JP6214563B2 - 定量的t1マッピングを用いた、リスクに晒されたエリアの自動化された検出 - Google Patents
定量的t1マッピングを用いた、リスクに晒されたエリアの自動化された検出 Download PDFInfo
- Publication number
- JP6214563B2 JP6214563B2 JP2014553834A JP2014553834A JP6214563B2 JP 6214563 B2 JP6214563 B2 JP 6214563B2 JP 2014553834 A JP2014553834 A JP 2014553834A JP 2014553834 A JP2014553834 A JP 2014553834A JP 6214563 B2 JP6214563 B2 JP 6214563B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- contrast
- medical imaging
- imaging system
- tissue type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/174—Segmentation; Edge detection involving the use of two or more images
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
- G06T2207/10096—Dynamic contrast-enhanced magnetic resonance imaging [DCE-MRI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/41—Medical
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/20—Indexing scheme for editing of 3D models
- G06T2219/2012—Colour editing, changing, or manipulating; Use of colour codes
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Computer Graphics (AREA)
- Architecture (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261591412P | 2012-01-27 | 2012-01-27 | |
| US61/591,412 | 2012-01-27 | ||
| PCT/IB2013/050543 WO2013111051A1 (en) | 2012-01-27 | 2013-01-22 | Automated detection of area at risk using quantitative t1 mapping |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2015510412A JP2015510412A (ja) | 2015-04-09 |
| JP6214563B2 true JP6214563B2 (ja) | 2017-10-18 |
Family
ID=47747731
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014553834A Expired - Fee Related JP6214563B2 (ja) | 2012-01-27 | 2013-01-22 | 定量的t1マッピングを用いた、リスクに晒されたエリアの自動化された検出 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9547942B2 (enExample) |
| EP (1) | EP2807633B1 (enExample) |
| JP (1) | JP6214563B2 (enExample) |
| CN (1) | CN104094314B (enExample) |
| BR (1) | BR112014018076A8 (enExample) |
| RU (1) | RU2626869C2 (enExample) |
| WO (1) | WO2013111051A1 (enExample) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6132653B2 (ja) * | 2013-05-08 | 2017-05-24 | 東芝メディカルシステムズ株式会社 | 画像処理装置及び磁気共鳴イメージング装置 |
| CN106030608A (zh) * | 2013-11-06 | 2016-10-12 | 理海大学 | 生物组织分析诊断系统与方法 |
| CN104881865B (zh) * | 2015-04-29 | 2017-11-24 | 北京林业大学 | 基于无人机图像分析的森林病虫害监测预警方法及其系统 |
| US10466326B2 (en) * | 2015-05-15 | 2019-11-05 | Stc. Unm | Quantitative [Fe]-MRI (femri) of anti-PSMA-conjugated SPIONs based on PSMA expression levels |
| US10685210B2 (en) * | 2015-08-25 | 2020-06-16 | Koninklijke Philips N.V. | Tissue microarray registration and analysis |
| JP6326034B2 (ja) * | 2015-12-11 | 2018-05-16 | 安西メディカル株式会社 | キセノンct装置 |
| JP6506422B2 (ja) * | 2016-02-05 | 2019-04-24 | 株式会社日立製作所 | 医用画像診断支援装置、および、磁気共鳴イメージング装置 |
| US10695134B2 (en) | 2016-08-25 | 2020-06-30 | Verily Life Sciences Llc | Motion execution of a robotic system |
| EP3373247A1 (en) * | 2017-03-09 | 2018-09-12 | Koninklijke Philips N.V. | Image segmentation and prediction of segmentation |
| EP3379281A1 (en) * | 2017-03-20 | 2018-09-26 | Koninklijke Philips N.V. | Image segmentation using reference gray scale values |
| EP3477324B1 (en) * | 2017-10-31 | 2025-03-26 | Pie Medical Imaging BV | Improving left ventricle segmentation in contrast-enhanced cine mri datasets |
| US11344374B2 (en) * | 2018-08-13 | 2022-05-31 | Verily Life Sciences Llc | Detection of unintentional movement of a user interface device |
| TWI758950B (zh) * | 2020-11-13 | 2022-03-21 | 大陸商昆山瑞創芯電子有限公司 | 應用於顯示面板的校準方法及校準裝置 |
| CN118022200A (zh) * | 2022-11-11 | 2024-05-14 | 中硼(厦门)医疗器械有限公司 | 治疗计划系统、重叠自动检查方法及治疗计划的制定方法 |
| CN118733837B (zh) * | 2024-06-04 | 2025-01-14 | 陕西盛世鹏展智能科技有限公司 | 一种基于大数据的物联网设备控制系统及方法 |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60165945A (ja) * | 1984-02-10 | 1985-08-29 | 株式会社日立製作所 | 画像処理方式 |
| WO1998052464A1 (en) * | 1997-05-23 | 1998-11-26 | The Carolinas Heart Institute | Electromagnetical imaging and therapeutic (emit) systems |
| US6205349B1 (en) | 1998-09-29 | 2001-03-20 | Siemens Medical Systems, Inc. | Differentiating normal living myocardial tissue, injured living myocardial tissue, and infarcted myocardial tissue in vivo using magnetic resonance imaging |
| US6842638B1 (en) * | 2001-11-13 | 2005-01-11 | Koninklijke Philips Electronics N.V. | Angiography method and apparatus |
| US20040218794A1 (en) * | 2003-05-01 | 2004-11-04 | Yi-Hsuan Kao | Method for processing perfusion images |
| US7480412B2 (en) * | 2003-12-16 | 2009-01-20 | Siemens Medical Solutions Usa, Inc. | Toboggan-based shape characterization |
| EP2008239A2 (en) | 2006-03-17 | 2008-12-31 | Koninklijke Philips Electronics N.V. | Combining magnetic resonance images |
| US10098563B2 (en) | 2006-11-22 | 2018-10-16 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus |
| US8086297B2 (en) | 2007-01-31 | 2011-12-27 | Duke University | Dark blood delayed enhancement magnetic resonance viability imaging techniques for assessing subendocardial infarcts |
| US9395431B2 (en) * | 2008-05-01 | 2016-07-19 | Sunnybrook Health Sciences Center | Multi-contrast delayed enhancement cardiac magnetic resonance imaging |
| CN101916443B (zh) * | 2010-08-19 | 2012-10-17 | 中国科学院深圳先进技术研究院 | Ct图像的处理方法及系统 |
| CN102004917B (zh) * | 2010-12-17 | 2012-04-18 | 南方医科大学 | 一种图像边缘近邻描述特征算子的提取方法 |
-
2013
- 2013-01-22 EP EP13705596.8A patent/EP2807633B1/en active Active
- 2013-01-22 US US14/374,731 patent/US9547942B2/en active Active
- 2013-01-22 RU RU2014134899A patent/RU2626869C2/ru not_active IP Right Cessation
- 2013-01-22 CN CN201380006573.9A patent/CN104094314B/zh active Active
- 2013-01-22 JP JP2014553834A patent/JP6214563B2/ja not_active Expired - Fee Related
- 2013-01-22 WO PCT/IB2013/050543 patent/WO2013111051A1/en not_active Ceased
- 2013-01-22 BR BR112014018076A patent/BR112014018076A8/pt not_active Application Discontinuation
Also Published As
| Publication number | Publication date |
|---|---|
| US20150213652A1 (en) | 2015-07-30 |
| RU2626869C2 (ru) | 2017-08-02 |
| WO2013111051A1 (en) | 2013-08-01 |
| EP2807633B1 (en) | 2018-08-22 |
| US9547942B2 (en) | 2017-01-17 |
| JP2015510412A (ja) | 2015-04-09 |
| BR112014018076A8 (pt) | 2017-07-11 |
| BR112014018076A2 (enExample) | 2017-06-20 |
| CN104094314B (zh) | 2018-06-08 |
| EP2807633A1 (en) | 2014-12-03 |
| RU2014134899A (ru) | 2016-03-20 |
| CN104094314A (zh) | 2014-10-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6214563B2 (ja) | 定量的t1マッピングを用いた、リスクに晒されたエリアの自動化された検出 | |
| Lladó et al. | Automated detection of multiple sclerosis lesions in serial brain MRI | |
| Yu et al. | Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images | |
| US9424644B2 (en) | Methods and systems for evaluating bone lesions | |
| Kim et al. | Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities | |
| JP6595729B2 (ja) | 医療画像における変化検出 | |
| EP2407927A1 (en) | A method and device for evaluating evolution of tumoral lesions | |
| JP2017520305A (ja) | 急性脳虚血患者における組織領域の区分法及び予測法 | |
| US9147242B2 (en) | Processing system for medical scan images | |
| Sun et al. | Automated template-based PET region of interest analyses in the aging brain | |
| WO2019007952A1 (en) | METHOD OF EVALUATING IMAGE ANALYSIS OF PROBABILITY THAT ISCHEMIA IN A CEREBRAL TISSUE AREA RESULTS IN INFARCTION OF THIS BRAIN TISSUE AREA | |
| Yang et al. | Delineation of FDG-PET tumors from heterogeneous background using spectral clustering | |
| US20110194741A1 (en) | Brain ventricle analysis | |
| CN110383347A (zh) | 皮质畸形识别 | |
| GB2515634A (en) | System and methods for efficient assessment of lesion development | |
| WO2017198518A1 (en) | Image data processing device | |
| Goyal et al. | Development of a Stand‐Alone Independent Graphical User Interface for Neurological Disease Prediction with Automated Extraction and Segmentation of Gray and White Matter in Brain MRI Images | |
| Slomka et al. | Quantification of myocardial perfusion | |
| Johnstone et al. | Assessment of tissue edema in patients with acute myocardial infarction by computer‐assisted quantification of triple inversion recovery prepared MRI of the myocardium | |
| Wesarg | AHA conform analysis of myocardial function using and extending the toolkits ITK and VTK | |
| O'Brien et al. | Machine Learning Based Cardiac Scar Detection in Computed Tomography | |
| WO2025136816A1 (en) | Machine learning enabled analysis of medical imaging data for assessment of disease progression and treatment response | |
| Madhav et al. | An Automated Segmentation Method for Assesing Myocardial Infarct Size Using K-Means Algorithm | |
| Urbán et al. | Semi-automatic tumor contouring method using PET and MRI medical images | |
| Levy | 16.4 Biomedical Informatics Systems to Support Treatment Response |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160119 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161117 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170104 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170328 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170424 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170516 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170803 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170822 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170919 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6214563 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |