JP6210503B2 - Soft magnetic alloy for magnetic recording and sputtering target material - Google Patents

Soft magnetic alloy for magnetic recording and sputtering target material Download PDF

Info

Publication number
JP6210503B2
JP6210503B2 JP2012179238A JP2012179238A JP6210503B2 JP 6210503 B2 JP6210503 B2 JP 6210503B2 JP 2012179238 A JP2012179238 A JP 2012179238A JP 2012179238 A JP2012179238 A JP 2012179238A JP 6210503 B2 JP6210503 B2 JP 6210503B2
Authority
JP
Japan
Prior art keywords
magnetic recording
sputtering target
alloy
soft magnetic
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012179238A
Other languages
Japanese (ja)
Other versions
JP2014038669A (en
Inventor
亮二 林
亮二 林
澤田 俊之
俊之 澤田
慶明 松原
慶明 松原
長谷川 浩之
浩之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012179238A priority Critical patent/JP6210503B2/en
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to CN201380039614.4A priority patent/CN104488029B/en
Priority to PCT/JP2013/071484 priority patent/WO2014027601A1/en
Priority to SG11201408798PA priority patent/SG11201408798PA/en
Priority to SG10201700410WA priority patent/SG10201700410WA/en
Priority to MYPI2015000091A priority patent/MY171479A/en
Priority to TW102128832A priority patent/TWI478183B/en
Publication of JP2014038669A publication Critical patent/JP2014038669A/en
Application granted granted Critical
Publication of JP6210503B2 publication Critical patent/JP6210503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、磁気記録媒体における軟磁性薄膜層用アモルファス合金およびスパッタリングターゲット材に関する。 The present invention relates to amorphous alloys and sputtering target material for soft magnetic thin film layer in the magnetic recording medium.

近年、垂直磁気記録の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来普及していた面内磁気記録媒体により、さらに高記録密度が実現できる、垂直磁気記録方式が実用化されている。ここで、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。   In recent years, the progress of perpendicular magnetic recording has been remarkable, and in order to increase the capacity of the drive, the recording density of the magnetic recording medium has been increased. A realizable perpendicular magnetic recording system has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. .

そこで、最近では10kG程度の比較的小さい磁性(Bs)の合金組成を持つ軟磁性薄膜が使用されつつある。例えば、特開2011−181140号公報(特許文献1)に開示されているように、軟磁性膜としてFe−Co系合金中にアモルファス性と結晶化温度を高めるための最適な元素としてNbおよび/またはTaとBとを選択し、アモルファス性が高く、かつ高い結晶化温度を有する磁気記録媒体に用いられるFe−Co系合金軟磁性膜が提案されている。   Therefore, recently, a soft magnetic thin film having a relatively small magnetic (Bs) alloy composition of about 10 kG is being used. For example, as disclosed in Japanese Patent Application Laid-Open No. 2011-181140 (Patent Document 1), Nb and / or as an optimum element for increasing the amorphous nature and the crystallization temperature in an Fe—Co alloy as a soft magnetic film. Alternatively, an Fe—Co alloy soft magnetic film has been proposed in which Ta and B are selected and used for a magnetic recording medium having a high amorphous property and a high crystallization temperature.

また、特開2011−86356号公報(特許文献2)に開示されているように、下地層の飽和磁束密度(Ms)を高めつつ、中間層の核発生を抑制する効果を維持することによって、優れたオーバーライト(OW)特性を得ることを可能とした垂直磁気記録媒体、並びにそのような垂直磁気記録媒体を備えた磁気記録再生装置が提案されている。   Further, as disclosed in Japanese Patent Application Laid-Open No. 2011-86356 (Patent Document 2), by increasing the saturation magnetic flux density (Ms) of the underlayer while maintaining the effect of suppressing the nucleation of the intermediate layer, A perpendicular magnetic recording medium capable of obtaining an excellent overwrite (OW) characteristic and a magnetic recording / reproducing apparatus including such a perpendicular magnetic recording medium have been proposed.

また、特開2008−29905号公報(特許文献3)に開示されているように、飽和磁束密度、非晶質性、耐候性に優れた垂直磁気記録媒体における軟磁性膜層用合金が提案されている。しかし、その合金の成分組成がZr,Hf,Nb,TaにAl,Crを含有させたFeCo系合金であって、FeCo系合金に主成分とするMo,Wを含有させたものではない。   Further, as disclosed in Japanese Patent Application Laid-Open No. 2008-29905 (Patent Document 3), an alloy for a soft magnetic film layer in a perpendicular magnetic recording medium excellent in saturation magnetic flux density, amorphousness, and weather resistance has been proposed. ing. However, the component composition of the alloy is an FeCo alloy in which Al and Cr are contained in Zr, Hf, Nb, and Ta, and the MoCo and the main components are not contained in the FeCo alloy.

また、特開2011−208265号公報(特許文献4)や特開2011−214039号公報(特許文献5)には、磁気記録媒体や光磁気(MO)記録媒体の製造に利用され、高い磁場透過率(PTF)を有するスパッタリングターゲットの製造方法において、Fe,Co,Niを主成分とし、これに主成分以外の1つの元素を含む粉末原料を熱間で成形し、冷却したターゲットの製造方法や、さらに機械加工した後熱処理し、透過率を低減したターゲットの製造方法が提案されている。この方法に係る成分組成は、いずれもMo,Wの含有量が低いためにBsが高すぎ、本発明が特徴とする10kG以下の小さいBsを有する組成とは異なる。   Japanese Patent Application Laid-Open No. 2011-208265 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2011-214039 (Patent Document 5) are used for manufacturing a magnetic recording medium and a magneto-optical (MO) recording medium, and have high magnetic field transmission. In a method for producing a sputtering target having a rate (PTF), a raw material containing Fe, Co, Ni as a main component and one element other than the main component is hot-formed and cooled, Further, a method for manufacturing a target in which the heat treatment is performed after further machining and the transmittance is reduced has been proposed. The component composition according to this method is different from the composition having a small Bs of 10 kG or less, which is characterized by the present invention, because Bs is too high because the contents of Mo and W are low.

また、特開2012−48767号公報(特許文献6)には、垂直磁気記録媒体における軟磁性層膜として用いるCo−(Zr,Hf)−B系合金およびスパッタリングターゲット材並びに磁気記録媒体が提案されている。しかし、この特許文献はZr,Hfの含有量を5at%以上と高い成分組成を対象としたものである。   Japanese Patent Laying-Open No. 2012-48767 (Patent Document 6) proposes a Co— (Zr, Hf) —B alloy, a sputtering target material, and a magnetic recording medium used as a soft magnetic layer film in a perpendicular magnetic recording medium. ing. However, this patent document is intended for a component composition having a high Zr and Hf content of 5 at% or more.

さらに、特開2012−108997号公報(特許文献7)には、垂直磁気記録媒体における軟磁性層膜として用いるCo−(Ti,Zr,Hf)系合金およびスパッタリングターゲット材並びに磁気記録媒体が提案されている。しかし、この合金成分の場合も、上記特許文献6と同様に、Ti,Zr,Hfの含有量が5at%以上と高い成分組成を対象としたものである。
特開2011−181140号公報 特開2011−86356号公報 特開2008−29905号公報 特開2011−208265号公報 特開2011−214039号公報 特開2012−48767号公報 特開2012−108997号公報
Further, JP 2012-108997 A (Patent Document 7) proposes a Co— (Ti, Zr, Hf) alloy, a sputtering target material, and a magnetic recording medium used as a soft magnetic layer film in a perpendicular magnetic recording medium. ing. However, in the case of this alloy component, as in the above-mentioned Patent Document 6, it is intended for a component composition with a high content of Ti, Zr, Hf of 5 at% or more.
JP 2011-181140 A JP 2011-86356 A JP 2008-29905 A JP 2011-208265 A JP 2011-214039 A JP 2012-48767 A JP 2012-108997 A

その一方で、このようにTaやNbを10%を超えて多量に添加したスパッタリングターゲットや、Ti,Zr,Hfのような5%以上を超えて多量に添加したスパッタリングターゲットでは、スパッタリングターゲットを使用、すなわち、スパッタリング中にスパッタリングターゲットが割れる現象が起きることがある。その理由は明確ではないが、スパッタリング中にはスパッタリングターゲットのスパッタされる面では数百度から1000℃を超えると推定されるように加熱される一方、反対側の面はスパッタリング装置の冷却板に密着しており、常温に維持されているように、スパッタリングターゲットの厚みの中に大きな熱勾配を有すると共に、スパッタリングが数秒単位でオンオフが繰り返されるような、厳しい熱環境が割れの原因と推定される。このような熱環境下でも割れないスパッタリングターゲットの特性を、「耐サーマルショック性」と呼ぶことにする。   On the other hand, a sputtering target in which Ta or Nb is added in a large amount exceeding 10%, or a sputtering target added in a large amount exceeding 5% such as Ti, Zr, or Hf uses a sputtering target. That is, a phenomenon that the sputtering target breaks during sputtering may occur. The reason is not clear, but during sputtering, the surface to be sputtered is heated so that the surface to be sputtered is estimated to be several hundred degrees to over 1000 ° C., while the opposite surface is in close contact with the cooling plate of the sputtering apparatus. As it is maintained at room temperature, a severe thermal environment in which the sputtering target has a large thermal gradient in the thickness and the sputtering is repeatedly turned on and off in units of several seconds is presumed to cause cracking. . The characteristic of a sputtering target that does not break under such a thermal environment is referred to as “thermal shock resistance”.

上述した問題を解消するために鋭意開発を進めた結果、MoWはFeCoに固溶度を有し、それ故生成する金属間化合物量が低減すること、およびFeCo固溶体にMoWが固溶して熱膨張率が金属間化合物に近づくことにより、耐サーマルショック性が改善されることを見出し発明に至った。その発明の要旨とするところは
(1)at.%比で、100Fe/(Fe+Co):30〜70、ただし、Fe>20.4、かつ下記(A)群の各種元素の1種または2種を10〜30%含有し、残部Coおよび不可避的不純物からなることを特徴とする磁気記録用軟磁性合金。
(A)Mo,W
As a result of diligent development to solve the above-mentioned problems, MoW has a solid solubility in FeCo, thus reducing the amount of intermetallic compound to be generated, and MoW is dissolved in FeCo solid solution and heated. It has been found that the thermal shock resistance is improved when the expansion coefficient approaches that of an intermetallic compound, leading to the invention. The gist of the invention is (1) at. % Ratio, 100Fe / (Fe + Co): 30 to 70, Fe> 20.4, and 10 to 30% of one or two kinds of various elements in group (A) below , with the remainder being Co and inevitable A soft magnetic alloy for magnetic recording, characterized by comprising impurities.
(A) Mo, W

(2)前記(1)記載した磁気記録用軟磁性合金を用いたスパッタリングターゲット材にある。 (2) in the sputtering target material using the magnetic recording soft magnetic alloy according to (1).

以上述べたように、本発明は、耐サーマルショック性に優れた軟磁性合金およびそのスパッタリングターゲット材を提供することにある。   As described above, the present invention is to provide a soft magnetic alloy excellent in thermal shock resistance and a sputtering target material thereof.

以下、本発明に係わる成分組成の限定理由を説明する。
at.%比で、100Fe/(Fe+Co):30〜70、ただし、Fe>20.4
Fe、Coは、軟磁性材料を得るための元素である。しかし、at.%比で、70を超えると、耐食性が劣化するために、その上限を70とした。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
at. % Ratio, 100Fe / (Fe + Co): 30 to 70, but Fe> 20.4
Fe and Co are elements for obtaining a soft magnetic material. However, at. If the percentage exceeds 70, the corrosion resistance deteriorates, so the upper limit was set to 70.

(A)群の各種元素の1種または2種を10〜30%
(A)群であるMo,Wは、Co合金において、非晶質化(アモルファス化性)を確保するための元素であり、その元素の1種または2種の合計含有量が、10%未満では磁性が高すぎ、また、30%を超えると、非磁性となることから、その範囲を10〜30%とした。
(A) 10-30% of one or two of the various elements in the group
Mo and W which are (A) groups are elements for ensuring amorphization (amorphization) in a Co alloy, and the total content of one or two of the elements is less than 10%. Then, the magnetism is too high, and if it exceeds 30%, it becomes non-magnetic, so the range was made 10-30%.

以下、本発明に係る合金について実施例によって具体的に説明する。
通常、垂直磁気記録媒体における薄膜は、その成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜し得られる。ここでスパッタにより成膜された薄膜は急冷されている。これに対し、本発明では実施例、比較例の供試材として、単ロール式の液体急冷装置にて作製した急冷薄帯を用いている。これは実際にスパッタにより急冷され成膜された薄膜の、成分による諸特性への影響を、簡易的に液体急冷薄帯により評価したものである。
Hereinafter, the alloy according to the present invention will be specifically described with reference to examples.
Usually, a thin film in a perpendicular magnetic recording medium can be formed on a glass substrate by sputtering a sputtering target material having the same component. Here, the thin film formed by sputtering is rapidly cooled. On the other hand, in this invention, the quenching thin strip produced with the single roll type liquid quenching apparatus is used as a test material of an Example and a comparative example. This is a simple evaluation of the influence of the components on various properties of a thin film formed by quenching by sputtering in a simple manner using a liquid quenching ribbon.

[急冷薄帯の作製条件]
表1〜表3に示す成分組成に秤量した原料30gを内径が10mmで深さが40mm程度の水冷銅型に挿入して減圧したAr雰囲気中でアーク溶解して凝固させ、急冷薄帯の溶解母材とした。急冷薄帯の作製条件は、単ロール方式で、内径15mmの石英管中にてこの溶解母材をセットし、出湯ノズルの内径を1mmとし、雰囲気気圧を61kPa、噴霧差圧を69kPa、銅ロール(径300mm)の回転数を3000rpm、銅ロールと出湯ノズルのギャップを0.3mmにして溶解母材を溶解後出湯した。出湯温度は各溶解母材の溶け落ち直後の温度とした。このようにして作製した急冷薄帯を供試材とし、以下の項目を評価した。
[Conditions for quenching ribbon]
30 g of raw materials weighed to the composition shown in Tables 1 to 3 were inserted into a water-cooled copper mold having an inner diameter of 10 mm and a depth of about 40 mm, and arc-melted in a reduced Ar atmosphere to solidify and melt the rapidly cooled ribbon A base material was used. The conditions for preparing the quenching ribbon are a single roll method, this molten base material is set in a quartz tube having an inner diameter of 15 mm, the inner diameter of the tap nozzle is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, and the copper roll (The diameter of 300 mm) was set to 3000 rpm, the gap between the copper roll and the hot water nozzle was set to 0.3 mm, and the molten base material was melted to discharge hot water. The hot water temperature was the temperature immediately after each molten base material was melted. The following items were evaluated using the thus prepared quenched ribbon as a test material.

[急冷薄帯の飽和磁束密度の評価]
急冷薄帯の飽和磁束密度(Bs)の評価としては、VSM装置(振動試料型磁力計)にて、印加磁場1200kA/m、供試材の重量は15mg程度で飽和磁束密度を測定した。
[Evaluation of saturation magnetic flux density of quenched ribbon]
For the evaluation of the saturation magnetic flux density (Bs) of the quenched ribbon, the saturation magnetic flux density was measured with an applied magnetic field of 1200 kA / m and a weight of the test material of about 15 mg with a VSM apparatus (vibrating sample magnetometer).

[急冷薄帯の構造]
急冷薄帯の非晶質性の評価としては、通常、非晶質材料のX線回折パターンを測定すると、回折ピークが見られず、非晶質特有のハローパターンとなる。また、完全な非晶質でない場合は、回折ピークは見られるものの、結晶材料と比較してピーク高さが低くなり、かつハローパターンも見られる。そこで下記の方法にて非晶質性の評価とした。
[Structure of quenched ribbon]
As an evaluation of the amorphous property of the quenched ribbon, usually, when an X-ray diffraction pattern of an amorphous material is measured, a diffraction peak is not seen and a halo pattern peculiar to an amorphous state is obtained. Moreover, when it is not completely amorphous, although a diffraction peak is seen, a peak height becomes low compared with a crystalline material, and a halo pattern is also seen. Therefore, the amorphous property was evaluated by the following method.

[非晶質性の評価]
非晶質性の評価としては、ガラス板に両面テープで供試材を貼り付け、X線回折装置にて回折パターンを得た。このとき、測定面は急冷薄帯の銅ロール接触面となるように供試材を貼り付けた。X線源はCu−α線で、スキャンスピード4°/minで測定した。この回折パターンにハローパターンが確認できるものを○、全くハローパターンが見られないものを×として非晶質性の評価とした。
[Amorphous evaluation]
For evaluation of amorphousness, a test material was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed so that a measurement surface might become a copper roll contact surface of a rapidly cooled ribbon. The X-ray source was Cu-α ray, and measurement was performed at a scan speed of 4 ° / min. In this diffraction pattern, the evaluation of the amorphous property was evaluated as ◯ when the halo pattern could be confirmed, and x when no halo pattern was observed.

[急冷薄帯の耐食性評価(NaCl)]
ガラスペレットに急冷薄帯を両面テープで貼り付けた試料にて、塩水噴霧試験(5%NaCl水溶液で35℃にて16時間噴霧)を実施した評価で、発錆が認められなかったものを○、発錆が認められたものを×とした。
[Evaluation of corrosion resistance of quenched ribbon (NaCl)]
A sample in which a quenching ribbon was attached to a glass pellet with a double-sided tape, and a salt spray test (sprayed at 35 ° C. for 16 hours with a 5% NaCl aqueous solution) was conducted. The case where rusting was observed was rated as x.

耐サーマルショック性はターゲットを作製し、所定の温度からの水冷により割れるか割れないかを評価した。
[ターゲット作製方法]
表1〜表3に示す組成をガスアトマイズ法により軟磁性合金粉末を作製した。得られた粉末を500μm以下に分級し、HIP(熱間等方圧プレス)による固化成形加工の原料粉末として用いた。HIP成形用ビレットは、直径250mm、長さ50mmの炭素鋼製の缶に原料粉末を充填したのち、蓋をして、真空脱気を施し、その後脱気孔を封入し作製した。この粉末を充填したビレットを1150℃に加熱した後、内径230mmの拘束型コンテナ内に装入し、500MPaの加圧にて成形した。上記方法で作製した固化成形耐を、ワイヤーカットで切り出し、旋盤加工にて直径および厚さの寸法を調整し、平面研磨により厚さと表面粗さの仕上げを行って、直径180mm、厚さ7mmの円盤状に加工し、スパッタリングターゲット材を作製した。
For thermal shock resistance, a target was prepared and evaluated whether it was cracked or not cracked by water cooling from a predetermined temperature.
[Target production method]
Soft magnetic alloy powders having the compositions shown in Tables 1 to 3 were prepared by gas atomization. The obtained powder was classified to 500 μm or less and used as a raw material powder for solidification molding by HIP (hot isostatic pressing). The billet for HIP molding was prepared by filling a raw material powder into a carbon steel can having a diameter of 250 mm and a length of 50 mm, and then covering the can with a vacuum, vacuum deaeration, and then enclosing the deaeration holes. The billet filled with this powder was heated to 1150 ° C., and then charged into a constraining container having an inner diameter of 230 mm and molded under a pressure of 500 MPa. The solidification resistance produced by the above method is cut out by wire cutting, the diameter and thickness are adjusted by lathe processing, and the thickness and surface roughness are finished by surface polishing, and the diameter is 180 mm and the thickness is 7 mm. A sputtering target material was fabricated by processing into a disk shape.

[耐サーマルショック性の評価]
上記で得たターゲットを300℃から50℃きざみで、700℃までの各温度で1時間保持した後、水中へ投入することで急冷し、割れの発生状況を確認した。割れの発生した温度を割れ温度として評価した。割れ温度が450℃以上を耐サーマルショック性が良いとした。
[Evaluation of thermal shock resistance]
The target obtained above was held at 300 ° C. to 50 ° C. at each temperature up to 700 ° C. for 1 hour, and then rapidly cooled by throwing it into water to confirm the occurrence of cracks. The temperature at which cracking occurred was evaluated as the cracking temperature. A cracking temperature of 450 ° C. or higher was regarded as good thermal shock resistance.

に示す比較例No.29、30はFe含有量が多いために、耐食性悪い。比較例No.31は(A)群のMo元素の含有量が少ないために、Bsが高い。比較例No.3233、34は(A)群のMo、W元素の含有量が多いために、割れ温度が低い。 Comparative Example No. 2 shown in Table 2 29 and 30 have poor corrosion resistance due to the high Fe content. Comparative Example No. No. 31 has a high Bs because the content of the Mo element in group (A) is small. Comparative Example No. 32 , 33 , and 34 have a low cracking temperature because they contain a large amount of Mo and W elements in group (A).

これに対して、本発明であるNo.1〜28は、いずれも本発明の条件を満足していることから、10kG以下の比較的小さい飽和磁束密度(Bs)を得ることが可能となり、かつアモルファス性、耐食性および本発明の最大の特徴とする割れ温度が高く、所謂耐サーマルショック性に優れた合金を提供することができる。 On the other hand, No. which is the present invention. Since Nos. 1 to 28 all satisfy the conditions of the present invention, it is possible to obtain a relatively small saturation magnetic flux density (Bs) of 10 kG or less, and amorphous characteristics, corrosion resistance, and the greatest features of the present invention. An alloy having a high cracking temperature and excellent in so-called thermal shock resistance can be provided.

以上述べたように、本発明により、特に飽和磁束密度、非晶質性(アモルファス性)、および耐食性を確保し、かつ耐サーマルショック性に優れた磁気記録用軟磁性用合金およびそれを用いたスパッタリングターゲット材並びに磁気記録媒体を得ることを可能とした極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, in accordance with the present invention, a soft magnetic alloy for magnetic recording and the use thereof, which particularly ensure saturation magnetic flux density, amorphousness (amorphousness), corrosion resistance, and excellent thermal shock resistance, are used. An extremely excellent effect is obtained that makes it possible to obtain a sputtering target material and a magnetic recording medium.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (2)

at.%比で、100Fe/(Fe+Co):30〜70、ただし、Fe>20.4、かつ下記(A)群の各種元素の1種または2種を10〜30%含有し、残部Coおよび不可避的不純物からなることを特徴とする磁気記録用軟磁性合金。
(A)Mo,W
at. % Ratio, 100Fe / (Fe + Co): 30 to 70, but Fe> 20.4, and 10 to 30% of one or two kinds of various elements of group (A) below, with the remainder Co and unavoidable A soft magnetic alloy for magnetic recording, characterized by comprising impurities.
(A) Mo, W
請求項1に記載した磁気記録用軟磁性合金を用いたスパッタリングターゲット材。 A sputtering target material using the soft magnetic alloy for magnetic recording according to claim 1 .
JP2012179238A 2012-08-13 2012-08-13 Soft magnetic alloy for magnetic recording and sputtering target material Active JP6210503B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012179238A JP6210503B2 (en) 2012-08-13 2012-08-13 Soft magnetic alloy for magnetic recording and sputtering target material
PCT/JP2013/071484 WO2014027601A1 (en) 2012-08-13 2013-08-08 Soft magnetic alloy for magnetic recording purposes, sputtering target material, and magnetic recording medium
SG11201408798PA SG11201408798PA (en) 2012-08-13 2013-08-08 Soft magnetic alloy for magnetic recording purposes, sputtering target material, and magnetic recording medium
SG10201700410WA SG10201700410WA (en) 2012-08-13 2013-08-08 Soft magnetic alloy for magnetic recording purposes, sputtering target material, and magnetic recording medium
CN201380039614.4A CN104488029B (en) 2012-08-13 2013-08-08 Magnetic recording non-retentive alloy and sputtering target material and magnetic recording media
MYPI2015000091A MY171479A (en) 2012-08-13 2013-08-08 Soft magnetic alloy for magnetic recording purposes, sputtering target material, and magnetic recording medium
TW102128832A TWI478183B (en) 2012-08-13 2013-08-12 A magneto-magnetic recording medium for magnetic recording and a sputtering target, and a magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179238A JP6210503B2 (en) 2012-08-13 2012-08-13 Soft magnetic alloy for magnetic recording and sputtering target material

Publications (2)

Publication Number Publication Date
JP2014038669A JP2014038669A (en) 2014-02-27
JP6210503B2 true JP6210503B2 (en) 2017-10-11

Family

ID=50101298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179238A Active JP6210503B2 (en) 2012-08-13 2012-08-13 Soft magnetic alloy for magnetic recording and sputtering target material

Country Status (6)

Country Link
JP (1) JP6210503B2 (en)
CN (1) CN104488029B (en)
MY (1) MY171479A (en)
SG (2) SG10201700410WA (en)
TW (1) TWI478183B (en)
WO (1) WO2014027601A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405261B2 (en) * 2014-05-01 2018-10-17 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
CN104766685A (en) * 2014-05-21 2015-07-08 北京北冶功能材料有限公司 High-performance iron-cobalt soft magnetic alloy forging material
JP6506659B2 (en) * 2015-08-24 2019-04-24 山陽特殊製鋼株式会社 Amorphous alloy for magnetic recording, sputtering target material and magnetic recording medium
JP2017208147A (en) * 2016-05-16 2017-11-24 日立金属株式会社 Sputtering target for forming soft magnetic ground layer and soft magnetic ground layer
CN111850431B (en) * 2019-09-23 2022-02-22 宁波中科毕普拉斯新材料科技有限公司 Iron-based amorphous alloy containing sub-nanoscale ordered clusters, preparation method and nanocrystalline alloy derivative thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524514B2 (en) * 1987-09-21 1996-08-14 日立マクセル株式会社 Magnetic recording media
JP2635402B2 (en) * 1988-11-02 1997-07-30 アルプス電気株式会社 Soft magnetic alloy film
JPH0555036A (en) * 1991-08-26 1993-03-05 Tdk Corp Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH07272223A (en) * 1994-03-29 1995-10-20 Tdk Corp Magneto-resistance effect type head
US20060110626A1 (en) * 2004-11-24 2006-05-25 Heraeus, Inc. Carbon containing sputter target alloy compositions
JP4380577B2 (en) * 2005-04-07 2009-12-09 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium
JP4331182B2 (en) * 2006-04-14 2009-09-16 山陽特殊製鋼株式会社 Soft magnetic target material
JP4953082B2 (en) * 2006-10-10 2012-06-13 日立金属株式会社 Co-Fe-Zr alloy sputtering target material and method for producing the same
MY172177A (en) * 2008-04-30 2019-11-15 Sanyo Special Steel Co Ltd Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JP5443065B2 (en) * 2009-06-09 2014-03-19 エイチジーエスティーネザーランドビーブイ Perpendicular magnetic recording medium

Also Published As

Publication number Publication date
MY171479A (en) 2019-10-15
CN104488029B (en) 2018-04-17
TWI478183B (en) 2015-03-21
JP2014038669A (en) 2014-02-27
SG11201408798PA (en) 2015-02-27
TW201413758A (en) 2014-04-01
WO2014027601A1 (en) 2014-02-20
CN104488029A (en) 2015-04-01
SG10201700410WA (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5253781B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
TWI627286B (en) CoFe-based alloy for soft magnetic film layer and sputtering target for perpendicular magnetic recording medium
JP5726615B2 (en) Alloy for seed layer of magnetic recording medium and sputtering target material
JP6405261B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP5698023B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP5605787B2 (en) Sputtering target material for forming an alloy for a soft magnetic film layer in a perpendicular magnetic recording medium and its manufacturing method
JP6210503B2 (en) Soft magnetic alloy for magnetic recording and sputtering target material
JP6471603B2 (en) Fe-based amorphous alloy composition
JP5714397B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP5797398B2 (en) Ni-based alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP5474902B2 (en) An alloy used for a soft magnetic thin film layer in a perpendicular magnetic recording medium, a sputtering target material, and a perpendicular magnetic recording medium having a soft magnetic thin film layer.
JP5650169B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
TWI823989B (en) Sputtering targets for soft magnetic layers of magnetic recording media and magnetic recording media
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
JP6506659B2 (en) Amorphous alloy for magnetic recording, sputtering target material and magnetic recording medium
CN107251139B (en) Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium
JP2013011018A (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160926

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6210503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250