JP6209479B2 - Surface modification method using ceramics - Google Patents

Surface modification method using ceramics Download PDF

Info

Publication number
JP6209479B2
JP6209479B2 JP2014075313A JP2014075313A JP6209479B2 JP 6209479 B2 JP6209479 B2 JP 6209479B2 JP 2014075313 A JP2014075313 A JP 2014075313A JP 2014075313 A JP2014075313 A JP 2014075313A JP 6209479 B2 JP6209479 B2 JP 6209479B2
Authority
JP
Japan
Prior art keywords
ceramic chip
ceramic
modified
surface modification
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014075313A
Other languages
Japanese (ja)
Other versions
JP2015196176A (en
Inventor
充 辻野
充 辻野
篠崎 斌
斌 篠崎
進 石村
進 石村
松林 重治
重治 松林
剛 木之本
剛 木之本
和彦 西岡
和彦 西岡
齋藤 俊明
俊明 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014075313A priority Critical patent/JP6209479B2/en
Publication of JP2015196176A publication Critical patent/JP2015196176A/en
Application granted granted Critical
Publication of JP6209479B2 publication Critical patent/JP6209479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

この発明は、高温雰囲気中等の苛酷な条件下で使用される各種の基材や部品において、その金属製の基材表面をセラミックスによって耐熱性、強度、耐焼付き性、耐クリープ性等を高度に改質するための表面改質方法に関する。   The present invention provides a high degree of heat resistance, strength, seizure resistance, creep resistance, etc. for various base materials and parts used under severe conditions such as in a high-temperature atmosphere with ceramics on the surface of the metal base material. The present invention relates to a surface modification method for modification.

従来より、耐摩耗性等が要求される基材の表面改質手段として、その基材表面に耐摩耗性に優れる超硬材等よりなる表面改質材を電気溶接やガス溶接もしくはロウ付けにて接合する方法が採用されている。しかるに、前者の溶接による接合では、基材と表面改質材との線膨張係数の違いから、溶接時又は溶接後に多数のクラックが発生し易く、これによって改質表面の耐久性が低下する上、溶接部分で基材側の成分が表面改質材中に不純物として取り込まれることで、耐食性、耐摩耗性、強度等の諸物性に悪影響が及び、所期する改質性能を充分に発揮できないという問題があった。また、後者のロウ付けによる接合では、基材表面と表面改質材との間にロウ材が充分に行き渡らず、接合強度が不足して使用中に表面改質材の剥がれを生じ易く、満足な耐久性が得られないという難点があった。   Conventionally, as a means for modifying the surface of a base material that requires wear resistance, etc., surface modification material made of super hard material having excellent wear resistance is applied to the surface of the base material for electric welding, gas welding or brazing. The joining method is adopted. However, in the former joining by welding, a large number of cracks are likely to occur at the time of welding or after welding due to the difference in the linear expansion coefficient between the base material and the surface modifying material, thereby reducing the durability of the modified surface. Incorporation of components on the substrate side as impurities in the surface modification material at the welded part adversely affects various physical properties such as corrosion resistance, wear resistance, strength, etc., and the desired modification performance cannot be fully exhibited. There was a problem. In addition, in the latter joining by brazing, the brazing material does not spread sufficiently between the base material surface and the surface modifying material, the joining strength is insufficient, and the surface modifying material is easily peeled off during use. However, there was a difficulty that a sufficient durability could not be obtained.

一方、本出願人は先に、表面改質手段として、基材表面に、多数の表面改質材を相互間並びに基材表面に対して隙間を置いて配列し、これらの隙間に、ガスバーナーによるパウダー溶射等でロー付け組成物からなる充填材(ロウ材)の溶融物を流し込んで充填することにより、表面改質材同士ならびに表面改質材と基材を接合する方法を提案している(特許文献1)。この表面改質手段では、多数の表面改質材とその相互間の隙間を満たす溶加材とからなる表面改質層により、基材の表面改質すべき表面全体が三次元的に密に覆われた状態になるため、優れた改質性能と改質表面の耐久性が得られる。   On the other hand, the present applicant previously arranged a large number of surface modifiers on the surface of the substrate as a surface modifying means with a gap between each other and the surface of the substrate. We propose a method of joining surface modifiers and surface modifiers together with a base material by pouring and filling a melt of a filler (brazing material) consisting of a brazing composition by powder spraying with (Patent Document 1). In this surface modification means, the entire surface of the substrate to be surface-modified is three-dimensionally densely covered by a surface modification layer comprising a large number of surface modification materials and a filler material that fills the gaps between them. Therefore, excellent reforming performance and durability of the modified surface can be obtained.

特許第369430号公報Japanese Patent No. 369430

しかしながら、前記提案に係る表面改質手段は、特に高温雰囲気中で使用される各種の器材や部品に対しては適用困難であった。これは、例えば1200℃といった高温下での使用では、前記充填材(ロウ材)として融点が1300℃以上といった高融点のものが必要であるが、ガスバーナーを熱源とするパウダー溶射等では熱源のエネルギー密度が低いために該充填材を溶融できないことによる。また、TIG(タングステン−不活性ガス)溶接でも、エネルギー密度がアルゴンアークでは15.0kW/cm2 前後、プラズマアークでは50〜100kW/cm2 程度であるため、上記高融点のロウ材を確実に溶融させる上で溶接速度を高められず、施工能率が悪くなると共に、アークでは必然的にロウ材の溶け込み幅が大きくなることから、表面改質材相互の間隔を狭く設定できず、それだけ基材表面における表面改質材の面積比率が低くなって充分な表面改質作用を発揮できず、且つ溶接長さ当たりの入熱量が大きくなるため、基材との線膨張係数の違いによる表面改質材の割れや基材に対する熱的悪影響を生じ易くなる。一方、高耐熱性を付与する表面改質では、表面改質材としてセラミックスを使用する必要があるが、高融点のロウ材を溶融させる際の高温が表面改質材に及ぶと、伝熱性の低いセラミックスでは加熱部分から非加熱部分への温度勾配が非常に大きくなって割れを生じ易くなる。 However, the surface modification means according to the proposal has been difficult to apply to various equipment and parts used particularly in a high temperature atmosphere. For example, for use at a high temperature such as 1200 ° C., a filler having a high melting point such as 1300 ° C. or more is required as the filler (brazing material). However, in the case of powder spraying using a gas burner as a heat source, etc. This is because the filler cannot be melted because the energy density is low. Further, TIG - even (tungsten inert gas) welding, energy density in the argon arc 15.0kW / cm 2 before and after, since the plasma arc is about 50~100kW / cm 2, to ensure the brazing material of the high melting point When melting, the welding speed cannot be increased, the work efficiency deteriorates, and in the arc, the penetration width of the brazing material inevitably increases. The surface modification due to the difference in linear expansion coefficient from the base material because the area ratio of the surface modification material on the surface is low and sufficient surface modification action cannot be achieved and the heat input per weld length increases. It becomes easy to produce the thermal bad influence with respect to the crack of a material and a base material. On the other hand, in surface modification that imparts high heat resistance, it is necessary to use ceramics as the surface modification material. However, if the high temperature when melting the high melting point brazing material reaches the surface modification material, the heat transfer property With low ceramics, the temperature gradient from the heated part to the non-heated part becomes very large and cracks are likely to occur.

本発明は、上述の事情に鑑み、高温雰囲気中等の苛酷な条件下で使用される金属製の基材表面を改質する手段として、表面改質材にセラミックスを用い、該基材表面に高耐熱・高強度で耐久性に優れた高品質の表面改質層を高速度で能率よく形成できると共に、その形成過程で表面改質材の割れや基材に対する熱的悪影響を生じにくい方法を提供することを目的としている。   In view of the above-described circumstances, the present invention uses ceramics as a surface modifying material as a means for modifying a metal substrate surface used under severe conditions such as in a high temperature atmosphere, A high-quality surface-modified layer that is heat-resistant, high-strength, and excellent in durability can be formed efficiently at high speed, and a method that does not easily cause cracks in the surface-modified material and thermal adverse effects on the substrate during the formation process is provided. The purpose is to do.

上記目的を達成するために、請求項1の発明に係るセラミックスによる表面改質方法は、多数個のセラミックスチップを相互に0.5〜5mmの間隔を置いて、且つセラミックスチップにて覆われる面積/セラミックスチップ相互間に露呈する基材表面の面積の比率が40/60〜96/4の範囲になるように配列固定し、その配列したセラミックスチップ間に構成される網状の隙間に、連続的に溶加材を供給しつつレーザビームを照射することにより、溶加材を溶融肉盛りして該隙間を満たすことを特徴としている。   In order to achieve the above object, the surface modification method using ceramics according to the first aspect of the present invention is an area in which a large number of ceramic chips are spaced from each other by 0.5 to 5 mm and covered with ceramic chips. / Fixed so that the ratio of the surface area of the substrate surface exposed between the ceramic chips is in the range of 40/60 to 96/4, and continuously in the net-like gap formed between the arranged ceramic chips By irradiating a laser beam while supplying the filler material to the molten metal, the filler material is melted and filled to fill the gap.

請求項2の発明は、上記請求項1の表面改質方法において、前記セラミックスチップは、底幅5〜15mm、長さ5〜30mm、厚さ3〜30mmのサイズを有し、基材の被改質表面の周辺部では長さを前記範囲で調整したチップを用いるものとしている。   According to a second aspect of the present invention, in the surface modification method of the first aspect, the ceramic chip has a bottom width of 5 to 15 mm, a length of 5 to 30 mm, and a thickness of 3 to 30 mm. In the peripheral portion of the modified surface, a chip whose length is adjusted within the above range is used.

請求項3の発明は、上記請求項1又は2の表面改質方法において、前記セラミックスチップは、幅方向又は/及び長手方向の断面が台形をなすものとしている。   According to a third aspect of the present invention, in the surface modification method according to the first or second aspect, the ceramic chip has a trapezoidal cross section in the width direction and / or the longitudinal direction.

請求項4の発明は、上記請求項1〜3のいずれかの表面改質方法において、前記セラミックスチップは、TiB2、Cr32、W2C、WC、SiC、Si34、サイアロン、コーディエライト、アルミナ−グラファイトより選ばれる少なくとも一種からなるものとしている。 The invention according to claim 4, in any of the surface modification method of the claim 1 to 3, wherein the ceramic chip, TiB 2, Cr 3 C 2 , W 2 C, WC, SiC, Si 3 N 4, sialon , Cordierite, and alumina-graphite.

請求項5の発明は、上記請求項1〜4のいずれかの表面改質方法において、前記溶加材が融点1150℃以上の合金材料からなるものとしている。   According to a fifth aspect of the present invention, in the surface modification method according to any one of the first to fourth aspects, the filler material is made of an alloy material having a melting point of 1150 ° C. or higher.

請求項6の発明は、上記請求項1〜5の何れかの表面改質方法において、通電性を有する前記セラミックスチップの下面に高さ0.1〜0.5mmの凸部を形成し、このセラミックスチップを基材の被改質表面に載置して通電することにより、基材に対して該セラミックスチップを前記凸部で融着固定するものとしている。   According to a sixth aspect of the present invention, in the surface modification method according to any one of the first to fifth aspects, a convex portion having a height of 0.1 to 0.5 mm is formed on the lower surface of the ceramic chip having electrical conductivity. By placing a ceramic chip on the surface to be modified of the substrate and energizing it, the ceramic chip is fused and fixed to the substrate with the convex portions.

請求項7の発明は、上記請求項1〜5の何れかの表面改質方法において、通電性を有しない前記セラミックスチップの周面に導電金属層を形成し、このセラミックスチップを基材の被改質表面に載置して通電することにより、基材に対して該セラミックスチップを前記導電金属層で融着固定するものとしている。   According to a seventh aspect of the present invention, in the surface modification method according to any one of the first to fifth aspects, a conductive metal layer is formed on a peripheral surface of the ceramic chip having no electrical conductivity, and the ceramic chip is coated with a substrate. The ceramic chip is fused and fixed to the base material with the conductive metal layer by placing it on the modified surface and energizing it.

請求項8の発明は、上記請求項1〜5の何れかの表面改質方法において、基材の被改質表面に凹部を形成し、前記セラミックスチップを該凹部に嵌め込んで機械的に固定するものとしている。   According to an eighth aspect of the present invention, in the surface modification method according to any one of the first to fifth aspects, a recess is formed in the surface to be modified of the substrate, and the ceramic chip is fitted into the recess and mechanically fixed. I am going to do it.

請求項1の発明に係る表面改質方法によれば、金属製の基材の被改質表面が、相互間に特定間隔(0.5〜5mm)を置いて配列した多数個のセラミックスチップと、その配列間の網状に連続する隙間を埋めた溶加材の溶融固化物とで構成される表面改質層にて密に覆われることになる。そして、該表面改質層は、表面改質材のセラミックスが個々に独立した小サイズのチップに分離し、各チップにおける応力分散がよい上、その応力変形及び熱変形が周囲に存在する溶加材の溶融固化物の靱性によって吸収されるので、負荷の増減変化や温度変化による割れを生じにくいものとなる。しかも、前記隙間を埋める溶加材の溶融固化物が特定幅で網状に連続しているから、多数のセラミックスチップが該溶融固化物によって一まとめに拘束され、もって表面改質層全体が強固に一体化すると共に、該表面改質層と基材との高い接合強度が得られ、加えて基材の被改質表面を覆うセラミックスチップの面積比率が特定範囲にあるため、該セラミックスによる耐熱及び断熱作用、耐焼付き性、耐クリープ性等が充分に発揮される。従って、この表面改質後の基材は、高温雰囲気中で圧縮荷重や摩擦を受けるような苛酷な使用環境でも、充分な強度を保ち得る高耐熱性及び高耐久性を具備するものとなる。   According to the surface modification method according to the first aspect of the present invention, the surface to be modified of the metal substrate is made of a large number of ceramic chips arranged at a specific interval (0.5 to 5 mm) between each other. Then, it is densely covered with a surface modification layer composed of a melted and solidified material of a filler material in which gaps continuous in a net shape between the arrays are filled. The surface modification layer is formed by separating the surface modification material ceramics into small chips that are independent of each other, providing good stress dispersion in each chip, and the stress deformation and thermal deformation present in the surrounding area. Since it is absorbed by the toughness of the molten and solidified material, cracks due to changes in load and temperature changes are less likely to occur. In addition, since the melted and solidified material of the filler material filling the gaps is continuous in a network with a specific width, a large number of ceramic chips are constrained together by the molten and solidified material, so that the entire surface-modified layer is strengthened. In addition to being integrated, a high bonding strength between the surface modified layer and the base material is obtained, and in addition, the area ratio of the ceramic chip covering the surface to be modified of the base material is in a specific range. Insulation, seizure resistance, creep resistance, etc. are fully exhibited. Therefore, the surface-modified base material has high heat resistance and high durability capable of maintaining sufficient strength even in a severe use environment that receives a compressive load or friction in a high temperature atmosphere.

そして、この表面改質方法では、セラミックスチップの相互間の隙間を溶加材の溶融固化物で埋めるに際し、レーザ肉盛溶接の手法により、該隙間に連続的に溶加材を供給しつつレーザビームを照射することで、溶加材を溶融肉盛りして該隙間を満たすようにしている。このように熱源としてレーザビームを用いることにより、前記隙間が0.5〜5mmと狭いにも関わらず、その照射スポット径を該隙間の幅に合わせて高いエネルギー密度で加熱できるから、溶加材が非常に高融点であっても高速度で能率よく接合を行える上、溶加材の溶け込み幅が小さく、且つガス溶接やアーク溶接に比較して長さ当たりの入熱量が格段に少ないので、セラミックスチップの割れや基材に対する熱的悪影響を生じにくく、高品位の表面改質層を形成できる。   In this surface modification method, when the gap between the ceramic chips is filled with the melted solidified material of the filler metal, a laser is applied while continuously supplying the filler material to the gap by a laser overlay welding technique. By irradiating the beam, the filler material is melted to fill the gap. By using a laser beam as a heat source in this way, although the gap is as narrow as 0.5 to 5 mm, the irradiation spot diameter can be heated at a high energy density in accordance with the width of the gap. Because even if it has a very high melting point, it is possible to join efficiently at high speed, the penetration width of the filler metal is small, and the heat input per length is significantly less than gas welding and arc welding, It is difficult to cause cracks in the ceramic chip and thermal adverse effects on the substrate, and a high quality surface modified layer can be formed.

請求項2の発明によれば、前記セラミックスチップが特定サイズであるため、応力分散性が高く、負荷の増減変化や温度変化による割れをより生じにくくなる。   According to the invention of claim 2, since the ceramic chip has a specific size, the stress dispersibility is high, and cracking due to load change or temperature change is less likely to occur.

請求項3の発明によれば、前記セラミックスチップの幅方向又は/及び長手方向の断面が台形をなすから、チップ間の隙間を埋める溶加材の溶融固化物の幅方向断面が楔形になり、これによって該溶融固化物によるセラミックスチップの拘束力が著しく増大する。従って、セラミックスチップが溶加材に対する濡れ性に乏しい材質であっても、溶加材の溶融固化物による充分な固着強度が得られる。   According to the invention of claim 3, since the cross section in the width direction or / and the longitudinal direction of the ceramic chip forms a trapezoid, the cross section in the width direction of the melt-solidified filler material filling the gap between the chips becomes a wedge shape, As a result, the binding force of the ceramic chip due to the molten solidified product is remarkably increased. Therefore, even if the ceramic chip is a material having poor wettability to the filler material, sufficient fixing strength due to the melted and solidified product of the filler material can be obtained.

請求項4の発明によれば、前記セラミックスチップが特定材質からなるため、高温雰囲気中での耐圧縮荷重強度及び耐摩耗性がより向上する。   According to the invention of claim 4, since the ceramic chip is made of a specific material, the compressive load strength and the wear resistance in a high temperature atmosphere are further improved.

請求項5の発明によれば、前記溶加材が融点1150℃以上の合金材料からなるため、高温に晒される基材表面の改質層用として高い適性を発揮できる。   According to invention of Claim 5, since the said filler material consists of alloy materials with melting | fusing point 1150 degreeC or more, high suitability can be exhibited as an object for the modified layer of the base-material surface exposed to high temperature.

請求項6の発明によれば、セラミックスチップとして通電性を有するものを使用する場合に、その下面に特定高さの凸部を設け、このセラミックスチップを基材の被改質表面に載置して通電することにより、基材に対して該セラミックスチップを極めて容易に固定できる。   According to the sixth aspect of the present invention, when a ceramic chip having electrical conductivity is used, a convex portion having a specific height is provided on the lower surface, and the ceramic chip is placed on the surface to be modified of the substrate. By energizing the ceramic chip, the ceramic chip can be fixed very easily to the base material.

請求項7の発明によれば、セラミックスチップとして通電性を有しないものを使用する場合に、その周面に導電金属層を設け、このセラミックスチップを基材の被改質表面に載置して通電することにより、基材に対して該セラミックスチップを極めて容易に固定できる。   According to the invention of claim 7, when a ceramic chip having no electrical conductivity is used, the conductive metal layer is provided on the peripheral surface, and the ceramic chip is placed on the surface to be modified of the substrate. By energizing, the ceramic chip can be fixed to the substrate very easily.

請求項8の発明によれば、基材の被改質表面に凹部を形成し、該凹部にセラミックスチップを嵌め込んで機械的に固定することにより、基材に対して該セラミックスチップを確実に固定できる。   According to the eighth aspect of the present invention, the concave portion is formed on the surface of the base material to be modified, and the ceramic chip is securely fixed to the base material by mechanically fixing the ceramic chip by fitting the concave portion into the concave portion. Can be fixed.

本発明の一実施形態に係る表面改質方法を段階的に示し、(a)は基材の被改質表面上にセラミックスチップを配列載置した状態の縦断側面図、(b)はセラミックスチップ相互間の隙間を溶加材の溶融物で満たして接合する途上の縦断側面図、(c)は接合終了時の縦断側面図、(d)は表面研磨後の縦断側面図である。BRIEF DESCRIPTION OF THE DRAWINGS The surface modification method which concerns on one Embodiment of this invention is shown in steps, (a) is a vertical side view of the state which arranged the ceramic chip | tip on the to-be-modified surface of a base material, (b) is a ceramic chip | tip. FIG. 4 is a longitudinal side view in the middle of joining the gap between the melted filler materials, (c) is a longitudinal side view at the end of joining, and (d) is a longitudinal side view after surface polishing. 同表面改質方法に使用するセラミックスチップを例示し、(a)は幅方向断面が台形をなすセラミックスチップの斜視図、(b)は直方体形状のセラミックスチップの斜視図である。The ceramic chip used for the surface modification method is illustrated, (a) is a perspective view of a ceramic chip having a trapezoidal cross section in the width direction, and (b) is a perspective view of a rectangular parallelepiped ceramic chip. 同表面改質方法によって改質された表面改質層の構成例を示し、(a)は圧縮荷重のみを受ける表面改質層の平面図、(b)は圧縮荷重及び摩擦を受ける表面改質層の平面図である。The structural example of the surface modification layer modified | reformed by the surface modification method is shown, (a) is a plan view of the surface modification layer that receives only the compressive load, and (b) is the surface modification that receives the compressive load and friction. It is a top view of a layer. 基材の被改質表面に対するセラミックスチップの第一固定方式を示し、(a)は縦断側面図、(b)は縦断正面図である。The 1st fixing system of the ceramic chip | tip with respect to the to-be-modified surface of a base material is shown, (a) is a vertical side view, (b) is a vertical front view. 同第二固定方式を示し、(a)は縦断側面図、(b)は縦断正面図である。The 2nd fixation system is shown, (a) is a vertical side view, (b) is a vertical front view. 同第三固定方式を示し、(a)は縦断側面図、(b)は縦断正面図である。The 3rd fixation system is shown, (a) is a vertical side view, (b) is a vertical front view.

以下に、本発明に係るセラミックスによる表面改質方法の実施形態について、図面を参照して具体的に説明する。   Hereinafter, embodiments of a surface modification method using ceramics according to the present invention will be specifically described with reference to the drawings.

この表面改質方法では、まず図1(a)に示すように、金属製の基材1の被改質表面1a上に、セラミックスチップ2の多数個を相互に一定の隙間4を置いて配列固定する。次に図1(b)に示すように、配列したセラミックスチップ2,2間に構成される網状の隙間4に、連続的に溶加材供給管5より溶加材の粉末30を供給しつつ、レーザ加工ヘッド6から出射するレーザビーム6aを照射することにより、該隙間4を溶加材の溶融物3aで満たして凝固させる。これにより、図2(c)に示すように、基材1の被改質表面1a上に、多数個のセラミックスチップ2と、その配列間の網状の隙間4を埋めた溶加材の溶融固化物3とで構成される表面改質層7が形成される。なお、この表面改質層7では通常、溶融固化物3の余盛り部分3bが該隙間4に沿って表面より畝状に突出した状態になるが、用途等より必要とあらば、後加工として表面全体を研磨して溶融固化物3の余盛り部分3bを除去することにより、図1(d)に示すように表面改質層7の表面を平坦化させる。   In this surface modification method, first, as shown in FIG. 1A, a large number of ceramic chips 2 are arranged on a surface 1a to be modified of a metal substrate 1 with a fixed gap 4 between them. Fix it. Next, as shown in FIG. 1 (b), the powder 30 of the filler material is continuously supplied from the filler material supply pipe 5 into the net-like gap 4 formed between the arranged ceramic chips 2 and 2. By irradiating the laser beam 6a emitted from the laser processing head 6, the gap 4 is filled with the melt 3a of the filler material and solidified. As a result, as shown in FIG. 2 (c), the solidification of the filler material in which a large number of ceramic chips 2 and the net-like gaps 4 between the arrays are filled on the surface 1 a to be modified of the substrate 1. A surface modification layer 7 composed of the product 3 is formed. In this surface modified layer 7, the extra portion 3b of the molten solidified product 3 usually protrudes from the surface along the gap 4 in a bowl-like shape. By polishing the entire surface and removing the excess portion 3b of the melt-solidified product 3, the surface of the surface modification layer 7 is flattened as shown in FIG.

ここで、基材1の被改質表面1a上にセラミックスチップ2を配列する際、セラミックスチップ2相互の隙間4の間隔G〔図1(a)参照〕は、0.5〜5mmに設定する。また、該被改質表面1aのセラミックスチップにて覆われる面積/セラミックスチップ相互間に露呈する基材表面の面積の比率が40/60〜96/4の範囲になるように設定する。この隙間4の間隔Gと上記の面積比率は、後述する本発明の作用効果を得る上で非常に重要な因子となる。   Here, when the ceramic chips 2 are arranged on the surface 1a to be modified of the substrate 1, the gap G [see FIG. 1 (a)] between the ceramic chips 2 is set to 0.5 to 5 mm. . Further, the ratio of the area covered by the ceramic chip of the surface to be modified 1a / the area of the substrate surface exposed between the ceramic chips is set in the range of 40/60 to 96/4. The gap G of the gap 4 and the above-described area ratio are very important factors for obtaining the effects of the present invention described later.

セラミックチップ2としては、図1で例示した幅方向断面が台形のものに限らず、長手方向断面が台形のもの、幅方向及び長手方向の断面が台形のもの、更に図2(b)で示すような直方体形状のものも好ましく使用できる。このセラミックスチップ2のサイズは、特に制約されないが、図2(a)(b)に示すように、底幅Wを5〜15mmの範囲、長さLを5〜30mmの範囲、厚さTを3〜30mmの範囲とすることが好ましい。なお、このようなセラミックチップ2は、基本的には同一寸法のものを用いるが、基材1の改質領域の端縁位置によって配列長さの過不足を生じる場合があるから、該改質領域の周辺部では長さTを前記範囲で調整したものを用いることになる。   The ceramic chip 2 is not limited to the trapezoidal cross section in the width direction illustrated in FIG. 1, the trapezoidal cross section in the longitudinal direction, the trapezoidal cross section in the width direction and the longitudinal direction, and further shown in FIG. Such a rectangular parallelepiped shape can also be preferably used. The size of the ceramic chip 2 is not particularly limited, but as shown in FIGS. 2A and 2B, the bottom width W is in the range of 5 to 15 mm, the length L is in the range of 5 to 30 mm, and the thickness T is It is preferable to set it as the range of 3-30 mm. Such ceramic chips 2 are basically of the same size, but there are cases where the arrangement length is excessive or insufficient depending on the edge position of the modified region of the base material 1. In the peripheral part of the region, the length T adjusted in the above range is used.

セラミックスチップ2の材質としては、被改質物の使用時の高温下で強度を維持できる材料であればよく、例えばCrB2、TiB2、ZrB2等の硼化物、Cr32、W2C、WC、SiC等の炭化物、Si34、AlN、ZrN等の窒化物、Al23、ZrO2等の酸化物、NbSi2、WSi2、CrSi2等の珪化物、サイアロン〔Si6-ZAlZZ8-Z、Si6-Z(Al,Y)ZZ8-Z](0>Z>6)、コーディエライト(MgO−Al23−SiO2)、アルミナ−グラファイト等が挙げられる。そして、これらの中でも、TiB2、Cr32、W2C、WC、SiC、Si34、サイアロン、コーディエライト、アルミナ−グラファイトは、高硬度で且つ強度的にも優れる点から好適である。更に、断熱性や耐熱衝撃性に優れるSi34、サイアロンは適用範囲が広いので、特に好適である。 The material of the ceramic chip 2 may be any material that can maintain strength at a high temperature when the material to be modified is used. For example, borides such as CrB 2 , TiB 2 , ZrB 2 , Cr 3 C 2 , W 2 C Carbides such as WC, SiC, nitrides such as Si 3 N 4 , AlN and ZrN, oxides such as Al 2 O 3 and ZrO 2 , silicides such as NbSi 2 , WSi 2 and CrSi 2 , sialon [Si 6 -Z Al Z O Z N 8- Z, Si 6-Z (Al, Y) Z O Z N 8-Z] (0>Z> 6), cordierite (MgO-Al 2 O 3 -SiO 2) And alumina-graphite. Among these, TiB 2 , Cr 3 C 2 , W 2 C, WC, SiC, Si 3 N 4 , sialon, cordierite, and alumina-graphite are preferable because they are high in hardness and excellent in strength. It is. Furthermore, Si 3 N 4 and sialon, which are excellent in heat insulation and thermal shock resistance, are particularly suitable because they have a wide application range.

なお、これらのセラミックスチップ2としては、材質が異なる複数種を併用してもよい。一方、基材1の金属材料としては、特に制約はないが、通常では一般的な耐熱鋼が使用される。   In addition, as these ceramic chips 2, you may use together multiple types from which a material differs. On the other hand, the metal material of the substrate 1 is not particularly limited, but usually heat-resistant steel is used.

溶加材としては、一般に肉盛溶接用として知られる合金材料を使用できるが、特に1250℃前後の高温雰囲気中での使用に対応して、融点1150℃以上の合金材料が好ましく、更に融点1350℃以上の合金材料が推奨される。このような高融点の合金材料としては、特に制約されないが、例えば、HK40(ASTM規格=JIS SCH22)として知られる25Cr−20Ni−Fe合金(融点1400℃)、28Cr−48Ni−5W−Fe合金(融点1380℃)の如きCr−Ni系耐熱合金、UMCo50(ベルギー国立冶金研究センター開発)として知られる28Cr−50Co−Fe合金(融点1388℃)の如きCr−Co系耐熱合金、80Cr−Fe合金(融点1650℃)如きFe−Cr系耐熱合金等が挙げられる。また、溶加材の粉末30のサイズは、特に制約されないが、平均粒度として20〜200μmの範囲が好ましく、特に平均粒度20〜100μmの球状粒子が流動性に優れる点から推奨される。   As the filler material, an alloy material generally known for overlay welding can be used. In particular, an alloy material having a melting point of 1150 ° C. or higher is preferable, and a melting point of 1350 ° C. is particularly suitable for use in a high temperature atmosphere around 1250 ° C. Alloy materials above ℃ are recommended. Such a high melting point alloy material is not particularly limited. For example, 25Cr-20Ni—Fe alloy (melting point 1400 ° C.) known as HK40 (ASTM standard = JIS SCH22), 28Cr-48Ni-5W—Fe alloy ( Cr-Ni heat-resistant alloy such as 28 ° C-50Co-Fe alloy (melting point 1388 ° C) known as UMCo50 (developed by the Belgian National Metallurgical Research Center), 80Cr-Fe alloy (melting point 1388 ° C) Fe-Cr heat-resistant alloy and the like having a melting point of 1650 ° C. The size of the powder 30 of the filler material is not particularly limited, but the average particle size is preferably in the range of 20 to 200 μm, and spherical particles having an average particle size of 20 to 100 μm are particularly recommended from the viewpoint of excellent fluidity.

基材1の被改質表面1a上におけるセラミックスチップ2の配置は、該被改質表面1aが圧縮荷重のみを受ける用途では図3(a)で示すような縦横配列でよい。一方、該被改質表面1aが圧縮荷重に加えて摩擦を受ける用途では、高硬度のセラミックスチップ2による高い耐摩耗性を発現させるために、図3(b)で示すように、摩擦方向f1,f2に対し、直交方向の各列におけるセラミックスチップ2の位置が順次に1ピッチ未満でずれる配列(図示は半ピッチずれの千鳥配列)として、荷重摺接物が幅方向のいずれの位置でもセラミックスチップ2上を擦過する配置にするのがよい。なお、この千鳥配列では、一列置きに改質領域の端縁位置で配列長さの過不足を生じるため、図示のように一列置きの配列両端に長さの短いセラミック2’を用いている。   The arrangement of the ceramic chip 2 on the surface 1a to be modified of the substrate 1 may be a vertical and horizontal arrangement as shown in FIG. 3A for applications where the surface 1a to be modified receives only a compressive load. On the other hand, in an application where the surface to be modified 1a receives friction in addition to a compressive load, in order to develop high wear resistance by the ceramic chip 2 with high hardness, as shown in FIG. , F2 as an array in which the positions of the ceramic chips 2 in each row in the orthogonal direction are sequentially shifted by less than 1 pitch (illustrated staggered array with a half-pitch shift), the load sliding contact is ceramics at any position in the width direction. It is preferable that the chip 2 is scraped. In this staggered arrangement, the length of the array is excessive or insufficient at the edge position of the modified region every other row, so that ceramic 2 'having a short length is used at both ends of the every other row as shown.

本発明の表面改質方法では、基材1の被改質表面1a上に配列固定したセラミックスチップ2の相互間の隙間4を溶加材の溶融固化物3で埋める手段として、図1(b)の如くレーザ肉盛溶接の技法を用いる。すなわち、レーザビーム6aを熱源とすれば、レンズ等の光学系によるフォーカス調整により、照射スポットを前記隙間4の間隔Gに対応する0.5〜5mm径に容易に絞り込んで高いエネルギー密度で加熱できるから、溶加材が非常に高融点の合金材料であっても高速度で能率よく接合を行える上、溶加材の溶け込み幅が小さく、且つガス溶接やアーク溶接に比較して長さ当たりの入熱量が格段に少ないので、溶接におけるセラミックスチップ2の割れや基材1に対する熱的悪影響を生じにくく、高品位の表面改質層7を形成できる。   In the surface modification method of the present invention, as means for filling the gaps 4 between the ceramic chips 2 arranged and fixed on the surface 1a to be modified of the base material 1 with the melted solidified material 3 of the filler material, FIG. The laser overlay welding technique is used as shown in FIG. That is, if the laser beam 6a is used as a heat source, the irradiation spot can be easily narrowed to a diameter of 0.5 to 5 mm corresponding to the gap G of the gap 4 and heated at a high energy density by focus adjustment by an optical system such as a lens. Therefore, even if the filler material is an alloy material with a very high melting point, it can be joined efficiently at a high speed, the penetration width of the filler material is small, and the length per length compared to gas welding or arc welding is small. Since the amount of heat input is remarkably small, it is difficult to cause cracks in the ceramic chip 2 during welding and thermal adverse effects on the base material 1, and the high-quality surface modified layer 7 can be formed.

因みに、レーザビーム6aのエネルギー密度は、100kW/cm2 以上に容易に設定できる。そして、本発明の改質方法においてレーザビーム6aによって隙間4を溶加材の溶融固化物3で埋める際、例えば半導体レーザを使用する場合、レーザ出力を0.3〜3kWの範囲、照射面の移動速度を20〜1000mm/分の範囲で、それぞれ調整できる。なお、電子ビーム溶接でも高いエネルギー密度を設定できるが、高真空下で行うことから溶加材の供給が困難であり、肉盛溶接には適用困難である。 Incidentally, the energy density of the laser beam 6a can be easily set to 100 kW / cm 2 or more. In the modification method of the present invention, when the gap 4 is filled with the molten solidified material 3 of the filler material by the laser beam 6a, for example, when a semiconductor laser is used, the laser output is in the range of 0.3 to 3 kW, The moving speed can be adjusted in the range of 20 to 1000 mm / min. In addition, although a high energy density can be set also by electron beam welding, since it carries out under a high vacuum, supply of a filler material is difficult and it is difficult to apply to overlay welding.

隙間4への溶加材の粉末30の供給は、一般的なレーザ肉盛溶接と同様に、シールドガスを介してレーザビーム6aの照射スポット内に送り込むことが推奨される。その供給位置は1か所でもよいが、隙間4の全体に均等に供給する上で、該照射スポット内に臨む複二カ所以上とすることが好ましい。なお、上述した実施形態では溶加材を粉末30として供給しているが、該溶加材を棒状、帯状、線状等の形態で供給することも可能である。   It is recommended that supply of the powder 30 of the filler material into the gap 4 is sent into the irradiation spot of the laser beam 6a through a shielding gas, as in general laser welding. Although the supply position may be one, it is preferable to provide two or more locations facing the irradiation spot in order to supply the entire gap 4 evenly. In the above-described embodiment, the filler material is supplied as the powder 30. However, the filler material may be supplied in the form of a rod, a strip, a line, or the like.

この表面改質方法により、高温下で使用される基材1の被改質表面1aは、図1(d)で示すように、相互間に0.5〜5mmの間隔Gを置いて配列した多数個のセラミックスチップ2と、その配列間の網状に連続する隙間4を埋めた溶加材の溶融固化物3とで構成される表面改質層7により、三次元的に密に覆われる。この表面改質層7は、表面改質材のセラミックスが個々に独立した小サイズのチップ2に分離し、各チップ2における応力分散がよい上、その応力変形及び熱変形が周囲に存在する溶加材の溶融固化物3の靱性によって吸収されるから、負荷の増減変化や温度変化による割れを生じにくいものとなる。しかも、この表面改質層7における溶加材の溶融固化物3が前記間隙Gに対応する0.5〜5mmの特定幅で網状に連続しているから、多数のセラミックスチップ2が該溶融固化物3によって一まとめに拘束され、もって表面改質層7全体が強固に一体化すると共に、該表面改質層7と基材1との高い接合強度が得られる。加えて、基材1の被改質表面1aのセラミックスチップにて覆われる面積/セラミックスチップ相互間に露呈する基材表面の面積の比率が40/60〜96/4の特定範囲にあるため、該セラミックスによる耐熱及び断熱作用と、溶加材の溶融固化物3による固着強度とが共に充分に発揮される。従って、この表面改質後の基材1は、高温雰囲気中で圧縮荷重や摩擦を受けるような苛酷な使用環境でも、充分な強度を保ち得る高耐熱性及び高耐久性を具備するものとなる。   By this surface modification method, the surface 1a to be modified of the base material 1 used at a high temperature was arranged with a gap G of 0.5 to 5 mm between them as shown in FIG. 1 (d). It is three-dimensionally densely covered by a surface modification layer 7 composed of a large number of ceramic chips 2 and a melt-solidified material 3 of a filler material in which gaps 4 that are continuous in a net pattern between the chips are arranged. This surface modification layer 7 is obtained by separating the surface modification material ceramics into small chips 2 that are independent of each other. The stress distribution in each chip 2 is good, and stress deformation and thermal deformation exist around the chip. Since it is absorbed by the toughness of the melted and solidified material 3, cracks due to changes in load and changes in temperature and changes in temperature are unlikely to occur. Moreover, since the melted and solidified material 3 of the filler material in the surface modified layer 7 is continuous in a net shape with a specific width of 0.5 to 5 mm corresponding to the gap G, many ceramic chips 2 are melted and solidified. The entire surface modified layer 7 is firmly integrated by the object 3 and thus the joint strength between the surface modified layer 7 and the substrate 1 is high. In addition, since the ratio of the area covered by the ceramic chip of the surface 1a to be modified of the substrate 1 / the area of the substrate surface exposed between the ceramic chips is in a specific range of 40/60 to 96/4, Both the heat resistance and heat insulation action by the ceramics and the fixing strength by the melted solidified product 3 of the filler material are sufficiently exhibited. Accordingly, the surface-modified base material 1 has high heat resistance and high durability capable of maintaining sufficient strength even in a severe use environment that receives a compressive load or friction in a high temperature atmosphere. .

セラミックスチップ2の相互間の隙間4の間隔Gは、0.5mmより狭くなると、溶加材を該隙間4の深部まで均一に溶け込ませることが困難になる上、表面改質層7と基材1との接合強度が不充分になる。逆に該隙間4の間隔Gが5mmより広くなると、表面改質層7におけるセラミックスの面積比率及び体積比率が過少になるため、耐熱性及び耐摩耗性が不充分になる。また、基材1の被改質表面1aを覆うセラミックスチップ2の上記の面積比率は、40/60未満ではセラミックスによる耐熱及び断熱作用が充分に発揮されず、逆に94/4を越えると基材1の被改質表面1aに対する表面改質層7の固着強度が不充分になる。   When the gap G between the gaps 4 between the ceramic chips 2 becomes smaller than 0.5 mm, it becomes difficult to uniformly melt the filler material up to the deep part of the gap 4, and the surface modification layer 7 and the substrate The bonding strength with 1 is insufficient. On the other hand, if the gap G of the gap 4 is larger than 5 mm, the area ratio and volume ratio of the ceramic in the surface modification layer 7 become too small, and the heat resistance and wear resistance become insufficient. Further, if the above-mentioned area ratio of the ceramic chip 2 covering the surface 1a to be modified of the base material 1 is less than 40/60, the heat resistance and heat insulating action by the ceramics cannot be sufficiently exhibited. The adhesion strength of the surface modification layer 7 to the surface 1a to be modified of the material 1 becomes insufficient.

一方、セラミックスチップ2としては、既述のように、底幅Wを5〜15mmの範囲、長さLを5〜30mmの範囲、厚さTを3〜30mmの範囲とすることが推奨される。すなわち、これら底幅W,長さL,厚さTのいずれかが大き過ぎては圧縮荷重を受けた際の応力分散が悪くなって割れを生じ易くなる。逆に底幅W,長さL,厚さTのいずれかが小さ過ぎては、耐熱性及び耐摩耗性が不充分になり、また接合部の長さが増すことで作業能率も低下する。   On the other hand, as described above, it is recommended that the ceramic chip 2 has a bottom width W in a range of 5 to 15 mm, a length L in a range of 5 to 30 mm, and a thickness T in a range of 3 to 30 mm. . That is, if any one of these bottom width W, length L, and thickness T is too large, the stress dispersion upon receiving a compressive load is deteriorated, and cracking is likely to occur. On the contrary, if any of the bottom width W, length L, and thickness T is too small, the heat resistance and wear resistance are insufficient, and the work efficiency is also reduced due to the increase in the length of the joint.

なお、セラミックスチップ2として幅方向又は/及び長手方向の断面が台形のものを使用すれば、チップ2間の隙間4を埋める溶加材の溶融固化物3の幅方向断面が図1(d)で示すように楔形になるから、該溶融固化物3によるセラミックスチップ2の拘束力が著しく増大する。従って、セラミックスチップ2が溶加材に対する濡れ性に乏しい材質であっても、該セラミックスチップ2の剥離や抜落を確実に防止できる。しかして、上記拘束力の面からは、少なくとも幅方向の断面が表面側で狭く底面側で広い台形であることが推奨される。このような幅方向の断面が台形のセラミックスチップ2における底幅Wと頂部幅D〔図2(a)参照)の比は、D/Wとして0.6〜0.9程度とするのがよい。   If a ceramic chip 2 having a trapezoidal cross section in the width direction and / or longitudinal direction is used, the cross section in the width direction of the melt-solidified material 3 of the filler material filling the gap 4 between the chips 2 is shown in FIG. Therefore, the binding force of the ceramic chip 2 by the molten solidified material 3 is remarkably increased. Therefore, even if the ceramic chip 2 is made of a material having poor wettability with respect to the filler material, the ceramic chip 2 can be reliably prevented from peeling off or dropping out. Therefore, in view of the restraining force, it is recommended that at least the cross section in the width direction is a trapezoid that is narrow on the front side and wide on the bottom side. In such a ceramic chip 2 having a trapezoidal cross section in the width direction, the ratio of the bottom width W to the top width D (see FIG. 2A) is preferably about 0.6 to 0.9 as D / W. .

この表面改質方法では、基材1とセラミックスチップ2との接合強度は実質的に溶加材による接合にて担われる。従って、その前段階での基材1の被改質表面1aに対するセラミックスチップ2の固定は、接合時の位置ずれを防止するための仮止め程度でよく、該セラミックスチップ2の性状等に応じて種々の固定方式を採用できる。例えば、次の第一〜第三の固定方式は、特に操作的に簡単で確実に固定できる方法として推奨される。   In this surface modification method, the bonding strength between the substrate 1 and the ceramic chip 2 is substantially borne by bonding with a filler material. Therefore, the ceramic chip 2 may be fixed to the modified surface 1a of the base material 1 at the previous stage by temporary fixing to prevent misalignment during bonding, depending on the properties of the ceramic chip 2 and the like. Various fixing methods can be employed. For example, the following first to third fixing methods are recommended as methods that can be fixed particularly easily and reliably in operation.

第一の固定方式は、セラミックスチップ2が通電性のある炭化物や硼素化物である場合に、図4(a)(b)で示すように、その下面側に畝状等の凸部21を設けておき、該セラミックスチップ2を基材1の被改質表面1a上に載置した状態で、その上面側と基材1との間で所要強度の通電Eを行うことにより、凸部21の先端部分の抵抗発熱で基材1に融着させる方法である。この場合の凸部21の高さSは、0.1〜0.5mm程度とするのがよく、低過ぎては融着力が不足し、逆に高過ぎてはチップ2の下面と基材1の被改質表面1aとの間に隙間を生じ、表面改質層7の耐剥離強度が低下する。   In the first fixing method, when the ceramic chip 2 is an electrically conductive carbide or boride, as shown in FIGS. 4 (a) and 4 (b), a convex portion 21 such as a bowl is provided on the lower surface side. In a state where the ceramic chip 2 is placed on the surface 1a to be modified of the base material 1, the energization E with a required strength is performed between the upper surface side and the base material 1, thereby This is a method of fusing to the substrate 1 by resistance heat generation at the tip portion. In this case, the height S of the convex portion 21 is preferably about 0.1 to 0.5 mm. If it is too low, the fusion force is insufficient. A gap is formed between the surface to be modified 1a and the peel strength of the surface modified layer 7 is lowered.

第二の固定方式は、セラミックスチップ2が窒化物等の通電性のないものである場合に、図5(a)(b)で示すように、その周面に導電金属層22を設けておき、該セラミックスチップ2を基材1の被改質表面1a上に載置した状態で、導電金属層22を通して基材1との間で所要強度の通電Eを行うことにより、下面側部分の該導電金属層22のを前記同様に基材1に融着させる方法である。なお、導電金属層22は、セラミックスチップ2の周面にメッキ法や溶射法により、Ni、Ni−Cr、Ni−W等の導電性のよい金属からなる厚さ50〜500μm程度の層を形成すればよい。   In the second fixing method, when the ceramic chip 2 is non-conductive such as nitride, a conductive metal layer 22 is provided on the peripheral surface thereof as shown in FIGS. In a state where the ceramic chip 2 is placed on the surface 1a to be modified of the base material 1, a current E with a required strength is applied to the base material 1 through the conductive metal layer 22, thereby In this method, the conductive metal layer 22 is fused to the substrate 1 in the same manner as described above. The conductive metal layer 22 is formed on the peripheral surface of the ceramic chip 2 with a thickness of about 50 to 500 μm made of a highly conductive metal such as Ni, Ni—Cr, or Ni—W by plating or spraying. do it.

第三の固定方式は、基材1の被改質表面1aに凹部を形成しておき、該凹部にセラミックスチップ2を嵌め込んで機械的に固定する方法である。この場合、図6(a)(b)で示すように、基材1の被改質表面1aの凹部を蟻溝11とし、セラミックスチップ2として幅方向断面が台形状のものを用い、該蟻溝11にセラミックスチップ2を溝側端からスライド嵌合させ、所定の嵌合位置で蟻溝11の両側縁部を加締る方法が特に簡易である。この加締る方法以外の機械的固定手段としては、例えば、凹部にセラミックスチップ2を嵌め込んだのち、該凹部とセラミックスチップとの隙間に楔状の金属片を打ち込み又は圧入する方法もある。なお、この機械的固定を行う場合の凹部の深さは1〜10mm程度がよい。また、この場合、前記したセラミックスチップ2の相互間の間隔Gならびにセラミックスの面積比率は、基材1の被改質表面1a位置が基準となる。   The third fixing method is a method in which a concave portion is formed on the surface 1a to be modified of the substrate 1, and the ceramic chip 2 is fitted into the concave portion and mechanically fixed. In this case, as shown in FIGS. 6 (a) and 6 (b), the concave portion of the surface 1a to be modified of the substrate 1 is a dovetail groove 11, and the ceramic chip 2 having a trapezoidal cross section in the width direction is used. A method of sliding the ceramic chip 2 in the groove 11 from the groove side end and crimping both side edges of the dovetail groove 11 at a predetermined fitting position is particularly simple. As a mechanical fixing means other than this caulking method, for example, there is a method in which the ceramic chip 2 is fitted into the recess and then a wedge-shaped metal piece is driven or press-fitted into the gap between the recess and the ceramic chip. In addition, the depth of the recessed part in the case of performing this mechanical fixation is good about 1-10 mm. In this case, the position G of the ceramic chip 2 between the ceramic chips 2 and the area ratio of the ceramics are based on the position of the surface 1a to be modified of the substrate 1.

実施例1
<基材> 幅50mm、長さ100mm、厚さ12.5mmの耐熱鋼板からなり、被
改質表面が幅43mm,長さ87mmで、被改質表面の周囲に高さ7mmの
突縁部を有する。
<セラミックスチップ> TiB2(硼素化チタン)からなり、幅方向の断面が底幅
7mmで上端幅6mmの台形、長さ25mm、厚さ7mmのチップ。下面の
長手方向両側に高さ0.2mmの畝状の凸部を有する。
上記基材の被改質表面に、上記セラミックスチップの12個を相互間に縦横共3mmの間隔を置いて図3(a)の如く縦横配列(3×4列)で載置し、通電を行うことにより、各セラミックスチップを基材に固定した(被改質表面に対するセラミックスの面積比率:57.8%)。そして、レーザ肉盛溶接装置(半導体レーザ)を用い、該基材上のセラミックスチップ間の隙間に、溶加材としてUMCo50(前出)の平均粒度50μmの粉末をシールドガス(アルゴン)を介して3方向から連続的に供給しつつ、レーザビーム(出力1kW,照射スポット径3mm)を照射することにより、該隙間を溶加材の溶融物で満たすようにして、溶接速度300mm/分で肉盛溶接方式による接合を行って表面改質層を形成した。そして、この表面改質層の表面をダイアモンド砥石によって研磨することにより、表面から突出した溶加材の余盛り部分をセラミックスチップの表層部を含めて除去して該表面改質層の表面を平坦化した。
Example 1
<Base material> It consists of a heat-resistant steel plate having a width of 50 mm, a length of 100 mm, and a thickness of 12.5 mm.
The modified surface has a width of 43 mm and a length of 87 mm, and a height of 7 mm around the surface to be modified.
Has a ridge.
<Ceramic Chip> TiB 2 consists (boron, titanium), in the width direction cross-section base width
A 7 mm trapezoid with an upper end width of 6 mm, a length of 25 mm and a thickness of 7 mm Underside
On both sides in the longitudinal direction, there are bowl-shaped convex portions having a height of 0.2 mm.
On the surface to be modified of the base material, 12 ceramic chips are placed in a vertical and horizontal arrangement (3 × 4 rows) as shown in FIG. By performing, each ceramic chip was fixed to the base material (the area ratio of the ceramic to the surface to be modified: 57.8%). Then, using a laser overlay welding apparatus (semiconductor laser), a powder of UMCo50 (supra) with an average particle size of 50 μm is added as a filler material through a shielding gas (argon) in the gap between the ceramic chips on the substrate. While continuously supplying from three directions, the laser beam (output 1 kW, irradiation spot diameter 3 mm) is irradiated so that the gap is filled with the melt of the filler material, and is built up at a welding speed of 300 mm / min. The surface modification layer was formed by joining by a welding method. Then, by polishing the surface of the surface modification layer with a diamond grindstone, the excess portion of the filler metal protruding from the surface is removed including the surface layer portion of the ceramic chip, and the surface of the surface modification layer is flattened. Turned into.

実施例2
セラミックスチップとして、前記実施例1と同じもの10個と、長さが11mmと異なる以外は同様のもの4個とを用い、実施例1と同様の基材の被改質表面に、これらセラミックスチップを相互間に縦横共3mmの間隔を置いて図3(b)の如く千鳥配列で載置し、各セラミックスチップの上面と基材との間に実施例1と同様にして通電を行うことにより、各セラミックスチップを基材に固定した(被改質表面に対するセラミックスの面積比率:52.3%)。そして、実施例1と同じレーザ肉盛溶接装置を用い、該基体上のセラミックスチップ間の隙間に、実施例1と同様にしてUMCo50の粉末を供給しつつレーザビームの照射を行うことにより、表面改質層を形成したのち、その表面を実施例1と同様に研磨して平坦化した。
Example 2
The same 10 ceramic chips as in Example 1 and 4 similar ones except that the length is different from 11 mm are used, and these ceramic chips are formed on the surface to be modified of the same substrate as in Example 1. Are placed in a zigzag arrangement as shown in FIG. 3B with a space of 3 mm between each other in the vertical and horizontal directions, and electricity is applied between the upper surface of each ceramic chip and the base material in the same manner as in Example 1. Each ceramic chip was fixed to a base material (area ratio of ceramics to the surface to be modified: 52.3%). Then, using the same laser overlay welding apparatus as in Example 1, the surface of the ceramic substrate was irradiated with a laser beam while supplying the powder of UMCo50 to the gap between the ceramic chips on the substrate in the same manner as in Example 1. After forming the modified layer, the surface was polished and planarized in the same manner as in Example 1.

実施例3
セラミックスチップとして、材質がSi34(窒化ケイ素)からなり、底幅8mm、長さ25mm、厚さ10mmで且つ幅方向断面が台形(上端幅6mm)のもの12個を用いると共に、基材として、実施例1と同様の基材の被改質表面に全長にわたって底幅8.5mmの蟻溝4本を平行に設けたものを用い、その各蟻溝に溝側端からセラミックスチップをスライド嵌合させて所定位置に配置したのち、各セラミックスチップの両側の溝縁部を加締ることにより、各セラミックスチップを実施例1と同様の縦横配列で固定した。その縦横配列におけるセラミックスチップ相互の間隔は、基材の被改質表面の位置で縦横共に3mmに設定している(被改質表面に対するセラミックスの面積比率:57.8%)。そして、以降は実施例1と同様にしてUMCo50の粉末を供給しつつレーザビームの照射を行うことにより、表面改質層を形成したのち、その表面を実施例1と同様に研磨して平坦化した。
Example 3
The ceramic chip is made of Si 3 N 4 (silicon nitride), has a bottom width of 8 mm, a length of 25 mm, a thickness of 10 mm and a cross section in the width direction of a trapezoid (top width 6 mm). As described in Example 1, four dovetail grooves with a bottom width of 8.5 mm are provided in parallel on the surface to be modified of the same base material as in Example 1, and a ceramic chip is slid into each dovetail groove from the groove side end. After being fitted and arranged at predetermined positions, the ceramic chips were fixed in the same vertical and horizontal arrangement as in Example 1 by crimping the groove edges on both sides of each ceramic chip. The distance between the ceramic chips in the vertical and horizontal arrangement is set to 3 mm in both the vertical and horizontal directions at the position of the surface of the substrate to be modified (area ratio of the ceramic to the surface to be modified: 57.8%). Then, after the surface modified layer is formed by irradiating the laser beam while supplying the powder of UMCo50 in the same manner as in Example 1, the surface is polished and planarized in the same manner as in Example 1. did.

1 基材
1a 被改質表面
11 蟻溝(凹部)
2,2’ セラミックスチップ
21 凸部
22 導電被覆層
3 溶融固化物
30 溶加材の粉末
4 隙間
6a レーザビーム
7 表面改質層
f1,f2 摩擦方向
G セラミックスチップの間隔
L セラミックスチップの長さ
T セラミックスチップの厚さ
W セラミックスチップの底幅

1 Substrate 1a Surface to be modified 11 Dovetail (concave)
2,2 'Ceramic chip 21 Convex part 22 Conductive coating layer 3 Molten solidified material 30 Powder of filler metal 4 Gap 6a Laser beam 7 Surface modification layer f1, f2 Friction direction G Distance between ceramic chips L Length of ceramic chip T Ceramic chip thickness W Ceramic chip bottom width

Claims (8)

金属からなる基材の被改質表面に、多数個のセラミックスチップを相互に0.5〜5mmの間隔を置いて、且つセラミックスチップにて覆われる面積/セラミックスチップ相互間に露呈する基材表面の面積の比率が40/60〜96/4の範囲になるように配列固定し、その配列したセラミックスチップ間に構成される網状の隙間に、連続的に溶加材を供給しつつレーザビームを照射することにより、溶加材を溶融肉盛りして該隙間を満たすことを特徴とするセラミックスによる表面改質方法。   The surface of the base material made of metal and the surface of the base material exposed between the ceramic chips with an area of 0.5 to 5 mm between the ceramic chips and the area covered with the ceramic chips. Are fixed so that the area ratio is in the range of 40/60 to 96/4, and a laser beam is supplied while continuously supplying a filler material into a net-like gap formed between the arranged ceramic chips. A surface modification method using ceramics characterized in that, by irradiation, the filler material is melted and filled to fill the gap. 前記セラミックスチップは、底幅5〜15mm、長さ5〜30mm、厚さ3〜30mmのサイズを有し、基材の被改質表面の周辺部では長さを前記範囲で調整したチップを用いる請求項1に記載のセラミックスによる表面改質方法。   The ceramic chip has a bottom width of 5 to 15 mm, a length of 5 to 30 mm, and a thickness of 3 to 30 mm, and a chip whose length is adjusted in the above range is used at the periphery of the surface of the base material to be modified. A surface modification method using ceramics according to claim 1. 前記セラミックスチップは、幅方向又は/及び長手方向の断面が台形をなす請求項1又は2に記載のセラミックスによる表面改質方法。   The surface modification method using ceramics according to claim 1 or 2, wherein the ceramic chip has a trapezoidal cross section in the width direction and / or the longitudinal direction. 前記セラミックスチップは、TiB2、Cr32、W2C、WC、SiC、Si34、サイアロン、コーディエライト、アルミナ−グラファイトより選ばれる少なくとも一種からなる請求項1〜3の何れかに記載のセラミックスによる表面改質方法。 The ceramic chip, TiB 2, Cr 3 C 2 , W 2 C, WC, SiC, Si 3 N 4, sialon, cordierite, alumina - claim 1 comprising at least one selected from graphite The surface modification method by ceramics as described in 2. 前記溶加材が融点1150℃以上の合金材料からなる請求項1〜4の何れかに記載のセラミックスによる表面改質方法。   The surface modification method using ceramics according to claim 1, wherein the filler material is made of an alloy material having a melting point of 1150 ° C. or higher. 通電性を有する前記セラミックスチップの下面に高さ0.1〜0.5mmの凸部を形成し、このセラミックスチップを基材の被改質表面に載置して通電することにより、基材に対して該セラミックスチップを前記凸部で融着固定する請求項1〜5のいずれかに記載のセラミックスによる表面改質方法。   A convex part having a height of 0.1 to 0.5 mm is formed on the lower surface of the ceramic chip having electrical conductivity, and this ceramic chip is placed on the surface to be modified of the base material and energized to thereby apply the base material to the base material. On the other hand, the ceramic surface modification method according to any one of claims 1 to 5, wherein the ceramic chip is fused and fixed at the convex portion. 通電性を有しない前記セラミックスチップの周面に導電金属層を形成し、このセラミックスチップを基材の被改質表面に載置して通電することにより、基材に対して該セラミックスチップを前記導電金属層で融着固定する請求項1〜5のいずれかに記載のセラミックスによる表面改質方法。   A conductive metal layer is formed on the peripheral surface of the ceramic chip having no electrical conductivity, and the ceramic chip is placed on the surface to be modified of the base material and energized, whereby the ceramic chip is attached to the base material. The surface modification method using ceramics according to any one of claims 1 to 5, wherein the conductive metal layer is fused and fixed. 基材の被改質表面に底面が拡がった凹部を形成し、前記セラミックスチップを該凹部に嵌め込んで機械的に固定する請求項1〜5のいずれかに記載のセラミックスによる表面改質方法。

6. The surface modification method using ceramics according to any one of claims 1 to 5, wherein a concave portion having an expanded bottom surface is formed on the surface of the substrate to be modified, and the ceramic chip is fitted into the concave portion and mechanically fixed.

JP2014075313A 2014-04-01 2014-04-01 Surface modification method using ceramics Expired - Fee Related JP6209479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075313A JP6209479B2 (en) 2014-04-01 2014-04-01 Surface modification method using ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075313A JP6209479B2 (en) 2014-04-01 2014-04-01 Surface modification method using ceramics

Publications (2)

Publication Number Publication Date
JP2015196176A JP2015196176A (en) 2015-11-09
JP6209479B2 true JP6209479B2 (en) 2017-10-04

Family

ID=54546247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075313A Expired - Fee Related JP6209479B2 (en) 2014-04-01 2014-04-01 Surface modification method using ceramics

Country Status (1)

Country Link
JP (1) JP6209479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941358A (en) * 2017-12-20 2019-06-28 C.R.F.阿西安尼顾问公司 The method that metal material reinforcer is applied to metallic material components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309544B2 (en) * 2019-09-13 2023-07-18 株式会社東芝 Coating method and coating structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913177A (en) * 1995-06-29 1997-01-14 Tokushu Denkyoku Kk Cermet build-up metallic parts by welding and production thereof
JPH09327779A (en) * 1996-06-07 1997-12-22 Mitsubishi Heavy Ind Ltd Method for forming crack in ceramic film, and ceramic film parts formed by the method
JP3234209B2 (en) * 2000-03-30 2001-12-04 川崎重工業株式会社 Manufacturing method of sliding member
JP3694830B2 (en) * 2001-05-24 2005-09-14 新日本溶業株式会社 Surface modifying material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941358A (en) * 2017-12-20 2019-06-28 C.R.F.阿西安尼顾问公司 The method that metal material reinforcer is applied to metallic material components

Also Published As

Publication number Publication date
JP2015196176A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP7155372B2 (en) Method for manufacturing joined body and method for manufacturing circuit board
KR101410340B1 (en) Temperature controlling device, cooling device, and method for manufacturing temperature controlling device
KR101550082B1 (en) Joint product
US6869689B2 (en) Joined structures of metal terminals and ceramic members, joined structures of metal members and ceramic members, and adhesive materials
CN101516804A (en) Method for assembling refractory ceramic parts by means of spark plasma sintering (sps)
US20080230590A1 (en) Method for fabricating dissimilar material jointed body
JP6209479B2 (en) Surface modification method using ceramics
KR20030091764A (en) Method for forming sputter target assemblies
CN101494322A (en) Tungsten copper connection method
CN105234543B (en) A kind of spot welding method
CN102371719A (en) Method for preparing copper/molybdenum/copper layered compound metallic material
US10661380B2 (en) Method for joining dissimilar engine components
KR20190019174A (en) Part for semiconductor manufacturing apparatus and method for manufacturing part for semiconductor manufacturing apparatus
Tregenza et al. An experimental evaluation of the thermal interface resistance between cold sprayed copper/laser-textured alumina bi-layered composites
TWI713457B (en) Sputtering target
US20130216842A1 (en) Method of bonding ceramic and metal and bonded structure of ceramic and metal
CN102574247A (en) Stainless steel joining method
CN106735222A (en) Homogeneous metal droplet selects domain to select to deposition 3D printing method
JP6234076B2 (en) Junction structure and semiconductor manufacturing apparatus using the same
CN110548875A (en) 3D printing method for heterogeneous metal material
JPH03198360A (en) Bonding tool
JP4736097B2 (en) Stud welding pin
JP2001314998A (en) Support member for heat processing device
JP2000210793A (en) Electroconductive backing material made of fireproof object for welding
JP2000160201A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6209479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees