JP6207631B2 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- JP6207631B2 JP6207631B2 JP2015554584A JP2015554584A JP6207631B2 JP 6207631 B2 JP6207631 B2 JP 6207631B2 JP 2015554584 A JP2015554584 A JP 2015554584A JP 2015554584 A JP2015554584 A JP 2015554584A JP 6207631 B2 JP6207631 B2 JP 6207631B2
- Authority
- JP
- Japan
- Prior art keywords
- converter
- semiconductor switching
- leg
- converter cell
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims description 141
- 238000006243 chemical reaction Methods 0.000 claims description 50
- 238000004146 energy storage Methods 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 30
- 239000003990 capacitor Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/0085—Partially controlled bridges
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Description
交流端子U、V、Wと直流端子P、Nとの間に、複数台のハーフブリッジの変換器セルを直列に接続し、変換器セル内の半導体スイッチング素子のオンオフ制御により、交流端子には交流電圧を直流端子には直流電圧を発生させる回路構成のマルチレベル変換器が開示されている(例えば、非特許文献1)。
この発明に係る第2の電力変換装置は、交流と直流の間で電力を変換する電力変換装置であって、エネルギー蓄積要素と上下アームの半導体スイッチング素子を備える変換器セルを2台以上が直列に接続された相アームを有し、変換器セルの少なくとも1台は、エネルギー蓄積要素と、上下アーム共に半導体スイッチング素子を有する第1のレグと、上下アームのどちらか一方は主電流を流す半導体素子としてダイオードしか用いないアームで他方は半導体スイッチング素子を有する第2のレグとが並列接続された第1の変換器セルである。
この発明に係る第2の電力変換装置は、交流端子と直流端子との間の相アームを構成する変換器セルの少なくとも1台は、上下アーム共に半導体スイッチング素子を有する第1のレグと、上下アームのどちらか一方は主電流を流す半導体素子としてダイオードしか用いないアームで他方は半導体スイッチング素子を有する第2のレグとが並列接続された構成であるため、直流端子の短絡によって生じる過電流を抑制でき、装置に小型化かつ低コスト化を実現できる。
実施の形態1は、交流端子と直流端子との間に、複数台の変換器セルを直列に接続した相アームを有し、変換器セルはエネルギー蓄積要素と、上下アーム共に半導体スイッチング素子を有する第1のレグと、上下アームのどちらか一方はダイオードで他方は半導体スイッチング素子を有する第2のレグとで構成された第1の変換器セルとした構成の電力変換装置に関するものである。
以下、本願発明の実施の形態1に係る電力変換装置1の構成、動作について、電力変換装置の主回路構成図である図1、第1の変換器セルの回路図と動作説明図である図2および図3、第2の変換器セルの回路図と動作説明図である図4、直流端子間短絡時の短絡電流経路の説明図である図5、第2の変換器セル内の短絡電流経路の説明図である図6、第1の変換器セル内の短絡電流経路の説明図である図7、制御手段の動作フロー図である図8、および他の実施例の主回路構成図である図9〜図11に基づいて説明する。
図1の電力変換装置1は、交流端子U、V、Wと、直流端子P、Nとを有しており、各々の交流端子U、V、Wと各々の直流端子P、Nとの間の相アームには、1台以上(1〜n台)の第1の変換器セル10が直列に接続された変換器セルの直列体を有する。また、各々の交流端子U、V、Wと、直流端子P、Nとの間にはリアクトル301P、301Nを有する。
また、短絡電流を検出するための電流検出手段として電流検出器11が直流端子P側に設けられている。短絡電流を検出するための電流検出手段として電流検出器を交流端子U、V、Wに設けることができる。交流端子U、V、Wに電流検出器を設ける場合の例を後述する図9に示している。
なお、図面(例えば、図1、5)において、変換器セルは記号「CELL」で表している。
第1の変換器セル10は、並列接続された2つのレグ(第1のレグ、第2のレグ)を有し、各レグは半導体素子を直列接続した上下アームから構成されている。並列接続された第1のレグおよび第2のレグには、さらにエネルギー蓄積要素(キャパシタ)が並列に接続されている。第1のレグは上下アームとも半導体スイッチング素子で構成され、第2のレグは上下アームのどちらか一方がダイオードで他方が半導体スイッチング素子で構成されている。
2つのレグの中間点には第1の変換器セル10の正極のセル出力端子Poおよび負極のセル出力端子Noが設けられている。
第1の変換器セル10Aにおいては、第1のレグ(LegA)として、半導体スイッチング素子群21、22の直列体を用いる。第2のレグ(LegB)として、上アームにダイオード23、下アームに半導体スイッチング素子群24を用いて直列接続している。
並列接続された第1のレグ(LegA)および第2のレグ(LegB)には、さらにエネルギー蓄積要素(キャパシタ)29が並列に接続されている。
半導体スイッチング素子群21、22の接続点には第1の変換器セル10Aの正極のセル出力端子Poが設けられている。ダイオード23と半導体スイッチング素子群24の接続点には第1の変換器セル10Aの負極のセル出力端子Noが設けられている。
なお、半導体スイッチング素子群21、22、24は、各々、半導体スイッチング素子21s、22s、24sと、各々に逆並列に接続された還流ダイオード21d、22d、24dとで構成される。
第1の変換器セル10Bにおいては、第1のレグ(LegD)として、半導体スイッチング素子群33、34の直列体を用いる。第2のレグ(LegC)として、上アームに半導体スイッチング素子群31、下アームにダイオード32を用いて直列接続している。
並列接続された第1のレグ(LegD)および第2のレグ(LegC)には、さらにエネルギー蓄積要素(キャパシタ)39が並列に接続されている。
半導体スイッチング素子群31とダイオード32の接続点には第1の変換器セル10Bの正極のセル出力端子Poが設けられている。半導体スイッチング素子群33、34の接続点には第1の変換器セル10Bの負極のセル出力端子Noが設けられている。
なお、半導体スイッチング素子群31、33、34は、各々、半導体スイッチング素子31s、33s、34sと逆並列に接続された還流ダイオード31d、33d、34dとで構成される。
また、半導体スイッチング素子にダイオード(ボディダイオード)が内在する場合は、還流ダイオードを省略してもよい。
なお、ダイオードで構成するアームは、主電流を流す半導体素子としてダイオードしか用いないアームであればよい。
また、実施の形態2で説明するように、変換器セルの電流容量を増加する場合は、レグの数を増やし、並列接続することで対応できる。
まず、第1の変換器セル10Aのスイッチング状態と動作モードについて、図2(b)に基づいて説明する。
半導体スイッチング素子21s、24sがオン、半導体スイッチング素子22sがオフの場合、第1の変換器セル10Aの出力端子間にはキャパシタ29の両端電圧が出力される(モード1)。半導体スイッチング素子21sがオフ、半導体スイッチング素子22s、24sがオンの場合、零電圧出力となる(モード2)。
全ての半導体スイッチング素子21s、22s、24sがオフの場合は保護モードとなり、ダイオード整流器として動作する(モード3)。保護モードの使用については後で説明する。
半導体スイッチング素子31s、34sがオン、半導体スイッチング素子33sがオフの場合、第1の変換器セル10Bの出力端子間にはキャパシタ39の両端電圧が出力される(モード1)。半導体スイッチング素子31s、33sがオン、半導体スイッチング素子34sがオフの場合、零電圧出力となる(モード2)。
全ての半導体スイッチング素子31s、33s、34sがオフの場合は保護モードとなり、ダイオード整流器として動作する(モード3)。保護モードの使用については後で説明する。
第2の変換器セル15Aにおいては、レグは半導体スイッチング素子群81、82の直列体を用いる。さらにこのレグにキャパシタ89が並列に接続されている。
半導体スイッチング素子群81、82の接続点には第2の変換器セル15Aの正極のセル出力端子Poが設けられている。半導体スイッチング素子群82のエミッタ側とキャパシタ89との接続点には第2の変換器セル15Aの負極のセル出力端子Noが設けられている。
なお、半導体スイッチング素子群81、82は、各々、半導体スイッチング素子81s、82sと、各々に逆並列に接続された還流ダイオード81d、82dとで構成される。
第2の変換器セル15Bにおいては、レグは半導体スイッチング素子群91、92の直列体を用いる。さらにこのレグにキャパシタ99が並列に接続されている。
半導体スイッチング素子群91のコレクタ側とキャパシタ99との接続点には第2の変換器セル15Bの正極のセル出力端子Poが設けられている。半導体スイッチング素子群91、92の接続点には、第2の変換器セル15Bの負極のセル出力端子Noが設けられている。
なお、半導体スイッチング素子群91、92は、各々、半導体スイッチング素子91s、92sと、各々に逆並列に接続された還流ダイオード91d、92dとで構成される。
半導体スイッチング素子81s(92s)がオン、半導体スイッチング素子82s(91s)がオフの場合、第2の変換器セル15A(B)の出力端子間にはキャパシタ89(99)の両端電圧が出力される(モード1)。
半導体スイッチング素子81s(92s)がオフ、半導体スイッチング素子82s(91s)がオンの場合、零電圧出力となる(モード2)。
第1の変換器セル10のモード1およびモード2は、図4(a)、(b)に示した第2の変換器セル15が出力する電圧と等価になる。すなわち、図2(b)、図3(b)のモード1、モード2は、図4(c)のモード1、モード2に対応する。
したがって、図2(a)、図3(a)で示す本発明の第1の変換器セル10を用いる場合は、アームにダイオードのみを有するレグ(LegB、LegC)の半導体スイッチング素子(24s、31s)をオンとし、他方のレグ(LegA、LegD)のスイッチング状態をハーフブリッジのレグと同様に制御すれば、定常動作時の動作は公知な技術を用いることができる。例えば、非特許文献1に記載の「モジュラー・マルチレベル変換器のPWM制御方法」が適用できるので、定常動作時の説明は省略する。
図5は、変換器セルとして第1の変換器セル10の代わりに第2の変換器セル15を使用した主回路構成であり、直流端子P、Nが短絡した場合の短絡電流経路を示している。
第1の変換器セル10の代わりに第2の変換器セル15を使用している非特許文献1のような回路において、直流端子P、N間が短絡すると、図5のような短絡電流経路で短絡電流が流れる。電力変換装置は少なくとも半導体スイッチング素子に流れる電流を直接、あるいは間接的に電流検出手段で検出している。この検出電流に基づいて、短絡判別手段は短絡が発生したと判断すれば、電力変換装置内の半導体スイッチング素子をオフとする。
しかし、第2の変換器セル15のようなハーフブリッジ構成である場合、図6に示すように、半導体スイッチング素子をオフとしても還流ダイオード(82d、91d)が存在するため、短絡電流経路が維持され、過大な短絡電流が流れる。結果として、半導体素子の破損に至る。
電流検出器11からの検出電流に基づいて、図示されていない短絡判別手段が直流端子間に短絡が発生したと判断した場合、図7(a)、(b)に示すように、図示されていない短絡電流抑制手段が全ての半導体スイッチング素子をオフとすることで、ダイオード整流器のような短絡経路となる。
本発明の電力変換装置では、定常状態の動作を維持する目的で、キャパシタ電圧の総和を交流端子間の電圧(例えば系統電圧に接続する場合は系統電圧)よりも高く設定するため、短絡電流は流れない。仮に流れたとしてもキャパシタが電流を抑制するように働くので、短絡電流を減少させることができ、最終的に抑制される。
なお、ここでキャパシタ電圧とは、カタログ上の定格使用電圧ではなく、実際の使用状態での充電電圧(使用電圧)である。
運転開始指令が出力される(S01)と、定常動作においては、上下アームのいずれかにダイオードのみを有する第2のレグ(LegB、LegC)の半導体スイッチング素子(24s、31s)をオンとし(S02)、ハーフブリッジ状態で定常動作を開始する(S03)。前述のように、この定常状態においては、もう一方の第1のレグ(LegA、LegD)を公知技術の制御手段により制御できる。
次に、電流検出手段が電流(第1の変換器セル10の電流、あるいは第1の変換器セル10の電流を類推できる直流端子P、Nの電流あるいは交流端子U、V、Wの電流)を検出する(S04)。電力変換装置1では、直流端子Pの電流を電流検出手段である電流検出器11で検出している。
次に、短絡判別手段が検出電流に基づいて直流端子P、N間で短絡が発生したかどうかの判断を行う(S05)。
短絡判別手段が、直流端子P、N間で短絡が発生したと判断(あるいは単に過電流であると判断)した場合、短絡電流抑制手段が全ての素子の半導体スイッチング素子(21s、22s、24s、31s、32s、34s)をオフとして、保護モードに移行する(S06)。
短絡発生ではない場合は、電流検出(S04)に戻り、電流検出(S04)と短絡判定(S05)を周期的に繰り返し行う。
保護モードに移行した場合は、再起動待ちとなる(S07)。
さらに本発明においては、定常状態でアームにダイオードを有する第2のレグの半導体スイッチング素子は常時オンであり、制御回路の簡素化を図ることができる。すなわち、本発明により小型で信頼性が高い電力変換装置を実現できる。
実施の形態1の電力変換装置について、他の実施例の主回路構成を図9〜図11に基づいて説明する。
図9の電力変換装置2は、リアクトルを結合させて、リアクトル301とする構成としたものである。なお、電力変換装置2では、直流端子P、N間の短絡の発生を検出するための電流検出手段として電流検出器(12U、12V、12W)を交流端子側に設けている。
図10の電力変換装置3は、片極の相アームにのみリアクトルを接続する構成としたものである。電力変換装置3では、負極側にのみリアクトル301Nを接続しているが、正極側にのみリアクトル301Pを接続することもできる。
また、図11の電力変換装置4は、配線インダクタンスを利用する構成としたものである。スイッチング周波数の増加によって、リアクトルを接続しない回路においても同等の効果を得ることができる。
なお、実施の形態1で示した本発明の第1の変換器セル10ではなく、第1のレグ、第2のレグの全てのアームに半導体スイッチング素子を有するフルブリッジ構成の変換器セルを用いても、短絡電流を抑制するという効果を得ることができるが、信頼性や小型化の点で本発明の効果を満足することはできない。本発明の第1の変換器セル10は、第2のレグの上アームあるいは下アームの一方は半導体スイッチング素子を有さない。したがって、第2のレグの一方のアームに対しては、ゲート信号を生成する必要がなく、制御回路や制御線を省略することができ、電力変換装置を小型化することができる。さらに、ダイオードは半導体スイッチング素子と比較して故障率が低いので、信頼性の高い電力変換装置を実現することができる。
実施の形態2の電力変換装置は、大電流容量用途に対応するため、実施の形態1の第1の変換器セルの各レグの半導体素子数を増やし、並列接続する構成としたものである。
以下、実施の形態2の電力変換装置の構成、動作について、第1の変換器セルの他の回路図である図12〜図15に基づいて説明する。
実施の形態2における電力変換装置は、第1の変換器セル10の構成以外の電力変換装置の全体構成は、実施の形態1で説明した図1あるいは図9、図10、図11と同様である。実施の形態1と異なる箇所は、第1の変換器セル10の構成のみである。
第1の変換器セル10Cは、第1のレグ(LegE)と第2のレグ(LegF)とキャパシタ29との並列構成である。
第1のレグ(LegE)は、上アームである半導体スイッチング素子群211、212の並列体と下アームである半導体スイッチング素子群221、222の並列体とを直列に接続している。
第2のレグ(LegF)は、上アームであるダイオード231、232の並列体と下アームである半導体スイッチング素子群241、242の並列体とを直列に接続している。
第1のレグ(LegE)の上アームと下アームの接続点には第1の変換器セル10Cの正極のセル出力端子Poが設けられている。第2のレグ(LegF)の上アームと下アームの接続点には第1の変換器セル10Cの負極のセル出力端子Noが設けられている。
第1の変換器セル10Dは、第1のレグ(LegH)と第2のレグ(LegG)とキャパシタ39との並列構成である。
第1のレグ(LegH)は、上アームである半導体スイッチング素子群331、332の並列体と下アームである半導体スイッチング素子群341、342の並列体とを直列に接続している。
第2のレグ(LegG)は、上アームである半導体スイッチング素子群311、312の並列体と下アームであるダイオード321、322の並列体とを直列に接続している。
第2のレグ(LegG)の上アームと下アームの接続点には第1の変換器セル10Dの正極のセル出力端子Poが設けられている。第1のレグ(LegH)の上アームと下アームの接続点には第1の変換器セル10Dの負極のセル出力端子Noが設けられている。
第1の変換器セル10C、10Dでは、並列接続した半導体スイッチング素子を同時にオン、オフ制御をすることで、電流容量を増加することができる。半導体スイッチング素子を並列接続した場合も、半導体スイッチング素子が並列になっただけで、半導体スイッチング素子のオン、オフの制御は実施の形態1で説明した第1の変換器セル10A、10Bの制御と変わらない。
しかし、これらのダイオードには、実施の形態1で説明したように直流端子間に短絡が発生し、保護モードに移行した瞬間の短い時間にのみ電流が流れる。このため、第1の変換器セル10C、10Dにおいて、第2のレグ(LegF、LegG)の並列接続されたダイオード(231、232、あるいは321、322)を1素子としても発熱や損失の増加はほとんど無視できる。このダイオードを1素子とした場合の回路図を図14、15に示す。
図15は、第1の変換器セル10Dにおいて、第2のレグの並列接続されたダイオード321、322を1素子とし、ダイオード32としたものである。なお、第1の変換器セル10Dと区別するために、第1の変換器セル10Fとし、第1のレグをLegL、第2のレグをLegKとしている。
第1の変換器セル10E、10Fは、第2のレグの並列接続されたダイオードを1素子とした以外、第1の変換器セル10C、10Dと同じであるため、説明は省略する。
なお、実施の形態2で示した本発明の第1の変換器セル10ではなく、第1のレグ、第2のレグの全てのアームに半導体スイッチング素子を有するフルブリッジ構成の変換器セルを用いても、短絡電流を抑制するという効果を得ることができるが、信頼性や小型化の点で本発明の効果を満足することはできない。本発明の第1の変換器セル10は、第2のレグの上アームあるいは下アームの一方は半導体スイッチング素子を有さない。よって、第2のレグの一方のアームに対しては、ゲート信号を生成する必要がなく、制御回路や制御線を省略することができ、電力変換装置を小型化することができる。さらに、ダイオードは半導体スイッチング素子と比較して故障率が低いので、信頼性の高い電力変換装置を実現することができる。
実施の形態3の電力変換装置は、直流端子間短絡の保護に必要な台数の第1の変換器セル10を使用し、これ以外はレグが1つしかないハーフブリッジ構成の第2の変換器セル15を使用する構成としたものである。
以下、実施の形態3の電力変換装置の構成、動作について、主回路構成図である図16、および他の実施例の主回路構成図である図17、18に基づいて説明する。
一方、直流端子間短絡時にダイオードが導通する条件は、交流端子に印加される電圧条件で決まるため、直流出力分を余裕として有していることになる。このため、全ての変換器セルを第1の変換器セル10にする必要はなく、第1の変換器セル10を必要台数分接続することで、短絡電流を抑制することができる。
例えば、通常は、直流電圧出力≧交流電圧出力の関係が成り立つように出力比率を設計するため、第1の変換器セル10の台数を全体の変換器セルの台数の1/2としてもよい。
図16の電力変換装置5は、各々の交流端子U、V、Wと、各々の直流端子P、Nとの間の各相アームの一部の変換器セルを第1の変換器セル10とし、他の変換器セルを第2の変換器セル15としたものである。
図17の電力変換装置6は、どちらか一方の極の相アーム内の変換器セルのすべてを第1の変換器セル10とし、他方の極の相アーム内の変換器セルのすべてを第2の変換器セル15としたものである。
図18の電力変換装置7は、どちらか一方の極の相アーム内の一部の変換器セルのみを第1の変換器セル10とし、それ以外の変換器セルを第2の変換器セル15としたものである。
なお、ここでキャパシタ電圧とは、カタログ上の定格使用電圧ではなく、実際の使用状態での充電電圧(使用電圧)である。
なお、実施の形態3で示した本発明の第1の変換器セル10ではなく、第1のレグ、第2のレグの全てのアームに半導体スイッチング素子を有するフルブリッジ構成の変換器セルを用いても、短絡電流を抑制するという効果を得ることができるが、信頼性や小型化の点で本発明の効果を満足することはできない。本発明の第1の変換器セル10は、第2のレグの上アームあるいは下アームの一方は半導体スイッチング素子を有さない。よって、第2のレグの一方のアームに対しては、ゲート信号を生成する必要がなく、制御回路や制御線を省略することができ、電力変換装置を小型化することができる。さらに、ダイオードは半導体スイッチング素子と比較して故障率が低いので、信頼性の高い電力変換装置を実現することができる。
実施の形態4では、回路図は省略するが、変換器セル10内の全て、あるいは一部の半導体素子の材料としてワイドバンドギャップ半導体を用いる。半導体素子の材料としては珪素が用いられることが多い。ワイドバンドギャップ半導体の材料として、例えば、炭化珪素や窒化ガリウム系材料またはダイヤモンドがある。
したがって、例えば、定常状態でスイッチング動作を行う半導体スイッチング素子とそれに逆並列に接続される還流ダイオードにのみ、ワイドバンドギャップ半導体を用いてもよい。
また、ワイドバンドギャップ半導体は、チップ面積を大きくすることで、導通損失を低減することができる。これを用いると、定常状態で常時オンとする半導体スイッチング素子のみをワイドバンドギャップ半導体とすることで、導通損失を低減することができる。
全ての半導体素子をワイドバンドギャップ半導体とすれば、前述の両方の効果を得ることができる。
Claims (19)
- 交流端子と直流端子との間に、エネルギー蓄積要素と上下アームの半導体スイッチング素子を備える変換器セルを1台または2台以上が直列に接続された相アームを有し、
前記変換器セルの少なくとも1台は、エネルギー蓄積要素と、上下アーム共に半導体スイッチング素子を有する第1のレグと、上下アームのどちらか一方は主電流を流す半導体素子としてダイオードしか用いないアームで他方は半導体スイッチング素子を有する第2のレグとが並列接続された第1の変換器セルである電力変換装置。 - 前記第1の変換器セルの前記第1のレグおよび前記第2のレグはそれぞれ複数の半導体スイッチング素子およびダイオードを並列接続する構成とした請求項1に記載の電力変換装置。
- 前記第1の変換器セルの前記第2のレグのダイオードの並列数は、前記半導体スイッチング素子の並列数よりも少ない請求項2に記載の電力変換装置。
- 前記第1の変換器セル以外の前記変換器セルの内少なくとも1台は、エネルギー蓄積要素と上下アーム共に半導体スイッチング素子を有する1つのレグとが並列接続されたハーフブリッジ構成である第2の変換器セルである請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記交流端子の少なくとも1つと前記直流端子の少なくとも1つの間に、前記第1の変換器セルを有さない相アームがある請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記交流端子の少なくとも1つと前記直流端子の少なくとも1つの間に、前記第1の変換器セルを有さない相アームがある請求項4に記載の電力変換装置。
- 前記直流端子間が短絡した場合に発生する短絡電流経路内に接続される前記第1の変換器セルの台数は、前記交流端子間の定格電圧の最大値を前記エネルギー蓄積要素の使用電圧で割算した数よりも多い請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記直流端子間が短絡した場合に発生する短絡電流経路内に接続される前記第1の変換器セルの台数は、前記交流端子間の定格電圧の最大値を前記エネルギー蓄積要素の使用電圧で割算した数よりも多い請求項4に記載の電力変換装置。
- 前記変換器セルに流れる電流を検出する電流検出手段と、この検出電流に基づいて前記直流端子間の短絡の発生を判断する短絡判別手段を備え、定常運転時は前記第1の変換器セルの前記第2のレグの半導体スイッチング素子をオンとする請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記直流端子間が短絡した場合に短絡電流を抑制する短絡電流抑制手段をさらに備える請求項9に記載の電力変換装置。
- 前記短絡電流抑制手段は、前記第1の変換器セルの全ての半導体スイッチング素子をオフさせる請求項10に記載の電力変換装置。
- 前記電流検出手段として、前記直流端子に電流検出器を設けた請求項9に記載の電力変換装置。
- 前記電流検出手段として、前記交流端子に電流検出器を設けた請求項9に記載の電力変換装置。
- 前記第1の変換器セルの前記第2のレグのダイオードの定格電流は、前記半導体スイッチング素子の定格電流よりも小さい請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記第1の変換器セルの半導体スイッチング素子は珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されている請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記第1の変換器セルのダイオードは珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されている請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドである請求項15に記載の電力変換装置。
- 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドである請求項16に記載の電力変換装置。
- 交流と直流の間で電力を変換する電力変換装置であって、
エネルギー蓄積要素と上下アームの半導体スイッチング素子を備える変換器セルを2台以上が直列に接続された相アームを有し、
前記変換器セルの少なくとも1台は、エネルギー蓄積要素と、上下アーム共に半導体スイッチング素子を有する第1のレグと、上下アームのどちらか一方は主電流を流す半導体素子としてダイオードしか用いないアームで他方は半導体スイッチング素子を有する第2のレグとが並列接続された第1の変換器セルである電力変換装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013264872 | 2013-12-24 | ||
JP2013264872 | 2013-12-24 | ||
PCT/JP2014/064996 WO2015098146A1 (ja) | 2013-12-24 | 2014-06-05 | 電力変換装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015098146A1 JPWO2015098146A1 (ja) | 2017-03-23 |
JP6207631B2 true JP6207631B2 (ja) | 2017-10-04 |
Family
ID=53478038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015554584A Active JP6207631B2 (ja) | 2013-12-24 | 2014-06-05 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160308458A1 (ja) |
EP (1) | EP3089344B1 (ja) |
JP (1) | JP6207631B2 (ja) |
WO (1) | WO2015098146A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966874B2 (en) * | 2014-01-15 | 2018-05-08 | Virginia Tech Intellectual Properties, Inc. | Power-cell switching-cycle capacitor voltage control for modular multi-level converters |
JP5889498B2 (ja) * | 2014-03-05 | 2016-03-22 | 三菱電機株式会社 | 電力変換装置 |
CN104052026B (zh) * | 2014-05-29 | 2016-05-25 | 华中科技大学 | 用于模块化多电平换流器的子模块拓扑及其应用 |
EP2996215A1 (en) * | 2014-09-11 | 2016-03-16 | Alstom Technology Ltd | A voltage source converter |
WO2016177398A1 (en) * | 2015-05-05 | 2016-11-10 | Abb Technology Ltd | Voltage source converter with improved operation |
KR101857570B1 (ko) * | 2015-12-30 | 2018-05-15 | 주식회사 효성 | 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법 |
SE539711C2 (en) * | 2016-06-15 | 2017-11-07 | Abb Schweiz Ag | Modular multilevel converter and cell for reducing current conduction losses |
JP6541155B2 (ja) * | 2016-06-27 | 2019-07-10 | 東芝三菱電機産業システム株式会社 | 電力変換装置及びその制御方法 |
EP3514941B1 (en) * | 2016-09-13 | 2020-12-09 | Mitsubishi Electric Corporation | Power conversion apparatus and power system |
US10541625B2 (en) * | 2016-12-22 | 2020-01-21 | Mitsubishi Electric Corporation | Power conversion device |
EP3547525A1 (en) * | 2018-03-27 | 2019-10-02 | General Electric Technology GmbH | Voltage source converter apparatus |
US12081141B2 (en) * | 2020-03-04 | 2024-09-03 | Mitsubishi Electric Corporation | Modular multilevel converter with current failure detection |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57101573A (en) * | 1980-12-15 | 1982-06-24 | Yaskawa Electric Mfg Co Ltd | Pwm inverter |
US7006366B2 (en) * | 2004-06-10 | 2006-02-28 | Wisconsin Alumni Research Foundation | Boost rectifier with half-power rated semiconductor devices |
EP2100368B1 (de) * | 2006-12-08 | 2011-09-07 | Siemens Aktiengesellschaft | Halbleiterschutzelemente zur beherrschung von dc-seitigen kurzschlüssen bei spannungszwischenkreisumrichtern |
JP2011010404A (ja) * | 2009-06-24 | 2011-01-13 | Hitachi Ltd | 電力変換器およびそれを用いた電動機駆動装置、輸送装置 |
KR101292991B1 (ko) * | 2009-07-02 | 2013-08-02 | 에이비비 테크놀로지 아게 | 멀티레벨 전압 출력 및 고조파 보상기를 갖는 전력 변환기 |
CN102549907B (zh) * | 2009-07-31 | 2015-01-21 | 阿尔斯通技术有限公司 | 具有主动故障电流限制的变换器 |
EP2302772A1 (en) * | 2009-09-28 | 2011-03-30 | ABB Oy | Inverter |
DE102009057288B4 (de) * | 2009-12-01 | 2018-02-15 | Siemens Aktiengesellschaft | Umrichter für hohe Spannungen |
CH703022A2 (de) * | 2010-04-27 | 2011-10-31 | Ralph Niederer | Schaltung für einen Multilevel-Umrichter mit Thyristor-Umschaltung. |
WO2012000545A1 (en) * | 2010-06-30 | 2012-01-05 | Abb Technology Ag | An hvdc transmission system, an hvdc station and a method of operating an hvdc station |
FR2962608B1 (fr) * | 2010-07-07 | 2012-08-10 | Toulouse Inst Nat Polytech | Nouvelles structures de redondance pour convertisseurs statiques |
CN102013690A (zh) * | 2010-07-22 | 2011-04-13 | 荣信电力电子股份有限公司 | 一种基于mmc模块化多电平的无变压器电感储能拓扑结构 |
RU2550138C2 (ru) * | 2011-02-01 | 2015-05-10 | Сименс Акциенгезелльшафт | Способ устранения неисправности в линии постоянного тока высокого напряжения, установка для передачи электрического тока по линии постоянного тока высокого напряжения и преобразователь переменного тока |
WO2012143037A2 (en) * | 2011-04-18 | 2012-10-26 | Abb Technology Ag | Method in a voltage source chain-link converter, computer programs and computer program products |
US9160226B2 (en) * | 2011-11-11 | 2015-10-13 | Abb Technology Ag | Converter cell and associated converter arm and method for preventing undesired overcharging of energy storage device of the converter cell |
CN102891611B (zh) * | 2012-06-30 | 2014-10-08 | 华为技术有限公司 | 五电平功率变换器及其控制方法、控制装置 |
CN104521127B (zh) * | 2012-08-10 | 2017-05-10 | 三菱电机株式会社 | 双元件功率模块及使用该双元件功率模块的三电平功率转换装置 |
EP2904698B1 (en) * | 2012-10-01 | 2018-08-01 | ABB Schweiz AG | Converter arm and associated converter device |
US10163562B2 (en) * | 2012-12-05 | 2018-12-25 | Futurewei Technologies, Inc. | Coupled inductor structure |
EP2946464B1 (en) * | 2013-01-21 | 2019-12-18 | ABB Schweiz AG | A multilevel converter with hybrid full-bridge cells |
EP2768133B1 (en) * | 2013-02-14 | 2015-11-04 | ABB Technology Ltd | Converter cell with reduced power losses, high voltage multilevel converter and associated method |
US9461557B2 (en) * | 2013-03-22 | 2016-10-04 | Abb Ab | Bipolar double voltage cell and multilevel converter with such a cell |
WO2014154241A1 (en) * | 2013-03-25 | 2014-10-02 | Abb Technology Ltd | A multilevel converter with cell type mixing |
CN103280989B (zh) * | 2013-05-15 | 2017-02-08 | 南京南瑞继保电气有限公司 | 一种换流器及其控制方法 |
EP2830201A1 (en) * | 2013-07-26 | 2015-01-28 | Alstom Technology Ltd | Voltage source converter module |
DE102013218207A1 (de) * | 2013-09-11 | 2015-03-12 | Siemens Aktiengesellschaft | Modularer Mehrpunktstromrichter für hohe Spannungen |
CN104682736A (zh) * | 2013-12-02 | 2015-06-03 | 台达电子企业管理(上海)有限公司 | 五电平整流器 |
-
2014
- 2014-06-05 JP JP2015554584A patent/JP6207631B2/ja active Active
- 2014-06-05 WO PCT/JP2014/064996 patent/WO2015098146A1/ja active Application Filing
- 2014-06-05 EP EP14874681.1A patent/EP3089344B1/en not_active Not-in-force
- 2014-06-05 US US15/101,140 patent/US20160308458A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2015098146A1 (ja) | 2015-07-02 |
JPWO2015098146A1 (ja) | 2017-03-23 |
EP3089344A4 (en) | 2017-01-18 |
EP3089344A1 (en) | 2016-11-02 |
US20160308458A1 (en) | 2016-10-20 |
EP3089344B1 (en) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6207631B2 (ja) | 電力変換装置 | |
US20170294850A1 (en) | Multilevel converter | |
US10658920B2 (en) | Fault-tolerant topology for multilevel T-type converters | |
JP5521796B2 (ja) | 整流回路 | |
JP6062132B1 (ja) | 電力変換装置および電力システム | |
US9479075B2 (en) | Multilevel converter system | |
US11139733B2 (en) | Modular multilevel converter sub-module having DC fault current blocking function and method of controlling the same | |
US8971070B2 (en) | Interface arrangement between AC and DC systems for reliable opening of the circuit breaker in time | |
US20140362479A1 (en) | Protection circuit for protecting voltage source converter | |
JP2008141949A (ja) | 常時オンスイッチを含む電流型電力コンバータ | |
US20160036342A1 (en) | Power conversion device | |
US8599585B2 (en) | Power conversion device | |
JP6550972B2 (ja) | インバータ回路及び電力変換装置 | |
JP2013223357A (ja) | 電力変換装置 | |
JP6611989B2 (ja) | 過電流検出回路及び電力変換装置 | |
BR112016016384B1 (pt) | Conversor regenerativo | |
US20140167660A1 (en) | Inverter device | |
JP2013116020A (ja) | 電力変換装置 | |
JP5233492B2 (ja) | 交直変換回路 | |
JP6543512B2 (ja) | 電力変換装置およびモータ装置 | |
CN113629988B (zh) | 一种pwm整流器及其短路保护装置 | |
CN104919692B (zh) | 电力转换装置 | |
JP2005192354A (ja) | 交流スイッチ装置及びこれを使用した電力供給装置 | |
JP2013128393A (ja) | コンバータ・システム、およびそのようなコンバータ・システムを具備するパワー・エレクトロニクス装置 | |
KR102229840B1 (ko) | 다기능 필터를 포함하는 hvdc 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6207631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |