JP6213270B2 - Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor - Google Patents

Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor Download PDF

Info

Publication number
JP6213270B2
JP6213270B2 JP2014016592A JP2014016592A JP6213270B2 JP 6213270 B2 JP6213270 B2 JP 6213270B2 JP 2014016592 A JP2014016592 A JP 2014016592A JP 2014016592 A JP2014016592 A JP 2014016592A JP 6213270 B2 JP6213270 B2 JP 6213270B2
Authority
JP
Japan
Prior art keywords
group
polysilsesquioxane
solvent
resin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014016592A
Other languages
Japanese (ja)
Other versions
JP2015143293A (en
Inventor
岳 吉川
岳 吉川
高島 正之
正之 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2014016592A priority Critical patent/JP6213270B2/en
Priority to PCT/JP2015/051942 priority patent/WO2015115340A1/en
Priority to TW104102548A priority patent/TWI653294B/en
Publication of JP2015143293A publication Critical patent/JP2015143293A/en
Application granted granted Critical
Publication of JP6213270B2 publication Critical patent/JP6213270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、UV−LED用ポリシルセスキオキサン系封止材組成物及びそのための溶媒の使用に関する。   The present invention relates to a polysilsesquioxane-based encapsulant composition for UV-LED and the use of a solvent therefor.

ポリシルセスキオキサン系封止材組成物は、UV−LEDに含まれる素子の封止に用いられる。   The polysilsesquioxane-based sealing material composition is used for sealing an element included in a UV-LED.

UV−LED用ポリシルセスキオキサン系封止材組成物、特にUV−C領域(200−280nm)の光を放出する素子の封止に適した封止材組成物のための溶媒の使用を提供する。   Use of a solvent for a polysilsesquioxane-based encapsulant composition for UV-LEDs, particularly an encapsulant composition suitable for encapsulating a device that emits light in the UV-C region (200-280 nm) provide.

本発明は、下記〔1〕及び〔2〕記載の発明を含む。
〔1〕硬化物の260nmにおける光の透過率が65%以上であるUV−LED用ポリシルセスキオキサン系封止材の溶媒としての下記溶媒aの使用;
〔2〕ポリシルセスキオキサン系封止材と下記溶媒aとを含むUV−LED用ポリシルセスキオキサン系封止材組成物。
<溶媒a>
エステル結合及び/又はエーテル結合を有し、ヒドロキシ基を有さず、且つ、1気圧下の沸点が100℃以上、200℃以下である溶媒
The present invention includes the inventions described in [1] and [2] below.
[1] Use of the following solvent a as a solvent for a polysilsesquioxane-based encapsulant for UV-LED, wherein the cured product has a light transmittance at 260 nm of 65% or more;
[2] A polysilsesquioxane encapsulant composition for UV-LED, comprising a polysilsesquioxane encapsulant and the following solvent a.
<Solvent a>
A solvent having an ester bond and / or an ether bond, having no hydroxy group, and having a boiling point under 1 atm of 100 ° C. or higher and 200 ° C. or lower

本発明により、紫外領域(特にUV−C領域)の光を放出する素子の封止に適したポリシルセスキオキサン系封止材組成物及びそのための溶媒の使用が提供される。   The present invention provides a polysilsesquioxane-based encapsulant composition suitable for encapsulating devices that emit light in the ultraviolet region (particularly the UV-C region) and the use of a solvent therefor.

実施例1で得られた硬化物の紫外線透過率測定結果である。It is a ultraviolet-ray-transmittance measurement result of the hardened | cured material obtained in Example 1. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<ポリシルセスキオキサン系封止材>
本発明において、ポリシルセスキオキサン系封止材としては、例えば、アヅマックス株式会社ホームページ「ポリシルセスキオキサン・T−レジン」<URL:http://www.azmax.co.jp/cnt_catalog_chemical/pdf/attach_20110517_135825.pdf>等に記載されたポリシルセスキオキサンが挙げられる。
<Polysilsesquioxane-based sealing material>
In the present invention, as the polysilsesquioxane-based encapsulant, for example, Amax Co., Ltd. website “polysilsesquioxane T-resin” <URL: http://www.azmax.co.jp/cnt_catalog_chemical/ and polysilsesquioxane described in pdf / attach_20110517_135825.pdf> and the like.

ポリシルセスキオキサン系封止材の具体例としては、式(1)で表されるオルガノポリシロキサン構造を有する樹脂Aを含む封止材が挙げられる。

Figure 0006213270
(式(1)中、Rはそれぞれ独立してアルキル基を表し、Rはそれぞれ独立してアルコキシ基、アルケニル基、水素原子、又は水酸基を表し、p、q、a、及びbは、[p+b×q]:[a×q]=1:0.25〜9となる任意の正数を表す。) Specific examples of the polysilsesquioxane-based sealing material include a sealing material containing the resin A having an organopolysiloxane structure represented by the formula (1).
Figure 0006213270
(In Formula (1), R 1 each independently represents an alkyl group, R 2 each independently represents an alkoxy group, an alkenyl group, a hydrogen atom, or a hydroxyl group, and p 1 , q 1 , a 1 , and b 1 represents an arbitrary positive number such that [p 1 + b 1 × q 1 ]: [a 1 × q 1 ] = 1: 0.25 to 9)

さらに式(2)で表されるオルガノポリシロキサン構造を有するオリゴマーBを含んでいてもよい。オリゴマーBを含む場合、樹脂AとオリゴマーBの混合比率が、樹脂A:オリゴマーB=100:0.1〜20(質量比)であることが好ましい。樹脂Aを主成分とすることにより紫外光による劣化を抑制したり、耐熱性を向上させたりする効果がある。

Figure 0006213270
(式(2)中、R及びRは、前記式(1)と同じ意味を表し、p、q、r、a、及びbは、[a×q]/[(p+b×q)+a×q+(r+q)]=0〜0.3となる任意の0以上の数を表す。) Furthermore, the oligomer B which has the organopolysiloxane structure represented by Formula (2) may be included. When the oligomer B is included, the mixing ratio of the resin A and the oligomer B is preferably resin A: oligomer B = 100: 0.1 to 20 (mass ratio). By using the resin A as a main component, there is an effect of suppressing deterioration due to ultraviolet light or improving heat resistance.
Figure 0006213270
(In Formula (2), R 1 and R 2 represent the same meaning as in Formula (1), and p 2 , q 2 , r 2 , a 2 , and b 2 are [a 2 × q 2 ] / [Represents any number of 0 or more that satisfies ((p 2 + b 2 × q 2 ) + a 2 × q 2 + (r 2 + q 2 )] = 0 to 0.3.)

で表されるアルキル基としては、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよいが、直鎖状又は分岐鎖状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。また、当該アルキル基の炭素数は特に限定されるものではないが、炭素数1〜10のアルキル基が好ましく、炭素数1〜6のアルキル基がより好ましく、炭素数1〜3のアルキル基がさらに好ましく、炭素数1が特に好ましい。 The alkyl group represented by R 1 may be linear or branched, and may have a cyclic structure, but may be a linear or branched alkyl group. Are preferable, and a linear alkyl group is more preferable. Moreover, although the carbon number of the said alkyl group is not specifically limited, A C1-C10 alkyl group is preferable, A C1-C6 alkyl group is more preferable, A C1-C3 alkyl group is More preferably, carbon number 1 is particularly preferable.

はそれぞれ独立してアルコキシ基、アルケニル基、水素原子、又は水酸基を表し、好ましくはアルコキシ基又は水酸基を表す。 R 2 independently represents an alkoxy group, an alkenyl group, a hydrogen atom, or a hydroxyl group, preferably an alkoxy group or a hydroxyl group.

がアルコキシ基の場合、当該アルコキシ基としては、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよいが、直鎖状又は分岐鎖状のアルコキシ基が好ましく、直鎖状のアルコキシ基がより好ましい。また、当該アルコキシ基の炭素数は特に限定されるものではないが、炭素数1〜3のアルコキシ基が好ましく、炭素数1〜2がより好ましく、特に炭素数1が好ましい。 When R 2 is an alkoxy group, the alkoxy group may be linear or branched, and may have a cyclic structure, but may be linear or branched. Are more preferable, and a linear alkoxy group is more preferable. Moreover, although carbon number of the said alkoxy group is not specifically limited, A C1-C3 alkoxy group is preferable, C1-C2 is more preferable, and C1-C1 is especially preferable.

がアルケニル基の場合、当該アルケニル基としては、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよいが、直鎖状又は分岐鎖状のアルケニル基が好ましく、直鎖状のアルケニル基がより好ましい。また、当該アルケニル基の炭素数は特に限定されるものではないが、炭素数2〜4のアルケニル基が好ましい。Rで表されるアルケニル基としては、具体的には、ビニル基(エテニル基)、アリル基(2−プロペニル基)、1−プロペニル基、イソプロペニル基、ブテニル基が好ましく、ビニル基がより好ましい。 When R 2 is an alkenyl group, the alkenyl group may be linear or branched, and may have a cyclic structure, but may be linear or branched. Are more preferable, and a linear alkenyl group is more preferable. Moreover, the carbon number of the alkenyl group is not particularly limited, but an alkenyl group having 2 to 4 carbon atoms is preferable. Specifically, the alkenyl group represented by R 1 is preferably a vinyl group (ethenyl group), an allyl group (2-propenyl group), a 1-propenyl group, an isopropenyl group, or a butenyl group, and more preferably a vinyl group. preferable.

複数あるR及びRは、それぞれ同種の基であってもよく、互いに異なる基であってもよい。 The plurality of R 1 and R 2 may be the same type of group or different from each other.

樹脂Aとしては、Rとしてメチル基及びエチル基からなる群より選択される1種以上を有しており、かつ、Rとしてメトキシ基、エトキシ基、イソプロポキシ基、及び水酸基からなる群より選択される1種以上を有しているものが好ましく、Rとしてメチル基及びエチル基からなる群より選択される1種以上を有しており、かつ、Rとしてメトキシ基、エトキシ基、及びイソプロポキシ基からなる群より選択される1種以上と水酸基とを有しているものがより好ましい。 The resin A has at least one selected from the group consisting of a methyl group and an ethyl group as R 1 , and R 2 from the group consisting of a methoxy group, an ethoxy group, an isopropoxy group, and a hydroxyl group Those having one or more selected are preferable, R 1 has one or more selected from the group consisting of a methyl group and an ethyl group, and R 2 has a methoxy group, an ethoxy group, And those having one or more selected from the group consisting of isopropoxy groups and a hydroxyl group are more preferred.

樹脂Aの重量平均分子量(Mw)は、1500以上8000以下である。樹脂Aの重量平均分子量が小さすぎる場合には、硬化時の体積収縮率が大きくなるために封止体に生じる応力が大きくなりクラックを生じやすくなる。また大きすぎる場合には硬化前の封止体の粘度や硬化時の粘度上昇が大きくなり、縮合反応で生じるアルコールや水が揮発する際に気泡を生じやすくなる。樹脂Aの重量平均分子量は、1500以上7000以下が好ましく、2000以上5000以下がより好ましい。   The weight average molecular weight (Mw) of the resin A is 1500 or more and 8000 or less. When the weight average molecular weight of the resin A is too small, the volume shrinkage rate at the time of curing increases, so that the stress generated in the sealing body increases and cracks are likely to occur. On the other hand, if it is too large, the viscosity of the encapsulated body before curing and the viscosity increase at the time of curing increase, and bubbles tend to be generated when alcohol or water generated by the condensation reaction volatilizes. The weight average molecular weight of the resin A is preferably 1500 or more and 7000 or less, and more preferably 2000 or more and 5000 or less.

樹脂Aは、上述した各繰り返し単位に対応し、シロキサン結合を生じ得る官能基を有する有機ケイ素化合物を出発原料として合成することができる。「シロキサン結合を生じ得る官能基」としては、ハロゲン原子、水酸基、アルコキシ基を挙げることができる。有機ケイ素化合物としては、例えば、オルガノトリハロシランやオルガノトリアルコキシラン等を出発原料とすることができる。樹脂Aは、このような出発原料を各繰り返し単位の存在比に対応した比で加水分解縮合法で反応させることにより合成することができる。また、こうして合成された樹脂Aは、シリコーンレジンやアルコキシオリゴマーとして工業的に市販されているものを用いることもできる。   Resin A can be synthesized using an organosilicon compound having a functional group capable of generating a siloxane bond as a starting material, corresponding to each of the repeating units described above. Examples of the “functional group capable of generating a siloxane bond” include a halogen atom, a hydroxyl group, and an alkoxy group. As the organosilicon compound, for example, organotrihalosilane or organotrialkoxylane can be used as a starting material. Resin A can be synthesized by reacting such starting materials by a hydrolysis-condensation method at a ratio corresponding to the abundance ratio of each repeating unit. In addition, as the resin A synthesized in this manner, those commercially available as a silicone resin or an alkoxy oligomer can be used.

オリゴマーBとしては、Rとしてメチル基及びエチル基からなる群より選択される1種以上を有しており、Rとして、メトキシ基、エトキシ基、イソプロポキシ基、及び水酸基からなる群より選択される1種以上を有しているものが好ましく、Rがメチル基であり、Rとしてメトキシ基または水酸基を有しているものがより好ましい。 The oligomer B has at least one selected from the group consisting of a methyl group and an ethyl group as R 1 , and R 2 is selected from the group consisting of a methoxy group, an ethoxy group, an isopropoxy group, and a hydroxyl group It is preferable that R 1 is a methyl group, and R 2 has a methoxy group or a hydroxyl group.

オリゴマーBの重量平均分子量は1500未満である。オリゴマーBの重量平均分子量が大きすぎる場合には、硬化後の封止材の耐クラック性が不充分となるおそれがある。オリゴマーBの重量平均分子量は、200以上1500未満が好ましく、250〜1000がより好ましい。   The weight average molecular weight of the oligomer B is less than 1500. If the weight average molecular weight of the oligomer B is too large, the crack resistance of the encapsulant after curing may be insufficient. The weight average molecular weight of the oligomer B is preferably 200 or more and less than 1500, and more preferably 250 to 1000.

オリゴマーBは、オリゴマーBを構成する上述した各繰り返し単位に対応し、シロキサン結合を生じ得る官能基を有する有機ケイ素化合物を出発原料として合成することができる。「シロキサン結合を生じ得る官能基」は、上述したものと同じ意味を表す。有機ケイ素化合物としては、例えばオルガノトリハロシランやオルガノトリアルコキシラン等を出発原料とすることができる。シリコーン樹脂は、このような出発原料を各繰り返し単位の存在比に対応した比で加水分解縮合法で反応させることにより合成することができる。   The oligomer B can be synthesized using an organosilicon compound having a functional group capable of generating a siloxane bond, corresponding to each of the above-described repeating units constituting the oligomer B. “Functional group capable of forming a siloxane bond” has the same meaning as described above. As the organosilicon compound, for example, organotrihalosilane or organotrialkoxylane can be used as a starting material. The silicone resin can be synthesized by reacting such starting materials by a hydrolysis condensation method at a ratio corresponding to the abundance ratio of each repeating unit.

樹脂Aとの重量平均分子量の違いは、例えば、出発原料を加水分解縮合反応させる際の反応温度や、反応系内への出発原料の追加速度を制御することによっても制御することができる。こうして合成されたシリコーン樹脂は、シリコーンレジンやアルコキシオリゴマーとして工業的に市販されているものを用いることもできる。   The difference in the weight average molecular weight from that of the resin A can be controlled, for example, by controlling the reaction temperature at the time of subjecting the starting material to a hydrolytic condensation reaction or the rate of addition of the starting material into the reaction system. As the silicone resin synthesized in this manner, those commercially available as a silicone resin or an alkoxy oligomer can be used.

樹脂AとオリゴマーBの重量平均分子量は、市販のGPC装置を用いて、ポリスチレンを標準に用いて測定することができる。   The weight average molecular weights of the resin A and the oligomer B can be measured using polystyrene as a standard using a commercially available GPC apparatus.

<溶媒a>
本発明で使用する溶媒aは、エステル結合及び/又はエーテル結合を有し、ヒドロキシ基を有さず、且つ、1気圧下の沸点が100℃以上、200℃以下である溶媒であり、130℃以上、200℃以下であることが好ましい。沸点が100℃以上、好ましくは130℃以上であれば、秤量、混合、ポッティング等の操作中に溶媒が揮発し難く、操作性が良くなる傾向にあり、沸点が200℃以下であれば、硬化後にも溶媒が残留し難く、紫外領域(特にUV−C領域)の光を透過しやすい傾向にある。また、エステル結合やエーテル結合のような極性を有する結合を有することにより、ポリシルセスキオキサン系封止材の溶解度を高めることができるが、紫外領域(特にUV−C領域)の光の透過の観点から、その他のヘテロ元素を含む官能基や芳香環構造を有さないことが好ましい
<Solvent a>
The solvent a used in the present invention is a solvent that has an ester bond and / or an ether bond, does not have a hydroxy group, and has a boiling point of 100 ° C. or higher and 200 ° C. or lower at 1 atm, and 130 ° C. As mentioned above, it is preferable that it is 200 degrees C or less. If the boiling point is 100 ° C. or higher, preferably 130 ° C. or higher, the solvent is less likely to volatilize during operations such as weighing, mixing, and potting, and the operability tends to be improved. The solvent does not easily remain afterward and tends to transmit light in the ultraviolet region (particularly the UV-C region). Further, by having a polar bond such as an ester bond or an ether bond, the solubility of the polysilsesquioxane-based sealing material can be increased, but transmission of light in the ultraviolet region (particularly in the UV-C region). From the viewpoint of, it is preferable not to have a functional group or aromatic ring structure containing other hetero elements

溶媒aとしては、例えば酢酸ブチル、酪酸ブチル等のエステル溶媒;ジオキサン等のエーテル溶媒;エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル等のグリコールエーテル溶媒;酢酸2−エトキシエチル、酢酸2−ブトキシエチル等のグリコールエステル溶媒;等が挙げられる。   Examples of the solvent a include ester solvents such as butyl acetate and butyl butyrate; ether solvents such as dioxane; glycol ether solvents such as ethylene glycol diethyl ether and diethylene glycol diethyl ether; glycols such as 2-ethoxyethyl acetate and 2-butoxyethyl acetate Ester solvents; and the like.

溶媒aは、基板上に設置した素子へのポッティングを容易にする量で使用すればよく、得られる溶液の粘度が10mPasから10000mPasになるように調整するとよい。その使用量は、用いるポリシルセスキオキサン系封止材の種類によって異なるが、例えば、40〜90重量%の範囲である。   The solvent a may be used in an amount that facilitates potting on the element placed on the substrate, and may be adjusted so that the viscosity of the obtained solution is from 10 mPas to 10,000 mPas. The amount used varies depending on the type of polysilsesquioxane-based encapsulant used, but is, for example, in the range of 40 to 90% by weight.

<硬化用触媒>
本発明には、さらに硬化用触媒を使用することが好ましい。硬化用触媒を用いる場合は、樹脂A及びオリゴマーBとは別の溶液として準備し、使用前にそれらの溶液を混合することが好ましい。
<Curing catalyst>
In the present invention, it is preferable to further use a curing catalyst. When using a curing catalyst, it is preferable to prepare a solution separate from the resin A and the oligomer B, and mix these solutions before use.

硬化用触媒としては、例えば、塩酸、硫酸、硝酸、燐酸等の無機酸や、蟻酸、酢酸、蓚酸、クエン酸、プロピオン酸、酪酸、乳酸、コハク酸等の有機酸を用いることができる。また、酸性化合物だけではなく、アルカリ性の化合物を用いることも可能である。具体的には、水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等を用いることもできる。   Examples of the curing catalyst that can be used include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, succinic acid, citric acid, propionic acid, butyric acid, lactic acid, and succinic acid. Moreover, it is possible to use not only an acidic compound but also an alkaline compound. Specifically, ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, or the like can be used.

硬化用触媒の使用量は、ポリシルセスキオキサン系封止材に対して0.01%〜10%の範囲である。   The amount of the curing catalyst used is in the range of 0.01% to 10% with respect to the polysilsesquioxane-based sealing material.

<封止材の硬化>
本発明の使用は、通常、上記のポリシルセスキオキサン系封止材と溶媒aとを含む硬化前の封止材組成物を、基板に設置した素子にポッティングし、次いで硬化させることにより行われる。即ち、本発明の使用によるUV−LED用素子の封止方法は、基板に素子を設置する第1工程、第1工程で基板に設置した素子にポリシルセスキオキサン系封止材と下記溶媒aとを含むポリシルセスキオキサン系封止材組成物をポッティングする第2工程、および、第2工程でポッティングされたポリシルセスキオキサン系封止材を硬化させる工程とを含む。
<Curing sealing material>
The use of the present invention is usually performed by potting an unsealed encapsulant composition containing the polysilsesquioxane-based encapsulant and the solvent a onto an element placed on a substrate, and then curing. Is called. That is, the sealing method of the element for UV-LED by use of the present invention is the first step of installing the element on the substrate, the polysilsesquioxane-based sealing material and the following solvent on the element installed on the substrate in the first step. a second step of potting a polysilsesquioxane-based encapsulant composition containing a, and a step of curing the polysilsesquioxane-based encapsulant potted in the second step.

基板上への素子の設置は、常法により行われる。もちろん、電極や配線等、半導体発光装置に通常必要となる他の構成を設置してもよい。   The element is placed on the substrate by a conventional method. Of course, you may install other structures normally required for a semiconductor light-emitting device, such as an electrode and wiring.

上記のポッティングは、通常、専用のディスペンサーによって基板上に硬化前の封止材を供給することにより行われる。供給する硬化前の封止材の量は、基板や素子の構造、面積、体積、その他電極やワイヤー配線の構造等によっても異なるが、これらの素子やワイヤー配線を埋め込み、かつ発光素子上を覆う封止材の厚みは可能な限り薄くできる量であることが好ましく、2mm以下の厚みにする量であることがより好ましい。素子上の封止材が厚い場合、素子が発光する際に発生する熱や紫外線によって、封止材が徐々に劣化し、変色することで封止材の透明性が失われ、発光装置としての輝度が経時的に低下する。特に近年開発が進んでいる発光出力電流100mA以上の可視光用パワーLEDや、波長350nm以下の紫外線を発光するUV−LEDにおいてその傾向が顕著であるため、発光素子上の封止材の厚みは薄くすることが有効である。   The potting is usually performed by supplying a sealing material before curing onto a substrate with a dedicated dispenser. The amount of the sealing material to be supplied before curing varies depending on the structure, area, volume, and other electrode and wire wiring structures of the substrate and elements, but these elements and wire wirings are embedded and the light emitting element is covered. The thickness of the sealing material is preferably an amount that can be made as thin as possible, and more preferably an amount that makes the thickness 2 mm or less. When the sealing material on the element is thick, the sealing material gradually deteriorates due to heat and ultraviolet rays generated when the element emits light, and the transparency of the sealing material is lost due to discoloration. Luminance decreases over time. In particular, since the tendency is remarkable in a power LED for visible light having a light emission output current of 100 mA or more and a UV-LED that emits ultraviolet light having a wavelength of 350 nm or less, which has been developed in recent years, the thickness of the sealing material on the light emitting element is Thinning is effective.

硬化条件としては、通常の重縮合反応が生じる温度と時間を設定すればよく、具体的には大気圧下、空気中、温度は100〜200℃が好ましく、130〜200℃がより好ましい。時間は1〜5時間程度が好ましい。また、封止材中の残留溶媒の揮発や、重縮合反応を効果的に促進させるために、硬化温度を段階的に上げて硬化させてもよい。   As curing conditions, a temperature and a time at which a normal polycondensation reaction occurs may be set. Specifically, the temperature is preferably 100 to 200 ° C., more preferably 130 to 200 ° C. in air at atmospheric pressure. The time is preferably about 1 to 5 hours. Further, in order to effectively promote the volatilization of the residual solvent in the encapsulant and the polycondensation reaction, the curing temperature may be increased stepwise to be cured.

下記実施例に記載している紫外線透過率測定に用いた装置および測定条件は以下のとおりである。
<紫外可視透過率測定>
装置名 :島津製作所社製 UV−3600
アタッチメント :積分球 ISR−3100
測定波長 :220〜800nm
バックグラウンド測定:大気
測定速度 :中速
The apparatus and measurement conditions used for the ultraviolet transmittance measurement described in the following examples are as follows.
<Ultraviolet visible transmittance measurement>
Device name: UV-3600 manufactured by Shimadzu Corporation
Attachment: Integrating sphere ISR-3100
Measurement wavelength: 220 to 800 nm
Background measurement: Atmosphere Measurement speed: Medium speed

樹脂Aとして、前記式(1)で表されるオルガノポリシロキサン構造を有する樹脂(A−1)(Mw=3500、前記式(1)中、R=メチル基、R=メトキシ基又は水酸基)を用いた。樹脂A−1の各繰り返し単位の存在比率を、表1に示す。 As the resin A, a resin (A-1) having an organopolysiloxane structure represented by the formula (1) (Mw = 3500, in the formula (1), R 1 = methyl group, R 2 = methoxy group or hydroxyl group ) Was used. Table 1 shows the abundance ratio of each repeating unit of the resin A-1.

Figure 0006213270
Figure 0006213270

実施例1
ウォーターバス内に設置したフラスコ内に、前記樹脂(A−1)100g及び酢酸2−エトキシエチル(沸点156℃)31.4gを加え、内温が85℃になるまで加熱攪拌して前記樹脂(A−1)を溶解させ、ポリシルセスキオキサン系封止材組成物(α1)を得た。
Example 1
In a flask placed in a water bath, 100 g of the resin (A-1) and 31.4 g of 2-ethoxyethyl acetate (boiling point 156 ° C.) are added, and the mixture is heated and stirred until the internal temperature reaches 85 ° C. A-1) was dissolved to obtain a polysilsesquioxane-based sealing material composition (α1).

得られたポリシルセスキオキサン系封止材組成物(α1)100質量部に対し、リン酸15%を含む硬化用触媒2質量部添加し、充分に攪拌混合してポリシルセスキオキサン系封止材組成物(α1−1)を得た。その後、得られた混合物をアルミニウム製カップ内に約3.8g投入し、オーブンの中で3.7℃/分の速度で室温から150℃まで昇温し、150℃で5時間放置することで、ポリシルセスキオキサン系封止材組成物(α1−1)の硬化物を得た。得られた硬化物の厚みは1.7mmであった。この硬化物の紫外線透過率測定結果を図1に示す。   2 parts by mass of a curing catalyst containing 15% phosphoric acid is added to 100 parts by mass of the obtained polysilsesquioxane-based encapsulant composition (α1), and the mixture is sufficiently stirred and mixed to obtain a polysilsesquioxane-based composition. A sealing material composition (α1-1) was obtained. Thereafter, about 3.8 g of the obtained mixture was put into an aluminum cup, heated in an oven at a rate of 3.7 ° C./minute from room temperature to 150 ° C., and left at 150 ° C. for 5 hours. The hardened | cured material of the polysilsesquioxane type | system | group sealing material composition ((alpha) 1-1) was obtained. The thickness of the obtained cured product was 1.7 mm. The results of measuring the ultraviolet transmittance of the cured product are shown in FIG.

実施例2
実施例1において、酢酸2−エトキシエチルに替えて酢酸2−ブトキシエチル(沸点192℃)を使用した以外は、実施例1と同様の手順でポリシルセスキオキサン系封止材組成物(α1−2)およびその硬化物を得た。
Example 2
In Example 1, polysilsesquioxane-based encapsulant composition (α1) was used in the same procedure as in Example 1 except that 2-butoxyethyl acetate (boiling point 192 ° C.) was used instead of 2-ethoxyethyl acetate. -2) and a cured product thereof.

実施例3
実施例1において、酢酸2−エトキシエチルに替えてジエチレングリコールジメチルエーテル(沸点162℃)を使用した以外は、実施例1と同様の手順でポリシルセスキオキサン系封止材組成物(α1−3)およびその硬化物を得た。
Example 3
In Example 1, polysilsesquioxane-based sealing material composition (α1-3) was used in the same procedure as in Example 1 except that diethylene glycol dimethyl ether (boiling point 162 ° C.) was used instead of 2-ethoxyethyl acetate. And a cured product thereof.

実施例4
実施例1において、酢酸2−エトキシエチルに替えて酢酸ブチル(沸点126℃)を使用した以外は、実施例1と同様の手順でポリシルセスキオキサン系封止材組成物(α1−4)およびその硬化物を得た。
Example 4
A polysilsesquioxane encapsulant composition (α1-4) was prepared in the same procedure as in Example 1 except that butyl acetate (boiling point: 126 ° C.) was used instead of 2-ethoxyethyl acetate in Example 1. And a cured product thereof.

実施例1〜4でそれぞれ得られた硬化物の紫外線透過率測定結果を表2に示す。   Table 2 shows the results of measuring the ultraviolet transmittance of the cured products obtained in Examples 1 to 4, respectively.

Figure 0006213270
Figure 0006213270

Claims (2)

硬化物の260nmにおける光の透過率が65%以上である下記樹脂Aを含むUV−LED用ポリシルセスキオキサン系封止材の溶媒としての下記溶媒aの使用。
<溶媒a>
エステル結合及び/又はエーテル結合を有し、ヒドロキシ基を有さず、且つ、1気圧下の沸点が100℃以上、200℃以下である溶媒
<樹脂A>
式(1)で表されるオルガノポリシロキサン構造を有する樹脂
Figure 0006213270
(式(1)中、R はそれぞれ独立してアルキル基を表し、R はそれぞれ独立してアルコキシ基、アルケニル基、水素原子、又は水酸基を表し、p 、q 、a 、及びb は、[p +b ×q ]:[a ×q ]=1:0.25〜9となる任意の正数を表す。)
Use of the following solvent a as a solvent for a polysilsesquioxane-based encapsulant for UV-LED containing the following resin A, in which the light transmittance at 260 nm of the cured product is 65% or more.
<Solvent a>
A solvent having an ester bond and / or an ether bond, having no hydroxy group, and having a boiling point under 1 atm of 100 ° C. or higher and 200 ° C. or lower
<Resin A>
Resin having organopolysiloxane structure represented by formula (1)
Figure 0006213270
(In Formula (1), R 1 each independently represents an alkyl group, R 2 each independently represents an alkoxy group, an alkenyl group, a hydrogen atom, or a hydroxyl group, and p 1 , q 1 , a 1 , and b 1 represents an arbitrary positive number such that [p 1 + b 1 × q 1 ]: [a 1 × q 1 ] = 1: 0.25 to 9)
下記樹脂Aを含むポリシルセスキオキサン系封止材と下記溶媒aとを含むUV−LED用ポリシルセスキオキサン系封止材組成物を硬化した硬化物であって、260nmにおける光の透過率が65%以上である硬化物
<溶媒a>
エステル結合及び/又はエーテル結合を有し、ヒドロキシ基を有さず、且つ、1気圧下の沸点が100℃以上、200℃以下である溶媒
<樹脂A>
式(1)で表されるオルガノポリシロキサン構造を有する樹脂
Figure 0006213270
(式(1)中、R はそれぞれ独立してアルキル基を表し、R はそれぞれ独立してアルコキシ基、アルケニル基、水素原子、又は水酸基を表し、p 、q 、a 、及びb は、[p +b ×q ]:[a ×q ]=1:0.25〜9となる任意の正数を表す。)
A cured product obtained by curing a polysilsesquioxane-based encapsulant composition for UV-LED containing the following polysilsesquioxane encapsulant containing resin A and the following solvent a, and transmitting light at 260 nm A cured product having a rate of 65% or more .
<Solvent a>
A solvent having an ester bond and / or an ether bond, having no hydroxy group, and having a boiling point under 1 atm of 100 ° C. or higher and 200 ° C. or lower
<Resin A>
Resin having organopolysiloxane structure represented by formula (1)
Figure 0006213270
(In Formula (1), R 1 each independently represents an alkyl group, R 2 each independently represents an alkoxy group, an alkenyl group, a hydrogen atom, or a hydroxyl group, and p 1 , q 1 , a 1 , and b 1 represents an arbitrary positive number such that [p 1 + b 1 × q 1 ]: [a 1 × q 1 ] = 1: 0.25 to 9)
JP2014016592A 2014-01-31 2014-01-31 Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor Expired - Fee Related JP6213270B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014016592A JP6213270B2 (en) 2014-01-31 2014-01-31 Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor
PCT/JP2015/051942 WO2015115340A1 (en) 2014-01-31 2015-01-20 Polysilsesquioxane sealing material composition for uv-led and use of solvent therefor
TW104102548A TWI653294B (en) 2014-01-31 2015-01-26 Poly-sesquioxane-based encapsulating material composition for UV-LED and use of solvent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016592A JP6213270B2 (en) 2014-01-31 2014-01-31 Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor

Publications (2)

Publication Number Publication Date
JP2015143293A JP2015143293A (en) 2015-08-06
JP6213270B2 true JP6213270B2 (en) 2017-10-18

Family

ID=53756914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016592A Expired - Fee Related JP6213270B2 (en) 2014-01-31 2014-01-31 Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor

Country Status (3)

Country Link
JP (1) JP6213270B2 (en)
TW (1) TWI653294B (en)
WO (1) WO2015115340A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075203A (en) * 2015-10-13 2017-04-20 日本タングステン株式会社 Sealing material for deep ultraviolet light, deep ultraviolet light emitting device and method for producing deep ultraviolet light emitting device
JP6690607B2 (en) * 2016-08-03 2020-04-28 信越化学工業株式会社 Synthetic quartz glass lid and optical element package

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013863A1 (en) * 2004-08-04 2006-02-09 Toagosei Co., Ltd. Polyorganosiloxane and curable composition containing same
JP2006169391A (en) * 2004-12-16 2006-06-29 Hitachi Chem Co Ltd Radiation-curable resin composition, optical waveguide using the same and method for manufacturing optical waveguide
JP5670616B2 (en) * 2006-12-01 2015-02-18 株式会社カネカ Polysiloxane composition
JP2008202008A (en) * 2007-02-22 2008-09-04 Nagase Chemtex Corp Sealing resin composition for optical element
JP5211059B2 (en) * 2007-08-17 2013-06-12 パナソニック株式会社 Semiconductor optical device and transparent optical member
JP2009211033A (en) * 2008-02-06 2009-09-17 Hitachi Chem Co Ltd Photosensitive resin composition, method for forming silica-based film, device and member with silica-based film, and method for preparing photosensitive resin composition
US8871425B2 (en) * 2012-02-09 2014-10-28 Az Electronic Materials (Luxembourg) S.A.R.L. Low dielectric photoimageable compositions and electronic devices made therefrom

Also Published As

Publication number Publication date
JP2015143293A (en) 2015-08-06
TWI653294B (en) 2019-03-11
TW201540781A (en) 2015-11-01
WO2015115340A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP3101068B1 (en) Polysilsesquioxane sealing material composition for uv-led and use of phosphoric acid-based catalyst therefor
JP6500888B2 (en) Semiconductor light emitting device manufacturing method
JPWO2009072632A1 (en) Curable composition, optical element coating composition, LED sealing material, and method for producing the same
JP6213271B2 (en) Polysilsesquioxane-based encapsulant composition for UV-LED and use of acetylacetonate-based catalyst therefor
JP6213270B2 (en) Polysilsesquioxane encapsulant composition for UV-LED and use of solvent therefor
JP2016008246A (en) Composition for transparent sealing material, cured product, transparent sealing material, and light-emitting diode
JP6343947B2 (en) Polysilsesquioxane encapsulant composition for UV-LED and use of metal alkoxide therefor
WO2015115341A1 (en) Method for manufacturing semiconductor light emitting device
JP2017115144A (en) Silicone resin composition and use of the same
KR20160037764A (en) Film-forming composition and method of producing cured coating using the same
JP2015143292A (en) Polysilsesquioxane encapsulating material composition for uv-led and use of solvent therefor
CA2921255A1 (en) Gas-emission-reduced silicone gel
JP2016086086A (en) Seal-material composition and optical semiconductor element
JP2012092240A (en) Method for producing cured material, method for manufacturing semiconductor light-emitting device, kit for producing cured material, and kit for manufacturing sealed semiconductor light-emitting device
JP2013047293A (en) Composition for transparent film, method for forming transparent film, and transparent film
JP2016098246A (en) Composition for sealing led, led sealing material, and semiconductor light-emitting device
TWI490276B (en) Silicone resin encapsulant and light emitting diode device
JP2013209560A (en) Heat curable resin composition and semiconductor sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R151 Written notification of patent or utility model registration

Ref document number: 6213270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees