すように、担体22は、触媒21を担持する物質であり、例えば、Feで構成された基部の表面が部分的に還元されてFeとされている構成の物質などの金属酸化物などが採用される。ここでは、担体22を、酸素を捕捉する捕捉剤として機能させるために、担体22として、Feで構成された基部の表面が部分的に還元されてFeとされている構成の物質を採用している。 As shown in FIG. 2, the carrier 22 is a substance that supports the catalyst 21. For example, the support 22 has a structure in which the surface of the base portion made of Fe 2 O 3 is partially reduced to Fe 3 O 4 . Metal oxides such as substances are used. Here, in order for the carrier 22 to function as a scavenger for capturing oxygen, the surface of the base portion made of Fe 2 O 3 is partially reduced to Fe 3 O 4 as the carrier 22. The substance is adopted.

酸素捕捉剤23は、酸素を捕捉する機能を有する物質であり、例えば、Ag、Kなどの酸素を化学的に捕捉する物質や、ゼオライト、CeO−ZrO、ZnO−Biなどの酸素を物理的に捕捉する物質などが採用される。なお、図2に示すように、本実施形態では、酸素捕捉剤23を、担体22によって担持された構成とし、触媒21の粒子間に配置している。 The oxygen scavenger 23 is a substance having a function of scavenging oxygen. For example, a substance that chemically captures oxygen such as Ag and K, zeolite, CeO 2 —ZrO 2 , ZnO—Bi 2 O 3, etc. A substance that physically captures oxygen is employed. As shown in FIG. 2, in the present embodiment, the oxygen scavenger 23 is supported by the carrier 22 and is disposed between the particles of the catalyst 21.

第1電極4a、第2電極4b、および第1電源4cは、触媒21に電場を印加するための電場発生手段(以下、第1電場発生手段という)41として設けられたものである。本実施形態では、第1電場発生手段41によって触媒21に電場を印加することで、水の分解を促進させる。   The first electrode 4 a, the second electrode 4 b, and the first power source 4 c are provided as electric field generating means (hereinafter referred to as first electric field generating means) 41 for applying an electric field to the catalyst 21. In the present embodiment, the first electric field generating means 41 applies an electric field to the catalyst 21 to promote water decomposition.

第2電極4b、第3電極4d、および第2電源4eは、固体電解質5に電場を印加するための電場発生手段(以下、第2電場発生手段という)42として設けられたものである。そして、第2電場発生手段42および固体電解質5は、酸素捕捉剤23に捕捉された酸素を第2出口2dまで伝導させる酸素伝導手段6として機能する。すなわち、本実施形態では、第2電場発生手段42によって固体電解質5に電場を印加することで、酸素捕捉剤23に捕捉された酸素(酸素イオン)を、固体電解質5を介して第2出口2d(第3電極4d側)に伝導させる。   The second electrode 4b, the third electrode 4d, and the second power source 4e are provided as electric field generating means (hereinafter referred to as second electric field generating means) 42 for applying an electric field to the solid electrolyte 5. The second electric field generating means 42 and the solid electrolyte 5 function as oxygen conducting means 6 that conducts oxygen trapped by the oxygen scavenger 23 to the second outlet 2d. That is, in the present embodiment, by applying an electric field to the solid electrolyte 5 by the second electric field generating means 42, oxygen (oxygen ions) trapped in the oxygen scavenger 23 is allowed to flow through the solid electrolyte 5 to the second outlet 2 d. Conduction is performed on the third electrode 4d side.

本実施形態における水の分解装置1は、以上説明したような構成である。次に、本実施形態における水の分解方法について図3〜図5を参照して説明する。   The water decomposing apparatus 1 in the present embodiment is configured as described above. Next, a method for decomposing water in the present embodiment will be described with reference to FIGS.

図3に示すように、第1ステップとして、まず、触媒21を加熱するために、熱交換器3によって反応容器2を加熱(例えば、500℃)する。次に、水を入口2aから反応容器2の内部に導入して分解サイト2bに供給すると共に、第1電場発生手段41によって分解サイト2b(触媒21、担体22、酸素捕捉剤23)に電場を印加することで、触媒21の触媒作用を促進させて、水を水素(水素イオン)と酸素(酸素イオン)に分解する。このとき、図4に示すように、酸素(酸素イオン)は酸素捕捉剤23によって捕捉されるため、水が分解することで生じた酸素が水素と再結合することを抑制しつつ、水素を第1出口2cから導出して取り出すことができる。こうして、第1ステップでは、触媒21を使用して水を酸素と水素に分解して、酸素捕捉剤23によって該分解により生じた酸素を捕捉しつつ、該分解により生じた水素を取り出す。   As shown in FIG. 3, as the first step, first, the reaction vessel 2 is heated (for example, 500 ° C.) by the heat exchanger 3 in order to heat the catalyst 21. Next, water is introduced into the reaction vessel 2 from the inlet 2a and supplied to the decomposition site 2b, and an electric field is applied to the decomposition site 2b (catalyst 21, carrier 22, oxygen scavenger 23) by the first electric field generating means 41. By applying, the catalytic action of the catalyst 21 is promoted, and water is decomposed into hydrogen (hydrogen ions) and oxygen (oxygen ions). At this time, as shown in FIG. 4, oxygen (oxygen ions) is captured by the oxygen scavenger 23, so that the oxygen generated by the decomposition of water is prevented from recombining with hydrogen while the hydrogen is removed. One outlet 2c can be led out and taken out. Thus, in the first step, the catalyst 21 is used to decompose water into oxygen and hydrogen, and the oxygen generated by the decomposition is captured while the oxygen scavenger 23 captures the oxygen generated by the decomposition.

図3に示すように、第1ステップの後の第2ステップとして、まず、分解サイト2bへの水の供給を止めると共に、第1電場発生手段41による分解サイト2bへの電場の印加を止める。次に、第2電場発生手段42によって固体電解質5に電場を印加することで、図5に示すように、酸素捕捉剤23によって捕捉されていた酸素を、酸素捕捉剤23から離脱させて、固体電解質5を介して第3電極4d側に伝導して第2出口2dから導出して取り出す。こうして、第2ステップでは、水の分解により生じた酸素を取り出す。   As shown in FIG. 3, as the second step after the first step, first, the supply of water to the decomposition site 2b is stopped and the application of the electric field to the decomposition site 2b by the first electric field generating means 41 is stopped. Next, by applying an electric field to the solid electrolyte 5 by the second electric field generating means 42, the oxygen trapped by the oxygen scavenger 23 is released from the oxygen scavenger 23 as shown in FIG. Conducted to the third electrode 4d side through the electrolyte 5 and led out from the second outlet 2d and taken out. Thus, in the second step, oxygen generated by the decomposition of water is taken out.

このように、本実施形態における水の分解方法では、酸素を捕捉しつつ水素を取り出す第1ステップと、第1ステップの後に酸素を取り出す第2ステップとを有する。このため、水が分解されて生成された水素と酸素との再結合を抑制しつつ、効率よく水素や酸素を取り出すことができる。また、本実施形態における水の分解方法では、触媒21として粒子状物質で構成された触媒を使用し、触媒21の粒子間に酸素捕捉剤23を配置しているため、特に効率よく、酸素捕捉剤23によって酸素が捕捉され、水素と酸素との再結合が抑制される。また、本実施形態における水の分解方法では、触媒21を担持する担体22を酸素捕捉剤23として使用しているため、特に効率よく、酸素捕捉剤23によって酸素が捕捉され、水素と酸素との再結合が抑制される。また、本実施形態における水の分解方法では、第2ステップにおいて、分解により生じた酸素を固体電解質5によって伝導させることで、酸素捕捉剤23を再度、酸素捕捉可能な状態とすることができ、これにより、水の分解を繰り返し行うことができる。   As described above, the method for decomposing water in the present embodiment includes the first step of extracting hydrogen while capturing oxygen, and the second step of extracting oxygen after the first step. For this reason, hydrogen and oxygen can be taken out efficiently while suppressing recombination of hydrogen and oxygen produced by the decomposition of water. Further, in the water decomposition method in the present embodiment, a catalyst composed of a particulate material is used as the catalyst 21, and the oxygen scavenger 23 is disposed between the particles of the catalyst 21, so that the oxygen scavenging is particularly efficient. Oxygen is captured by the agent 23 and recombination of hydrogen and oxygen is suppressed. Further, in the method for decomposing water in the present embodiment, since the carrier 22 supporting the catalyst 21 is used as the oxygen scavenger 23, oxygen is trapped by the oxygen scavenger 23 particularly efficiently. Recombination is suppressed. Further, in the water decomposition method in the present embodiment, in the second step, oxygen generated by the decomposition is conducted by the solid electrolyte 5 so that the oxygen scavenger 23 can be again in a state where oxygen can be captured, Thereby, decomposition | disassembly of water can be performed repeatedly.

上記で説明したように、本実施形態における水の分解方法では、酸素を捕捉しつつ水素を取り出す第1ステップと、第1ステップの後に酸素を取り出す第2ステップとを有する。すなわち、第1ステップでは、触媒21を使用して水を酸素と水素に分解して、酸素を捕捉する機能を有する酸素捕捉剤23によって該分解により生じた酸素を捕捉しつつ、該分解により生じた水素を取り出す。第1ステップの後の第2ステップにおいて、該分解により生じた酸素を取り出す。   As described above, the method for decomposing water in the present embodiment includes the first step of extracting hydrogen while capturing oxygen, and the second step of extracting oxygen after the first step. That is, in the first step, the catalyst 21 is used to decompose water into oxygen and hydrogen, and the oxygen scavenger 23 having a function of trapping oxygen captures the oxygen generated by the decomposition, and is generated by the decomposition. Remove the hydrogen. In a second step after the first step, oxygen generated by the decomposition is taken out.

このため、水が分解されて生成された水素と酸素との再結合を抑制しつつ、効率よく水素や酸素を取り出すことができる。   For this reason, hydrogen and oxygen can be taken out efficiently while suppressing recombination of hydrogen and oxygen produced by the decomposition of water.

また、本実施形態における水の分解方法では、触媒21として粒子状物質で構成された触媒を使用し、触媒21の粒子間に酸素捕捉剤23を配置している。   Further, in the method for decomposing water in the present embodiment, a catalyst composed of a particulate material is used as the catalyst 21, and the oxygen scavenger 23 is disposed between the particles of the catalyst 21.

このため、特に効率よく、酸素捕捉剤23によって酸素が捕捉され、水素と酸素との再結合が抑制される。   For this reason, oxygen is trapped by the oxygen scavenger 23 particularly efficiently, and recombination of hydrogen and oxygen is suppressed.

また、本実施形態における水の分解方法では、触媒21を担持する担体22を酸素捕捉剤23として使用している。   Further, in the method for decomposing water in the present embodiment, the carrier 22 carrying the catalyst 21 is used as the oxygen scavenger 23.

このため、特に効率よく、酸素捕捉剤23によって酸素が捕捉され、水素と酸素との再結合が抑制される。   For this reason, oxygen is trapped by the oxygen scavenger 23 particularly efficiently, and recombination of hydrogen and oxygen is suppressed.

また、本実施形態における水の分解方法では、第2ステップにおいて、分解により生じた酸素を固体電解質5によって伝導させて取り出す。   In the water decomposition method according to this embodiment, oxygen generated by the decomposition is conducted by the solid electrolyte 5 and extracted in the second step.

このため、酸素捕捉剤23を再度、酸素捕捉可能な状態とすることができ、これにより、水の分解を繰り返し行うことができる。   For this reason, the oxygen scavenger 23 can be brought into a state where oxygen can be captured again, whereby water can be repeatedly decomposed.

(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present invention is not limited to the embodiment described above, and can be appropriately changed within the scope described in the claims.

例えば、第1実施形態では、第1ステップにおいて、酸素を捕捉する機能を有する酸素捕捉剤23によって酸素を捕捉しつつ水素を取り出し、第2ステップにおいて、酸素を取り出していた。しかしながら、第1ステップにおいて、水素を捕捉する機能を有する水素捕捉剤によって水素を捕捉しつつ第1出口2cから酸素を導出して取り出し、第2ステップにおいて、水素を第2出口2dから導出して取り出すようにしてもよい。この場合、水素捕捉剤としては、水素吸蔵合金で構成された捕捉剤などを使用すればよい。また、第1実施形態において酸素伝導手段6によって酸素を第2出口2dまで伝導していたように、水素を第2出口2dまで伝導させる手段である水素伝導手段を設けて、水素捕捉剤に捕捉された水素を第2出口2dまで伝導するようにしてもよい。この場合、水素伝導手段としては、例えば、第1実施形態の酸素伝導手段6において、固体電解質5をプロトン伝導体タイプの固体電解質とした構成を採用することができる。この場合においても、第2電場発生手段42によって固体電解質5に電場を印加することで、水素捕捉剤に捕捉された水素(水素イオン)を、固体電解質5を介して第2出口2d(第3電極4d側)に伝導させることができる。 For example, in the first embodiment, in the first step, hydrogen is taken out while scavenging oxygen with the oxygen scavenger 23 having a function of trapping oxygen, and in the second step, oxygen is taken out. However, in the first step, extraction derives oxygen from the first outlet 2c while capturing Therefore into hydrogen scavenger having the function of capturing the hydrogen, in the second step, the hydrogen is derived from the second outlet 2d You may make it take out. In this case, as a hydrogen scavenger may be used such as scavenger composed of a hydrogen storage alloy. Further, the oxygen by the oxygen conducting means 6 in the first embodiment as has been conducted to the second outlet 2d, provided hydrogen conduction hand stage is a means for conducting the hydrogen to the second outlet 2d, the hydrogen scavenger The trapped hydrogen may be conducted to the second outlet 2d. In this case, as the hydrogen transfer hand stage, for example, in an oxygen conducting means 6 of the first embodiment, the solid electrolyte 5 may be adopted a configuration in which the proton conductor type solid electrolyte. Also in this case, by applying an electric field to the solid electrolyte 5 by the second electric field generating means 42, hydrogen (hydrogen ions) trapped by the hydrogen scavenger is allowed to pass through the second outlet 2 d (third) through the solid electrolyte 5. It can be conducted to the electrode 4d side).

2 反応容器
21 触媒
22 担体
23 酸素捕捉剤
4a 第1電極
4b 第2電極
4c 第1電源
4d 第3電極
4e 第2電源
5 固体電解質
2 reaction vessel 21 catalyst 22 carrier 23 oxygen scavenger 4a first electrode 4b second electrode 4c first power source 4d third electrode 4e second power source 5 solid electrolyte

Claims (11)

水を水素と酸素に分解する分解反応における反応速度を速める触媒(21)を使用して水を酸素と水素に分解して、酸素を捕捉する機能を有する捕捉剤(23)によって前記分解により生じた酸素を捕捉しつつ、もしくは、水素を捕捉する機能を有する捕捉剤によって前記分解により生じた水素を捕捉しつつ、前記分解により生じた水素および酸素のうち前記捕捉剤に捕捉されていない方を取り出す第1ステップと、
前記第1ステップの後において、前記分解により生じた水素および酸素のうち前記捕捉剤に捕捉された方を取り出す第2ステップと、を有し、
前記触媒として、粒子状物質で構成された触媒を使用すると共に、
前記触媒を担持する担体を前記捕捉剤として使用し、
前記捕捉剤として使用される前記触媒を担持する担体が、Fe で構成された基部の表面が部分的に還元されてFe とされた構成とされていることを特徴とする水の分解方法。
Using a catalyst (21) that accelerates the reaction rate in the decomposition reaction of decomposing water into hydrogen and oxygen, the water is decomposed into oxygen and hydrogen, and is generated by the decomposition by the scavenger (23) having a function of capturing oxygen. while capturing the oxygen, or, while capturing the hydrogen generated by Thus the decomposed scavenger having the function of capturing the hydrogen, which is not trapped in the scavenger out of the resulting hydrogen and oxygen by the decomposition A first step of taking out
In after the first step, have a, a second step of retrieving a person trapped in the scavenger of the hydrogen and oxygen produced by said decomposition,
As the catalyst, a catalyst composed of a particulate material is used,
Using the carrier carrying the catalyst as the scavenger,
Carrier supporting the catalyst used as the scavenger, characterized in that the surface of the base made of a Fe 2 O 3 is a partially reduced is a Fe 3 O 4 structure Water decomposition method.
前記触媒として、粒子状物質で構成された触媒を使用して、
前記触媒の粒子間に前記捕捉剤を配置することを特徴とする請求項1に記載の水の分解方法。
As the catalyst, using a catalyst composed of particulate matter,
The method for decomposing water according to claim 1, wherein the scavenger is arranged between particles of the catalyst.
前記第2ステップにおいて、前記分解により生じた水素および酸素のうち前記捕捉剤に捕捉された方を、電場を印加された固体電解質(5)によって伝導させて取り出すことを特徴とする請求項1または2に記載の水の分解方法。 In the second step, a person trapped in the scavenger out of the resulting hydrogen and oxygen by the decomposition claim 1, characterized in that taken by conducting the solid electrolyte is applied an electric field (5) or 3. The method for decomposing water according to 2 . 前記第1ステップにおいて、酸素を捕捉する機能を有する前記捕捉剤によって前記分解により生じた酸素を捕捉しつつ、前記分解により生じた水素を取り出し、
前記第2ステップにおいて、前記分解により生じた酸素を取り出すことを特徴とする請求項1ないしのいずれか1つに記載の水の分解方法。
In the first step, the hydrogen generated by the decomposition is taken out while the oxygen generated by the decomposition is captured by the scavenger having a function of capturing oxygen,
The method for decomposing water according to any one of claims 1 to 3 , wherein in the second step, oxygen generated by the decomposition is taken out.
前記捕捉剤として、Ag、Kを主成分とする捕捉剤を使用することを特徴とする請求項に記載の水の分解方法。 The method for decomposing water according to claim 4 , wherein a scavenger mainly composed of Ag and K is used as the scavenger. 前記捕捉剤として、ゼオライト、CeO−ZrO、ZnO−Biで構成とされた捕捉剤を使用することを特徴とする請求項に記載の水の分解方法。 Examples scavenger, zeolite, CeO 2 -ZrO 2, the method for decomposing water according to claim 4, characterized by using a ZnO-Bi 2 O 3 in the configuration and has been scavenger. 前記第1ステップにおいて、水素を捕捉する機能を有する前記捕捉剤によって前記分解により生じた水素を捕捉しつつ、前記分解により生じた酸素を取り出し、
前記第2ステップにおいて、前記分解により生じた水素を取り出すことを特徴とする請求項1ないしのいずれか1つに記載の水の分解方法。
In the first step, while capturing the hydrogen generated by the decomposition by the scavenger having a function of capturing hydrogen, take out the oxygen generated by the decomposition,
The method for decomposing water according to any one of claims 1 to 3 , wherein in the second step, hydrogen generated by the decomposition is taken out.
前記捕捉剤として、水素吸蔵合金で構成された捕捉剤を使用することを特徴とする請求項に記載の水の分解方法。 8. The method for decomposing water according to claim 7 , wherein a scavenger composed of a hydrogen storage alloy is used as the scavenger. 前記触媒として、白金族元素を主成分とする触媒を使用することを特徴とする請求項1ないしのいずれか1つに記載の水の分解方法。 The method for decomposing water according to any one of claims 1 to 8 , wherein a catalyst containing a platinum group element as a main component is used as the catalyst. 水を内部に導入するための入口(2a)と、水を水素と酸素に分解する分解反応における反応速度を速める触媒(21)、および、酸素を捕捉する機能を有する捕捉剤(23)が備えられ、前記入口から導入された水を水素と酸素に分解する場所である分解サイト(2b)と、前記分解サイトで水が分解されたことで生じた水素および酸素のうち前記捕捉剤に捕捉されていない水素を外部に導出するための第1出口(2c)と、前記分解サイトで水が分解されたことで生じた水素および酸素のうち前記捕捉剤に捕捉された酸素を導出するための第2出口(2d)と、を有する反応容器(2)と、
前記反応容器の内部に導入された水を水素と酸素に分解するために前記触媒を加熱する加熱手段(3)と、
前記触媒に電場を印加するための第1電場発生手段(41)と、
前記分解サイトで水が分解されたことで生じた水素および酸素のうち前記捕捉剤に捕捉された酸素を前記第2出口まで伝導させる伝導手段(6)と、を備えることを特徴とする水の分解装置。
Water and an inlet for introducing inside (2a), a catalyst to accelerate the reaction rate in water decompose decomposition reaction into hydrogen and oxygen (21), and the capture agent having a function to capture oxygen (2 3) A decomposition site (2b) which is a place where water introduced from the inlet is decomposed into hydrogen and oxygen, and the scavenger among hydrogen and oxygen generated by the decomposition of water at the decomposition site a first outlet for deriving hydrogen is not trapped on the outside (2c), the degradation site to derive the captured oxygen to the scavenger out of the resulting hydrogen and oxygen by water was degraded in A reaction vessel (2) having a second outlet (2d) of
Heating means (3) for heating the catalyst in order to decompose water introduced into the reaction vessel into hydrogen and oxygen;
First electric field generating means (41) for applying an electric field to the catalyst;
And a conducting means ( 6) for conducting oxygen trapped by the scavenger out of hydrogen and oxygen generated by the decomposition of water at the cracking site to the second outlet. Disassembly equipment.
前記伝導手段が、前記分解サイトで水が分解されたことで生じた水素および酸素のうち前記捕捉剤に捕捉された酸素を伝導する固体電解質(5)と、前記固体電解質に電場を印加するための第2電場発生手段(42)と、で構成されていることを特徴とする請求項10に記載の水の分解装置。 For the purpose of applying an electric field to the solid electrolyte and the solid electrolyte (5) that conducts oxygen trapped by the scavenger among hydrogen and oxygen generated by the decomposition of water at the decomposition site; The water decomposing apparatus according to claim 10 , comprising: a second electric field generating means (42).
JP2014105061A 2014-05-21 2014-05-21 Water decomposition method and water decomposition apparatus Expired - Fee Related JP6225829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105061A JP6225829B2 (en) 2014-05-21 2014-05-21 Water decomposition method and water decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105061A JP6225829B2 (en) 2014-05-21 2014-05-21 Water decomposition method and water decomposition apparatus

Publications (2)

Publication Number Publication Date
JP2015218099A JP2015218099A (en) 2015-12-07
JP6225829B2 true JP6225829B2 (en) 2017-11-08

Family

ID=54777792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105061A Expired - Fee Related JP6225829B2 (en) 2014-05-21 2014-05-21 Water decomposition method and water decomposition apparatus

Country Status (1)

Country Link
JP (1) JP6225829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339515A (en) * 2018-03-22 2018-07-31 上海应用技术大学 A kind of preparation method convenient for recovery processing waste water from dyestuff material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295805A (en) * 2018-04-20 2018-07-20 福州大学 Active metal composite oxide load micro-nano adsorbent of modified by silver iron-series metal oxide arsenic removal and preparation method thereof
JP7187848B2 (en) * 2018-07-09 2022-12-13 株式会社デンソー fuel reformer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342738A (en) * 1981-08-21 1982-08-03 Burgund Paul W Hydrogen generation as fuel by use of solar ultraviolet light process
JP3939389B2 (en) * 1997-01-28 2007-07-04 株式会社イオン中央研究所 Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
US6432170B1 (en) * 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite
JP2005097036A (en) * 2003-09-25 2005-04-14 Kawazoe Frontier Technology Kk Multi-component glass material for hydrogen treatment and hydrogen treated composite
DE102005040255A1 (en) * 2005-08-24 2007-03-22 Martin Prof. Dr. Demuth Photo and thermo chemical preparation of hydrogen and/or oxygen, useful e.g. for the production/supply of energy to energy supplying/dependent systems, comprises contacting water with silicide or its components
JP2009263165A (en) * 2008-04-25 2009-11-12 Tokyo Institute Of Technology Reactive ceramic and method for producing the same, and hydrogen production method and hydrogen production apparatus
US8815209B2 (en) * 2009-09-03 2014-08-26 Stellar Generation, Llc Generating hydrogen fuel
KR101323490B1 (en) * 2011-08-23 2013-10-31 (주)엘지하우시스 Vacuum insulation panel with moisture-gas adsorbing getter material and manufacturing method thereof
JP5817782B2 (en) * 2012-06-13 2015-11-18 株式会社豊田中央研究所 Hydrogen production catalyst, hydrogen production method and hydrogen production apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339515A (en) * 2018-03-22 2018-07-31 上海应用技术大学 A kind of preparation method convenient for recovery processing waste water from dyestuff material

Also Published As

Publication number Publication date
JP2015218099A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6225829B2 (en) Water decomposition method and water decomposition apparatus
Liu et al. Air‐assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction
RU2014115705A (en) DEVICE AND METHOD FOR PROCESSING GAS USING A NON-THERMAL PLASMA AND A CATALYTIC MEDIA
JP2016219395A (en) Method and apparatus for recovering performance of fuel cell stack
AR038135A1 (en) CATALYST REGENERATION
JP2015015430A5 (en)
JP2015101791A (en) Hydrogen preparation method and apparatus
JP5540337B2 (en) Exhaust gas treatment method and treatment apparatus
WO2013006029A1 (en) Method and apparatus for energy harvesting in a closed environment
JP5173080B2 (en) How to reduce carbon dioxide
JP4955589B2 (en) Removal system of volatile organic compounds by low temperature plasma and oil
KR20200039820A (en) Method for transmuting element such as calcium, copper, magnesium or cesium into more useful element, and method for detoxifying radioactive substance applying element transmutation technique
JP2005082835A (en) Electrode plate for electrolysis, electrolysis device, electrode plate unit and method for electrolyzing hydride-containing compound
JP5869668B2 (en) Removal of surfactant from palladium nanoparticles
JPH0564724A (en) Method and apparatus for treating exhaust gas using solid electrolyte
JP2010194503A (en) Apparatus for treating exhaust gas by electron beam irradiation
JP2004058029A (en) Energy saving electrochemical reaction system and activation method therefor
JP2014046250A (en) Method and apparatus for removing hydrogen odorant, operation method of fuel cell and fuel cell system
TWI585241B (en) Apparatus for graphene formation
JP2019155242A (en) Removal system of methane in gas to be treated and removal method of methane in gas to be treated
TWI678334B (en) Recovery device and method for recovering valuable metals from activated carbon
WO2021234908A1 (en) Vapor-phase reduction device for carbon dioxide and method for producing porous electrode-supported electrolyte membrane
Wei et al. DFT Study of H_2 Dissociation on Mo_xS_y Clusters
JP2005161181A (en) Gas decomposition treatment system
JP2009059597A (en) Recovery method of catalyst noble metal for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R151 Written notification of patent or utility model registration

Ref document number: 6225829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees