JP6218180B2 - Rectangular section propulsion method - Google Patents

Rectangular section propulsion method Download PDF

Info

Publication number
JP6218180B2
JP6218180B2 JP2014127514A JP2014127514A JP6218180B2 JP 6218180 B2 JP6218180 B2 JP 6218180B2 JP 2014127514 A JP2014127514 A JP 2014127514A JP 2014127514 A JP2014127514 A JP 2014127514A JP 6218180 B2 JP6218180 B2 JP 6218180B2
Authority
JP
Japan
Prior art keywords
rectangular
ground
excavator
section
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014127514A
Other languages
Japanese (ja)
Other versions
JP2016008377A (en
Inventor
酒井 栄治
栄治 酒井
文彦 松元
文彦 松元
Original Assignee
株式会社アルファシビルエンジニアリング
清田エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルファシビルエンジニアリング, 清田エンジニアリング株式会社 filed Critical 株式会社アルファシビルエンジニアリング
Priority to JP2014127514A priority Critical patent/JP6218180B2/en
Publication of JP2016008377A publication Critical patent/JP2016008377A/en
Application granted granted Critical
Publication of JP6218180B2 publication Critical patent/JP6218180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、矩形断面のトンネルを構築する工法に関する。   The present invention relates to a construction method for constructing a tunnel having a rectangular cross section.

現状の矩形での地下空間構築工法としては、(1)円形鋼管でのパイプルーフ工法による外郭の土留め壁を最初に構築し、外壁の土留め工が出来た後で内部掘削を行う方法(例えば特許文献1参照)や、(2)角型鋼管を使用したR&C工法(箱型ルーフ先進掘削後コンクリート躯体を現場打コンクリートもしくはコンクリート二次製品で再配置する)(例えば特許文献2参照)、ハーモニカ工法(外郭角型鋼管を外型枠として内部に現場打ちコンクリート打設する)(例えば特許文献3参照)及びHEP&JES工法(外郭に角型鋼管を配列して継ぎ手で連結して本体構造物の一部とする)(例えば特許文献4参照)がある。その他、(3)自由断面掘進機等を掘進機後方に矩形セグメントを組立てるシールド工法(例えば特許文献5参照)等がある。しかし、どの施工法も長期間の工程を必要とし、シールド工法を除いた外郭先行の施工法は、2工程式が中心で、地山の応力解放が2回にわたり発生する可能性がある。また、シールド工法は掘進機の製作に時間を要し、莫大な掘進機製作費用がかかり、掘進延長が短い場合は経済性では非常なデメリットとなる。   The current rectangular underground space construction method is as follows: (1) The method of constructing the outer retaining wall by the pipe roof construction method with a circular steel pipe first, and then excavating the outer wall after retaining the outer wall ( For example, refer to Patent Document 1), and (2) R & C method using a square steel pipe (replacement of concrete frame after box-type roof advanced excavation with spot cast concrete or concrete secondary product) (for example, refer to Patent Document 2), Harmonica construction method (in-place cast concrete is cast inside with an outer square steel pipe as an outer mold) (see, for example, Patent Document 3) and HEP & JES construction method (square steel pipes are arranged on the outer shell and connected with joints to connect the body structure (For example, refer to Patent Document 4). In addition, there is (3) a shield construction method (see, for example, Patent Document 5) in which a rectangular segment is assembled on the rear side of a free-cutting machine or the like. However, every construction method requires a long process, and the construction method prior to the outline excluding the shield construction method is centered on the two-step method, and there is a possibility that stress release of the ground will occur twice. In addition, the shield method takes time to manufacture the excavator, enormously costs the production of the excavator, and if the excavation extension is short, it is a great economic disadvantage.

<開削トンネル工法>
開削を行うため、先行して両側に土留め工を施工する必要がある。土留め工の種類としては、地表面から地中連続壁や、柱列式連続杭のような削孔式がある。その他は、鋼矢板土留め工法のように、左右に鋼矢板の打ち込みを行う工法で、その後、掘削機で掘削を行い、函体埋設後埋め戻しを行ってトンネルを構築する。
・周辺環境に対して、直接・間接的な影響(振動・騒音・近接構造物・地下埋設物等)が大きく、交通環境阻害が発生して地域住民に対して問題が多く、又、大規模な施工ヤードが確保されていることが採用の条件となる。
・工費は一番優位性がある。
・最掘削深部分は地盤が開放され、後に、構造物自体の沈下、埋め戻しによる地表面沈下、構造物不等沈下、コンクリート打ち継目や函体コンクリート目地部の漏水が発生する可能性が高い。
<Open-cut tunneling method>
In order to perform excavation, it is necessary to construct earth retaining works on both sides in advance. As a kind of earth retaining work, there is a drilling type such as a continuous wall from the ground surface and a continuous column pile. The other is a method of driving steel sheet piles to the left and right, as in the steel sheet pile earth retaining method, and then excavating with an excavator and backfilling after burying the box to construct the tunnel.
・ Direct and indirect influences (vibration, noise, adjacent structures, underground structures, etc.) on the surrounding environment are large, and there are many problems for local residents due to traffic environment obstruction. Adequate construction yard is secured.
・ The construction cost has the most advantage.
・ In the deepest excavation part, the ground is opened, and there is a high possibility that the structure itself will sink, the ground will sink due to backfilling, the structure will become unevenly subsided, and the joint joints and box concrete joints will leak. .

<自由断面シールド工法>
シールド掘進機の形状には様々な構造がある。ロードヘッダ方式や円形・ドラム組合せ方式、スイングドラムカッター方式、偏心多軸方式(DPLEX工法)、未掘削隅部のオーガ掘削機能の付加方式等が考えられる。基本的にはシールド機械は全損扱いで工事費を計上されるために、施工費が高騰する。
・シールド掘削機械は非常に高価であるため、経済性は大きな問題となる。
・施工ヤードが非常に大きく求められる。
・一次覆工で終了するために、施工開始から終了までは短期間施工が可能となるが、掘進機の製作には最低10ヶ月以上必要となる。
・短距離での施工には経済性からは不向きであり、工事規模としては一般的には施工延長500m以上が、矩形シールド工法採用の条件となる。
<Free section shield method>
There are various structures for the shield machine. A load header method, a circular / drum combination method, a swing drum cutter method, an eccentric multi-axis method (DPLEX method), a method of adding an auger excavation function at an unexcavated corner, and the like are conceivable. Basically, shield machines are treated as total losses, and construction costs are recorded, so construction costs rise.
-Shield excavation machines are very expensive, so economic efficiency is a big problem.
・ A construction yard is required very large.
・ Because it will be completed by primary lining, construction will be possible for a short period from the start to the end of construction, but it will take at least 10 months to make the excavator.
-It is unsuitable for construction at short distances from the viewpoint of economy, and generally, the construction scale of 500 m or more is the condition for adopting the rectangular shield construction method.

<パイプルーフ工法>
都市部における地下再開発には、埋設支障物件の多さにより事前の細部に渡っての計画が立てにくい(地下埋設調査の後の断面決定等)ために途中の断面変化の必要性が生じ、地下空間の構築にはパイプルーフ工法が多用される。一般的には円形での鋼管を用い(角型鋼管を採用する場合もある)、推進工法で事前に先受けして、鋼管同士は縦断方向には溶接継ぎ手、断面的にはTH継ぎ手やAH継ぎ手等の鋼管継ぎ手を用いて連結させる。工事の手順は、事前に発進立坑や到達立坑を構築し、その後、パイプルーフ工法で水平に鋼管先受けを行い、水平土留め工を終了した後に、内部の掘削と鋼製支保工の同時施工を行う。掘削や内部支保工が完了した段階で、内部に鉄筋配置や型枠工を施し、コンクリートで巻立てを行う。基本的には以下の特徴がある。
・鋼管1スパン毎の施工であるから、一気に大断面を掘削しない点ではパイプルーフ施工中は地盤への影響が少ない点は優位である。
・1本ずつの施工を行うために、施工期間は長くかかる。
・水平土留め先受け鋼管は地中に残置され、内部は充填されるので、将来的には内部の構造物の安定性には非常に優位となる。
・経済的には鋼管等が残置となり、工事費が高い。
・任意断面(長方形や一部の拡幅断面)の施工や途中の断面変化には最適な工法である。
・一般的な施工延長は100m以内と考えられる。
・最大の問題は、パイプルーフ工が終了した後に、内部掘削や内部支保工の設置を行うが、その段階で縦列方向での鋼管のたわみが生じ、地盤沈下が発生しやすくなる。
<Pipe roof construction method>
In underground redevelopment in urban areas, it is difficult to plan in advance due to the large number of obstacles to burial (determining the section after underground burial survey, etc.). Pipe roof construction is often used to build underground spaces. Generally, round steel pipes are used (in some cases, square steel pipes may be used), and the steel pipes are preliminarily received in advance by a propulsion method. Connect using a steel pipe joint such as a joint. The construction procedure is to construct a start shaft and a reach shaft in advance, then horizontally receive the steel pipe tip with the pipe roof method, and after the horizontal earth retaining work is completed, the internal excavation and the steel support work are performed simultaneously. I do. When excavation and internal support work are completed, rebar placement and formwork are applied inside, and concrete is wound up. There are basically the following features.
・ Because the construction is for each span of the steel pipe, it is advantageous in that it does not excavate a large section at a stretch, and there is little influence on the ground during pipe roof construction.
・ It takes a long period of time to construct one by one.
-Since the horizontal retaining tip receiving steel pipe is left in the ground and the interior is filled, in the future it will be very advantageous for the stability of the internal structure.
-Economically, steel pipes are left behind and construction costs are high.
・ It is the most suitable method for construction of arbitrary cross sections (rectangles and some widened cross sections) and cross-section changes in the middle.
・ General construction extension is considered to be within 100m.
・ The biggest problem is that after pipe roof work is completed, internal excavation and internal support work will be installed, but at that stage, the steel pipe will bend in the longitudinal direction, and land subsidence will occur more easily.

<全断面地盤改良工法(開放型又は刃口推進型)>
地盤強度を向上させ、地盤の自立や止水性を確保した上で掘削を行う施工法で、掘削途上での地下水の浸入を防止するために、薬液注入工法や高圧噴射工法で地盤改良を行う。
・地表面からの施工が中心となり、道路等の占用が問題となりやすい。
・施工中の削孔水の処理、攪拌された汚泥が地表面に噴出するため、それらの処理が必要となる。
・施工後の地下水汚染の問題が発生する。
・地表面からの施工が原則であるが水平注入や水平攪拌施工の対策も必要となる。
・事前の既設埋設物の十分な調査が必要である。
・注入中に既設地下埋設物への影響が発生する可能性が高い。
・注入圧が高いと地盤隆起が発生し、空隙率の大きな地盤では薬液やセメント系の逸走が生じ、広範囲に影響を与える危険性がある。
<All-section ground improvement method (open type or blade edge propulsion type)>
In order to improve the strength of the ground and ensure excavation after ensuring the independence and water-stopping of the ground, in order to prevent the intrusion of groundwater during excavation, the ground will be improved by chemical injection and high-pressure injection methods.
・ Construction from the ground surface is the center, and the occupation of roads is likely to be a problem.
・ Drilling water during construction and agitated sludge are ejected to the ground surface, so these treatments are necessary.
・ Groundwater contamination will occur after construction.
・ Construction from the ground surface is the principle, but measures for horizontal injection and horizontal agitation are also required.
-A thorough investigation of the existing buried objects is necessary.
・ There is a high possibility that the existing underground objects will be affected during the injection.
-If the injection pressure is high, ground uplift will occur, and if the porosity is large, chemicals and cement runaway will occur, which may affect a wide area.

<箱型ルーフ工法、HEP&JES工法、R&C工法等>
外郭を先行して土留めを行い、矩体コンクリートを引き込む施工法、押込む施工法、外郭を外側型枠に利用して内部を構築する施工法、先行して埋設した外郭の角型部材を本体構造物の一部に活用した施工法がある。
<Box roof method, HEP & JES method, R & C method, etc.>
The construction method that pulls in the earth before leading the outer shell, pulls in the rectangular concrete, the pressing method that pushes in, the construction method that uses the outer shell as the outer formwork to build the interior, and the square member of the outer shell that was buried in advance. There is a construction method used for part of the body structure.

特開2005−16141号公報JP 2005-16141 A 特開2001−73670号公報JP 2001-73670 A 特開2004−250957号公報JP 2004-250957 A 特開2000−120372号公報JP 2000-120372 A 特開2000−8781号公報Japanese Unexamined Patent Publication No. 2000-8781

本発明が解決しようとする課題は、従来型のアンダーパスの工法では土留め工施工時に大きな施工ヤードを必要となることから、これらの問題点を解消し、前記の様々な工法と比較してコンパクトな設備及び短期間で経済性評価が高い施工が可能となり、しかも施工後の地盤沈下や土壌汚染が少ない大断面の矩形函路の構築方法を提供することにある。   The problem to be solved by the present invention is that the conventional underpass construction method requires a large construction yard at the time of earth retaining construction, so these problems are solved and compared with the above-mentioned various construction methods. It is an object of the present invention to provide a construction method of a rectangular box with a large cross section that enables compact equipment and construction with high economic evaluation in a short period of time, and that has less land subsidence and soil contamination after construction.

かかる課題を解決した本発明の構成は、
1) 地中に構築しようとする矩形函路の断面上部の掘削に対しては円形又は矩形の密閉型の上部掘進機を複数用い、前記矩形函路の断面下部の掘削に対しては矩形掘進機を用い、しかも前記矩形掘進機は、掘削土砂を取り込む排土口と、排土口から取り込まれた掘削土砂を後方へ搬送して排出する排土装置と、排土口の周囲に回転可能に設けた回転体と、同回転体に軸支して回転体の回転で自転公転する回転カッターと、回転体の回転と回転カッターの自転を駆動する駆動部とで構成され、更に矩形掘進機の両側の左右隔壁に両側の地盤を切削するサイドカッティング部を設け、これらの掘進機を隔壁付きの矩形断面の包括胴管で一体化し且つ上部掘進機は内部に設置されたジャッキで包括胴管内とその前方とを前後移動できる機能を備え、各上部掘進機にて掘削土砂を取り込んで後方へ排出する独立した排土装置を設け、包括胴管の先端に貫入抵抗を軽減するカッティングビットを設け、複数の上部掘進機をジャッキで1体ずつ前進させながら地盤の上部を掘削し、前進した全ての上部掘進機で土被り上の土荷重を先受け状態にした後に、矩形掘進機と一体の包括胴管を発進立坑内に設置した元押装置で前進させながら地盤の下部を矩形掘進機で掘削するとともに、前記ジャッキを収縮させながら上部掘進機を定位置のまま包括胴管内へ収納し、この上下の掘削を交互に繰り返しながら包括胴管に後続させた函体コンクリートを地中に埋入して矩形函路を構築することを特徴とする、矩形断面推進工法
2) 隔壁が、地盤の掘削部分に高圧の泥水を噴射する泥水噴射孔を備えているものである、前記1)記載の矩形断面推進工法
3) 一体では運搬不可能な函体コンクリートが、2分割又は3分割に複数に分割された各ピースを現場で連結して一体化組立を行って推進工法で施工可能にしたものである、前記1)又は2)記載の矩形断面推進工法
4) 左右の上部掘進機の中間位置の未掘削部に地山を攪拌混合する攪拌混合カッターを設けた、前記1)〜3)いずれか記載の矩形断面推進工法
にある。
The configuration of the present invention that solves this problem is as follows.
1) For excavation of the upper section of the rectangular box to be built underground, a plurality of circular or rectangular closed upper excavators are used, and for excavation of the lower section of the rectangular box, rectangular excavation is used. In addition, the rectangular excavator can be rotated around the discharge port, a discharge port that takes in the excavation soil, a soil removal device that transports the excavation soil taken from the discharge port to the rear, and discharges it. A rotary excavator, a rotary cutter that pivotally supports the rotary body and rotates and revolves by the rotation of the rotary body, and a drive unit that drives the rotation of the rotary body and the rotation of the rotary cutter. Side cutting parts for cutting the ground on both sides are provided on the left and right bulkheads of both sides of the machine , and these excavators are integrated with a rectangular shell with a bulkhead with a bulkhead, and the upper excavator is a jack installed inside the inner shell. With the ability to move back and forth Each upper excavator is equipped with an independent earth removal device that takes the excavated sediment and discharges it backwards, a cutting bit that reduces penetration resistance is provided at the tip of the comprehensive trunk pipe, and multiple upper excavators are one by one with a jack After excavating the upper part of the ground while making it move forward and making the earth load on the earth covering in a pre-received state with all of the upper excavators that have advanced, the main pusher that installed the comprehensive trunk pipe integrated with the rectangular excavator in the start shaft While excavating the lower part of the ground with a rectangular excavator while moving forward with the device, the upper excavator is housed in the comprehensive trunk pipe while shrinking the jack, and the upper and lower excavations are repeated alternately and the comprehensive trunk pipe The rectangular section propulsion method is characterized in that the rectangular concrete is constructed by burying the boxed concrete that follows the ground 2) The muddy water injection hole in which the partition wall injects high-pressure muddy water into the excavation part of the ground Has Than is the 1) rectangular section jacking method 3) box body concrete impossible transported in integral described, performs integral assembly by connecting the pieces which are divided into a plurality of two-division or three-division in situ The rectangular cross-section propulsion method described in 1) or 2), which can be constructed by the propulsion method, and 4) provided with an agitating and mixing cutter for agitating and mixing the ground in the unexcavated portion at the middle position between the left and right upper excavators In the rectangular cross-section propulsion method described in any one of 1) to 3) above.

本発明によれば、上部と下部の掘進機を組み合わせて推進工法で施工するから、矩形断面の分割掘削が可能となり、地山安定に優れ、外郭の土留め工等の補助工法が不要となり、施工ヤードも他の工法と比較して小規模なもので済み、短期間で大断面の矩形函路を施工できる。しかも開削や埋め戻し作業がなく、薬液注入等の地盤改良も坑口付近のみで基本的に全断面は不要となるから、地盤沈下や土壌汚染が少ないものとなる。   According to the present invention, since the construction is carried out by combining the upper and lower excavators, it is possible to divide the rectangular section, excel in the stability of the ground, and no need for auxiliary construction methods such as earth retaining work for the outer shell, The construction yard is also small compared to other construction methods, and a rectangular box with a large cross section can be constructed in a short period of time. Moreover, there is no excavation or backfilling work, and ground improvement such as chemical solution injection is basically not necessary for the entire cross section only near the wellhead, so that ground subsidence and soil contamination are reduced.

実施例の上部掘進機と矩形掘進機の正面図である。It is a front view of the upper excavation machine and rectangular excavation machine of an Example. 実施例の上部掘進機と矩形掘進機の断面図である。It is sectional drawing of the upper excavation machine and rectangular excavation machine of an Example. 実施例の回転カッターの掘削範囲を示す説明図である。It is explanatory drawing which shows the excavation range of the rotary cutter of an Example. 実施例の矩形断面推進工法の工程を示す説明図である。It is explanatory drawing which shows the process of the rectangular cross-section promotion construction method of an Example. 実施例の矩形断面推進工法の工程を示す説明図である。It is explanatory drawing which shows the process of the rectangular cross-section promotion construction method of an Example. 実施例の他の例の上部掘進機と矩形掘進機の正面図である。It is a front view of the upper excavator and the rectangular excavator of another example of the embodiment.

以下、本発明を実施するための形態を代表的な実施例と図面に基づいて具体的に説明する。なお、本発明は以下の実施例に限定されるものではなく、様々な組み合わせや変形が可能である。例えば、矩形掘進機を左右2連とし、上部掘進機を左右3連又は4連などとすることで、より大断面の矩形函路を構築できるようにすることも可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention will be specifically described with reference to typical examples and drawings. In addition, this invention is not limited to a following example, Various combinations and deformation | transformation are possible. For example, it is also possible to construct a rectangular box with a larger cross section by setting the rectangular excavator to the left and right duplex and the upper excavator to the left and right triple or quadruple.

本実施例を図1〜5に示す。図中、1は矩形掘進機、2A,2Bは上部掘進機、3は包括胴管、4は函体コンクリート、Gは地盤、Sは削孔である。   This embodiment is shown in FIGS. In the figure, 1 is a rectangular excavator, 2A and 2B are upper excavators, 3 is a comprehensive trunk pipe, 4 is box concrete, G is the ground, and S is a drilling hole.

矩形掘進機1は、掘削土砂を取り込む排土口11と、排土口11から取り込まれた掘削土砂を後方へ搬送して排出する排土装置12と、排土口11の周囲に回転可能に設けた回転体13と、回転体13に軸支して回転体13の回転で自転公転する3体の回転カッター14と、回転体13の回転と回転カッター14の自転を駆動する駆動部15とで構成されている。   The rectangular excavator 1 is configured to be capable of rotating around a discharge port 11 for discharging excavated soil, a soil discharger 12 for transporting and discharging the excavated soil taken from the discharge port 11 backward, and a discharge port 11. A rotary body 13 provided; three rotary cutters 14 that pivotally support the rotary body 13 and rotate and revolve with the rotation of the rotary body 13; and a drive unit 15 that drives the rotation of the rotary body 13 and the rotation of the rotary cutter 14. It consists of

排土装置12は、掘削土砂の流路となる排土管12aと、排土管12a内の掘削土砂を後方へ搬送するスクリューコンベヤ12bと、スクリューコンベヤ12bを駆動するモーター12cと、搬送中の掘削土砂の排土量を調節する膨縮可能な排土バルブ12dと、搬送された掘削土砂を外部へ排出する開閉可能な排土ゲート12eとで構成されている。   The earth removal device 12 includes an earth removal pipe 12a that serves as a passage for excavation earth and sand, a screw conveyor 12b that conveys the earth excavation soil in the earth discharge pipe 12a, a motor 12c that drives the screw conveyor 12b, and excavation earth and sand that are being conveyed. The soil discharge valve 12d that can be expanded and contracted to adjust the amount of soil discharged, and the openable and closable soil discharge gate 12e that discharges the excavated soil that has been conveyed to the outside.

回転カッター14は偏心型で、その回転軸が中心部から偏心した位置に設けられており、駆動部15によって、図3に示すように、上下左右位置を公転するときは短手が外側に来るように自転し、四隅位置を公転するときは長手が外側に来るように自転する。これによって、地盤Gを矩形断面に掘削できるようになっている。回転カッター14が届かない左右部分は、後述のサイドカッティング部36で切削される。   The rotary cutter 14 is an eccentric type, and is provided at a position where the rotation shaft is eccentric from the center portion. When the drive unit 15 revolves up, down, left, and right positions as shown in FIG. When rotating at the four corner positions, the rotation is performed so that the length is on the outside. As a result, the ground G can be excavated into a rectangular cross section. The left and right portions where the rotary cutter 14 does not reach are cut by a side cutting portion 36 described later.

上部掘進機2A,2Bは、外装21と、掘削土砂を取り込む排土口22aを備えた隔壁22と、排土口22aから取り込まれた掘削土砂を後方へ搬送して排出する排土装置23と、隔壁22の中心部に軸支して回転する回転カッター24と、回転カッター24を駆動する駆動部25と、後述の上部掘進機押込ジャッキ38の推進力を受ける押輪26とで構成されている。   The upper excavator 2A, 2B includes an exterior 21, a partition wall 22 having a discharge port 22a for taking in the excavated soil, and a soil removal device 23 for transporting and discharging the excavated soil taken in from the soil outlet 22a to the rear. The rotary cutter 24 is pivotally supported by the central portion of the partition wall 22, the drive unit 25 drives the rotary cutter 24, and the press ring 26 receives the propulsive force of the upper excavator push-in jack 38 described later. .

外装21は、長さが約4mの円筒状で、上部掘進機2A,2Bのスライド量を規制するバッキング止治具21a及びスライド止治具21bと、掘削土砂の流入を防止するブラシ付きダブルパッキン21cとを備えている。排土装置23は、掘削土砂の流路となる排土管23aと、搬送中の掘削土砂の排土量を調節する膨縮可能な排土バルブ23bとで構成されている。   The exterior 21 has a cylindrical shape with a length of about 4 m, a backing stopper 21a and a sliding stopper 21b that regulate the sliding amount of the upper excavators 2A and 2B, and a double packing with a brush that prevents the inflow of excavated earth and sand. 21c. The earth removal device 23 includes an earth removal pipe 23a serving as a passage for excavated earth and sand, and an expandable / contractable earth discharge valve 23b that adjusts the amount of earth excavated during the conveyance.

包括胴管3は、例えば高さが約6.2m、幅が約5mの断面矩形状で、高圧の泥水を噴射する泥水噴射孔31a,32aを備えた隔壁31,32と、上部掘進機2A,2Bをスライド可能に支持する2体のガイド円筒スリーブ管33と、掘進方向を修正する方向修正ジャッキ及び中押しジャッキ34と、地盤Gを矩形断面に切削するカッティングビット35及びサイドカッティング部36とで構成されている。ガイド円筒スリーブ管33の前後端には上部掘進機2A,2Bのバッキング止治具21aとスライド止治具21bが接触して上部掘進機2A,2Bのスライド量が1.8mに規制されるようになっている。また、ガイド円筒スリーブ管33の内周面には上部掘進機2A,2Bのブラシ付きダブルパッキン21cが密接して包括胴管3内への掘削土砂及び泥水の流入が防止されるようになっている。サイドカッティング部36は、矩形掘進機1で掘削されなかった左右部分を元押しの推進力で切削するものである。   For example, the inclusion tube 3 has a rectangular section having a height of about 6.2 m and a width of about 5 m, and includes muddy water injection holes 31 a and 32 a for injecting high-pressure muddy water. , 2B are slidably supported by two guide cylindrical sleeves 33, a direction correcting jack and an intermediate pushing jack 34 for correcting the digging direction, and a cutting bit 35 and a side cutting part 36 for cutting the ground G into a rectangular cross section. It is configured. The backing stopper jig 21a and the slide stopper jig 21b of the upper digging machines 2A and 2B come into contact with the front and rear ends of the guide cylindrical sleeve tube 33 so that the sliding amount of the upper digging machines 2A and 2B is regulated to 1.8 m. It has become. Further, the double packing 21c with the brushes of the upper digging machines 2A and 2B is brought into close contact with the inner peripheral surface of the guide cylindrical sleeve tube 33 so that the inflow of excavated soil and mud water into the inclusion tube 3 is prevented. Yes. The side cutting part 36 cuts the left and right parts that have not been excavated by the rectangular excavator 1 with the driving force of the original push.

この包括胴管3内の下部に矩形掘進機1を設置し、その後方位置に掘削土砂を貯泥する貯泥槽37を設置し、その貯泥槽37に掘削土砂を送り出す土砂送出装置37aを排土装置12の直下位置に設置する。2体のガイド円筒スリーブ管33内には上部掘進機2A,2Bをそれぞれ挿入し、包括胴管3内の後部に左右の押輪26を押す2体の上部掘進機押込ジャッキ38をそれぞれ取り付け、左右の排土管23aと貯泥槽37とを伸縮可能な排土ホース37bでそれぞれ接続する。左右の上部掘進機2A,2Bの中間位置(未掘削部)には、地山を攪拌混合する攪拌混合カッター39を装備する。以上の各機材は、それぞれが道路運搬可能な大きさで、現場で組み立てられるものである。   The rectangular excavator 1 is installed in the lower part of the inclusion tube 3, a mud storage tank 37 for storing mud sediment is installed at the rear position thereof, and a sediment delivery device 37 a for sending the excavated sediment to the mud tank 37 is provided. Installed at a position directly below the earth removing device 12. The upper digging machines 2A and 2B are respectively inserted into the two guide cylindrical sleeves 33, and the two upper digging machine push-in jacks 38 for pushing the left and right push wheels 26 are attached to the rear part of the inclusion tube 3, respectively. The soil discharge pipe 23a and the mud storage tank 37 are connected to each other by a soil discharge hose 37b that can be expanded and contracted. A stirring / mixing cutter 39 that stirs and mixes natural ground is provided at an intermediate position (unexcavated portion) between the left and right upper excavators 2A and 2B. Each of the above equipment is a size that can be transported on the road and assembled on site.

函体コンクリート4は、例えば高さが6.1m、幅が4.9mの断面矩形状で、道路運搬可能な大きさの各ピースに分割された状態に製作して現場に搬入し、施工直前に止水性を確保して組み立てられるものである。   The box concrete 4 has a rectangular cross section with a height of 6.1 m and a width of 4.9 m, for example, and is manufactured in a state of being divided into pieces each having a size that can be transported on the road. It can be assembled to ensure waterproofness.

本実施例では、図4(a)に示すように、包括胴管3の後端に複数の函体コンクリート4が接続されており、最後尾の函体コンクリート4は発進立坑の元押装置(図示は省略)で支えられている。この状態で、泥水噴射孔32aから泥水を噴射させるとともに左右いずれか一方の上部掘進機2A,2B(本実施例では左側の上部掘進機2A)を作動させ、図4(b)に示すように、上部掘進機押込ジャッキ38で矩形掘進機1に対して前進させながら地盤Gの上部を円形断面に掘削する。上部掘進機押込ジャッキ38は、そのロッド38aが包括胴管3の後端に当接して反力を得て、押輪26を前方へ押して掘進させる。掘削土砂は泥水で流動化されて排土口22aから取り込まれ、土圧で排土管23aと排土ホース37bを通じて貯泥槽37へ送り込まれる。この間、包括胴管3と函体コンクリート4は静止している。   In this embodiment, as shown in FIG. 4 (a), a plurality of box concrete 4 is connected to the rear end of the envelope tube 3, and the tail box box concrete 4 is used as a main pushing device ( (Not shown). In this state, muddy water is injected from the muddy water injection hole 32a and either the left or right upper digging machine 2A or 2B (in this embodiment, the left upper digging machine 2A) is operated, as shown in FIG. 4 (b). The upper part of the ground G is excavated into a circular cross section while being advanced with respect to the rectangular excavator 1 by the upper excavator pushing jack 38. In the upper excavator push-in jack 38, the rod 38a abuts on the rear end of the envelope tube 3 to obtain a reaction force, and pushes the push ring 26 forward to advance. The excavated soil is fluidized with muddy water, taken in from the earth discharge port 22a, and sent to the mud storage tank 37 through the earth discharge pipe 23a and the earth discharge hose 37b with earth pressure. During this time, the inclusion tube 3 and the box concrete 4 are stationary.

左側の上部掘進機2Aのスライド止治具21bがガイド円筒スリーブ管33の後端に接触すると停止させ、図5(a)に示すように、今度は右側の上部掘進機2Bを作動させ、上部掘進機押込ジャッキ38で矩形掘進機1に対して前進させながら地盤Gの上部を円形断面に掘削する。掘削土砂は左側と同じように泥水で流動化されて貯泥槽37へ送り込まれ、スライド止治具21bがガイド円筒スリーブ管33の後端に接触すると停止させる。これによって、地盤Gの上部が先行して掘削され、前進した左右の上部掘進機2A,2Bで土被り上の全土圧(土荷重)を先受けした状態となる。この先行掘削により、一度に全断面を掘削する場合と比較して地盤Gの緩みを最小限に防止できる。   When the slide stop jig 21b of the left upper digging machine 2A comes into contact with the rear end of the guide cylindrical sleeve tube 33, as shown in FIG. 5 (a), the right upper digging machine 2B is operated to The upper part of the ground G is excavated into a circular cross section while being advanced with respect to the rectangular excavator 1 by the excavator pushing jack 38. As with the left side, the excavated soil is fluidized with muddy water and fed into the mud storage tank 37, and is stopped when the slide stop jig 21b contacts the rear end of the guide cylindrical sleeve tube 33. As a result, the upper part of the ground G is excavated in advance, and the left and right upper excavating machines 2A and 2B have advanced to receive the total earth pressure (earth load) on the earth covering. By this advance excavation, it is possible to minimize the loosening of the ground G as compared with the case of excavating the entire cross section at once.

次に、泥水噴射孔31aから泥水を噴射させるとともに矩形掘進機1を作動させ、図5(b)に示すように、最後尾の函体コンクリート4を元押しして包括胴管3を前進させながら地盤Gの下部を矩形断面に掘削する。左右の上部掘進機押込ジャッキ38は並行して収縮させ、左右の上部掘進機2A,2Bは地盤Gとの接触で定位置のままガイド円筒スリーブ管33内へ戻る。このとき、上部の掘削が既に終了しているから、一度に全断面を掘削する場合と比較して前面抵抗や上載荷重の負荷が少なくなり、泥水の噴射で包括胴管3の貫入抵抗も減少する。掘削土砂は排土口11に取り込まれてスクリューコンベヤ12bで後方へ搬送され、排土ゲート12eから落下して土砂送出装置37aで貯泥槽37へ送り出される。矩形掘進機1と上部掘進機2A,2Bで掘削されなかった未掘削部分は、カッティングビット35とサイドカッティング部36で切削される。左右の上部掘進機2A,2Bのバッキング止治具21aがガイド円筒スリーブ管33の前端に接触してガイド円筒スリーブ管33内に収納されると、矩形掘進機1と元押しを停止させる。   Next, the muddy water is injected from the muddy water injection hole 31a and the rectangular excavator 1 is operated, and as shown in FIG. The lower part of the ground G is excavated into a rectangular cross section. The left and right upper digging machine push-in jacks 38 are contracted in parallel, and the left and right upper digging machines 2A and 2B return to the guide cylindrical sleeve tube 33 in a fixed position by contact with the ground G. At this time, since the excavation of the upper part has already been completed, the load of the front resistance and the upper load is reduced as compared with the case where the entire cross section is excavated at one time, and the penetration resistance of the comprehensive trunk pipe 3 is also reduced by the injection of muddy water. To do. The excavated earth and sand is taken into the earth discharge port 11 and conveyed backward by the screw conveyor 12b, falls from the earth discharge gate 12e, and is sent out to the mud storage tank 37 by the earth and sand delivery device 37a. Unexcavated portions that have not been excavated by the rectangular excavator 1 and the upper excavators 2A and 2B are cut by the cutting bit 35 and the side cutting portion 36. When the backing stoppers 21a of the left and right upper excavators 2A and 2B come into contact with the front end of the guide cylindrical sleeve tube 33 and are accommodated in the guide cylindrical sleeve tube 33, the rectangular excavator 1 and the main push are stopped.

以上のようにして、左右の上部掘進機2A,2Bによる上部の掘削と矩形掘進機1による下部の掘削を図4(a),(b)及び図5(a),(b)に示すように交互に繰り返すことで、地盤Gが矩形断面に掘進されて地中に矩形函路が構築される。   As described above, the upper excavation by the left and right upper excavators 2A and 2B and the lower excavation by the rectangular excavator 1 are shown in FIGS. 4 (a), 4 (b) and 5 (a), (b). The ground G is dug into a rectangular cross section, and a rectangular box is built in the ground.

図6に示すのは、本実施例の他の例である。この例は、円形の上部掘進機2A,2Bに代えて矩形の上部掘進機2A,2Bを用いている。これによって、先行掘削した際、角型によって左右の上部掘進機2A,2Bの間の間隙が減少し、円形と比較して未掘削部が少なくなり、より確実に頂部の土砂を先受けして緩みを防止することができる。また、地盤Gの上部も矩形断面に掘削されるから、包括胴管3の貫入抵抗がより軽減される。その他、符号、構成、作用効果は実施例と同じである。   FIG. 6 shows another example of this embodiment. In this example, rectangular upper digging machines 2A and 2B are used instead of the circular upper digging machines 2A and 2B. This reduces the gap between the left and right upper excavators 2A and 2B due to the square shape, and reduces the number of unexcavated portions compared to a circular shape, thus more reliably receiving the top sediment. Looseness can be prevented. In addition, since the upper part of the ground G is also excavated into a rectangular cross section, the penetration resistance of the covering trunk tube 3 is further reduced. In other respects, the reference numeral, the configuration, and the operational effects are the same as in the embodiment.

本発明の技術は、内空断面が3.0mを越える地下通路や雨水渠、共同溝等の構築に有用である。   The technology of the present invention is useful for the construction of underground passages, rainwater troughs, common ditches, etc., whose internal cross section exceeds 3.0 m.

1 矩形掘進機
11 排土口
12 排土装置
12a 排土管
12b スクリューコンベヤ
12c モーター
12d 排土バルブ
12e 排土ゲート
13 回転体
14 回転カッター
15 駆動部
2A 上部掘進機
2B 上部掘進機
21 外装
21a バッキング止治具
21b スライド止治具
21c ブラシ付きダブルパッキン
22 隔壁
22a 排土口
23 排土装置
23a 排土管
23b 排土バルブ
24 回転カッター
25 駆動部
26 押輪
3 包括胴管
31 隔壁
31a 泥水噴射孔
32 隔壁
32a 泥水噴射孔
33 ガイド円筒スリーブ管
34 方向修正ジャッキ及び中押しジャッキ
35 カッティングビット
36 サイドカッティング部
37 貯泥槽
37a 土砂送出装置
37b 排土ホース
38 上部掘進機押込ジャッキ
38a ロッド
39 攪拌混合カッター
4 函体コンクリート
G 地盤
S 削孔
DESCRIPTION OF SYMBOLS 1 Rectangular excavation machine 11 Earth discharge port 12 Earth removal apparatus 12a Earth removal pipe 12b Screw conveyor 12c Motor 12d Earth removal valve 12e Earth removal gate 13 Rotating body 14 Rotary cutter 15 Driving part 2A Upper machine 21B Exterior machine 21a Backing stop Jig 21b Slide stop jig 21c Double packing with brush 22 Bulkhead 22a Soil outlet 23 Soil discharger 23a Soilpipe 23b Soil discharge valve 24 Rotating cutter 25 Drive part 26 Push ring 3 Comprehensive trunk pipe 31 Bulkhead 31a Mud spray hole 32 Bulkhead 32a Mud spray hole 33 Guide cylindrical sleeve 34 Direction correction jack and intermediate push jack 35 Cutting bit 36 Side cutting part 37 Mud storage tank 37a Sediment delivery device 37b Soil discharge hose 38 Upper excavator push jack 38a Rod 39 Stir mixing cutter 4 Box concrete G Ground S drilling

Claims (4)

地中に構築しようとする矩形函路の断面上部の掘削に対しては円形又は矩形の密閉型の上部掘進機を複数用い、前記矩形函路の断面下部の掘削に対しては矩形掘進機を用い、しかも前記矩形掘進機は、掘削土砂を取り込む排土口と、排土口から取り込まれた掘削土砂を後方へ搬送して排出する排土装置と、排土口の周囲に回転可能に設けた回転体と、同回転体に軸支して回転体の回転で自転公転する回転カッターと、回転体の回転と回転カッターの自転を駆動する駆動部とで構成され、更に矩形掘進機の両側の左右隔壁に両側の地盤を切削するサイドカッティング部を設け、これらの掘進機を隔壁付きの矩形断面の包括胴管で一体化し且つ上部掘進機は内部に設置されたジャッキで包括胴管内とその前方とを前後移動できる機能を備え、各上部掘進機にて掘削土砂を取り込んで後方へ排出する独立した排土装置を設け、包括胴管の先端に貫入抵抗を軽減するカッティングビットを設け、複数の上部掘進機をジャッキで1体ずつ前進させながら地盤の上部を掘削し、前進した全ての上部掘進機で土被り上の土荷重を先受け状態にした後に、矩形掘進機と一体の包括胴管を発進立坑内に設置した元押装置で前進させながら地盤の下部を矩形掘進機で掘削するとともに、前記ジャッキを収縮させながら上部掘進機を定位置のまま包括胴管内へ収納し、この上下の掘削を交互に繰り返しながら包括胴管に後続させた函体コンクリートを地中に埋入して矩形函路を構築することを特徴とする、矩形断面推進工法。 For excavation of the upper section of the rectangular box to be built in the ground, a plurality of circular or rectangular sealed upper excavators are used, and for excavation of the lower section of the rectangular box, the rectangular excavator is used. In addition, the rectangular excavator is provided with a discharge port for taking in the excavated sediment, a soil removal device for conveying the excavated soil taken from the discharge port to the rear and discharging it, and a rotation around the discharge port. The rotating body, a rotating cutter that pivotally supports the rotating body and rotates and revolves by the rotation of the rotating body, and a drive unit that drives the rotation of the rotating body and the rotation of the rotating cutter. Side cutting parts for cutting the ground on both sides are provided on the right and left bulkheads of the two, and these excavators are integrated with a rectangular cross section of the general-purpose cylinder pipe with a bulkhead, and the upper excavator is a jack installed inside the internal cylinder pipe and its a function capable of moving back and forth and forward, the upper The soil discharge device independent for discharging rearwardly captures excavated soil at excavator provided, inclusive cylinder tube distal cutting bit to reduce the penetration resistance provided of advancing a plurality of upper tunneling machine by one body by a jack While excavating the upper part of the ground and making the earth load on the earth covering in a pre-received state with all the upper excavators that have advanced, the main pusher installed a comprehensive trunk pipe integrated with the rectangular excavator in the start shaft While excavating the lower part of the ground with a rectangular excavator while moving forward, the upper excavator is housed in the comprehensive barrel pipe while contracting the jack, and the upper and lower excavations are alternately repeated to follow the comprehensive trunk pipe A rectangular cross-section propulsion method characterized in that a rectangular box is constructed by burying the boxed concrete in the ground. 隔壁が、地盤の掘削部分に高圧の泥水を噴射する泥水噴射孔を備えているものである、請求項1記載の矩形断面推進工法。 The rectangular cross-section propulsion method according to claim 1 , wherein the partition wall is provided with a muddy water injection hole for injecting high-pressure muddy water into the excavation portion of the ground . 一体では運搬不可能な函体コンクリートが、2分割又は3分割に複数に分割された各ピースを現場で連結して一体化組立を行って推進工法で施工可能にしたものである、請求項1又は2記載の矩形断面推進工法。 The box concrete, which cannot be transported as a single piece, is made by connecting the pieces divided into two or three into a plurality of pieces on the site and assembling them together to enable construction by the propulsion method. Or the rectangular cross-section propulsion method of 2 description. 左右の上部掘進機の中間位置の未掘削部に地山を攪拌混合する攪拌混合カッターを設けた、請求項1〜3いずれか記載の矩形断面推進工法。
The rectangular cross-section propulsion method according to any one of claims 1 to 3, wherein a stirring and mixing cutter that stirs and mixes natural ground in an unexcavated portion at an intermediate position between the left and right upper excavators .
JP2014127514A 2014-06-20 2014-06-20 Rectangular section propulsion method Active JP6218180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127514A JP6218180B2 (en) 2014-06-20 2014-06-20 Rectangular section propulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127514A JP6218180B2 (en) 2014-06-20 2014-06-20 Rectangular section propulsion method

Publications (2)

Publication Number Publication Date
JP2016008377A JP2016008377A (en) 2016-01-18
JP6218180B2 true JP6218180B2 (en) 2017-10-25

Family

ID=55226148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127514A Active JP6218180B2 (en) 2014-06-20 2014-06-20 Rectangular section propulsion method

Country Status (1)

Country Link
JP (1) JP6218180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472789A (en) * 2020-04-29 2020-07-31 安徽开源路桥有限责任公司 Pipe jacking construction process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093948A (en) * 2019-06-06 2019-08-06 福州大学 Variable cross-section Pipe rack and its construction method suitable for rapid construction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3084212B2 (en) * 1995-06-13 2000-09-04 機動建設工業株式会社 Rectangular shield machine
JP2001193386A (en) * 2000-01-11 2001-07-17 Tobishima Corp Shallow earth covering shield excavating device and shield excavating method
JP3883370B2 (en) * 2000-08-29 2007-02-21 日立造船株式会社 Excavator for shield tunneling machine for rectangular tunnel
JP3890293B2 (en) * 2002-12-02 2007-03-07 三井住友建設株式会社 Propulsion method and connection structure for propulsion method tube
JP4556786B2 (en) * 2004-07-02 2010-10-06 株式会社大林組 Shielding machine propulsion method
JP2006152745A (en) * 2004-12-01 2006-06-15 Kyowa Exeo Corp Rectangular boring machine
JP5015868B2 (en) * 2008-06-25 2012-08-29 大成建設株式会社 Tunnel excavator
JP5339489B1 (en) * 2012-04-27 2013-11-13 株式会社アルファシビルエンジニアリング A closed-type excavator corresponding to a horseshoe-shaped or hood-shaped underground space

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472789A (en) * 2020-04-29 2020-07-31 安徽开源路桥有限责任公司 Pipe jacking construction process
CN111472789B (en) * 2020-04-29 2021-05-28 安徽开源路桥有限责任公司 Pipe jacking construction process

Also Published As

Publication number Publication date
JP2016008377A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP4958035B2 (en) Shield roof construction method
JP6661448B2 (en) Construction method of underground diaphragm wall
JP2007217911A (en) Construction method of underground cavity and tunnel construction method
JP2007077677A (en) Construction method for underground structure
JP2017166189A (en) Construction method of large cross-section underground space, and outer shell shield starting base
JP6218180B2 (en) Rectangular section propulsion method
JP5339489B1 (en) A closed-type excavator corresponding to a horseshoe-shaped or hood-shaped underground space
JP4471521B2 (en) Shield construction method, large section tunnel and its construction method, and shield machine
JP4625815B2 (en) Non-open-cutting construction method for underground structures
JP3931123B2 (en) Non-open-cutting construction method for underground structures
JP4959444B2 (en) Open tunnel excavator and tunnel excavation method
JP4464248B2 (en) Shield widening method and shield machine capable of widening lining
JP3867924B2 (en) Diverging type propulsion machine
JP7303756B2 (en) Open shield machine and tunnel construction method
JP7162501B2 (en) Outer shell shield construction method using shield starting base and circumferential tunnel
JP4180347B2 (en) Construction method of underground continuous wall and underground continuous wall
JP4472462B2 (en) Widening shield machine
JP2002242585A (en) Tunnel constructing method and shield machine for use therein
JPH06100072B2 (en) Sediment receiving method using horizontal auger
JPH06288180A (en) Expansion shield device
JP6249620B2 (en) Widening tunnel construction method and widening shield machine
JPH06346699A (en) Excavation method of underground space
KR20210157068A (en) Structural installation method for forming underground tunnels for easy intrusion of steel pipes and installation of waterproof steel plates in straight and curved sections
JP3811482B2 (en) Shield tunnel joining method
JP4202231B2 (en) Construction device and construction method for underground wall drain pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170616

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6218180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250