JP6221748B2 - Manufacturing method of optical communication module - Google Patents

Manufacturing method of optical communication module Download PDF

Info

Publication number
JP6221748B2
JP6221748B2 JP2014001424A JP2014001424A JP6221748B2 JP 6221748 B2 JP6221748 B2 JP 6221748B2 JP 2014001424 A JP2014001424 A JP 2014001424A JP 2014001424 A JP2014001424 A JP 2014001424A JP 6221748 B2 JP6221748 B2 JP 6221748B2
Authority
JP
Japan
Prior art keywords
optical component
substrate
pin member
optical
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001424A
Other languages
Japanese (ja)
Other versions
JP2015129864A (en
Inventor
三千男 鈴木
三千男 鈴木
田中 和典
和典 田中
中西 裕美
裕美 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014001424A priority Critical patent/JP6221748B2/en
Publication of JP2015129864A publication Critical patent/JP2015129864A/en
Application granted granted Critical
Publication of JP6221748B2 publication Critical patent/JP6221748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高精度な実装が要求される光学部品を搭載する光通信モジュールの製造方法に関する。   The present invention relates to a method for manufacturing an optical communication module on which an optical component that is required to be mounted with high accuracy is mounted.

光通信モジュールの一つである波長多重光送信モジュール(以下、単に光送信モジュールという)は、複数の発光素子(LD:Laser Diode)から出射された信号光を、光学レンズや波長選択フィルタ、反射ミラーなどの光学部品を用いて波長多重化して送信するものであり、複数のLDと共に、これらの光学部品が基板上に実装されている。   A wavelength division multiplexing optical transmission module (hereinafter simply referred to as an optical transmission module), which is one of optical communication modules, converts signal light emitted from a plurality of light emitting elements (LDs) into an optical lens, a wavelength selection filter, and a reflection. The optical component is wavelength-multiplexed using an optical component such as a mirror for transmission, and these optical components are mounted on a substrate together with a plurality of LDs.

従来、上記の光学部品をピンセットなどで実装基板の所定位置に搬送する方法が取られていたが、光学部品の高密度化や、光送信モジュールの小型化などに伴い、実装基板上でピンセットを入れる面積を確保することが困難になってきた。そこで、吸着コレット(吸引コレット、真空コレットともいう)と呼ばれる保持具を用いて光学部品を吸引・吸着し、実装基板の所定位置に搬送する方法が提案されている(例えば、特許文献1を参照)。この吸着コレットとは、光学部品表面に当接される吸着面と、吸着面に開口する吸着口とを備え、吸着口を介して光学部品表面を吸着して、光学部品を実装基板の所定位置に搬送するものである。   Conventionally, a method of transporting the above optical components to a predetermined position on the mounting board by tweezers or the like has been taken. However, as the density of optical parts increases and the size of the optical transmission module decreases, tweezers are mounted on the mounting board. It has become difficult to secure an area to put. Therefore, a method has been proposed in which an optical component is sucked and sucked using a holder called a suction collet (also referred to as a suction collet or a vacuum collet) and transported to a predetermined position on the mounting substrate (see, for example, Patent Document 1). ). The suction collet is provided with a suction surface that comes into contact with the surface of the optical component and a suction port that opens to the suction surface. The optical component surface is sucked through the suction port to place the optical component at a predetermined position on the mounting substrate. To be transported.

また、特許文献2には、光学部品の一つであるレンズを、突起部を有する金属製のレンズホルダに固定し、このレンズホルダをその突起部を把持して搬送し、レンズホルダ保持具を介して基板に固定する技術が記載されている。レンズホルダとレンズホルダ保持具との固定、及び、レンズホルダ保持具と基板との固定には、YAG溶接が用いられている。   In Patent Document 2, a lens that is one of optical components is fixed to a metal lens holder having a protrusion, the lens holder is gripped and transported, and a lens holder holder is mounted. The technique of fixing to a board | substrate is described. YAG welding is used for fixing the lens holder and the lens holder holder and for fixing the lens holder holder and the substrate.

特開2010−232370号公報JP 2010-232370 A 特開2001−059925号公報JP 2001-059925 A

特にレンズなどの光学部品を、半導体プロセスで一般的に採用されている吸着コレットを用いて基板上の所定位置に搬送し、この所定位置に光学調芯後に固定する、という組立プロセス(方法)は、上記特許文献1にも開示されているように一般的な方法である。また、上記特許文献2では、光学部品の基板への固定をYAG溶接にて実施している。つまり、YAG溶接する場合、光学部品に溶接代を確保する必要があるため、光学部品はある程度の大きさを有している。   In particular, an assembly process (method) in which an optical component such as a lens is transported to a predetermined position on a substrate by using a suction collet generally employed in a semiconductor process, and is fixed to the predetermined position after optical alignment. This is a general method as disclosed in Patent Document 1 above. Moreover, in the said patent document 2, fixation to the board | substrate of an optical component is implemented by YAG welding. That is, when YAG welding is performed, it is necessary to secure a welding allowance for the optical component, and thus the optical component has a certain size.

しかしながら、昨今の光トランシーバなどの光通信モジュールでは、パッケージサイズの小型化への強い要請に呼応して、光通信モジュールに搭載する部品も小型化の一途を辿っている。特に、レンズ、ミラー等の光学部品においては、そのサイズが1mm程度、あるいは、それを下回る部品も存在する。このような光学部品を基板上に固定するに際し、溶接代を光学部品に確保するのが著しく困難であるために、YAG溶接を行うことができない。このため、YAG溶接に代えて樹脂固定が必要となる。 However, in recent optical communication modules such as optical transceivers, components mounted on the optical communication module have been downsized in response to a strong demand for a reduction in package size. In particular, in optical parts such as lenses and mirrors, there are parts whose size is about 1 mm 3 or less. When fixing such an optical component on a substrate, YAG welding cannot be performed because it is extremely difficult to secure a welding allowance for the optical component. For this reason, resin fixation is required instead of YAG welding.

また、部品サイズの小型化に伴い、従来の吸着コレットによる光学部品の把持も困難になっている。具体的には、部品サイズの小型化に応じて、吸着口のサイズも小さくせざるを得ないが、吸着口のサイズが小さい吸着コレットでは十分な吸着力(光学部品の把持力)を確保できない。すなわち、光学部品を基板上に固定するには、上記のように樹脂(紫外線硬化型接着剤など)が用いられるが、これら樹脂は一般的に粘性が大きい。このため、光学部品を吸着コレットで把持して調芯する際に、この粘性に対抗して光学部品をスライドさせなければならないところ、吸着コレットの吸着力がこの粘性に耐えられず、光学部品を把持できないという問題がある。   In addition, as the component size is reduced, it has become difficult to hold an optical component by a conventional suction collet. Specifically, as the component size is reduced, the size of the suction port must be reduced, but a suction collet with a small suction port size cannot secure a sufficient suction force (gripping force of optical components). . That is, in order to fix the optical component on the substrate, a resin (such as an ultraviolet curable adhesive) is used as described above, but these resins generally have high viscosity. For this reason, when the optical component is gripped and aligned with the suction collet, the optical component must be slid against this viscosity, and the suction force of the suction collet cannot withstand this viscosity, There is a problem that it cannot be gripped.

本発明は、上述のような実情に鑑みてなされたもので、小さな光学部品であっても確実に基板上に配置できる光通信モジュールの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a method for manufacturing an optical communication module that can be surely arranged on a substrate even with a small optical component.

本発明は、基板上に実装された複数の発光素子または受光素子と、前記基板上の前記複数の発光素子または受光素子のそれぞれに対応する位置に固定された複数の光学部品とを有する光通信モジュールの製造方法であって、台座部と該台座部に立設する軸部とからなるピン部材を、前記台座部を下側にして、前記光学部品の前記基板側の面とは反対の面に固定するピン部材固定工程と、前記ピン部材の軸部を把持した状態で、前記基板上で前記光学部品の光学的調芯を行う調芯工程と、前記光学部品と前記基板との間に塗布された樹脂を硬化させることにより、前記光学部品を前記基板に固定する光学部品固定工程とを含む。   The present invention provides an optical communication having a plurality of light emitting elements or light receiving elements mounted on a substrate and a plurality of optical components fixed at positions corresponding to the plurality of light emitting elements or light receiving elements on the substrate. A method of manufacturing a module, wherein a pin member comprising a pedestal portion and a shaft portion standing on the pedestal portion is a surface opposite to the substrate-side surface of the optical component with the pedestal portion on the lower side. A pin member fixing step for fixing to the substrate, an alignment step for optically aligning the optical component on the substrate in a state where the shaft portion of the pin member is gripped, and between the optical component and the substrate. An optical component fixing step of fixing the optical component to the substrate by curing the applied resin.

上記発明によれば、光学部品の基板側の面とは反対の面にピン部材を固定し、このピン部材を把持して基板上に搬送し、光学的調芯を行うことができるため、小さな光学部品であっても確実に基板上に配置することができる。   According to the above invention, the pin member can be fixed to the surface opposite to the substrate-side surface of the optical component, and the pin member can be gripped and transported onto the substrate for optical alignment. Even optical components can be reliably arranged on the substrate.

本発明による製造方法が適用される光通信モジュールの内部構造の一例を模式的に示した図である。It is the figure which showed typically an example of the internal structure of the optical communication module with which the manufacturing method by this invention is applied. 調芯装置の全体図である。1 is an overall view of an alignment device. 6軸調整機構及びアーム部近傍の拡大図及びアーム部を上方から見たときの部分拡大図である。It is a 6-axis adjusting mechanism, an enlarged view of the vicinity of the arm portion, and a partially enlarged view when the arm portion is viewed from above. ピン部材を光学部品に固定した後の状態を示す図である。It is a figure which shows the state after fixing a pin member to an optical component. ピン部材が固定された光学部品を基板まで移動させる様子を示す図である。It is a figure which shows a mode that the optical component to which the pin member was fixed is moved to a board | substrate. 光学部品を基板に樹脂固定する様子を示す図である。It is a figure which shows a mode that resin fixing an optical component to a board | substrate.

以下、本発明の実施形態に係る光通信モジュールの製造方法の具体例を、図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   Hereinafter, a specific example of a method for manufacturing an optical communication module according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

図1は、本発明による製造方法が適用される光通信モジュールの内部構造の一例を模式的に示した図である。以下では、光通信モジュールの一例として、複数の発光素子(LD)を備えた光送信モジュールを例示して説明するが、本発明は、複数の受光素子(PD)を備えた光受信モジュールであっても同様に適用できることは言うまでもない。図中、1は光送信モジュール、1a〜1dはLD(Laser Diode:発光素子)、2a〜2dはコリメートレンズ、3はミラー、4a,4bはWSF(Wavelength Selective Filter:波長選択フィルタ)、5はアイソレータ、6はλ/2波長板、7は偏波合成器、8は光結合部、101は集光レンズ、102はmPD(monitor Photo Diode:モニタ受光素子)、103はBS(Beam Splitter)、104は基板を示す。   FIG. 1 is a diagram schematically showing an example of the internal structure of an optical communication module to which the manufacturing method according to the present invention is applied. Hereinafter, as an example of the optical communication module, an optical transmission module including a plurality of light emitting elements (LD) will be described as an example. However, the present invention is an optical reception module including a plurality of light receiving elements (PD). However, it goes without saying that the same applies. In the figure, 1 is an optical transmission module, 1a to 1d are LDs (Laser Diodes), 2a to 2d are collimating lenses, 3 is a mirror, 4a and 4b are WSFs (Wavelength Selective Filters), 5 is An isolator, 6 is a λ / 2 wave plate, 7 is a polarization beam combiner, 8 is an optical coupling unit, 101 is a condenser lens, 102 is an mPD (monitor Photo Diode), 103 is a BS (Beam Splitter), Reference numeral 104 denotes a substrate.

複数(本例では4個)のLD1a〜1dが並置されており、個々に独立に変調信号により駆動される。それぞれのLDは互いに異なる波長の光を、光送信モジュール1の前方向に向けて出射する。ここでいう前方向とは外部の光ファイバと光結合するための光結合部8が搭載される側とする。個々の光は集光レンズ101で一旦集光された後、コリメートレンズ2a〜2dでコリメート光に変換される。一旦集光することで、コリメートレンズ2a〜2d以後の光学系の設計尤度を向上させることができる。   A plurality (four in this example) of LDs 1a to 1d are juxtaposed, and are individually driven by modulation signals. Each LD emits light of different wavelengths toward the front of the optical transmission module 1. The forward direction here refers to the side on which the optical coupling portion 8 for optical coupling with an external optical fiber is mounted. Individual light is once condensed by the condensing lens 101 and then converted into collimated light by the collimating lenses 2a to 2d. By condensing once, the design likelihood of the optical system after the collimating lenses 2a to 2d can be improved.

また、二つのレンズ(集光レンズ101及びコリメートレンズ2a〜2d)の間にはBS103を介して個々の出射光の一部をモニタするmPD102がLD1a〜1dの数に対応してBS103上に搭載される。BS103は、基板104の主面に平行に進行しているそれぞれの信号光の一部について光軸を90°折り曲げ、上方に向かわせてmPD102で受光させる。   In addition, between the two lenses (the condensing lens 101 and the collimating lenses 2a to 2d), mPDs 102 for monitoring a part of each emitted light via the BS 103 are mounted on the BS 103 corresponding to the number of LDs 1a to 1d. Is done. The BS 103 bends the optical axis of each part of the signal light traveling in parallel with the main surface of the substrate 104 by 90 °, and causes the mPD 102 to receive light with the optical axis directed upward.

コリメートレンズ2a〜2dからの出力光は、その半数がミラー3で反射され、この反射光と残りの半数の光とがWSF4a,4bで合成される。具体的には、光送信モジュール1が4個のLD1a〜1dを搭載する場合に、波長λ4の光はミラー3で反射され、その反射光と波長λ2の光とがWSF4bで合波され、波長λ2+波長λ4の光となる。他方、波長λ3の光は同様にミラー3で反射され、その反射光と波長λ1の光とがWSF4aで合波され、波長λ1+波長λ3の光となる。WSF4a,4bを出射した合波光はアイソレータ5に入力される。   Half of the output light from the collimating lenses 2a to 2d is reflected by the mirror 3, and the reflected light and the remaining half of the light are combined by the WSFs 4a and 4b. Specifically, when the optical transmission module 1 includes four LDs 1a to 1d, the light having the wavelength λ4 is reflected by the mirror 3, and the reflected light and the light having the wavelength λ2 are combined by the WSF 4b. It becomes light of λ2 + wavelength λ4. On the other hand, the light of wavelength λ3 is similarly reflected by the mirror 3, and the reflected light and the light of wavelength λ1 are combined by the WSF 4a to become light of wavelength λ1 + wavelength λ3. The combined light emitted from the WSFs 4 a and 4 b is input to the isolator 5.

アイソレータ5では、光送信モジュール1の前方から後方に向かう逆方向の光が再度LD1a〜1dに入射することで、光学的雑音が増加してしまうことを防止するために、この逆方向に進行する光を遮断すると共に、アイソレータ5の出射端において、λ/2波長板6により一方の合波光(例えば、λ2+λ4)のみがその偏光面を90°(π/2)回転される。すなわち、合波光(λ1+λ3)と他方の合波光(λ2+λ4)とは、その偏光方向が90°異なる光となる。そしてこれら二つの合波光は、偏波合成器7により偏波合成され波長λ1〜λ4の4本の光を含む一の光となって出力される。   In the isolator 5, light in the reverse direction from the front to the rear of the optical transmission module 1 is incident on the LDs 1 a to 1 d again to prevent the optical noise from increasing, and thus proceeds in the reverse direction. While blocking light, at the exit end of the isolator 5, only one of the combined light (for example, λ2 + λ4) is rotated by 90 ° (π / 2) on its polarization plane by the λ / 2 wavelength plate 6. That is, the combined light (λ1 + λ3) and the other combined light (λ2 + λ4) are lights whose polarization directions differ by 90 °. These two combined lights are combined by the polarization combiner 7 and output as one light including four lights having wavelengths λ1 to λ4.

以上の光学部品(集光レンズ101、コリメートレンズ2a〜2d、WSF4a〜4b、アイソレータ5、λ/2波長板6、偏波合波器7)が全て基板104上に搭載され、さらに、この基板104がペルチェクーラ(thermo-electric cooler:TEC)により温度制御される。光送信モジュール1の組立においては、上記複数の光学部品を光学調芯した上で基板104上に固定する工程が必要となる。そして、これら光学部品は、前述したように1mm程度の極微小な部品であり、吸着コレットにより保持することが極めて困難な部品でもある。 The above optical components (the condensing lens 101, the collimating lenses 2a to 2d, the WSF 4a to 4b, the isolator 5, the λ / 2 wavelength plate 6, and the polarization multiplexer 7) are all mounted on the substrate 104. 104 is temperature-controlled by a Peltier cooler (TEC). In assembling the optical transmission module 1, a process of fixing the plurality of optical components on the substrate 104 after optical alignment is required. These optical components are extremely small components of about 1 mm 3 as described above, and are extremely difficult to hold by the suction collet.

ここで、本発明による光通信モジュールの製造方法では、6軸調整が可能な調芯装置を使用する。以下、図2,図3に基づいて調芯装置の概略構成の一例について説明する。図2は調芯装置の全体図である。また、図3(A)は6軸調整機構及びアーム部近傍の拡大図であり、図3(B)は図3(A)のアーム部を上方から見たときの部分拡大図である。図中、10は調芯装置、11は駆動制御部、12は6軸調整機構、13はアーム部、14は調芯ステージを示す。この調芯装置10は、XYZ方向及びθφψ方向(ロール,ピッチ,ヨー)の6軸調整機構12を備えているが、6軸調整の方法自体は公知の技術であるため、ここでの説明は省略する。   Here, in the method for manufacturing an optical communication module according to the present invention, an alignment device capable of six-axis adjustment is used. Hereinafter, an example of a schematic configuration of the alignment apparatus will be described with reference to FIGS. FIG. 2 is an overall view of the alignment device. 3A is an enlarged view of the six-axis adjusting mechanism and the vicinity of the arm portion, and FIG. 3B is a partially enlarged view of the arm portion of FIG. 3A viewed from above. In the figure, 10 is an alignment device, 11 is a drive control unit, 12 is a 6-axis adjustment mechanism, 13 is an arm unit, and 14 is an alignment stage. The alignment apparatus 10 includes a 6-axis adjustment mechanism 12 in the XYZ direction and the θφψ direction (roll, pitch, yaw). Since the 6-axis adjustment method itself is a known technique, the description here will be given. Omitted.

アーム部13は、図3(B)に示すように、一対のアーム(及びアーム先端部)から構成され、後述のピン部材を把持する機能を有する。従来の一般的なアーム部は、先端部分がピン部材の形状に沿っていないため、一対のアームをピン部材に接触させた場合、ピン部材がアーム水平方向に略2点で点接触(アーム垂直方向では線接触)することになり、ピン部材の把持が不十分となる。これに対して、本実施形態のアーム部13の先端部分は、その内面がピン部材の外径に沿った凹面形状になっており、ピン部材をアーム部13の水平及び垂直方向に面接触させることができる。このため、一般的なアーム形状と比べて、ピン部材を強く把持することが可能となる。   As shown in FIG. 3B, the arm portion 13 is composed of a pair of arms (and an arm tip portion) and has a function of gripping a pin member described later. Since the tip portion of the conventional general arm portion does not follow the shape of the pin member, when the pair of arms are brought into contact with the pin member, the pin member is point-contacted at approximately two points in the arm horizontal direction (arm vertical). In the direction, line contact will occur, and the pin member will be insufficiently gripped. On the other hand, the tip portion of the arm portion 13 of this embodiment has a concave surface whose inner surface is along the outer diameter of the pin member, and makes the pin member come into surface contact in the horizontal and vertical directions of the arm portion 13. be able to. For this reason, it becomes possible to hold | grip a pin member strongly compared with a general arm shape.

また、アーム部13は、上方または下方から見たときに、一方のアームが直線状に形成され、他方のアームが一方のアーム側に屈曲している。つまり、一対のアームが非対称に形成されている。アーム部13でピン部材を把持する際に、まず、直線アームにピン部材を接触させ、屈曲アームがこれを挟み込むようにして把持する。これにより、屈曲アームからの押圧力を直線アーム側で受けることができるため、ピン部材をしっかり把持することができる。   Further, when viewed from above or below, the arm portion 13 is formed such that one arm is linear and the other arm is bent toward one arm. That is, the pair of arms are formed asymmetrically. When the pin member is gripped by the arm portion 13, first, the pin member is brought into contact with the linear arm, and the bending arm is gripped so as to sandwich the pin member. Thereby, since the pressing force from the bending arm can be received on the linear arm side, the pin member can be firmly held.

また、調芯ステージ14は、レンズなどの光学部品と、光学部品を樹脂固定させる基板とを載置するための窪み(図示せず)を所定場所に設けている。この窪みは、光学部品及び基板と略同じ形状とされ、その深さは約0.5mm程度とされる。つまり、調芯ステージ14は、樹脂固定する光学部品毎に、窪みの大きさや形状を適宜変化させることができる。   The alignment stage 14 is provided with a recess (not shown) for placing an optical component such as a lens and a substrate on which the optical component is fixed with resin at a predetermined location. The recess has substantially the same shape as the optical component and the substrate, and the depth is about 0.5 mm. That is, the alignment stage 14 can appropriately change the size and shape of the recess for each optical component to be fixed with resin.

(第1の実施形態)
図4〜図6は、本発明による光送信モジュールの製造方法の一例を説明するための図である。図中、15はピン部材、16は光学部品、17,19は紫外線硬化型接着剤などの樹脂、18は基板を示す。本実施形態では、光学部品16とピン部材15との固定を、基板18以外の所定の場所(調芯ステージ14など)で樹脂17を用いて実施する。
(First embodiment)
4-6 is a figure for demonstrating an example of the manufacturing method of the optical transmission module by this invention. In the figure, 15 is a pin member, 16 is an optical component, 17 and 19 are resins such as an ultraviolet curable adhesive, and 18 is a substrate. In the present embodiment, the optical component 16 and the pin member 15 are fixed using a resin 17 at a predetermined location (such as the alignment stage 14) other than the substrate 18.

図4は、ピン部材15を光学部品16に固定した後の状態を示す図で、本例では光学部品16及び基板18が調芯ステージ14の所定場所に載置されているものとする。まず、台座部15bと台座部15bに立設する軸部15aとからなるピン部材15を、台座部15bを下側にして、光学部品16の基板18側の面(図4の下面16a)とは反対の面(図4の上面16b)に固定する(S1:ピン部材固定工程)。なお、本例では、台座部15bとして、円柱状の軸部15aの直径よりも大きい直径を持つ円盤状の部材として示しているが、軸部15a及び台座部15bの形状はこれに限定されるものではない。光学部品を高精度で実装する場合、一般的には調芯ステージの駆動部分に高精度なステージやモーターを備える必要がある為、調芯設備が大型になる傾向にある。一方、本例の如き装置構成を採用する事で、例えば、実装ステージ等の小型化にも資する。   FIG. 4 is a view showing a state after the pin member 15 is fixed to the optical component 16. In this example, the optical component 16 and the substrate 18 are assumed to be placed at predetermined positions on the alignment stage 14. First, the pin member 15 composed of the pedestal portion 15b and the shaft portion 15a erected on the pedestal portion 15b, the surface of the optical component 16 on the substrate 18 side (the lower surface 16a in FIG. 4) with the pedestal portion 15b on the lower side. Is fixed to the opposite surface (upper surface 16b in FIG. 4) (S1: pin member fixing step). In this example, the pedestal portion 15b is shown as a disk-shaped member having a diameter larger than the diameter of the columnar shaft portion 15a. However, the shapes of the shaft portion 15a and the pedestal portion 15b are limited to this. It is not a thing. When optical components are mounted with high accuracy, it is generally necessary to provide a high-precision stage or motor in the driving portion of the alignment stage, and therefore the alignment equipment tends to be large. On the other hand, by adopting the apparatus configuration as in this example, for example, it contributes to downsizing of the mounting stage and the like.

ピン部材15は、例えば、樹脂製であり、上述したように、下部に台座部15bを備え、台座部15bには軸部15aが一体的に形成されている。台座部15bは、例えば、直径0.6mm×高さ0.2mmの円盤状の部材である。軸部15aは、例えば、直径0.3mm×高さ(0.3〜1.0)mmの円柱状の部材である。光学部品16は、例えば、幅(光軸に垂直)1.0mm×厚み(光軸に平行)0.6mm×高さ(光軸に垂直)1.0mmのレンズである。   The pin member 15 is made of, for example, resin, and as described above, includes a pedestal portion 15b at the lower portion, and the shaft portion 15a is integrally formed with the pedestal portion 15b. The pedestal portion 15b is, for example, a disk-shaped member having a diameter of 0.6 mm and a height of 0.2 mm. The shaft portion 15a is, for example, a cylindrical member having a diameter of 0.3 mm × height (0.3 to 1.0) mm. The optical component 16 is, for example, a lens having a width (perpendicular to the optical axis) 1.0 mm × thickness (parallel to the optical axis) 0.6 mm × height (perpendicular to the optical axis) 1.0 mm.

このピン部材固定工程(S1)では、まず、光学部品16を調芯ステージ14上に静置する。なお、光学部品16を静置する場所は調芯ステージ14以外であっても構わない。この段階では、光学部品16とピン部材15とは接着されておらず、ピン部材15についても調芯ステージ14の所定場所に載置されているものとする。次に、ピン部材15の軸部15aを調芯装置のアーム部13の先端で把持して光学部品16のほぼ中心に移動させ、光学部品16の上面16bから数μm〜数十μm浮かした状態で保持する。そして、ピン部材15の台座部15bと光学部品16の上面16bとの隙間に、紫外線硬化型接着剤等の樹脂17を極少量だけニードル(スポイト、注射器等の噴出量を調整できる部品)で塗布し、そのまま紫外線を照射して樹脂固定させる。   In the pin member fixing step (S 1), first, the optical component 16 is placed on the alignment stage 14. The place where the optical component 16 is placed may be other than the alignment stage 14. At this stage, it is assumed that the optical component 16 and the pin member 15 are not bonded, and the pin member 15 is also placed at a predetermined location on the alignment stage 14. Next, the shaft portion 15a of the pin member 15 is gripped by the tip of the arm portion 13 of the alignment device and moved to substantially the center of the optical component 16, and is lifted from several μm to several tens of μm from the upper surface 16b of the optical component 16. Hold on. Then, a very small amount of resin 17 such as an ultraviolet curable adhesive is applied to the gap between the pedestal 15b of the pin member 15 and the upper surface 16b of the optical component 16 with a needle (a component capable of adjusting the ejection amount of a syringe, syringe, etc.). Then, the resin is fixed by irradiating ultraviolet rays as it is.

このように、ピン部材15を光学部品16の上面16bから数μm〜数十μm浮かした状態で保持し、両者の隙間に樹脂17を染み込ませ、保持しつつ紫外線を照射する。この結果、図4に示すように、略中央部分に軸部15aが立設した光学部品16が作製される。本実施形態では、ピン部材15と光学部品16との固定が基板18以外の所定の場所(ここでは調芯ステージ14)で実施される。   In this manner, the pin member 15 is held in a state where it floats from the upper surface 16b of the optical component 16 by several μm to several tens of μm, the resin 17 is soaked into the gap between the two, and ultraviolet rays are irradiated while being held. As a result, as shown in FIG. 4, an optical component 16 having a shaft portion 15a erected at a substantially central portion is produced. In the present embodiment, the pin member 15 and the optical component 16 are fixed at a predetermined location (here, the alignment stage 14) other than the substrate 18.

上記において、レンズ等の光学部品の上面にピン部材を固定する際に、紫外線硬化型接着剤等の樹脂を使用しているが、この樹脂固定に必ずしも限定されるものではない。例えば、光学部品の外周にメタライズ面を設け、YAG溶接或いは半田溶接により、金属製のピン部材を固定させることも可能であるが、光学部品の外周にメタライズ面を設ける必要があり、コスト面では樹脂固定のほうが望ましい。また、溶接を採用するため、光学部品に溶接代を確保しなければならず、光学部品の小型化の面からも樹脂固定のほうが望ましい。   In the above, when fixing the pin member to the upper surface of the optical component such as a lens, a resin such as an ultraviolet curable adhesive is used, but the resin fixing is not necessarily limited. For example, it is possible to provide a metallized surface on the outer periphery of the optical component and fix the metal pin member by YAG welding or solder welding, but it is necessary to provide a metallized surface on the outer periphery of the optical component. Resin fixation is preferable. In addition, since welding is employed, it is necessary to secure a welding allowance for the optical component, and it is more desirable to fix the resin from the viewpoint of miniaturization of the optical component.

本実施形態によれば、上面にピン部材が樹脂固定された光学部品、及びピン部材を完全に把持出来るアーム部を有する調芯装置があれば、高精度で光学部品を所定の基板に実装することができる。このため、使用する光学部品としては、レンズに限定されず、反射ミラーや光学フィルタなどであってもよい。また、ピン部材としては、円筒形状に限定されず、多角形状としてもよい。また、調芯装置としては、XYZ方向及びθφψ方向の6軸に関して位置調整出来る機構を有する調芯設備であればよく、この実施形態に限定されるものではない。   According to this embodiment, if there is an optical component having a pin member resin-fixed on the upper surface and an alignment device having an arm part that can completely grip the pin member, the optical component is mounted on a predetermined substrate with high accuracy. be able to. For this reason, as an optical component to be used, it is not limited to a lens, A reflection mirror, an optical filter, etc. may be sufficient. Further, the pin member is not limited to a cylindrical shape, and may be a polygonal shape. Further, the alignment device may be an alignment facility having a mechanism capable of adjusting the position with respect to the six axes in the XYZ direction and the θφψ direction, and is not limited to this embodiment.

図5は、ピン部材15が固定された光学部品16を基板18まで移動させる様子を示す図で、図5(A)はアーム部13及び調芯ステージ14を含む部分を示す図、図5(B)は図5(A)のアーム部13の先端部分を上面から見た図である。また、図6は、光学部品16を基板18に樹脂固定する様子を示す図である。   FIG. 5 is a diagram illustrating a state in which the optical component 16 to which the pin member 15 is fixed is moved to the substrate 18, and FIG. 5A is a diagram illustrating a portion including the arm portion 13 and the alignment stage 14. FIG. 5B is a view of the distal end portion of the arm portion 13 in FIG. FIG. 6 is a diagram showing how the optical component 16 is fixed to the substrate 18 with resin.

図5(A),(B)に示すように、ピン部材15の軸部15aをアーム部13で把持した状態で基板18の所定位置まで移動させ、図6に示すように、基板18の所定位置上で光学部品16の光学的調芯を行い(S2:調芯工程)、光学部品16と基板18との間に塗布された紫外線硬化型接着剤等の樹脂19を硬化させることにより、光学部品16を基板18に固定する(S3:光学部品固定工程)。ここで、基板18の所定位置とは、光学部品16を基板18に実装する際の概略位置(粗位置)であって、例えば、調芯ステージ14に固定された基板18上の光学部品実装位置と、調芯ステージ14との相対位置の初期値を、6軸調整機構12の6軸について予め設定しておくことが考えられる。あるいは、基板18上の光学部品実装位置にアライメントマーク(十字、L字、コの字等)を予め設けておくことで概略位置を決定してもよい。   As shown in FIGS. 5A and 5B, the shaft portion 15a of the pin member 15 is moved to a predetermined position of the substrate 18 while being gripped by the arm portion 13, and as shown in FIG. The optical alignment of the optical component 16 is performed on the position (S2: alignment step), and the resin 19 such as an ultraviolet curable adhesive applied between the optical component 16 and the substrate 18 is cured, whereby the optical component 16 is optically aligned. The component 16 is fixed to the substrate 18 (S3: optical component fixing step). Here, the predetermined position of the substrate 18 is an approximate position (coarse position) when the optical component 16 is mounted on the substrate 18, for example, an optical component mounting position on the substrate 18 fixed to the alignment stage 14. It is conceivable that the initial value of the relative position with respect to the alignment stage 14 is set in advance for the six axes of the six-axis adjusting mechanism 12. Alternatively, the approximate position may be determined by providing an alignment mark (cross, L-shaped, U-shaped, etc.) in advance on the optical component mounting position on the substrate 18.

以下、ピン部材15が固定された光学部品16(図4)の具体的な実装方法について説明する。まず、上面にピン部材15を取り付けた光学部品16を調芯ステージ14の所定場所に載置する。なお、調芯ステージ14上で光学部品16を載せる場所には、前述のように、光学部品16の外形と略同じ大きさの窪みが形成されている。次に、光学部品16を樹脂固定させる基板18を調芯ステージ14に載置する。調芯ステージ14上で基板18を載せる場所には、上記の光学部品16と同様に基板18と略同じ大きさの窪みが形成されている。   Hereinafter, a specific mounting method of the optical component 16 (FIG. 4) to which the pin member 15 is fixed will be described. First, the optical component 16 with the pin member 15 attached to the upper surface is placed at a predetermined location on the alignment stage 14. As described above, a recess having substantially the same size as the outer shape of the optical component 16 is formed at the place where the optical component 16 is placed on the alignment stage 14. Next, the substrate 18 on which the optical component 16 is fixed with resin is placed on the alignment stage 14. In the place where the substrate 18 is placed on the alignment stage 14, a recess having substantially the same size as the substrate 18 is formed in the same manner as the optical component 16 described above.

次に、アーム部13が取り付けられた調芯装置10を駆動制御して、ピン部材15が固定された光学部品16の位置調整(調芯)を実施する。具体的には、アーム部13を、調芯ステージ14に置かれた光学部品16まで移動させ、アーム部13を構成する一対のアームをハの字状に開いた後、Z軸方向(高さ方向)を調整して一対のアーム先端部がピン全体を掴み取れる位置に下降させる。   Next, the alignment device 10 to which the arm portion 13 is attached is driven and controlled to adjust the position (alignment) of the optical component 16 to which the pin member 15 is fixed. Specifically, the arm unit 13 is moved to the optical component 16 placed on the alignment stage 14, and after opening a pair of arms constituting the arm unit 13 in a square shape, the Z-axis direction (height Direction) to lower the pair of arm tips to a position where the entire pin can be grasped.

そして、アーム部13を、一方のアーム(直線アーム)の内面にピン部材15の軸が接触するように動作させ、ついで、他方のアーム(屈曲アーム)の内面でピン部材15の軸を挟み込むように動作させる。これにより、ピン部材15の軸を一対のアームで確実に把持することができる。その後、図5(A)に示すように、アーム部13でピン部材15が把持された光学部品16を、調芯ステージ14上の基板18の所定位置(粗位置)まで移動させる。   Then, the arm portion 13 is operated so that the shaft of the pin member 15 contacts the inner surface of one arm (linear arm), and then the shaft of the pin member 15 is sandwiched between the inner surfaces of the other arm (bending arm). To work. Thereby, the axis | shaft of the pin member 15 can be reliably hold | gripped with a pair of arm. Thereafter, as shown in FIG. 5A, the optical component 16 having the pin member 15 held by the arm portion 13 is moved to a predetermined position (coarse position) of the substrate 18 on the alignment stage 14.

上記において、前述の図3(B)で説明したように、アーム部13を構成する一対のアームは非対称とされている。すなわち、アーム部13を上方あるいは下方から見ると、一方のアームはほぼ直線状であるのに対して、他方のアームはこの直線アームに対し、その先端部が接触するように屈曲し、両アームの間隔が狭められている。この工程では、まず直線アームにピン部材15が接触し、ついで屈曲アームがピン部材15を挟み込むように動作する。   In the above description, as described with reference to FIG. 3B, the pair of arms constituting the arm portion 13 is asymmetric. That is, when the arm portion 13 is viewed from above or below, one arm is substantially linear, while the other arm is bent so that the tip end of this arm comes into contact with both arms. The interval is narrowed. In this step, first, the pin member 15 comes into contact with the linear arm, and then the bending arm operates so as to sandwich the pin member 15.

ここで、ピン部材15の軸部15aの外径と、アーム部13の先端部分の内径とは次のような関係にあることが好ましい。すなわち、図5(B)に示すように、ピン部材15の軸部15bを把持した状態で両アーム間に必ず隙間dが形成されるようにしておく。このようにすることで、アーム内面の径がピン外径と多少異なっていたとしても、ピンを確実に把持することができる。   Here, the outer diameter of the shaft portion 15a of the pin member 15 and the inner diameter of the tip portion of the arm portion 13 are preferably in the following relationship. That is, as shown in FIG. 5B, a gap d is always formed between the arms while the shaft portion 15b of the pin member 15 is gripped. By doing in this way, even if the diameter of the arm inner surface is slightly different from the outer diameter of the pin, the pin can be securely gripped.

そして、基板18の所定位置(粗位置)まで移動した光学部品16は、アーム部13でピン部材15が把持された状態で精密な調芯が施される。例えば、光学部品16がコリメートレンズである場合、外部から光源(主にレーザ光源)を用いてコリメートレンズに光を照射し、外部に設置した赤外カメラでモニタしながら、赤外カメラを通じてモニタされるコリメート光の形状を確認し、コリメートレンズ(光学部品16)の基板18における最適位置を決定する。あるいは、外部に設けられたシングルモード光ファイバ(SMF)に光結合させ、このSMFの光が最大値になるように、調芯装置を用いて角度調整を行うようにしてもよい。   The optical component 16 moved to a predetermined position (coarse position) on the substrate 18 is precisely aligned with the arm member 13 holding the pin member 15. For example, when the optical component 16 is a collimating lens, the collimating lens is irradiated with light from the outside using a light source (mainly a laser light source) and monitored with an infrared camera while being monitored with an infrared camera installed outside. The shape of the collimated light is confirmed, and the optimum position of the collimating lens (optical component 16) on the substrate 18 is determined. Alternatively, it may be optically coupled to an externally provided single mode optical fiber (SMF), and the angle adjustment may be performed using an alignment device so that the light of this SMF becomes the maximum value.

そして、最後に、図6に示すように、光学部品16と基板18との間に塗布された紫外線硬化型接着剤等の樹脂19に紫外線(UV)を照射し、光学部品16を基板18に樹脂固定させる。なお、樹脂19は、例えば、光学部品16を基板18の所定位置(粗位置)で調芯する前に、光学部品16と基板18との間に一定量塗布される。この際、光学部品16はピン部材15を介してアーム部13で確実に把持されているため、樹脂19の粘性に対抗して調芯(移動)することが可能である。   Finally, as shown in FIG. 6, the resin 19 such as an ultraviolet curable adhesive applied between the optical component 16 and the substrate 18 is irradiated with ultraviolet rays (UV), and the optical component 16 is applied to the substrate 18. Fix the resin. For example, the resin 19 is applied between the optical component 16 and the substrate 18 before the optical component 16 is aligned at a predetermined position (coarse position) on the substrate 18. At this time, since the optical component 16 is securely held by the arm portion 13 via the pin member 15, the optical component 16 can be aligned (moved) against the viscosity of the resin 19.

(第2の実施形態)
上述の第1の実施形態では、ピン部材固定工程(S1)において、光学部品16とピン部材15との固定を、基板18以外の所定の場所(調芯ステージ14など)で樹脂17を用いて実施したが、本実施形態では、光学部品16とピン部材15との固定を、基板18の所定位置(粗位置)で樹脂17を用いて行う点が異なる。
(Second Embodiment)
In the first embodiment described above, in the pin member fixing step (S1), the optical component 16 and the pin member 15 are fixed using the resin 17 at a predetermined place (such as the alignment stage 14) other than the substrate 18. Although implemented, this embodiment is different in that the optical component 16 and the pin member 15 are fixed using a resin 17 at a predetermined position (coarse position) of the substrate 18.

すなわち、アーム部13を構成する一対のアームで光学部品16の両脇を、光学部品16の光学面を傷つけず、汚さないように把持し、調芯ステージ14上に固定された基板18の所定位置(粗位置)に移動させる。この段階では、光学部品16にピン部材15は固定されていない。また、基板18の所定位置(粗位置)としては、前述したように、例えば、調芯ステージ14に固定された基板18上の光学部品実装位置と、調芯ステージ14との相対位置の初期値を、6軸調整機構12の6軸について予め設定しておく。   That is, a predetermined pair of substrates 18 fixed on the alignment stage 14 are gripped by a pair of arms constituting the arm portion 13 so that both sides of the optical component 16 are not damaged and do not damage the optical surface of the optical component 16. Move to position (coarse position). At this stage, the pin member 15 is not fixed to the optical component 16. The predetermined position (coarse position) of the substrate 18 is, for example, the initial value of the relative position between the optical component mounting position on the substrate 18 fixed to the alignment stage 14 and the alignment stage 14 as described above. Are set in advance for the six axes of the six-axis adjusting mechanism 12.

上記において、基板18の所定位置(粗位置)により光学部品16がラフに調芯される。この際、光学部品16と基板18との間に樹脂は塗布されていないので、光学部品16が樹脂の粘性に負けてその位置がシフトするなどの問題は発生しない。つまり、単に光学部品16を空間上で微動させるだけである。光学部品16のラフな位置が決まったならば、光学部品16を基板18上に静かに載置する。そして、アーム部13は一旦光学部品16から離れる。このアーム部13が離れた状態で、光学部品16の上面16bに紫外線硬化型接着剤等の樹脂17をニードルで極微量塗布しておく。   In the above, the optical component 16 is roughly aligned by the predetermined position (coarse position) of the substrate 18. At this time, since the resin is not applied between the optical component 16 and the substrate 18, there is no problem that the optical component 16 loses the viscosity of the resin and its position shifts. That is, the optical component 16 is simply moved in space. When the rough position of the optical component 16 is determined, the optical component 16 is gently placed on the substrate 18. Then, the arm portion 13 is once separated from the optical component 16. In a state where the arm portion 13 is separated, a very small amount of resin 17 such as an ultraviolet curable adhesive is applied to the upper surface 16b of the optical component 16 with a needle.

次いで、光学部品16の把持から開放されたアーム部13により、調芯ステージ14上の所定場所に置かれているピン部材15の1つを把持し、ピン部材15を把持したアーム部13を光学部品16の上方にまで移動させる。そして、そのまま静かにピン部材15の台座部15bを光学部品16の上面16bに載置する。光学部品16の上面16bには、既に樹脂17が塗布されており、この状態で紫外線を照射し、光学部品16とピン部材15とを接着する。   Next, one of the pin members 15 placed at a predetermined position on the alignment stage 14 is gripped by the arm portion 13 released from the grip of the optical component 16, and the arm portion 13 gripping the pin member 15 is optically operated. Move to above the part 16. Then, the pedestal 15 b of the pin member 15 is gently placed on the upper surface 16 b of the optical component 16 as it is. The resin 17 has already been applied to the upper surface 16b of the optical component 16, and in this state, ultraviolet rays are irradiated to bond the optical component 16 and the pin member 15 together.

この間、光学部品16は、Z軸以外のXYθφψの5軸については何等変更されておらず、唯一Z軸が上下するだけである。但し、樹脂17の表面張力により、ピン部材15と光学部品16との相対位置関係がずれる場合があるが、このような多少の相対位置関係のずれは以下の調芯工程において修正することができるため問題はない。   During this time, the optical component 16 is not changed in any way with respect to the five axes XYθφψ other than the Z axis, and only the Z axis moves up and down. However, although the relative positional relationship between the pin member 15 and the optical component 16 may be shifted due to the surface tension of the resin 17, such a slight shift in the relative positional relationship can be corrected in the following alignment process. So there is no problem.

次に、ピン部材15をアーム部13で把持しつつ、光学部品16を基板18から離し、両者の間に樹脂19を塗布する。その後、基板18の所定位置(粗位置)を初期位置として、光学部品16について精密な調芯を行う。この段階では、光学部品16はピン部材15を介して確実にアーム部13で把持されている状態にあるので、樹脂19の粘性に負けてその調芯(移動)が妨げられることはない。また、アーム部材13のピン接触面はピン外形に沿った形状になっているため、確実にピン部材15を把持することができる。   Next, while holding the pin member 15 with the arm portion 13, the optical component 16 is separated from the substrate 18, and a resin 19 is applied between the two. Thereafter, the optical component 16 is precisely aligned with a predetermined position (coarse position) of the substrate 18 as an initial position. At this stage, since the optical component 16 is securely held by the arm portion 13 via the pin member 15, the alignment (movement) is not hindered due to the viscosity of the resin 19. Moreover, since the pin contact surface of the arm member 13 has a shape along the outer shape of the pin, the pin member 15 can be reliably gripped.

1…光送信モジュール、1a〜1d…LD(発光素子)、2a〜2d…コリメートレンズ、3…ミラー、4a,4b…WSF(波長選択フィルタ)、5…アイソレータ、6…λ/2波長板、7…偏波合成器、8…光結合部、10…調芯装置、11…駆動制御部、12…6軸調整機構、13…アーム部、14…調芯ステージ、15…ピン部材、15a…軸部、15b…台座部、16…光学部品、16a…下面、16b…上面、17,19…樹脂、18…基板、101…集光レンズ、102…mPD(モニタ受光素子)、103…BS(ビームスプリッタ)、104…基板。 DESCRIPTION OF SYMBOLS 1 ... Optical transmission module, 1a-1d ... LD (light emitting element), 2a-2d ... Collimating lens, 3 ... Mirror, 4a, 4b ... WSF (wavelength selection filter), 5 ... Isolator, 6 ... λ / 2 wavelength plate, DESCRIPTION OF SYMBOLS 7 ... Polarization combiner, 8 ... Optical coupling part, 10 ... Alignment apparatus, 11 ... Drive control part, 12 ... 6-axis adjustment mechanism, 13 ... Arm part, 14 ... Alignment stage, 15 ... Pin member, 15a ... Shaft portion, 15b ... base portion, 16 ... optical component, 16a ... lower surface, 16b ... upper surface, 17, 19 ... resin, 18 ... substrate, 101 ... condensing lens, 102 ... mPD (monitor light receiving element), 103 ... BS ( Beam splitter), 104... Substrate.

Claims (6)

基板上に実装された複数の発光素子または受光素子と、前記基板上の前記複数の発光素子または受光素子のそれぞれに対応する位置に固定された複数の光学部品とを有する光通信モジュールの製造方法であって、
台座部と該台座部に立設する軸部とからなるピン部材を、前記台座部を下側にして、前記光学部品の前記基板側の面とは反対の面に固定するピン部材固定工程と、
前記ピン部材の軸部を把持した状態で、前記基板上で前記光学部品の光学的調芯を行う調芯工程と、
前記光学部品と前記基板との間に塗布された樹脂を硬化させることにより、前記光学部品を前記基板に固定する光学部品固定工程とを含む、光通信モジュールの製造方法。
Method for manufacturing optical communication module, comprising: a plurality of light emitting elements or light receiving elements mounted on a substrate; and a plurality of optical components fixed at positions corresponding to each of the plurality of light emitting elements or light receiving elements on the substrate Because
A pin member fixing step of fixing a pin member composed of a pedestal portion and a shaft portion standing on the pedestal portion to a surface opposite to the surface on the substrate side of the optical component with the pedestal portion facing down; ,
An alignment step of optically aligning the optical component on the substrate in a state where the shaft portion of the pin member is gripped,
A method of manufacturing an optical communication module, comprising: an optical component fixing step of fixing the optical component to the substrate by curing a resin applied between the optical component and the substrate.
前記ピン部材固定工程は、前記光学部品と前記ピン部材との固定を、前記基板以外の所定の場所で樹脂を用いて行い、
前記調芯工程は、前記ピン部材の軸部を把持した状態で、前記基板の所定位置に移動させ、該所定位置で前記光学部品の光学的調芯を行う、請求項1に記載の光通信モジュールの製造方法。
In the pin member fixing step, the optical component and the pin member are fixed using a resin at a predetermined place other than the substrate,
2. The optical communication according to claim 1, wherein in the alignment step, the optical component is optically aligned at the predetermined position by moving the substrate to a predetermined position while holding the shaft portion of the pin member. Module manufacturing method.
前記ピン部材固定工程は、前記光学部品と前記ピン部材との固定を、前記基板の所定位置上で樹脂を用いて行い、
前記調芯工程は、前記ピン部材の軸部を把持した状態で、前記基板の所定位置で前記光学部品の光学的調芯を行う、請求項1に記載の光通信モジュールの製造方法。
In the pin member fixing step, the optical component and the pin member are fixed using a resin on a predetermined position of the substrate,
2. The method of manufacturing an optical communication module according to claim 1, wherein the alignment step performs optical alignment of the optical component at a predetermined position of the substrate in a state where the shaft portion of the pin member is held.
前記調芯工程は、前記光学部品の光学的調芯を、所定の6軸について行う、請求項1〜3のいずれか1項に記載の光通信モジュールの製造方法。   The method of manufacturing an optical communication module according to claim 1, wherein the alignment step performs optical alignment of the optical component with respect to predetermined six axes. 前記調芯工程は、前記ピン部材の軸部を、該軸部の外径に沿った凹面形状の内面を持つ一対のアームで把持する、請求項1〜4のいずれか1項に記載の光通信モジュールの製造方法。   The light according to any one of claims 1 to 4, wherein in the alignment step, the shaft portion of the pin member is gripped by a pair of arms having a concave inner surface along the outer diameter of the shaft portion. A method for manufacturing a communication module. 前記一対のアームは、上方または下方から見たときに、一方のアームが直線状に形成され、他方のアームが前記一方のアーム側に屈曲している、請求項5に記載の光通信モジュールの製造方法。   6. The optical communication module according to claim 5, wherein when viewed from above or below, the pair of arms has one arm formed in a straight line and the other arm bent toward the one arm. Production method.
JP2014001424A 2014-01-08 2014-01-08 Manufacturing method of optical communication module Active JP6221748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001424A JP6221748B2 (en) 2014-01-08 2014-01-08 Manufacturing method of optical communication module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001424A JP6221748B2 (en) 2014-01-08 2014-01-08 Manufacturing method of optical communication module

Publications (2)

Publication Number Publication Date
JP2015129864A JP2015129864A (en) 2015-07-16
JP6221748B2 true JP6221748B2 (en) 2017-11-01

Family

ID=53760624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001424A Active JP6221748B2 (en) 2014-01-08 2014-01-08 Manufacturing method of optical communication module

Country Status (1)

Country Link
JP (1) JP6221748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186472A (en) * 2018-04-16 2019-10-24 三菱電機株式会社 Optical device manufacturing apparatus and optical device manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568864B1 (en) * 1999-11-05 2003-05-27 The Furukawa Electric Co., Ltd. Semiconductor laser module and process for manufacturing the same
JP2003140004A (en) * 2001-11-06 2003-05-14 Shibuya Kogyo Co Ltd Article grasping device
JP2006064885A (en) * 2004-08-25 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> Optical module and its manufacturing method
JP2012078725A (en) * 2010-10-05 2012-04-19 Sumitomo Electric Device Innovations Inc Optical axis alignment tool, optical axis alignment device having the same, and method for aligning optical axis
US8821042B2 (en) * 2011-07-04 2014-09-02 Sumitomo Electic Industries, Ltd. Optical module with lens assembly directly mounted on carrier by soldering and laser diode indirectly mounted on carrier through sub-mount

Also Published As

Publication number Publication date
JP2015129864A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
US9551834B2 (en) Method to assemble transmitter optical subassembly
CN110308564B (en) Apparatus for manufacturing optical multiplexer
US20110304828A1 (en) Passive alignment method and its application in micro projection devices
JP6477071B2 (en) Optical receiver module manufacturing method
JP6025680B2 (en) Integrated optical module manufacturing apparatus and manufacturing method
JP6230720B2 (en) Optical component, optical module, and method of manufacturing optical component
US10386579B2 (en) Optical transmitting module and multi-lane transmitter optical module
US20170068056A1 (en) Device mounting apparatus and device mounting method
JP2013231937A (en) Optical device and manufacturing method thereof
US8162547B2 (en) Optical subassembly manufacturing method
JP2005537681A (en) System and method for simultaneous precision die bonding of multiple optical elements onto a single substrate
US6582548B1 (en) Compression bonding method using laser assisted heating
US10481353B2 (en) Optical receptacle, optical module, and method for producing optical module
JP6221748B2 (en) Manufacturing method of optical communication module
WO2017057243A1 (en) Device and method for optical axis alignment and assembly of optical communication module
JP6225681B2 (en) Manufacturing method of optical communication module
US7177506B2 (en) Method for forming an aligned optical sub-assembly
JP2019186472A (en) Optical device manufacturing apparatus and optical device manufacturing method
JP2016102864A (en) Optical module and method for manufacturing the same
JP2003046184A (en) Device and method for assembling optical product
US7184646B2 (en) Optical module with multiple optical sources
US9563065B2 (en) Optical module and method of manufacturing the same
JP5861482B2 (en) Optical module manufacturing apparatus and manufacturing method
JP2007047618A (en) Optical module
JP2017098335A (en) Wavelength multiplexed laser diode module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250