JP6209806B1 - Building - Google Patents

Building Download PDF

Info

Publication number
JP6209806B1
JP6209806B1 JP2017001493A JP2017001493A JP6209806B1 JP 6209806 B1 JP6209806 B1 JP 6209806B1 JP 2017001493 A JP2017001493 A JP 2017001493A JP 2017001493 A JP2017001493 A JP 2017001493A JP 6209806 B1 JP6209806 B1 JP 6209806B1
Authority
JP
Japan
Prior art keywords
window
infrared
far
room
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001493A
Other languages
Japanese (ja)
Other versions
JP2018111939A (en
Inventor
砂原 康治
康治 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VOC Direct Corp
Original Assignee
VOC Direct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VOC Direct Corp filed Critical VOC Direct Corp
Priority to JP2017001493A priority Critical patent/JP6209806B1/en
Priority to PCT/JP2017/036652 priority patent/WO2018127999A1/en
Application granted granted Critical
Publication of JP6209806B1 publication Critical patent/JP6209806B1/en
Publication of JP2018111939A publication Critical patent/JP2018111939A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/02Dwelling houses; Buildings for temporary habitation, e.g. summer houses

Abstract

【課題】 低コストで耐久性に優れた室内冷却機能を備える建築物を提供する。【解決手段】 本発明の建築物1は、一つの部屋を構成する壁2の上下に赤外線を透過させるための窓20U、20Lが取り付けられており、高い位置にある前記窓20Uの赤外線透過率の方が低い位置にある前記窓20Lの赤外線透過率よりも高くなっており、前記部屋を構成する部材から放射される遠赤外線FRを高い位置にある前記窓20Uを透過させて宇宙空間に放出し、屋外から放射されて前記部屋内に侵入する赤外線IRの量を低い位置にある前記窓20Lで抑制することで、前記部屋の温度上昇を抑制する。【選択図】図7PROBLEM TO BE SOLVED: To provide a building having an indoor cooling function with low cost and excellent durability. SOLUTION: A building 1 according to the present invention has windows 20U and 20L for transmitting infrared light above and below a wall 2 constituting one room, and infrared transmittance of the window 20U at a high position. Is higher than the infrared transmittance of the window 20L at a lower position, and the far-infrared FR radiated from the members constituting the room is transmitted through the window 20U at a higher position and released into outer space. Then, the amount of infrared IR radiated from the outside and entering the room is suppressed by the window 20L at a low position, thereby suppressing an increase in the temperature of the room. [Selection] Figure 7

Description

本発明は、低コストで耐久性に優れた室内冷却機能を備える建築物に関する。 The present invention relates to a building having an indoor cooling function with low cost and excellent durability.

放射冷却を利用して構造物内の温度を調節する技術が知られている。
例えば特許文献1には可視光領域を透過して近赤外領域及び遠赤外線領域を遮断する素材から成るフィルムをビニールハウスの屋根面や側面に展開格納自在に取り付ける技術が開示されている。
このビニールハウスの場合、夏季の昼間はフィルムを展開することで光合成に不要な近赤外線及び遠赤外線がハウス内に入ることを防ぎ、夏季の夜間は格納することでハウス内の土や作物等が発する黒体放射による遠赤外線を宇宙空間に向かって逃がして放射冷却し、ハウス内を冷やすことができる。
また、冬季の昼間はフィルムを格納することで太陽光に含まれるエネルギーを全てハウス内に取り込み、冬季の夜間は展開することでハウス内の土や作物等が発する黒体放射による遠赤外線を遮断して放射冷却によるハウス内の温度低下を防ぐことができる。
また、屋根面の棟部分を段違い構造にすることでハウス内の上部に溜まった熱気を自然対流によってハウス外に放出することができる。
A technique for adjusting the temperature in a structure using radiant cooling is known.
For example, Patent Document 1 discloses a technique in which a film made of a material that transmits a visible light region and blocks a near-infrared region and a far-infrared region is attached to a roof surface or side surface of a greenhouse so that the film can be unfolded and stored.
In the case of this greenhouse, the film is unfolded during the daytime in the summer to prevent the near infrared and far infrared rays that are unnecessary for photosynthesis from entering the house, and the soil and crops in the house can be removed by storing it during the night in the summer. Far-infrared rays emitted from black body radiation can escape to outer space to radiate and cool the interior of the house.
In addition, by storing the film in the daytime in winter, all the energy contained in the sunlight is taken into the house, and in the nighttime in winter, the far-infrared rays caused by blackbody radiation generated by soil and crops in the house are blocked. As a result, temperature drop in the house due to radiation cooling can be prevented.
Moreover, the ridge part of a roof surface is made into a step structure, and the hot air collected in the upper part in a house can be discharge | released outside a house by natural convection.

特開2016−163541号公報JP 2016-163541 A

しかし、上記特許文献に開示された技術では次のような問題がある。
すなわち、屋根、壁、窓、床等で構成される一般住宅等の建築物の場合、特許文献1のように展開格納自在な大型のフィルムで屋根全体を覆うとすると、フィルム自体の費用や展開格納時の電気代が嵩むという問題や、風雨等による破損の可能性があり耐久性の面で現実的でないという問題がある。
また、農地に建てるビニールハウスとは異なり、建築物の場合は周囲に他の建築物や樹木が存在することがあり、これら周囲の建築物等から赤外線の放射を受けることで室温が上昇してしまうという問題がある。したがって建築物の場合は周囲の環境に対応した構造を採用する必要がある。
However, the techniques disclosed in the above patent documents have the following problems.
That is, in the case of buildings such as ordinary houses composed of roofs, walls, windows, floors, etc., if the entire roof is covered with a large film that can be expanded and stored as in Patent Document 1, the cost and development of the film itself There is a problem that the electricity bill at the time of storage is increased, and there is a possibility that it is damaged due to wind and rain, and that it is not realistic in terms of durability.
Also, unlike greenhouses built on farmland, buildings may have other buildings and trees around them, and the room temperature rises due to infrared radiation from these surrounding buildings. There is a problem of end. Therefore, in the case of a building, it is necessary to adopt a structure corresponding to the surrounding environment.

本発明は、このような問題を考慮して、低コストで耐久性に優れた室内冷却機能を備える建築物を提供することを目的とする。 An object of this invention is to provide the building provided with the indoor cooling function excellent in durability at low cost in view of such a problem.

本発明の建築物は、一つの部屋を構成する壁の上下に赤外線を透過させるための窓が取り付けられており、高い位置にある前記窓の赤外線透過率の方が低い位置にある前記窓の赤外線透過率よりも高くなっており、前記部屋を構成する部材から放射される遠赤外線を高い位置にある前記窓を透過させて宇宙空間に放出し、屋外から放射されて前記部屋内に侵入する赤外線の量を低い位置にある前記窓で抑制することで、前記部屋の温度上昇を抑制することを特徴とする。
また、前記壁が、複数の壁のうち太陽光の照射時間が最も短い壁であることを特徴とする。
また、高い位置にある前記窓が、前記一つの部屋を構成する屋根に取り付けられており、前記遠赤外線を、屋根に取り付けられた前記窓を透過させて宇宙空間に放出することを特徴とする。
また、前記窓が屋内側と屋外側の二層構造であり、前記屋内側の層の赤外線透過率の方が屋外側の層の赤外線透過率よりも低くなっており、前記屋内側の層が開閉自在であることを特徴とする。
In the building of the present invention, windows for transmitting infrared light are attached to the upper and lower sides of a wall constituting one room, and the infrared transmittance of the window at a higher position is lower. The infrared ray transmittance is higher than that, and far infrared rays emitted from the members constituting the room are transmitted through the window at a high position to be emitted into outer space, and are emitted from outside to enter the room. The temperature rise of the room is suppressed by suppressing the amount of infrared rays by the window at a low position .
Moreover, the said wall is a wall with the shortest irradiation time of sunlight among several walls .
Further, the window at a high position is attached to a roof constituting the one room, and the far-infrared rays are transmitted through the window attached to the roof and emitted to outer space. .
In addition, the window has a two-layer structure of the indoor side and the outdoor side, the infrared transmittance of the indoor side layer is lower than the infrared transmittance of the outdoor side layer, the indoor side layer It can be opened and closed freely .

また、前記一つの部屋の内部に遠赤外線反射部材を備えており、前記遠赤外線が前記遠赤外線反射部材で反射して前記窓に至ることを特徴とする。
また、前記窓への太陽光の照射量を抑えるための遮蔽構造を備えることを特徴とする。
Further, a far-infrared reflecting member is provided inside the one room, and the far-infrared light is reflected by the far-infrared reflecting member and reaches the window.
Moreover, it is provided with the shielding structure for suppressing the irradiation amount of the sunlight to the said window.

また、前記窓が、前記遠赤外線が透過する際にその放射方向を変える機能を有することを特徴とする。
また、基礎に通気口を備えないことで基礎の内部を外気から遮断することを特徴とする。
In addition, the window has a function of changing a radiation direction when the far infrared rays are transmitted.
Further, the interior of the foundation is blocked from the outside air by not providing a vent hole in the foundation.

本発明では屋根や壁に赤外線を透過させるための窓を設け、室内を構成する部材から放射される遠赤外線を窓から宇宙空間に放出するので耐久性に優れた室内冷却機能を備えた建築物を得ることができる。
本明細書において「窓」とは、屋内と屋外とを繋ぐ開口部に設置される建具を指す。一方、人の出入りに供される開口部に設置される玄関ドア等は本明細書の「窓」に該当しない。
本明細書の「窓」の構成部材としては例えば当該開口部の周縁に取り付けられる窓枠、当該開口部を塞ぐために窓枠に嵌め込まれるガラスや樹脂板等の板状の部材、板状の部材を開閉自在に支持する丁番等が挙げられるが、このうち窓枠及び丁番は窓の必須の構成部材ではない。すなわち、窓枠や丁番を備えずにガラスや樹脂板等の板状の部材を開口部に嵌め込んだだけのいわゆる「嵌め殺し」であっても本明細書の「窓」に含まれるものとする。また、丁番を用いずにガラスや樹脂板等の板状の部材をスライドさせることで開口部を開閉する構造の場合も本明細書の「窓」に含まれるものとする。
本明細書において「赤外線」とは「スペクトルが赤色の外側に現れる電磁波。波長は可視光線より長く、約800ナノメートル〜1ミリメートルくらいまで。」(広辞苑)を意味する。「赤外線」には近赤外線、中赤外線及び遠赤外線が含まれるものとする。
上記窓は屋根や壁に嵌め込んだままでよく、電気モーター等で移動させる必要がないので冷却機能を低コストで実現できる。
特に窓を太陽光の照射時間が最も短い屋根及び/又は壁に取り付けたり、太陽光の照射時間が最も短い屋根及び/又は壁に取り付けた窓の赤外線透過率を、他の屋根及び/又は壁に取り付けた窓の赤外線透過率よりも高くしたり、或いは、南面と北面のうち太陽光の照射時間が短い方の面の屋根及び/又は壁に窓を取り付けることにより、日中に太陽光が室内に侵入する時間を少なくして室内の温度上昇を抑制できるので、室内冷却性能を更に高めることができる。
本明細書において「北面」とは、面(壁又は屋根)に対して引いた垂線が北方向と南方向のうち僅かでも北に向いている場合には当該面を「北面」とする。
一つの壁に複数の窓を取り付ける場合には、高い位置の窓の赤外線透過率を低い位置の窓の赤外線透過率よりも高くするのが好ましい。高い位置の窓を利用して室内からの遠赤外線を宇宙空間に放出できる一方で屋外の地面や建物等からの赤外線を低い位置の窓で遮断することで室内の温度上昇を抑制できるためである。
In the present invention, a roof or a wall is provided with a window for transmitting infrared rays, and far infrared rays radiated from members constituting the room are emitted from the window to outer space, so that the building has a highly durable indoor cooling function. Can be obtained.
In this specification, “window” refers to a fitting installed in an opening that connects indoors and outdoors. On the other hand, an entrance door or the like installed at an opening used for entering and exiting a person does not correspond to a “window” in this specification.
As a constituent member of the “window” in the present specification, for example, a window frame attached to the periphery of the opening, a plate-like member such as glass or a resin plate fitted in the window frame to close the opening, a plate-like member There are hinges and the like that can be freely opened and closed. Of these, the window frame and hinges are not essential components of the window. That is, even a so-called “fitting kill” in which a plate-like member such as glass or a resin plate is not fitted in the opening without being provided with a window frame or hinge is included in the “window” in this specification. And In addition, a case where the opening is opened and closed by sliding a plate-like member such as glass or a resin plate without using a hinge is also included in the “window” in this specification.
In the present specification, “infrared rays” means “electromagnetic waves that appear outside the spectrum in red. The wavelength is longer than visible light and is about 800 nanometers to about 1 millimeter” (Kojien). “Infrared rays” includes near infrared rays, middle infrared rays, and far infrared rays.
The window may remain fitted in the roof or wall, and it is not necessary to move it with an electric motor or the like, so that the cooling function can be realized at low cost.
In particular, the window is attached to the roof and / or wall with the shortest sunlight irradiation time, or the infrared transmittance of the window attached to the roof and / or wall with the shortest solar irradiation time is determined by other roof and / or wall By installing a window on the roof and / or wall of the surface of the south surface and the north surface where the irradiation time of sunlight is shorter, the sun light can be emitted during the day. Since the time for entering the room can be reduced and the temperature rise in the room can be suppressed, the room cooling performance can be further enhanced.
In the present specification, the “north plane” refers to a “north plane” when a perpendicular drawn with respect to a plane (wall or roof) is directed to the north at least in the north direction and the south direction.
When a plurality of windows are attached to one wall, it is preferable that the infrared transmittance of a window at a high position is higher than the infrared transmittance of a window at a low position. This is because far-infrared rays from indoors can be emitted to outer space using high-position windows, while indoor temperature rise can be suppressed by blocking infrared rays from outdoor ground or buildings with low-position windows. .

また、屋内に遠赤外線反射部材を設けることにより、室内からの遠赤外線を窓に集めて透過させることができる。
また、屋外に遠赤外線反射部材を設けることにより、窓を透過した遠赤外線を反射させて効率よく宇宙空間に放出できる。
また、遮蔽構造によって窓への太陽光の照射量を抑えることによっても日中に太陽光が室内に侵入する時間を少なくして室内の温度上昇を抑制できる。
また、スクリーンを設けてその展開・格納量を調節すれば窓から宇宙空間に放出される遠赤外線の量を調節できるし、また、1日の間で窓に直射日光が当たっていない時間帯にはスクリーンを格納することで遠赤外線を放出できる。
また、屋根や壁に赤外線反射部材を設けることによって、屋外の地面や建物等からの赤外線を反射することで室内の温度上昇を抑制できる。
窓の構成部材としては耐久性、値段及び入手の容易性を考慮してガラスが適しており、ガラスの特性としては紫外線よりも赤外線の透過率の方が高いものを使用するのが好ましい。建築物用として市販されているガラスは紫外線と赤外線の両者を遮断する機能を備えているものが多いが、本発明では両者を比較した場合に赤外線の透過率の方が高いものを使用するのが好ましい。
In addition, by providing a far-infrared reflecting member indoors, far-infrared rays from the room can be collected and transmitted through a window.
In addition, by providing a far-infrared reflecting member outdoors, the far-infrared light that has passed through the window can be reflected and efficiently emitted into outer space.
Also, by suppressing the amount of sunlight irradiated to the window by the shielding structure, it is possible to reduce the time for sunlight to enter the room during the day and to suppress the temperature rise in the room.
In addition, if a screen is installed and the amount of deployment and storage is adjusted, the amount of far-infrared rays emitted from the window to outer space can be adjusted, and during the day when the window is not exposed to direct sunlight. Can store far-infrared rays by storing the screen.
In addition, by providing an infrared reflecting member on the roof or wall, the indoor temperature rise can be suppressed by reflecting infrared rays from the outdoor ground, buildings, or the like.
As the window component, glass is suitable in consideration of durability, price, and availability, and it is preferable to use a glass having a higher infrared transmittance than ultraviolet rays. Many of the commercially available glass for buildings have a function of blocking both ultraviolet rays and infrared rays. However, in the present invention, a glass having a higher infrared transmittance is used when both are compared. Is preferred.

また、窓を屋内側と屋外側の二層構造にして、これら二層の赤外線透過率を異ならせるのが好ましい。この場合、室内の温度を低くしたい夏期には赤外線の透過率が低い方の層(例えば赤外線反射ガラス)を使用せず、遠赤外線の透過率が高い層だけを使用することで赤外線を効率よく宇宙空間に放出することができる。そして、室内の温度を高くしたい冬期には赤外線の透過率が低い方と高い方の二層を共に使用することで遠赤外線の宇宙空間への放出量を抑制できる。また、二層構造にすることで層間の空気が断熱層として機能するので断熱効果も得られる。二層構造にする場合には層間の距離を短くすることで空気の対流が起こりにくくなるので断熱効果をより高められる。
赤外線の透過率が低い方の層を屋内側に設けた場合には居住者の操作性が向上するというメリットがあり、赤外線の透過率が低い方の層を屋外側に設けた場合には屋内側に設けた赤外線透過率が高い方の層の温度上昇を抑制できるというメリットがある。
二層構造の窓を屋根や壁の高い位置に取り付ける場合、夏期は遠赤外線の透過率が高いガラスだけを使用することで外気の熱が熱伝導により室内に侵入することが考えられるが、室内に熱が進入したとしても熱気は天井付近(室内の上方空間)で停滞するので人間が生活する空間(室内の下方空間)には影響を与えない。よって、夏期はガラス1枚でも断熱効果に問題はない。
また、遠赤外線が透過する際にその放射方向を変える機能を窓に持たせることで、窓の周囲に樹木や建築物が存在する場合には、これら樹木等を避けるように遠赤外線の放射方向を変えることで遠赤外線を効率よく宇宙空間に放出することができる。
Further, it is preferable that the window has a two-layer structure of the indoor side and the outdoor side, and the infrared transmittance of these two layers is made different. In this case, in the summer when you want to lower the indoor temperature, do not use the layer with lower infrared transmittance (for example, infrared reflecting glass), but use only the layer with higher far-infrared transmittance so that infrared can be efficiently transmitted. It can be released into outer space. In winter, when the indoor temperature is desired to be raised, the amount of far-infrared rays released into outer space can be suppressed by using both the lower infrared transmission layer and the higher infrared transmission layer. Moreover, since the air between layers functions as a heat insulation layer by using a two-layer structure, a heat insulation effect is also obtained. In the case of a two-layer structure, air insulation is less likely to occur by shortening the distance between layers, so that the heat insulation effect can be further enhanced.
If the layer with the lower infrared transmittance is provided on the indoor side, there is an advantage that the operability of the resident is improved. If the layer with the lower infrared transmittance is provided on the outdoor side, the There is a merit that the temperature increase of the layer having higher infrared transmittance provided on the inner side can be suppressed.
When a two-layer window is installed at a high position on a roof or wall, it is considered that the heat of the outside air can enter the room due to heat conduction by using only glass with high far-infrared transmittance in summer. Even if heat enters, the hot air stagnates near the ceiling (upper space in the room), so it does not affect the space where humans live (lower space in the room). Therefore, in summer, there is no problem with the heat insulation effect even with a single glass.
In addition, by providing the window with a function to change the direction of radiation when far infrared rays are transmitted, if there are trees or buildings around the window, the direction of radiation of the far infrared rays is avoided so as to avoid these trees. By changing, far infrared rays can be efficiently emitted into outer space.

第1の実施の形態の建築物の構造を示す斜視図The perspective view which shows the structure of the building of 1st Embodiment 建築物の屋根の構造を示す縦断面図(a)及び(b)Longitudinal sections (a) and (b) showing the structure of the roof of the building 建築物の全体構造を示す縦断面図Longitudinal section showing the overall structure of the building スクリーンを設けた状態を示す縦断面図Longitudinal sectional view showing the screen 二層構造の窓を示す斜視図Perspective view showing a two-layer window 遠赤外線の放射方向を変える機能を有する窓を示す斜視図(a)及び縦断面図(b)Perspective view (a) and longitudinal sectional view (b) showing a window having a function of changing the radiation direction of far infrared rays 第2の実施の形態の窓を壁に設けた建築物の構造を示す縦断面図Longitudinal sectional view showing the structure of a building in which the window of the second embodiment is provided on the wall 第3の実施の形態の建築物がドームハウスである場合の構造を示す斜視図The perspective view which shows the structure in case the building of 3rd Embodiment is a dome house 実施例1における放熱試験の結果を示すグラフThe graph which shows the result of the heat dissipation test in Example 1 実施例2における実験モデルの構造を示す写真Photo showing the structure of the experimental model in Example 2 実験モデルの寸法を示す正面図(a)及び側面図(b)Front view (a) and side view (b) showing dimensions of experimental model 実施例2における放熱試験の結果を示すグラフThe graph which shows the result of the heat dissipation test in Example 2 実施例3における実験小屋の設計図のうち立面図(a)、各区画の平面図(b)及び縦断面図(c)Elevated view (a), plan view (b) and longitudinal sectional view (c) of each compartment in the design drawing of the experimental hut in Example 3 実験小屋の正面の写真(a)、背面の写真(b)、区画内の写真(c)及び窓の写真(d)Front photo (a), rear photo (b), interior photo (c) and window photo (d) 実施例3における放熱試験の結果を示すグラフThe graph which shows the result of the heat dissipation test in Example 3

[第1の実施の形態]
本発明の建築物及び窓の第1の実施の形態について説明する。
図1〜図4に示すように、本実施の形態の建築物1は屋根10に窓20を備えている。
窓20は部屋の壁2や床等の室内を構成する部材から放射される遠赤外線FRを透過させて宇宙空間に放出するために設ける。遠赤外線FRを宇宙空間に放出することで放射冷却によって室内の温度を低下させることができる。
窓20の構成部材としては遠赤外線FRを透過する機能を有するガラスが挙げられる。石英ガラスは赤外線をよく通すため好ましい。使用するガラスの特性として紫外線よりも赤外線の透過率の方が高いものを用いるのが好ましい。ガラス以外にもアクリル、ポリカーボネイトなどの樹脂板を用いてもよい。厚さを抑えることで遠赤外線FRの透過率を高めることができる。
窓20は南面と北面のうち相対的に太陽光の照射時間が短い方の面の屋根10に設けるのが好ましく、建築物1を北半球に立てる場合には北面に設けるのが好ましい。
多くの遠赤外線FRを透過させるためには、窓20が水平面と成す角度をより小さく(水平に近く)する方が好ましい。窓20の構成部材であるガラス等の内部を遠赤外線FRが透過する距離が短くなるためである。当然のことながら窓20の面積を大きくする方が好ましい。
建築物1の壁2及び床として蓄熱効率が高い硬質の素材を使用すると大量の遠赤外線FRが放出されるため効率よく室内の温度を低下させることができる。
地面からの熱及び外気の熱がなるべく床に伝わらないようにして冷却効果を高めるには例えば建築物1の基礎に通気口を設けずに外気と遮断したり、基礎に断熱材を入れたり、基礎をベタ基礎にしたりするのが好ましい。
[First embodiment]
A first embodiment of a building and a window according to the present invention will be described.
As shown in FIGS. 1 to 4, the building 1 of this embodiment includes a window 20 on a roof 10.
The window 20 is provided in order to transmit the far-infrared FR radiated from the members constituting the room, such as the wall 2 and the floor of the room, and to emit it into outer space. By releasing far-infrared FR into outer space, the indoor temperature can be lowered by radiation cooling.
As a constituent member of the window 20, glass having a function of transmitting far infrared rays FR can be cited. Quartz glass is preferable because it transmits infrared rays well. As the characteristics of the glass used, it is preferable to use one having a higher infrared transmittance than ultraviolet rays. In addition to glass, resin plates such as acrylic and polycarbonate may be used. The transmittance of the far-infrared FR can be increased by suppressing the thickness.
The window 20 is preferably provided on the roof 10 having a shorter solar irradiation time between the south surface and the north surface, and is preferably provided on the north surface when the building 1 is standing in the northern hemisphere.
In order to transmit a lot of far infrared rays FR, it is preferable to make the angle formed by the window 20 with the horizontal plane smaller (close to the horizontal). This is because the distance through which the far infrared ray FR passes through the inside of the glass or the like which is a constituent member of the window 20 is shortened. As a matter of course, it is preferable to increase the area of the window 20.
When a hard material with high heat storage efficiency is used as the wall 2 and floor of the building 1, a large amount of far infrared FR is emitted, so that the indoor temperature can be lowered efficiently.
In order to improve the cooling effect by preventing the heat from the ground and the heat of the outside air from being transmitted to the floor as much as possible, for example, without providing a vent on the foundation of the building 1 or by blocking the outside air, The foundation is preferably a solid foundation.

本実施の形態の建築物1は、窓20への太陽光の照射量を抑えるための遮蔽構造30を備える。
具体的には図2に示すように南面の屋根10の高さを北面よりも高くすることで棟に段差31を設けており、この段差31が遮蔽構造30に該当する。また、図1に示すように段差31の下部と屋根10との屈曲箇所に三角形状の2枚の板体32を設けており、この板体32も遮蔽構造30に該当する。
仮に図2(a)に示すように建築物1を立てた場所における夏至の日の南中角度が76°の場合、窓20の下端と段差31の上端とを結んだ直線Lと水平面が成す角度を76°より大きくしておけば、直射日光が窓20を通過して室内に入らない構造にすることができる。
あるいは、夏至の日よりも2か月程度あとの時期の方が気温が高くなることを考慮して、図2(b)に示すようにその頃の南中角度が仮に68°とすれば、上記直線Lと水平面が成す角度を68°より大きくしておけばよい。
The building 1 of the present embodiment includes a shielding structure 30 for suppressing the amount of sunlight irradiated to the window 20.
Specifically, as shown in FIG. 2, the height of the roof 10 on the south surface is made higher than that on the north surface, so that a step 31 is provided in the ridge, and this step 31 corresponds to the shielding structure 30. Also, as shown in FIG. 1, two triangular plates 32 are provided at the bent portion between the lower portion of the step 31 and the roof 10, and the plates 32 also correspond to the shielding structure 30.
As shown in Fig. 2 (a), when the south-central angle of the day of the summer solstice is 76 ° in the place where the building 1 is erected, a straight line L connecting the lower end of the window 20 and the upper end of the step 31 and a horizontal plane are formed. If the angle is larger than 76 °, a structure in which direct sunlight does not enter the room through the window 20 can be achieved.
Or, considering that the temperature will be higher in about two months after the summer solstice day, if the south-central angle at that time is assumed to be 68 ° as shown in Fig. 2 (b), The angle formed by the straight line L and the horizontal plane should be larger than 68 °.

本実施の形態の建物は更に遠赤外線反射部材40を備える。
具体的には図3に示すように屋内用の遠赤外線反射部材40としてアルミ等の金属を貼り付けたロールカーテン41を天井に吊り下げている。また、屋外用の遠赤外線反射部材40として段差31の北面側と2枚の板体の内面側に鏡42を取り付けている。
室内を構成する部材から放射された遠赤外線FRは、そのまま窓20を透過したり、或いは一旦ロールカーテン41で反射したりしたあと窓20を透過する。窓20を透過した遠赤外線FRはそのまま宇宙空間に放出されたり、或いは一旦鏡42で反射したりして宇宙空間に放出される。
図4に示すように窓20を覆うことができる展開・格納自在なスクリーン50を屋外又は屋内に設けることにしてもよい。スクリーン50の展開量を調節することで宇宙空間に放出される遠赤外線FRの量を調節できる。
The building according to the present embodiment further includes a far-infrared reflecting member 40.
Specifically, as shown in FIG. 3, a roll curtain 41 with a metal such as aluminum attached as an indoor far-infrared reflecting member 40 is suspended from the ceiling. Further, mirrors 42 are attached to the north surface side of the step 31 and the inner surface side of the two plates as the outdoor far-infrared reflecting member 40.
The far-infrared FR radiated from the members constituting the room passes through the window 20 as it is, or is reflected by the roll curtain 41 and then passes through the window 20. The far-infrared FR transmitted through the window 20 is directly emitted into the outer space, or once reflected by the mirror 42 and released into the outer space.
As shown in FIG. 4, an unfoldable and retractable screen 50 that can cover the window 20 may be provided outdoors or indoors. By adjusting the amount of expansion of the screen 50, the amount of far-infrared FR released to outer space can be adjusted.

室内の温度を低く保つためには建築物1の壁2や屋根10に窓20を設けないことで太陽光や地面からの赤外線IRが窓20を透過して室内に入らない構造が好ましい。窓20を設ける必要がある場合には図3に示すように赤外線反射部材60として窓20の表面を格子61で覆ったり、窓20のガラスとして赤外線反射ガラス62(熱線反射ガラス)を用いたりするのが好ましい。
なお、窓20として図5に示すように屋内側の層21と屋外側の層22とで赤外線透過率が異なる二層構造にしてもよい。
図5では赤外線の透過率が低い方の層を屋内側に設けて開閉自在にしており、これにより居住者による開閉作業の操作性が向上するというメリットがある。なお、図5のような開閉式ではなく、使用しない方の層を壁2内にスライド収納する構造にしてもよい。
In order to keep the indoor temperature low, a structure in which sunlight or infrared IR from the ground passes through the window 20 and does not enter the room by not providing the window 20 on the wall 2 or the roof 10 of the building 1 is preferable. When it is necessary to provide the window 20, as shown in FIG. 3, the surface of the window 20 is covered with a lattice 61 as the infrared reflecting member 60, or the infrared reflecting glass 62 (heat ray reflecting glass) is used as the glass of the window 20. Is preferred.
Note that the window 20 may have a two-layer structure in which the infrared transmittance is different between the indoor layer 21 and the outdoor layer 22 as shown in FIG.
In FIG. 5, a layer having a lower infrared transmittance is provided on the indoor side so that it can be opened and closed, which has the advantage that the operability of the opening and closing operation by the resident is improved. Instead of the open / close type as shown in FIG. 5, a structure in which the unused layer is slid and stored in the wall 2 may be used.

また、遠赤外線FRが透過する際にその放射方向を変える機能を窓20に持たせてもよい。
具体的には例えば図6(a)に示すように複数の板材70を上下左右方向に格子状に組み上げると共に左右方向にのびる板材70を水平面に対して傾斜させることで開口71が屋外に向かって上向きになるようにしている。図6(b)に示すように遠赤外線FRは開口内を通過する際に板材の傾斜方向に沿ってその進路が上向きに変更されて外部に放射される。
このように、窓20に遠赤外線FRの放射方向を変える機能を持たせることで、窓20の周囲に樹木や建築物1が存在する場合に、これら樹木等を避けるように遠赤外線FRの放射方向を変えることで遠赤外線FRを効率よく宇宙空間に放出することができる。
Further, the window 20 may have a function of changing the radiation direction when the far-infrared FR is transmitted.
Specifically, for example, as shown in FIG. 6 (a), a plurality of plate members 70 are assembled in a lattice shape in the vertical and horizontal directions, and the plate material 70 extending in the horizontal direction is inclined with respect to the horizontal plane so that the openings 71 are directed to the outdoors. I try to face up. As shown in FIG. 6 (b), when the far infrared ray FR passes through the opening, its path is changed upward along the inclination direction of the plate material and is emitted to the outside.
In this way, by providing the window 20 with the function of changing the radiation direction of the far-infrared FR, when there are trees or buildings 1 around the window 20, the radiation of the far-infrared FR is avoided so as to avoid these trees. Far-infrared FR can be efficiently released into outer space by changing the direction.

[第2の実施の形態]
次に本発明の建築物の第2の実施の形態について説明するが、上記第1の実施の形態と同一の構成となる箇所については同一の符号を付してその説明を省略する。
図7に示すように本実施の形態の建築物3は窓20を壁2に設ける点と一つの壁2に複数の窓20を取り付ける点に特徴を有する。この場合、南面と北面のうち相対的に太陽光の照射時間が短い方の面の壁2に窓20を設けるのが好ましい。
窓20を壁2に設けることにすれば、屋根10に設ける場合と比較して施工コストを抑えることができる。
一つの壁2に複数の窓20を取り付ける場合には、高い位置の窓20Uの赤外線透過率を低い位置の窓20Lの赤外線透過率よりも高くするのが好ましい。高い位置の窓20を利用して室内からの遠赤外線FRを宇宙空間に放出でき、屋外からの赤外線IRを低い位置の窓20で遮断することで室内の温度上昇を抑制できる。
[Second Embodiment]
Next, a second embodiment of the building of the present invention will be described, but the same reference numerals will be given to portions having the same configuration as in the first embodiment, and the description thereof will be omitted.
As shown in FIG. 7, the building 3 of the present embodiment is characterized in that a window 20 is provided on the wall 2 and a plurality of windows 20 are attached to one wall 2. In this case, it is preferable to provide the window 20 on the wall 2 on the surface of the south surface and the north surface that has a relatively short solar irradiation time.
If the window 20 is provided on the wall 2, the construction cost can be reduced as compared with the case where the window 20 is provided on the roof 10.
When a plurality of windows 20 are attached to one wall 2, it is preferable that the infrared transmittance of the high-position window 20U is higher than the infrared transmittance of the low-position window 20L. Far-infrared FR from the room can be emitted to outer space using the high-position window 20, and indoor temperature rise can be suppressed by blocking infrared IR from the outside by the low-position window 20.

[第3の実施の形態]
次に本発明の建築物の第3の実施の形態について説明するが、上記各実施の形態と同一の構成となる箇所については同一の符号を付してその説明を省略する。
図8に示すように本実施の形態の建築物4はいわゆるドームハウスであり、その天頂部に窓20を設けると共に窓20への太陽光の照射量を抑えるための遮蔽構造30として円周方向に移動可能なフード80を備える点に特徴を有する。フードの内面には遠赤外線反射部材40として鏡81を貼り付けている。
本実施の形態の建築物4によればフード80を回転させることで一日中太陽光をフード80の外面で遮りながら、室内からの遠赤外線FRを直接又はフード80の内面の鏡81で反射させて宇宙空間に高効率で放出することができる。
[Third embodiment]
Next, a third embodiment of the building of the present invention will be described, but the same reference numerals are given to portions having the same configurations as those of the above embodiments, and the description thereof is omitted.
As shown in FIG. 8, the building 4 of the present embodiment is a so-called dome house, and is provided with a window 20 at the top of the building 4 and a circumferential direction as a shielding structure 30 for suppressing the amount of sunlight irradiated to the window 20 It is characterized in that it has a movable hood 80. A mirror 81 is pasted as the far-infrared reflecting member 40 on the inner surface of the hood.
According to the building 4 of this embodiment, the far-infrared FR from the room is reflected directly or by the mirror 81 on the inner surface of the hood 80 while the sunlight is blocked by the outer surface of the hood 80 by rotating the hood 80 throughout the day. It can be released into outer space with high efficiency.

本発明の建築物を模擬した構造体を使用して外気温度と室内温度の時間変化を計測した。
構造体は上部が開口した箱状の発泡スチロールの当該開口を透明フィルムで覆ったものを用いた。発泡スチロールは建築物の壁及び床に相当し、透明フィルムは屋根に設けた窓に相当する。
図9のグラフから、開口への直射日光の照射量が多くなる14時から15時の間で室内温度が外気温度を上回ったものの、それ以外の時間帯(10時から14時と15時から19時の間)は室内温度が外気温度を下回った。
以上より、室内への直射日光の侵入をコントロールすれば、遠赤外線FRを宇宙空間に放出することで日中の室内温度を外気温度よりも低い状態で維持できることが分かった。
Using the structure simulating the building of the present invention, the time change of the outside air temperature and the room temperature was measured.
As the structure, a box-shaped foamed polystyrene having an opening at the top was covered with a transparent film. Styrofoam corresponds to the walls and floors of the building, and the transparent film corresponds to windows provided on the roof.
From the graph in Fig. 9, although the room temperature exceeded the outside air temperature between 14:00 and 15:00 when the amount of direct sunlight irradiated to the opening increased, other time zones (between 10:00 and 14:00 and between 15:00 and 19:00) ) The room temperature fell below the outside temperature.
From the above, it was found that by controlling the intrusion of direct sunlight into the room, the indoor temperature during the day can be maintained lower than the outside air temperature by releasing the far-infrared FR into outer space.

次に、窓への太陽光の照射量を抑えるための遮蔽構造及び遠赤外線反射部材を屋外に設けた場合の効果及び窓ガラスの種類を変えた場合の効果を測定するべく実験を行った。
具体的には図10及び図11に示すように、上部開口を備える3つの発泡スチロールA〜Cを用意し、遮蔽構造としてほぼ正方形の板体100を発泡スチロールの上面に対して垂直に取り付けた。そして、AとCの遮蔽構造30にはガルバリウム製の鋼板101を貼り付け、Bの遮蔽構造30にはアルミ箔102を貼り付けた。
更に、AとBの発泡スチロールの開口にフロートガラス103を取り付け、Cの発泡スチロールに熱線反射ガラス104を取り付けた。フロートガラス103は赤外線を多く透過させ、熱線反射ガラス104は赤外線の多くを反射する。
温度計は各発泡スチロールA〜Cの内部に入れた。板体100の上端と発泡スチロールA〜Cの前端とを結ぶ直線が水平線と成す角度を76.0°にした。
図12のグラフから、以下の理由によりアルミ箔102とフロートガラス103を組み合わせた真ん中の発泡スチロールBの構成が最も優れた冷却機能を有することが確認できた。
・日中から夕方の温度が最も低い
・日中から夕方にかけての温度低下率が最も高い
・夜間の温度が最も低い
・夜間から早朝にかけての温度上昇率が最も低い
・早朝から10時頃までの温度が最も低い
なお、実験開始の11時から19時ごろまでと6時から実験終了の11時ごろまでの間、各発泡スチロールA〜Cの内部温度が外気温よりも高くなったのは、発泡スチロールA〜Cを炎天下の乾いた砂の上に置いたため、地面等から熱線が発泡スチロールA〜Cの内部に侵入したり、地面や空気からの熱伝導で発泡スチロールA〜Cが暖められたりしたためだと推測する。したがって、冷却機能を高めるには屋外に赤外線反射部材を設けたり、窓の位置を地面から離したりするのが効果的であることが分かる。
Next, an experiment was conducted to measure the effect when the shielding structure and the far-infrared reflecting member for suppressing the amount of sunlight irradiated to the window were provided outdoors and the effect when the type of window glass was changed.
Specifically, as shown in FIGS. 10 and 11, three foamed polystyrenes A to C having an upper opening were prepared, and a substantially square plate body 100 was attached perpendicularly to the top surface of the foamed polystyrene as a shielding structure. Then, the Galvanium steel plate 101 was attached to the shielding structures 30 of A and C, and the aluminum foil 102 was attached to the shielding structure 30 of B.
Further, a float glass 103 was attached to the openings of the A and B foamed polystyrene, and a heat ray reflective glass 104 was attached to the C foamed polystyrene. The float glass 103 transmits a lot of infrared rays, and the heat ray reflective glass 104 reflects a lot of infrared rays.
A thermometer was placed inside each of the polystyrene foams A to C. The angle formed by the straight line connecting the upper end of the plate body 100 and the front ends of the polystyrene foams A to C with the horizontal line was set to 76.0 °.
From the graph of FIG. 12, it was confirmed that the configuration of the polystyrene foam B in the middle combining the aluminum foil 102 and the float glass 103 has the most excellent cooling function for the following reason.
・ Lowest temperature from daytime to evening ・ Highest temperature decrease rate from daytime to evening ・ Lowest temperature at night ・ Lowest temperature increase rate from nighttime to early morning ・ From early morning to around 10:00 The temperature was the lowest.From 11:00 to 19:00 at the start of the experiment and from 16:00 to 11:00 at the end of the experiment, the internal temperature of each of the polystyrene foams A to C was higher than the outside temperature. Because A ~ C was placed on the dry sand under the hot sun, heat rays penetrated the inside of the foamed polystyrene A ~ C from the ground etc. Infer. Therefore, it can be seen that it is effective to provide an infrared reflecting member outdoors or to move the window away from the ground in order to enhance the cooling function.

次に、窓を壁の低い位置(地面に近い位置)に設けると共に窓ガラスの種類を変えた場合の効果を測定するべく実験を行った。
具体的には図13及び図14に示すように奥行き1,000mm、左右の幅6,000mm、高さ約1,600mmの木製の直方体の小屋の内部を6つの区画に仕切り、各区画の前後左右上下の面を断熱材で覆った。小屋の上部に傾斜面を取り付け、下部にコンクリートブロック及び木材を敷くことで下部と地面との間に空間を設けた。各区画の前面に左右の幅約600mm、高さ1,100mmの開口を設け、各開口に窓を取り付けた。地面から窓の下端までの距離は約900mmである。
6つの区画(No.1〜6)のうち左右両端の2区画(No.1及び6)を除いた4区画(No.2〜5)の内部の温度変化を測定した。
窓ガラスの種類として、No.2には赤外線をほとんど通さないペアガラス(Low-Eガラス)、No.3には遠赤外線をよく通す普通のペアガラス、No.4には赤外線をほとんど通さない単板ガラス(Low-E単板ガラス)、No.5には遠赤外線をよく通す単板ガラス(フロートガラス)を使用した。
図15に示すように、No.3及び5の区画は、No.2及び4の区画と比較して日中の温度が高い。これは、窓ガラスが地面近くに位置するため、地面からの赤外線がガラスで反射されずに区画内に侵入したことと、窓ガラスが壁に設けられて垂直になっているため区画内からの遠赤外線を宇宙空間まで放出し辛いことが原因と考えられる。
反対にNo.2及び4の区画は地面からの赤外線がガラスで反射して区画内にほとんど侵入しなかったために日中の温度を低く抑えることができたと考えられる。
以上より、窓を壁の高い位置に設ける場合には赤外線透過率を高くして、窓を壁の低い位置に設ける場合には赤外線透過率を低くするのが室内冷却機能を高める点で有効であることが分かる。
Next, an experiment was conducted to measure the effect when the window was provided at a low position on the wall (close to the ground) and the type of window glass was changed.
Specifically, as shown in Fig. 13 and Fig. 14, the interior of a wooden rectangular hut with a depth of 1,000mm, a left and right width of 6,000mm, and a height of about 1,600mm is divided into six sections. The surface was covered with insulation. An inclined surface was attached to the upper part of the hut, and a concrete block and wood were laid on the lower part to provide a space between the lower part and the ground. An opening with a width of approximately 600mm and a height of 1,100mm was provided on the front of each compartment, and a window was attached to each opening. The distance from the ground to the bottom edge of the window is about 900mm.
Of the six compartments (No. 1 to 6), the temperature change inside 4 compartments (No. 2 to 5) excluding 2 compartments (No. 1 and 6) at both left and right ends was measured.
As the type of window glass, No.2 is a pair glass (Low-E glass) that hardly transmits infrared rays, No.3 is a normal pair glass that passes far infrared rays well, and No.4 hardly transmits infrared rays. Single plate glass (Low-E single plate glass), No. 5 used single plate glass (float glass) that allows far infrared rays to pass well.
As shown in FIG. 15, the No. 3 and 5 compartments have higher daytime temperatures than the No. 2 and 4 compartments. This is because the window glass is located near the ground, so that infrared rays from the ground entered the compartment without being reflected by the glass, and because the window glass was placed vertically on the wall, It is thought that it is difficult to emit far-infrared rays to outer space.
On the contrary, the No. 2 and No. 4 compartments were able to keep the daytime temperature low because the infrared rays from the ground were reflected by the glass and hardly penetrated into the compartments.
In view of the above, it is effective in increasing the indoor cooling function to increase the infrared transmittance when the window is provided at a high position on the wall and to reduce the infrared transmittance when the window is provided at a low position on the wall. I understand that there is.

本発明は、低コストで耐久性に優れた室内冷却機能を備える建築物に関するものであり、産業上の利用可能性を有する。 The present invention relates to a building having an indoor cooling function with low cost and excellent durability, and has industrial applicability.

FR 遠赤外線
IR 赤外線
L 直線
1 建築物
2 壁
3 建築物
10 屋根
20 窓
20L 低い位置の窓
20U 高い位置の窓
21 屋内側の層
22 屋外側の層
30 遮蔽構造
31 段差
32 板体
40 遠赤外線反射部材
41 ロールカーテン
42 鏡
60 赤外線反射部材
61 格子
62 赤外線反射ガラス
70 板材
71 開口
80 フード
81 鏡
100 板体
101 ガルバリウム製の鋼板
102 アルミ箔
103 フロートガラス
104 熱線反射ガラス



FR far infrared
IR infrared
L straight line
1 Building
2 walls
3 Building
10 Roof
20 windows
20L low position window
20U high position window
21 Indoor layer
22 Layers on the outdoor side
30 Shielding structure
31 steps
32 plate
40 Far-infrared reflector
41 Roll curtain
42 mirror
60 Infrared reflector
61 lattice
62 Infrared reflective glass
70 board
71 opening
80 hood
81 mirror
100 plates
101 Galvalume steel plate
102 aluminum foil
103 float glass
104 heat ray reflective glass



Claims (8)

一つの部屋を構成する壁の上下に赤外線を透過させるための窓が取り付けられており、高い位置にある前記窓の赤外線透過率の方が低い位置にある前記窓の赤外線透過率よりも高くなっており、
前記部屋を構成する部材から放射される遠赤外線を高い位置にある前記窓を透過させて宇宙空間に放出し、屋外から放射されて前記部屋内に侵入する赤外線の量を低い位置にある前記窓で抑制することで、前記部屋の温度上昇を抑制することを特徴とする建築物。
Windows for transmitting infrared light are attached to the upper and lower walls of one room, and the infrared transmittance of the window at a higher position is higher than the infrared transmittance of the window at a lower position. And
The far-infrared radiation radiated from a member constituting the room is transmitted through the window at a high position to be emitted into outer space, and the amount of infrared radiation radiated from outside to enter the room is at a low position. The building characterized by suppressing the temperature rise of the said room by suppressing by.
前記壁が、複数の壁のうち太陽光の照射時間が最も短い壁であることを特徴とする請求項1に記載の建築物。 2. The building according to claim 1, wherein the wall is a wall having the shortest solar irradiation time among a plurality of walls . 高い位置にある前記窓が、前記一つの部屋を構成する屋根に取り付けられており、
前記遠赤外線を、屋根に取り付けられた前記窓を透過させて宇宙空間に放出することを特徴とする請求項1又は2に記載の建築物。
The window in a high position is attached to the roof constituting the one room,
3. The building according to claim 1 , wherein the far infrared rays are emitted to outer space through the window attached to the roof .
前記窓が屋内側と屋外側の二層構造であり、前記屋内側の層の赤外線透過率の方が屋外側の層の赤外線透過率よりも低くなっており、前記屋内側の層が開閉自在であることを特徴とする請求項1〜3のいずれか一項に記載の建築物。 The window has a two-layer structure of an indoor side and an outdoor side, and the infrared transmittance of the indoor layer is lower than the infrared transmittance of the outdoor layer, and the indoor layer can be opened and closed freely. building according to any one of claims 1 to 3, characterized in that. 前記一つの部屋の内部に遠赤外線反射部材を備えており、前記遠赤外線が前記遠赤外線反射部材で反射して前記窓に至ることを特徴とする請求項1〜4のいずれか一項に記載の建築物。 The far-infrared reflecting member is provided in the inside of the one room, and the far-infrared ray is reflected by the far-infrared reflecting member and reaches the window. Building. 前記窓への太陽光の照射量を抑えるための遮蔽構造を備えることを特徴とする請求項1〜5のいずれか一項に記載の建築物。 The building according to any one of claims 1 to 5 , further comprising a shielding structure for suppressing the amount of sunlight irradiated to the window. 前記窓が、前記遠赤外線が透過する際にその放射方向を変える機能を有することを特徴とする請求項1〜6のいずれか一項に記載の建築物 The building according to any one of claims 1 to 6, wherein the window has a function of changing a radiation direction when the far infrared rays are transmitted. 基礎に通気口を備えないことで基礎の内部を外気から遮断することを特徴とする請求項1〜7のいずれか一項に記載の建築物。   The building according to any one of claims 1 to 7, wherein the inside of the foundation is shielded from outside air by not providing a ventilation hole in the foundation.
JP2017001493A 2017-01-09 2017-01-09 Building Active JP6209806B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017001493A JP6209806B1 (en) 2017-01-09 2017-01-09 Building
PCT/JP2017/036652 WO2018127999A1 (en) 2017-01-09 2017-10-10 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001493A JP6209806B1 (en) 2017-01-09 2017-01-09 Building

Publications (2)

Publication Number Publication Date
JP6209806B1 true JP6209806B1 (en) 2017-10-11
JP2018111939A JP2018111939A (en) 2018-07-19

Family

ID=60040420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001493A Active JP6209806B1 (en) 2017-01-09 2017-01-09 Building

Country Status (2)

Country Link
JP (1) JP6209806B1 (en)
WO (1) WO2018127999A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989942A (en) * 1982-11-11 1984-05-24 Sekisui Prefab Homes Ltd Residence
JPH06346671A (en) * 1993-06-08 1994-12-20 Fuigura Kk Transparent multilayer body and light control method using its transparent multilayer body
JPH0687597U (en) * 1993-05-31 1994-12-22 セントラル硝子株式会社 Double glazing with blinds
JPH10195997A (en) * 1997-01-17 1998-07-28 Sumitomo Forestry Co Ltd Indoor ventilation structure
JP2012207445A (en) * 2011-03-30 2012-10-25 Tokai Rubber Ind Ltd Transparent rolling screen
JP2014184673A (en) * 2013-03-25 2014-10-02 Aisin Chemical Co Ltd Thermal insulation structure and thermal insulation coating composition
JP2016163541A (en) * 2013-09-13 2016-09-08 株式会社オーガニックnico Agricultural plastic greenhouse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989942A (en) * 1982-11-11 1984-05-24 Sekisui Prefab Homes Ltd Residence
JPH0687597U (en) * 1993-05-31 1994-12-22 セントラル硝子株式会社 Double glazing with blinds
JPH06346671A (en) * 1993-06-08 1994-12-20 Fuigura Kk Transparent multilayer body and light control method using its transparent multilayer body
JPH10195997A (en) * 1997-01-17 1998-07-28 Sumitomo Forestry Co Ltd Indoor ventilation structure
JP2012207445A (en) * 2011-03-30 2012-10-25 Tokai Rubber Ind Ltd Transparent rolling screen
JP2014184673A (en) * 2013-03-25 2014-10-02 Aisin Chemical Co Ltd Thermal insulation structure and thermal insulation coating composition
JP2016163541A (en) * 2013-09-13 2016-09-08 株式会社オーガニックnico Agricultural plastic greenhouse

Also Published As

Publication number Publication date
JP2018111939A (en) 2018-07-19
WO2018127999A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
KR101600974B1 (en) Multi-function facade module and building construction using the same
JP6209806B1 (en) Building
JP4561450B2 (en) Residential
JP5369487B2 (en) louver
JP5295872B2 (en) building
US8820010B2 (en) Jalousie window with daylighting and shading shelf
JP5520194B2 (en) Wind guide system for buildings
KR20140053922A (en) The variable revolving skylight system
JP4974920B2 (en) Building with heat storage / cooling function
JP6047594B2 (en) Agricultural house
JPS6025705B2 (en) Solar heating system
JP2008035766A (en) Horticultural facility
JP2021080673A (en) Shutter structure
JP4248886B2 (en) Microclimate design building
JP6418557B2 (en) Agricultural greenhouse
JP6008542B2 (en) Indirect heat storage wall system
Jayasinghe et al. Passive techniques for residential buildings in low altitudes of Sri Lanka
JP4035466B2 (en) Microclimate design building
JPH0246630Y2 (en)
UZUN et al. DOUBLE SKIN FACADE IN SUSTAINABLE ARCHITECTURE
JP5467801B2 (en) building
JP2020133181A (en) Structure
Lapithis Passive solar architecture in Cyprus
JP4150619B2 (en) Microclimate design building
Shah Responsible Retreat: Passive and Renewable Design Strategies for Micro Cabins in Rural Romania

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6209806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250