JP6225663B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP6225663B2
JP6225663B2 JP2013240598A JP2013240598A JP6225663B2 JP 6225663 B2 JP6225663 B2 JP 6225663B2 JP 2013240598 A JP2013240598 A JP 2013240598A JP 2013240598 A JP2013240598 A JP 2013240598A JP 6225663 B2 JP6225663 B2 JP 6225663B2
Authority
JP
Japan
Prior art keywords
light
fluorescent member
light source
layer
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013240598A
Other languages
Japanese (ja)
Other versions
JP2015103539A (en
Inventor
園部 真也
真也 園部
利章 山下
利章 山下
嘉典 村▲崎▼
嘉典 村▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2013240598A priority Critical patent/JP6225663B2/en
Publication of JP2015103539A publication Critical patent/JP2015103539A/en
Application granted granted Critical
Publication of JP6225663B2 publication Critical patent/JP6225663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Description

本発明は、光源装置に関するものである。   The present invention relates to a light source device.

青色波長域の光を放出する半導体レーザ素子と、緑色波長域から赤色波長域の光を放出する蛍光体と、を用いた照明装置が提案されている(特許文献1)。特許文献1には、蛍光体上に上面に凹凸を設けた光混合層を設けることにより、半導体レーザ光と蛍光がどの方位でも均一に混色され、照明光の均一性が向上する旨が記載されている。   An illuminating device using a semiconductor laser element that emits light in a blue wavelength region and a phosphor that emits light in a red wavelength region from a green wavelength region has been proposed (Patent Document 1). Patent Document 1 describes that by providing a light mixing layer having an uneven surface on the phosphor, semiconductor laser light and fluorescence are uniformly mixed in any orientation, and the uniformity of illumination light is improved. ing.

特開2012−540584号公報JP 2012-54058 A

しかしながら、特許文献1のように構成したとしても、レーザ光を十分に含む所望の色調の混色光を得ることは困難であり、さらなる改善の余地がある。   However, even if it is configured as in Patent Document 1, it is difficult to obtain mixed color light having a desired color tone sufficiently including laser light, and there is room for further improvement.

そこで、本発明は、上記課題を解決するためになされたものであり、所望の色調の混色光が得られる光源装置を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light source device that can obtain mixed color light having a desired color tone.

一態様に係る光源装置は、第1光を発する光源と、第1光を励起光として第2光を発する蛍光部材と、を備える。蛍光部材の一主面に第1光が照射され、蛍光部材の一主面から第1光及び第2光の混色光が放出される。そして、蛍光部材の一主面には、蛍光部材より屈折率が高い透光層が設けられており、蛍光部材と透光層との界面が粗面となっている。   A light source device according to an aspect includes a light source that emits first light and a fluorescent member that emits second light using the first light as excitation light. The first light is irradiated on one main surface of the fluorescent member, and the mixed light of the first light and the second light is emitted from the one main surface of the fluorescent member. A light transmitting layer having a refractive index higher than that of the fluorescent member is provided on one main surface of the fluorescent member, and the interface between the fluorescent member and the light transmitting layer is rough.

一態様に係る光源装置は、第1光を発する光源と、第1光を励起光として第2光を発する蛍光部材と、を備える。蛍光部材の一主面に第1光が照射され蛍光部材の一主面から第1光及び第2光の混色光が放出される。そして、蛍光部材の一主面には、前記蛍光部材の側から順に、第1透光層と、第1透光層より屈折率が高い第2透光層と、が設けられており、第1透光層と第2透光層との界面が凹凸である。   A light source device according to an aspect includes a light source that emits first light and a fluorescent member that emits second light using the first light as excitation light. The first light is irradiated on one main surface of the fluorescent member, and the mixed light of the first light and the second light is emitted from the one main surface of the fluorescent member. In addition, a first light-transmitting layer and a second light-transmitting layer having a refractive index higher than that of the first light-transmitting layer are provided on one main surface of the fluorescent member in order from the fluorescent member side. The interface between the first translucent layer and the second translucent layer is uneven.

本発明によれば、所望の色調の混色光を得ることが可能な光源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light source device which can obtain mixed color light of a desired color tone can be provided.

第1実施形態に係る光源装置の概略構成を示す一断面図である。1 is a cross-sectional view illustrating a schematic configuration of a light source device according to a first embodiment. 図1に示す光源装置における蛍光部材と透光層との界面を拡大した図である。It is the figure which expanded the interface of the fluorescent member and translucent layer in the light source device shown in FIG. 第2実施形態に係る光源装置の概略構成を示す一断面図である。It is a sectional view showing a schematic structure of a light source device according to a second embodiment. 第2実施形態に係る光源装置の概略構成の変形例を示す一断面図である。It is a sectional view showing a modification of a schematic structure of a light source device according to a second embodiment. 第2実施形態に係る光源装置の概略構成の変形例を示す一断面図である。It is a sectional view showing a modification of a schematic structure of a light source device according to a second embodiment. 実施例1、2及び比較例1、2で観測された光の色調を示す色度図であるIt is a chromaticity diagram showing the color tone of light observed in Examples 1 and 2 and Comparative Examples 1 and 2.

以下、図面を参照しながら、本実施形態に係る発光素子について説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための例示であって、本発明を以下に限定するものではない。また、各図面が示す部材の位置や大きさ等は、説明を明確にするため誇張していることがある。同一の名称、符号については、原則として同一もしくは同質の部材を示しており、重複した説明は省略する。
[第1実施形態]
Hereinafter, the light emitting device according to the present embodiment will be described with reference to the drawings. However, the form shown below is the illustration for materializing the technical idea of this invention, Comprising: This invention is not limited to the following. In addition, the positions, sizes, and the like of members shown in each drawing may be exaggerated for clarity of explanation. About the same name and code | symbol, the same or the same member is shown in principle, and the duplicate description is abbreviate | omitted.
[First Embodiment]

第1実施形態に係る光源装置100について、図1〜図2を参考にして説明する。図1は、光源装置100の一断面図である。図2は、図1に示す光源装置100における蛍光部材20と透光層30との界面を拡大した図であり、入射した第1光の進路を模式的に表した図である。   The light source device 100 according to the first embodiment will be described with reference to FIGS. FIG. 1 is a cross-sectional view of the light source device 100. FIG. 2 is an enlarged view of the interface between the fluorescent member 20 and the translucent layer 30 in the light source device 100 shown in FIG. 1, and schematically shows the path of the incident first light.

図1に示すように、光源装置100は、第1光を発する光源10と、第1光を励起光として第2光を発する蛍光部材20と、を備える。ここで、第1光(図1に示す「A」)は蛍光部材20の一主面に照射され、第1光及び第2光の混色光(図1に示す「B」)が蛍光部材20の一主面側から取り出される。そして、蛍光部材20の一主面には、蛍光部材20より屈折率が高い透光層30が設けられており、蛍光部材20と透光層30との界面は粗面となっている。   As shown in FIG. 1, the light source device 100 includes a light source 10 that emits first light, and a fluorescent member 20 that emits second light using the first light as excitation light. Here, the first light (“A” shown in FIG. 1) is applied to one main surface of the fluorescent member 20, and the mixed light of the first light and the second light (“B” shown in FIG. 1) is fluorescent member 20. It is taken out from one main surface side. A light transmitting layer 30 having a refractive index higher than that of the fluorescent member 20 is provided on one main surface of the fluorescent member 20, and the interface between the fluorescent member 20 and the light transmitting layer 30 is a rough surface.

これにより、色むらが少なく、且つ、第1光の割合が十分に大きい所望の色調の混色光を得ることができる。以下、この点ついて説明する。   Accordingly, it is possible to obtain mixed color light having a desired color tone with little color unevenness and a sufficiently high ratio of the first light. This point will be described below.

一般的に、第1光が照射される側と第1光及び第2光を含む混色光が取り出される側が同じとなるように構成された光源装置では、第1光が蛍光部材の内部を往復する(つまり、第1光が蛍光体部材の内部を通る経路が長くなる)ので、最終的に得られる混色光は第2光が支配的になりやすい。その結果、蛍光部材の一主面側にて混色光を観測すると、全体的には第2光が第1光より多くなり、第2光の色味が強い光となりやすい。   Generally, in a light source device configured such that the side irradiated with the first light and the side from which the mixed color light including the first light and the second light is extracted are the same, the first light reciprocates inside the fluorescent member. (In other words, the path through which the first light passes through the inside of the phosphor member becomes long), so the second light tends to be dominant in the finally obtained mixed color light. As a result, when the mixed color light is observed on the one main surface side of the fluorescent member, the second light is more than the first light as a whole, and the light of the second light tends to be strong.

これに対して、本実施形態では、図1及び図2に示すように、蛍光部材20の一主面となる第1主面21に蛍光部材(蛍光部材20が2種類以上の材料で構成される場合は、その中で屈折率が最も大きい材料)よりも屈折率の高い透光層30を設け、さらに、両者の界面を粗面としている。これにより、相対的に屈折率の高い領域(透光層30)と相対的に屈折率の低い領域(蛍光部材20)との界面において、透光膜30から蛍光部材20へ入射する第1光の一部を全反射させることができるので、第1光の色成分が十分に大きい所望の色調の混色光を得ることができる。また、蛍光部材20と透光層30との界面が粗面であることにより、第1光が全反射する方向を分散させることができるので、第1光の分布ムラも低減することができる。   In contrast, in the present embodiment, as shown in FIGS. 1 and 2, a fluorescent member (the fluorescent member 20 is made of two or more types of materials) on the first main surface 21 that is one main surface of the fluorescent member 20. In this case, a light-transmitting layer 30 having a refractive index higher than that of the material having the highest refractive index is provided, and the interface between the two is a rough surface. Accordingly, the first light incident on the fluorescent member 20 from the transparent film 30 at the interface between the relatively high refractive index region (the transparent layer 30) and the relatively low refractive index region (the fluorescent member 20). Therefore, it is possible to obtain mixed color light having a desired color tone with a sufficiently large color component of the first light. In addition, since the interface between the fluorescent member 20 and the translucent layer 30 is a rough surface, the direction in which the first light is totally reflected can be dispersed, so that uneven distribution of the first light can also be reduced.

以下、光源装置100を構成する主な部材について説明する。   Hereinafter, main members constituting the light source device 100 will be described.

(光源10)
光源10は、第1光を放出する。第1光は、蛍光部材20を励起させるためのものであるとともに、混色光の一部を構成するものである。第1光としては、例えば、ピーク波長が420〜480nmの範囲に存在する青色光とすることができる。
(Light source 10)
The light source 10 emits first light. The first light is for exciting the fluorescent member 20 and constitutes a part of the mixed color light. As 1st light, it can be set as the blue light which exists in the range whose peak wavelength is 420-480 nm, for example.

光源10として、例えば、LD(レーザダイオード)やLED(発光ダイオード)を用いることができる。特に、光源10としてLDを用いることにより、第1光を光の指向性が強いレーザ光とするできるため、蛍光部材20を小型にすることができ、ひいては光源装置全体としても小型化が可能となる。したがって、光源10としてはLDが好ましい。   As the light source 10, for example, an LD (laser diode) or an LED (light emitting diode) can be used. In particular, by using an LD as the light source 10, the first light can be made into a laser beam having a strong directivity of light, so that the fluorescent member 20 can be reduced in size, and as a result, the entire light source device can be reduced in size. Become. Therefore, the light source 10 is preferably an LD.

光源10から放出された第1光は大気中から透光層30、蛍光部材20の順に進行する。より詳細には、第1光のうち、一部は透光層30と蛍光部材20との界面において反射されるが、他の一部は蛍光部材20に取り込まれることになる。そして、蛍光部材20に取り込まれた第1光は、一部が蛍光部材20を励起して第2光となり、他の一部は第1光としてそのまま外部に取り出されることになる。   The first light emitted from the light source 10 travels in the order of the light transmitting layer 30 and the fluorescent member 20 from the atmosphere. More specifically, a part of the first light is reflected at the interface between the light transmitting layer 30 and the fluorescent member 20, but the other part is taken into the fluorescent member 20. A part of the first light taken into the fluorescent member 20 excites the fluorescent member 20 to become the second light, and the other part is taken out as it is as the first light.

本実施形態では、図1に示すように、光源10を蛍光部材20の第1主面21側に配置して、光源10からの第1光を直接(一直線状に)蛍光部材20の第1主面21に照射させている。ただし、光源10を蛍光部材20の第1主面21側或いは第2主面22側に配置して、光源10からの第1光をミラー等で反射させることで第1光の進行方向を変え、その後、蛍光部材20の第1主面21に第1光を照射させても良い。あるいは、光源10を蛍光体部材20の第1主面21側或いは第2主面22側に配置して、ファイバ等を用いて光源10からの第1光の進行方向を制御した後、光源10からの第1光を蛍光部材20の第1主面21に照射させても良い。   In the present embodiment, as shown in FIG. 1, the light source 10 is arranged on the first main surface 21 side of the fluorescent member 20, and the first light from the light source 10 is directly (in a straight line) the first of the fluorescent member 20. The main surface 21 is irradiated. However, the traveling direction of the first light is changed by disposing the light source 10 on the first main surface 21 side or the second main surface 22 side of the fluorescent member 20 and reflecting the first light from the light source 10 with a mirror or the like. Thereafter, the first main surface 21 of the fluorescent member 20 may be irradiated with the first light. Alternatively, after the light source 10 is disposed on the first main surface 21 side or the second main surface 22 side of the phosphor member 20 and the traveling direction of the first light from the light source 10 is controlled using a fiber or the like, the light source 10 The first main surface 21 of the fluorescent member 20 may be irradiated with the first light from.

なお、本実施形態では、1つの光源10を用いているが、複数の光源10を用いることもできる。光源10が複数ある場合は、各光源が同じピーク波長の光を発するものでも良いし、例えば、スペックルノイズの低減を目的としてピーク波長が数nm程度ずれた光を発するものでも良い。   In the present embodiment, one light source 10 is used, but a plurality of light sources 10 can also be used. When there are a plurality of light sources 10, the light sources may emit light having the same peak wavelength, or may emit light having a peak wavelength shifted by several nm for the purpose of reducing speckle noise, for example.

(蛍光部材20)
蛍光部材20は、光源10からの第1光により励起され、第1光より長波長の光である第2光を放出する部材である。
(Fluorescent member 20)
The fluorescent member 20 is a member that is excited by the first light from the light source 10 and emits second light that is light having a longer wavelength than the first light.

蛍光部材20は、その膜厚が厚くなれば放熱性が悪化する。一方、その膜厚が薄くなれば、ハンドリングが困難となり蛍光部材20が割れてしまう可能性がある。このため、蛍光部材20の膜厚は、50μm〜200μmが好ましく、100μm〜150μmがより好ましい。   As the thickness of the fluorescent member 20 increases, the heat dissipation becomes worse. On the other hand, if the film thickness is reduced, handling becomes difficult and the fluorescent member 20 may be broken. For this reason, the film thickness of the fluorescent member 20 is preferably 50 μm to 200 μm, and more preferably 100 μm to 150 μm.

図1及び図2に示すように、蛍光部材20と透光層30の界面は粗面となっている。これにより、図2に示すように、光源10からの第1光が一方向に入射しても、微視的に見ると透光層30から蛍光部材20への入射角度がバラバラになるため、第1光のうち第1主面21の粗面に対して入射角度が小さい成分は、そのまま蛍光部材20へ進行するが、第1光のうち第1主面21の粗面に対して入射角度が大きい成分は、透光層30の屈折率が蛍光部材20の屈折率より大きいので全反射する。これにより、混色光Bにおいて全反射した分だけ第1光の色味を増やすことができる。また、透光層30と蛍光部材20との界面で散乱した第1光は、蛍光部材20の第1主面21側の広範囲に放出されるため、観測される混色光において第1光の分布の偏りを低減することができ、この混色光の色むらを低減することができる。なお、第1光がレーザ光の場合、レーザ光の指向性を抑制することができなければ、観測される混色光に色むらが目立ってしまうが、上記構成であれば、蛍光部材20と透光層30との界面における散乱によって、レーザの指向性を抑制することができるため、色むらを低減することができる。なお、このような効果を得るためには、蛍光部材20と透光層30の界面の全域が粗面となっていることが好ましいが、一領域を粗面としてもよいことは言うまでもない。   As shown in FIG.1 and FIG.2, the interface of the fluorescent member 20 and the translucent layer 30 is a rough surface. Thereby, as shown in FIG. 2, even if the first light from the light source 10 is incident in one direction, the incident angle from the translucent layer 30 to the fluorescent member 20 varies when viewed microscopically. The component having a small incident angle with respect to the rough surface of the first main surface 21 in the first light proceeds to the fluorescent member 20 as it is, but the incident angle with respect to the rough surface of the first main surface 21 in the first light. The component having a large value is totally reflected because the refractive index of the translucent layer 30 is larger than the refractive index of the fluorescent member 20. Accordingly, the color of the first light can be increased by the amount of total reflection in the mixed color light B. In addition, since the first light scattered at the interface between the translucent layer 30 and the fluorescent member 20 is emitted in a wide range on the first main surface 21 side of the fluorescent member 20, the distribution of the first light in the observed mixed color light. The unevenness of the color mixture light can be reduced. In the case where the first light is laser light, if the directivity of the laser light cannot be suppressed, uneven color is noticeable in the observed mixed color light. Since the directivity of the laser can be suppressed by scattering at the interface with the optical layer 30, color unevenness can be reduced. In addition, in order to acquire such an effect, although it is preferable that the whole area of the interface of the fluorescent member 20 and the translucent layer 30 is a rough surface, it cannot be overemphasized that one area | region may be made into a rough surface.

蛍光部材20と透光層30の界面には、図1及び図2に示すように、複数の微細な凹凸が形成されているが、その大きさや形成箇所は不規則であることが好ましい。これにより、透光層30と蛍光部材20との界面で全反射した第1光を広範囲にわたって均等になるように放出させることができるため、混色光の色ムラをより低減することができる。   As shown in FIGS. 1 and 2, a plurality of fine irregularities are formed at the interface between the fluorescent member 20 and the translucent layer 30, but it is preferable that the size and formation location are irregular. Thereby, since the 1st light totally reflected by the interface of the translucent layer 30 and the fluorescent member 20 can be discharge | released so that it may become uniform over a wide range, the color nonuniformity of mixed color light can be reduced more.

また、蛍光部材20の第1主面21が粗面であることで、第1主面21の表面積が増え、透光層30との密着性が向上する。   Moreover, the surface area of the 1st main surface 21 increases because the 1st main surface 21 of the fluorescent member 20 is a rough surface, and adhesiveness with the translucent layer 30 improves.

蛍光部材20と透光層30の界面を粗面とするには、例えば、蛍光部材20の第1主面21を研削、ウェットエッチング又はドライエッチングにより荒らした後で、その荒れた面にスパッタやCVD等によって透光層30を形成すればよい。特に、研削であれば、蛍光部材20の膜厚を制御すると同時にその表面を荒らすことができるので、製造上の観点から好ましい。   In order to make the interface between the fluorescent member 20 and the translucent layer 30 rough, for example, the first main surface 21 of the fluorescent member 20 is roughened by grinding, wet etching or dry etching, and then the rough surface is sputtered. The light transmitting layer 30 may be formed by CVD or the like. In particular, grinding is preferable from the viewpoint of manufacturing because the surface of the fluorescent member 20 can be controlled and the surface thereof can be roughened at the same time.

蛍光部材20は、蛍光体と蛍光体を保持するための保持体とで構成されても良いし、蛍光体のみで構成されても良い。蛍光部材20が蛍光体と保持体とで構成される場合は、保持体が無機材料であることが好ましい。これにより、保持体が樹脂等の有機材料である場合と比較して、光源10からの第1光が長時間照射されても無機材料が変色しにくいため、光源装置としての出力低下を抑制することができる。無機材料として、例えば、Al又はYが挙げられる。一方、蛍光部材20が蛍光体のみで構成される場合、蛍光部材20に保持体が含まれる場合と比較して、蛍光体の分布ムラが小さくなるので、複数の蛍光部材20を作製した際の各蛍光部材20から放出する光の見え方に違いが現れるのを抑制することができる。 The fluorescent member 20 may be composed of a phosphor and a holder for retaining the phosphor, or may be composed of only the phosphor. When the fluorescent member 20 is composed of a phosphor and a holder, the holder is preferably an inorganic material. Thereby, compared with the case where the holding body is an organic material such as a resin, the inorganic material is less likely to be discolored even when the first light from the light source 10 is irradiated for a long time, thereby suppressing a decrease in output as the light source device. be able to. Examples of the inorganic material include Al 2 O 3 and Y 2 O 3 . On the other hand, when the fluorescent member 20 is composed of only the fluorescent material, the uneven distribution of the fluorescent material is reduced as compared with the case where the fluorescent member 20 includes a holding body. It is possible to suppress a difference in the appearance of the light emitted from each fluorescent member 20.

蛍光部材20の形成方法としては、例えば、SPS(Spark Plasma Sintering:放電プラズマ焼結)、HIP(Hot Isostatic Pressing:熱間静水圧成形)、CIP(Cold Isostatic Pressing:冷間等方加圧成形)等の焼結法を用いることができる。また、蛍光体の種類としては、例えば、YAG系蛍光体、LAG系蛍光体もしくはTAG系蛍光体またはそれらの混合物を用いることができる。   Examples of the method for forming the fluorescent member 20 include SPS (Spark Plasma Sintering), HIP (Hot Isostatic Pressing), and CIP (Cold Isostatic Pressing). Or the like can be used. Moreover, as a kind of fluorescent substance, a YAG type fluorescent substance, a LAG type fluorescent substance, a TAG type fluorescent substance, or a mixture thereof can be used, for example.

(透光層30)
図1に示すように、蛍光部材20の第1主面21には、蛍光部材20より屈折率の高い透光層30が設けられる。蛍光部材20と透光層30との界面で第1光の一部を全反射させて外部に取り出すことができる。
(Translucent layer 30)
As shown in FIG. 1, a light transmitting layer 30 having a higher refractive index than that of the fluorescent member 20 is provided on the first main surface 21 of the fluorescent member 20. Part of the first light can be totally reflected at the interface between the fluorescent member 20 and the translucent layer 30 and extracted to the outside.

透光層30の屈折率は、蛍光部材20(蛍光部材20が、2種類以上の材料で構成される場合は、その中で最も屈折率が大きい材料)の屈折率より0.3以上大きいことが好ましい。蛍光部材20と透光層30との屈折率差を大きくすることで、両者の界面で全反射する第1光の割合を多くすることができる。透光層30の材料としては、例えば、蛍光部材20を構成する蛍光体としてYAG(波長445nmで屈折率1.8)を用いる場合、酸化ジルコニウム(波長445nmで屈折率2.1)又は酸化ニオブ(波長445nmで屈折率2.4〜2.5)などとすることができる。   The refractive index of the translucent layer 30 should be 0.3 or more larger than the refractive index of the fluorescent member 20 (or the material having the highest refractive index in the case where the fluorescent member 20 is made of two or more materials). Is preferred. By increasing the refractive index difference between the fluorescent member 20 and the translucent layer 30, the proportion of the first light that is totally reflected at the interface between the two can be increased. As a material of the light transmitting layer 30, for example, when YAG (refractive index of 1.8 at a wavelength of 445 nm) is used as a phosphor constituting the fluorescent member 20, zirconium oxide (refractive index of 2.1 at a wavelength of 445 nm) or niobium oxide is used. (With a wavelength of 445 nm and a refractive index of 2.4 to 2.5).

透光層30における第1光が照射される側の面は、平坦面としてもよいが、図1に示すように、粗面にすることができる。これにより、第1光が透光層30内部に入射する際又は第1光と第2光が出射する際に、それぞれの光を散乱させることができるため、より色むらの少ない混色光とすることができる。なお、透光層30における第1光が照射される側の面を粗面にする代わりに、又は、透光層30における第1光が照射される側の面を粗面とした上で、透光層30の内部に散乱剤を添加することもできる。   The surface of the light transmitting layer 30 on which the first light is irradiated may be a flat surface, but may be a rough surface as shown in FIG. Thereby, when the first light is incident on the inside of the light-transmitting layer 30 or when the first light and the second light are emitted, each light can be scattered, so that the mixed color light with less color unevenness is obtained. be able to. In addition, instead of making the surface on the side irradiated with the first light in the light-transmitting layer 30 or the surface on the side irradiated with the first light in the light-transmitting layer 30 as a rough surface, A scattering agent can also be added to the inside of the light transmitting layer 30.

透光層30の膜厚は、任意の値にすることができる。なお、透光膜30がλ/n(λ:光源からの第1光の波長、n:透光層30の実効屈折率)以下の膜厚になると、光が振幅分周囲の媒体(本実施形態では、空気)に漏れだしてその媒体の屈折率の影響を受けるため、透光膜30の実効屈折率nが小さくなる。これにより、透光膜30と蛍光部材20との界面で第1光が全反射する臨界角が変化して、第1光が全反射する割合を変化させることができるため、透光膜30の膜厚を制御することでも、蛍光部材20の第1主面21側にて観測される混色光の色調を調整することができる。ここで、例えば、第1光としてピーク波長が445nmの青色光、透光層30として酸化ニオブを使用し、酸化ニオブの膜厚によって透光層30と蛍光部材20との界面における反射率を酸化ニオブの膜厚によって制御するには、酸化ニオブの膜厚が5nm〜50nmであることが好ましい。 The film thickness of the translucent layer 30 can be set to an arbitrary value. When the light-transmitting film 30 has a film thickness equal to or less than λ / n 1 (λ: wavelength of the first light from the light source, n 1 : effective refractive index of the light-transmitting layer 30), the light is transmitted to the surrounding medium (amplitude). In the present embodiment, the effective refractive index n 1 of the translucent film 30 is reduced because it leaks into the air and is affected by the refractive index of the medium. Thereby, the critical angle at which the first light is totally reflected at the interface between the light transmissive film 30 and the fluorescent member 20 is changed, and the ratio of the first light to be totally reflected can be changed. By controlling the film thickness, the color tone of the mixed color light observed on the first main surface 21 side of the fluorescent member 20 can be adjusted. Here, for example, blue light having a peak wavelength of 445 nm is used as the first light, niobium oxide is used as the light-transmitting layer 30, and the reflectivity at the interface between the light-transmitting layer 30 and the fluorescent member 20 is oxidized by the film thickness of niobium oxide. In order to control by the film thickness of niobium, the film thickness of niobium oxide is preferably 5 nm to 50 nm.

(その他の部材)
本実施形態において、図1及び図3に示すように、蛍光部材20における第1光が照射される第1主面21とは反対に位置する面(すなわち、蛍光部材20の第2主面22側)には反射部材40を設けることもできる。光源装置100において反射部材40は必須の構成要素ではないが、反射部材40により、第1光及び第2光を第1主面21側に反射させることができるので、光源装置としての出力を向上させることができる。
(Other parts)
In this embodiment, as shown in FIGS. 1 and 3, the surface of the fluorescent member 20 that is opposite to the first main surface 21 irradiated with the first light (that is, the second main surface 22 of the fluorescent member 20). The reflection member 40 can also be provided on the side. Although the reflection member 40 is not an essential component in the light source device 100, the first light and the second light can be reflected to the first main surface 21 side by the reflection member 40, thereby improving the output as the light source device. Can be made.

反射部材40としては、第1光及び第2光に対して反射率の高い材料が好ましく、例えば、Ag、Al、Au、Rhのような金属、又は、SiO、Al、AlN、ZrO、TiO、Nbなどの誘電体を重ね合わせた誘電体多層膜からなる所謂DBRが挙げられる。もちろん、反射部材40は、上述の金属や誘電体膜を組み合わせたものでも良い。 The reflecting member 40 is preferably made of a material having high reflectivity with respect to the first light and the second light. For example, a metal such as Ag, Al, Au, or Rh, or SiO 2 , Al 2 O 3 , AlN, A so-called DBR composed of a dielectric multilayer film in which dielectrics such as ZrO 2 , TiO 2 , and Nb 2 O 5 are superposed is mentioned. Of course, the reflecting member 40 may be a combination of the above-described metals and dielectric films.

第1光が光源10から透光層30に向かって進行する経路上において、集光レンズを設けることもできる。これにより、第1光の照射範囲を制御することが容易となる。また、第1光がレーザ光である場合、レーザ光が光密度の大きいまま外部へ放出されると観測者の人体に悪影響を生じさせる恐れがある。しかし、集光レンズを用いる場合、第1光の光密度は、焦点に向かうにつれて大きくなるものの、一旦焦点を過ぎれば焦点から遠ざかるにつれて小さくなるので、仮に観測者まで第1光が達したとしても人体への悪影響を低減することができる。
[第2実施形態]
A condensing lens may be provided on a path along which the first light travels from the light source 10 toward the translucent layer 30. Thereby, it becomes easy to control the irradiation range of the first light. Further, in the case where the first light is laser light, if the laser light is emitted to the outside with a high light density, there is a risk of adversely affecting the human body of the observer. However, when the condenser lens is used, the light density of the first light increases as it goes toward the focal point, but once it passes the focal point, it decreases as it moves away from the focal point. Even if the first light reaches the observer, The adverse effects on the human body can be reduced.
[Second Embodiment]

第2実施形態に係る光源装置200について、図3〜図5を参照しながら説明する。図3は、光源装置200の一断面図である。図4及び図5は、光源装置200の変形例の一断面図である。光源装置200は、透光層が第1透光層31と第2透光層32からなること以外は実質的に光源装置100と同じ構成であるので、重複する構成及び効果については省略する場合がある。   A light source device 200 according to the second embodiment will be described with reference to FIGS. FIG. 3 is a cross-sectional view of the light source device 200. 4 and 5 are cross-sectional views of modifications of the light source device 200. FIG. Since the light source device 200 has substantially the same configuration as that of the light source device 100 except that the light transmissive layer includes the first light transmissive layer 31 and the second light transmissive layer 32, the overlapping configuration and effects are omitted. There is.

図3に示すように、蛍光部材20の第1主面21には、第1透光層31と、第1透光層31よりも屈折率が高い第2透光層32とが蛍光部材20の側から順に設けられている。さらに、第1透光層31と第2透光層32との界面が粗面である。上記構成により、蛍光部材20の第1主面21に照射される第1光が相対的に屈折率の高い領域(第2透光層32)から相対的に屈折率の低い領域(第1透光層31)に進行するので、第1実施形態と同様の原理によって、第2透光層32から第1透光層31に入射する第1光の一部を全反射させて蛍光部材20の第1主面21側に取り出すことができるので、第1光の色成分が十分大きい所望の色調の混色光(図3に示す「B」)を得ることができる。さらに、第1透光層31と第2透光層32との界面が粗面であるため、第1光が全反射する方向を広範囲に広げることができるので、第1光の反射方向が偏ることによる分布ムラを低減することもできる。   As shown in FIG. 3, the first main surface 21 of the fluorescent member 20 includes a first light transmitting layer 31 and a second light transmitting layer 32 having a refractive index higher than that of the first light transmitting layer 31. It is provided in order from the side. Furthermore, the interface between the first light transmissive layer 31 and the second light transmissive layer 32 is a rough surface. With the above configuration, the first light irradiated on the first main surface 21 of the fluorescent member 20 is a region having a relatively low refractive index (first light transmitting layer 32) from a region having a relatively high refractive index (second light transmitting layer 32). Since the light travels to the light layer 31), the first light incident on the first light transmissive layer 31 from the second light transmissive layer 32 is totally reflected by the same principle as in the first embodiment to Since it can be extracted to the first main surface 21 side, it is possible to obtain mixed color light ("B" shown in FIG. 3) having a desired color tone with a sufficiently large color component of the first light. Furthermore, since the interface between the first light-transmitting layer 31 and the second light-transmitting layer 32 is a rough surface, the direction in which the first light is totally reflected can be expanded over a wide range, and the reflection direction of the first light is biased. It is also possible to reduce uneven distribution.

第2透光層32は、第1透光層31より屈折率が0.3以上高いことが好ましい。第1透光層31と第2透光層32との屈折率差が大きくなることで、全反射する第1光の割合を大きくすることができる。また、第1透光層31及び第2透光層32は、光の吸収が小さい材料が好ましい。これらの条件を満たす第1透光層31/第2透光層32の組合せとして、例えば、酸化シリコン(波長445nmで屈折率1.46)/酸化ニオブ(波長445nmで屈折率2.43)、或いは酸化シリコン/酸化ジルコニウム(波長445nmで屈折率2.21)が挙げられる。   The second light transmissive layer 32 preferably has a refractive index higher than that of the first light transmissive layer 31 by 0.3 or more. By increasing the difference in refractive index between the first light-transmitting layer 31 and the second light-transmitting layer 32, the proportion of the first light that is totally reflected can be increased. The first light transmissive layer 31 and the second light transmissive layer 32 are preferably made of a material that absorbs less light. As a combination of the first light transmitting layer 31 and the second light transmitting layer 32 satisfying these conditions, for example, silicon oxide (refractive index 1.46 at a wavelength of 445 nm) / niobium oxide (refractive index 2.43 at a wavelength of 445 nm), Alternatively, silicon oxide / zirconium oxide (with a wavelength of 445 nm and a refractive index of 2.21) can be used.

本実施形態では、図3に示すように、第1透光層31と第2透光層32の界面が粗面である。このように設計するには、例えば、第1透光層31における第2透光層32側の面を研削などによって粗面にし、スパッタやCVDなどによってその粗面を第2透光層32で被覆すれば良い。   In the present embodiment, as shown in FIG. 3, the interface between the first light transmissive layer 31 and the second light transmissive layer 32 is a rough surface. To design in this way, for example, the surface of the first light transmitting layer 31 on the second light transmitting layer 32 side is roughened by grinding or the like, and the rough surface is formed by sputtering or CVD or the like with the second light transmitting layer 32. What is necessary is just to coat.

第2透光層32における第1光が照射される側の面は、平坦面とすることもできるが、図3に示すように、粗面にすることが好ましい。これにより、第1光が第2透光層32内部に入射する際又は第1光と第2光が出射する際に、それぞれの光を散乱させることができるため、色むらの少ない混色光とすることができる。   The surface of the second light transmissive layer 32 on which the first light is irradiated can be a flat surface, but is preferably a rough surface as shown in FIG. Thereby, when the first light is incident on the inside of the second light transmitting layer 32 or when the first light and the second light are emitted, the respective lights can be scattered, so that the mixed color light with less color unevenness can be obtained. can do.

蛍光部材20の第1主面21は、平坦面とすることもできるが、図3に示すように粗面にすることが好ましい。これにより、第1光が蛍光部材20内部に入射する際又は第1光と第2光が出射する際に、それぞれの光を散乱させることができるため、色むらの少ない混色光とすることができる。なお、蛍光部材20の第1主面21が粗面であれば、その表面積が増え、第1透光層31との密着性が向上する。   Although the 1st main surface 21 of the fluorescent member 20 can also be made into a flat surface, it is preferable to make it rough as shown in FIG. Accordingly, when the first light is incident on the inside of the fluorescent member 20 or when the first light and the second light are emitted, the respective lights can be scattered, so that the mixed color light with less color unevenness can be obtained. it can. In addition, if the 1st main surface 21 of the fluorescent member 20 is a rough surface, the surface area will increase and adhesiveness with the 1st translucent layer 31 will improve.

本実施形態における光源装置200の変形例として、第1透光層31を空気層にすることができる。第1透光層31を屈折率が略1となる空気層とすれば、第2透光層32と第1透光層31(空気層)との屈折率差を大きく確保することができるため、第1光が全反射する割合をより大きくすることができる。このような条件を満たす構成の例として、図4及び5図の構成が挙げられる。図4は、蛍光部材20の第1主面21が平坦面であり、蛍光部材20の第1主面21の上面に蛍光部材20側の面が粗面であるシート状の第2透光層32を設ける構成である。また、図5は、蛍光部材20の第1主面21及び第2透光層32における蛍光部材20側の面とが共に粗面である構成である。なお、他にも、第2透光層を蛍光部材よりも幅広にし、第2透光層のうち蛍光部材からはみ出た領域において第2透光層と蛍光部材が載置される部材(反射板など)とを接合させて、蛍光部材と第2透光層との間に空気層(第1透光層)を設けることもできる。
(実施例1)
As a modification of the light source device 200 in the present embodiment, the first light transmissive layer 31 can be an air layer. If the first light transmitting layer 31 is an air layer having a refractive index of approximately 1, a large difference in refractive index between the second light transmitting layer 32 and the first light transmitting layer 31 (air layer) can be secured. The ratio at which the first light is totally reflected can be increased. As an example of a configuration satisfying such conditions, the configurations shown in FIGS. 4 and 5 can be cited. In FIG. 4, the first main surface 21 of the fluorescent member 20 is a flat surface, and the sheet-like second light-transmitting layer in which the surface on the fluorescent member 20 side is a rough surface on the upper surface of the first main surface 21 of the fluorescent member 20. 32 is provided. FIG. 5 shows a configuration in which the first main surface 21 of the fluorescent member 20 and the surface of the second light transmissive layer 32 on the fluorescent member 20 side are both rough. In addition, the second light-transmitting layer is made wider than the fluorescent member, and a member (reflector plate) on which the second light-transmitting layer and the fluorescent member are placed in a region of the second light-transmitting layer that protrudes from the fluorescent member. Etc.) and an air layer (first light-transmitting layer) can be provided between the fluorescent member and the second light-transmitting layer.
Example 1

実施例1は、図1に示す実施形態1に対応する。   Example 1 corresponds to Embodiment 1 shown in FIG.

まず、平均粒径が約10μmのYAG系蛍光体[(Y0.97Gd0.032.85Ce0.15]Al12からなる粉末と酸化アルミニウム(Al)からなる保持体を混合し、SPS焼結法を用いて焼結することで、塊状の蛍光部材を作製した。 First, a YAG phosphor having an average particle diameter of about 10 μm [(Y 0.97 Gd 0.03 ) 2.85 Ce 0.15 ] made of Al 5 O 12 and aluminum oxide (Al 2 O 3 ). The holding body was mixed and sintered using the SPS sintering method, thereby producing a massive fluorescent member.

次に、塊状の蛍光部材をワイヤーソーによって第1主面21及び第2主面22を有する板状にスライスした。このとき、スライスによって得られた蛍光部材の厚みは、300μmであった。その後、#200のダイヤモンド砥粒を用いて、第1主面21及び第2主面22の両面を研削し、さらに、第2主面22のみ研磨及びCMP処理を行い、蛍光部材20の膜厚を150μmにした。この工程により、粗面の第1主面21、鏡面の第2主面を得た。なお、粗面である第1主面21の表面粗さをキーエンス社製のレーザ顕微鏡を用いて測定すると、4.65μmであった。また、粗面の凹凸に関して、高低差が大きい個所ではその高低差が14μmであり、平均高低差は4.8μmであった。   Next, the massive fluorescent member was sliced into a plate shape having the first main surface 21 and the second main surface 22 with a wire saw. At this time, the thickness of the fluorescent member obtained by slicing was 300 μm. Thereafter, both the first main surface 21 and the second main surface 22 are ground using diamond abrasive grains of # 200, and only the second main surface 22 is polished and subjected to CMP treatment, so that the film thickness of the fluorescent member 20 is increased. To 150 μm. By this step, a rough first main surface 21 and a mirror second main surface were obtained. In addition, it was 4.65 micrometers when the surface roughness of the 1st main surface 21 which is a rough surface was measured using the Keyence laser microscope. Further, regarding the unevenness of the rough surface, the height difference was 14 μm at the portion where the height difference was large, and the average height difference was 4.8 μm.

次に、蛍光部材を3mm×3mmのサイズに個片化し、図1に示す蛍光部材20を作製した。   Next, the fluorescent member was separated into 3 mm × 3 mm sizes, and the fluorescent member 20 shown in FIG. 1 was produced.

次に、図1に示すように、蛍光部材20の第1主面21にスパッタにより膜厚20nmの酸化ニオブ(Nb)からなる透光層30を形成した。このとき、透光層30は、蛍光部材20の粗面である第1主面21に形成されるため、透光層30における第1光が照射される側の面も粗面となった。この透光層30における第1光が照射される側の面の表面粗さは、4.65μmであった。 Next, as shown in FIG. 1, a light-transmitting layer 30 made of niobium oxide (Nb 2 O 5 ) having a film thickness of 20 nm was formed on the first main surface 21 of the fluorescent member 20 by sputtering. At this time, since the light transmissive layer 30 is formed on the first main surface 21 which is a rough surface of the fluorescent member 20, the surface of the light transmissive layer 30 on which the first light is irradiated is also a rough surface. The surface roughness of the surface of the light transmitting layer 30 on which the first light is irradiated was 4.65 μm.

次に、図1に示すように、蛍光部材20の第2主面22にスパッタにより膜厚300nmのAg膜からなる反射部材40を形成した。   Next, as shown in FIG. 1, a reflective member 40 made of an Ag film having a thickness of 300 nm was formed on the second main surface 22 of the fluorescent member 20 by sputtering.

次に、蛍光部材20の第1主面21側において、光源10としてピーク波長が445nmである青色LD素子を配置し、光源10からの第1光(すなわち、青色光)を所定の角度で蛍光部材20の第1主面21に向かって照射させた。そして、蛍光部材20の第1主面21側にて第1光と蛍光部材20からの第2光との混色光の評価を行った。
(実施例2)
Next, on the first main surface 21 side of the fluorescent member 20, a blue LD element having a peak wavelength of 445 nm is disposed as the light source 10, and the first light from the light source 10 (that is, blue light) is fluorescent at a predetermined angle. Irradiation toward the first main surface 21 of the member 20 was performed. Then, the mixed light of the first light and the second light from the fluorescent member 20 was evaluated on the first main surface 21 side of the fluorescent member 20.
(Example 2)

実施例2は、図3に示す実施形態2に対応しており、実施例1の透光層30を第1透光層31及び第2透光層に変更した以外は、実施例1と同様である。すなわち、蛍光部材20は、実施例1と同様の条件で作製した。そして、蛍光部材20の第1主面21の上面にスパッタにより膜厚76nmの酸化シリコン(SiO)からなる第1透光層31を形成し、その上面にスパッタにより膜厚1μmの酸化ニオブ(Nb)からなる第2透光層32を形成した。このとき、蛍光部材20の第1主面21は粗面であり、その表面粗さは4.65μmであった。また、第1透光層31及び第2透光層32は粗面である蛍光部材20の第1主面21の上面に薄膜として形成されるため、第1透光層31における第2透光層32側の面及び第2透光層32における第1光が照射される側の面の表面粗さは、下地である蛍光部材20の第1主面21の表面粗さと同等の値となり、共に4.65μmであった。 Example 2 corresponds to Embodiment 2 shown in FIG. 3, and is the same as Example 1 except that the light-transmitting layer 30 of Example 1 is changed to a first light-transmitting layer 31 and a second light-transmitting layer. It is. That is, the fluorescent member 20 was produced under the same conditions as in Example 1. Then, a first light-transmitting layer 31 made of silicon oxide (SiO 2 ) having a film thickness of 76 nm is formed on the upper surface of the first main surface 21 of the fluorescent member 20, and niobium oxide having a film thickness of 1 μm (sputtering is formed on the upper surface thereof. A second light transmissive layer 32 made of Nb 2 O 5 was formed. At this time, the 1st main surface 21 of the fluorescent member 20 was a rough surface, and the surface roughness was 4.65 micrometers. Moreover, since the 1st light transmission layer 31 and the 2nd light transmission layer 32 are formed as a thin film on the upper surface of the 1st main surface 21 of the fluorescent member 20 which is a rough surface, the 2nd light transmission in the 1st light transmission layer 31 is carried out. The surface roughness of the surface on the layer 32 side and the surface of the second light transmissive layer 32 on the side irradiated with the first light has a value equivalent to the surface roughness of the first main surface 21 of the fluorescent member 20 that is the base, Both were 4.65 μm.

次に、実施例1と同様に、蛍光部材20を反射部材40上に載置した後、蛍光部材20の第1主面21側に第1光を照射させて、蛍光部材20の第1主面21側にて第1光と蛍光部材20からの第2光との混色光の評価を行った。
(比較例1)
Next, as in Example 1, after the fluorescent member 20 is placed on the reflecting member 40, the first main surface 21 side of the fluorescent member 20 is irradiated with the first light, and the first main surface of the fluorescent member 20 is irradiated. Evaluation of mixed light of the first light and the second light from the fluorescent member 20 was performed on the surface 21 side.
(Comparative Example 1)

比較例1は、蛍光部材20は実施例1と同様であるが、透光層30を設けない構成として、実施例1と同様の評価を行った。
(比較例2)
In Comparative Example 1, the fluorescent member 20 is the same as that in Example 1, but the same evaluation as in Example 1 was performed as a configuration in which the light transmitting layer 30 was not provided.
(Comparative Example 2)

比較例2は、蛍光部材20は実施例1と同様の構成で、透光層30を蛍光部材20よりも屈折率が小さい材料である酸化シリコン(波長445nmで屈折率が1.46)とし、その膜厚を76nmとして、実施例1と同様の評価を行った。
(評価)
In Comparative Example 2, the fluorescent member 20 has the same configuration as that of Example 1, and the light-transmitting layer 30 is made of silicon oxide (having a wavelength of 445 nm and a refractive index of 1.46) as a material having a refractive index smaller than that of the fluorescent member 20. The film thickness was 76 nm and the same evaluation as in Example 1 was performed.
(Evaluation)

図6は、実施例1、2及び比較例1、2で観測された混色光の色調をプロットした色度図であり、円形のプロットが実施例1の結果を示し、三角形のプロットが実施例2の結果を示し、菱形のプロットが比較例1の結果を示し、四角形のプロットが比較例2の結果を示す。図6から理解できるように、比較例1では、図6の点線で示す黒体軌跡のラインから外れ黄色味がかった白色光が観測されるのに対して、実施例1及び実施例2では、黒体軌跡のライン近傍に位置する白色光が観測され、所望の色調の白色光が得られた。また、比較例2では、黒体軌跡のラインから大きく外れた白色光が観測され、所望の色調の白色光を得ることはできなかった。   FIG. 6 is a chromaticity diagram in which the color tones of mixed color light observed in Examples 1 and 2 and Comparative Examples 1 and 2 are plotted. A circular plot indicates the result of Example 1, and a triangular plot indicates the example. 2 shows a result, a rhombus plot shows the result of Comparative Example 1, and a square plot shows the result of Comparative Example 2. As can be understood from FIG. 6, in Comparative Example 1, white light that is off the black body locus line shown by the dotted line in FIG. 6 is observed, whereas in Example 1 and Example 2, White light located near the line of the black body locus was observed, and white light with a desired color tone was obtained. In Comparative Example 2, white light greatly deviating from the black body locus line was observed, and white light having a desired color tone could not be obtained.

100、200・・・光源装置
10・・・光源
20・・・蛍光部材
21・・・第1主面
22・・・第2主面
30・・・透光層
31・・・第1透光層
32・・・第2透光層
40・・・反射部材
DESCRIPTION OF SYMBOLS 100, 200 ... Light source device 10 ... Light source 20 ... Fluorescent member 21 ... 1st main surface 22 ... 2nd main surface 30 ... Translucent layer 31 ... 1st translucent Layer 32 ... second light transmissive layer 40 ... reflecting member

Claims (11)

第1光を発する光源と、前記第1光を励起光として第2光を発する蛍光部材と、を備え、前記蛍光部材の一主面に前記第1光が照射され、前記蛍光部材の一主面から第1光及び第2光の混色光が放出される光源装置であって、
前記蛍光部材の一主面には、前記蛍光部材より屈折率が高い透光層が設けられており、
前記透光層の膜厚は前記励起光の波長の長さよりも小さく、
前記蛍光部材と前記透光層との界面が粗面となっていることを特徴とする光源装置。
A light source that emits first light; and a fluorescent member that emits second light using the first light as excitation light. The main surface of the fluorescent member is irradiated with the first light, A light source device that emits mixed color light of first light and second light from a surface,
A light-transmitting layer having a higher refractive index than the fluorescent member is provided on one main surface of the fluorescent member,
The film thickness of the translucent layer is smaller than the length of the wavelength of the excitation light,
The light source device, wherein an interface between the fluorescent member and the translucent layer is a rough surface.
前記透光層は、酸化二オブからなり、The translucent layer is made of niobium oxide,
前記透光層の膜厚は、5nm以上50nm以下であることを特徴とする請求項1に記載の光源装置2. The light source device according to claim 1, wherein a thickness of the translucent layer is 5 nm or more and 50 nm or less.
第1光を発する光源と、前記第1光を励起光として第2光を発する蛍光部材と、を備え、前記蛍光部材の一主面に前記第1光が照射され、前記蛍光部材の一主面から第1光及び第2光の混色光が放出される光源装置であって、
前記蛍光部材の一主面には、前記蛍光部材の側から順に、第1透光層と、前記第1透光層より屈折率が高い第2透光層と、が設けられており、
前記第1透光層と前記第2透光層との界面が粗面となっていることを特徴とする光源装置。
A light source that emits first light; and a fluorescent member that emits second light using the first light as excitation light. The main surface of the fluorescent member is irradiated with the first light, A light source device that emits mixed color light of first light and second light from a surface,
A first light-transmitting layer and a second light-transmitting layer having a refractive index higher than that of the first light-transmitting layer are provided on one main surface of the fluorescent member in this order from the fluorescent member side.
The light source device, wherein an interface between the first light-transmitting layer and the second light-transmitting layer is a rough surface.
前記第1透光層は、酸化シリコンからなり、The first light transmitting layer is made of silicon oxide,
前記第2透光層は、酸化二オブ又は酸化ジルコニウムからなることを特徴とする請求項3に記載の光源装置。The light source device according to claim 3, wherein the second light transmissive layer is made of niobium oxide or zirconium oxide.
前記透光層における前記第1光が照射される側の面は、粗面であることを特徴とする請求項1又は2に記載の光源装置。 The surface where the in light transmission layer first light is irradiated to a light source device according to claim 1 or 2, characterized in that a rough surface. 前記蛍光部材の一主面は、粗面であることを特徴とする請求項3又は4に記載の光源装置。 The light source device according to claim 3 , wherein one main surface of the fluorescent member is a rough surface. 前記第2透光層における前記第1光が照射される側の面は、粗面であることを特徴とする請求項、4又は6に記載の光源装置。 7. The light source device according to claim 3 , wherein a surface of the second light transmissive layer on which the first light is irradiated is a rough surface. 前記第1透光層は、空気層であることを特徴とする請求項、4、6、又は7のいずれか1つに記載の光源装置。 The light source device according to claim 3 , wherein the first light transmitting layer is an air layer. 前記蛍光部材は、蛍光体と、前記蛍光体を保持するための保持体と、を有し、
前記保持体は、無機材料からなることを特徴とする請求項1〜のいずれか1つに記載の光源装置。
The fluorescent member has a phosphor and a holding body for holding the phosphor,
Said holding body, a light source device according to any one of claims 1-8, characterized in that it consists of an inorganic material.
前記蛍光部材は、蛍光体のみで構成されていることを特徴とする請求項1〜のいずれか1つに記載の光源装置。 The fluorescent member, a light source device according to any one of claims 1-8, characterized in that it is composed of only a phosphor. 前記光源は、前記第1光として青色光を発する半導体レーザであり、
前記蛍光部材は、前記第1光により励起されて前記第2光として黄色光を発する材料を含むことを特徴とする請求項1〜10に記載の光源装置。
The light source is a semiconductor laser that emits blue light as the first light,
The fluorescent member, a light source device according to claim 1-10, characterized in that it comprises the material that emits yellow light as the being excited by the first light second light.
JP2013240598A 2013-11-21 2013-11-21 Light source device Active JP6225663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013240598A JP6225663B2 (en) 2013-11-21 2013-11-21 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240598A JP6225663B2 (en) 2013-11-21 2013-11-21 Light source device

Publications (2)

Publication Number Publication Date
JP2015103539A JP2015103539A (en) 2015-06-04
JP6225663B2 true JP6225663B2 (en) 2017-11-08

Family

ID=53379044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240598A Active JP6225663B2 (en) 2013-11-21 2013-11-21 Light source device

Country Status (1)

Country Link
JP (1) JP6225663B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174925B2 (en) 2015-12-25 2019-01-08 Nichia Corporation Wavelength conversion member and light source device having wavelength conversion member
JP6944104B2 (en) 2016-11-30 2021-10-06 日亜化学工業株式会社 Light emitting device
EP3816682B1 (en) * 2018-06-18 2023-03-01 NGK Spark Plug Co., Ltd. Optical wavelength conversion member, optical wavelength conversion device, and light emitting device
EP3845937A4 (en) 2018-08-28 2021-10-13 Panasonic Intellectual Property Management Co., Ltd. Color conversion element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498286B2 (en) * 2006-02-02 2010-07-07 三菱電機株式会社 Surface light source device and display device using the surface light source device
JP2008053702A (en) * 2006-07-26 2008-03-06 Kyocera Corp Light-emitting device, and lighting device
EP2606275A2 (en) * 2010-08-20 2013-06-26 Research Triangle Institute, International Color-tunable lighting devices and methods for tunning color output of lighting devices
JP5286393B2 (en) * 2011-07-29 2013-09-11 シャープ株式会社 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
DE102012101663B4 (en) * 2012-02-29 2019-12-24 Osram Opto Semiconductors Gmbh Conversion element, illuminant and method for producing a conversion element
JP2013187043A (en) * 2012-03-08 2013-09-19 Stanley Electric Co Ltd Light source device and lighting device

Also Published As

Publication number Publication date
JP2015103539A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6253392B2 (en) Light emitting device and light source for projector using the same
JP6246622B2 (en) Light source device and lighting device
JP6912737B2 (en) Optical parts and manufacturing method of optical parts
US10544931B2 (en) Wavelength conversion member and light source device having wavelength conversion member
KR102000323B1 (en) Conversion element and illuminant
JP2017198983A (en) Wavelength conversion member and projector
JP6225663B2 (en) Light source device
JPWO2017038164A1 (en) Light emitting device
TWM531657U (en) Wavelength conversion device
US20200271282A1 (en) Light-emitting element and illumination device
JP6597809B2 (en) Light source device
JP6364257B2 (en) Optical components
JP2011513964A (en) Light emitting diode device
TW201611350A (en) Light-emitting device
JP7057486B2 (en) Light source device
JP6413673B2 (en) Fluorescent light source device
JP6709034B2 (en) Light emitting device and lighting equipment
JP6367515B1 (en) Phosphor element and lighting device
JP6826691B2 (en) Optical components and lighting equipment
JP2017025167A (en) Luminous body, light source device, and lighting device
JP2021144062A (en) Waveform conversion element, light source device, vehicle headlight, display device, light source module, and projection device
JP7357082B2 (en) Optical device and optical device manufacturing method
JP7535780B2 (en) Light emitting devices and light source devices
WO2021106854A1 (en) Phosphor element, phosphor device, and illumination apparatus
JP7305791B2 (en) Phosphor Element, Phosphor Device and Lighting Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250