JP6206719B2 - Heating barrel temperature control method for injection molding machine - Google Patents

Heating barrel temperature control method for injection molding machine Download PDF

Info

Publication number
JP6206719B2
JP6206719B2 JP2014040406A JP2014040406A JP6206719B2 JP 6206719 B2 JP6206719 B2 JP 6206719B2 JP 2014040406 A JP2014040406 A JP 2014040406A JP 2014040406 A JP2014040406 A JP 2014040406A JP 6206719 B2 JP6206719 B2 JP 6206719B2
Authority
JP
Japan
Prior art keywords
heating
temperature
correction
set temperature
start point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014040406A
Other languages
Japanese (ja)
Other versions
JP2015164782A (en
Inventor
岡本 昭男
昭男 岡本
宮本 和明
和明 宮本
利和 岩本
利和 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2014040406A priority Critical patent/JP6206719B2/en
Publication of JP2015164782A publication Critical patent/JP2015164782A/en
Application granted granted Critical
Publication of JP6206719B2 publication Critical patent/JP6206719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、射出成形機の射出装置の加熱バレルの温度制御方法に関する。   The present invention relates to a temperature control method for a heating barrel of an injection device of an injection molding machine.

射出成形機の射出装置の加熱バレル内で行われる可塑化・計量工程においては、加熱バレル外周の長手方向に配置される複数のバンドヒータ等の加熱手段により、加熱バレル先端のノズル部と、スクリュの供給部(フィードゾーン)、圧縮部(コンプレッションゾーン)及び計量部(メータリングゾーン)に相当する加熱バレルの各部位の温度、あるいは、それぞれの部位を更に長手方向に分割した各分割部位の温度が適宜制御される。これは、加熱バレル内に供給されたペレット状の樹脂材料を、それぞれの部位の機能に応じて加熱させ、最終的に、最適な状態で可塑化(溶融状態化)・計量させるためである。このような、加熱バレル温度を最適に制御するための様々な制御方法が開示されている。   In the plasticizing / metering step performed in the heating barrel of the injection device of the injection molding machine, a heating unit such as a plurality of band heaters arranged in the longitudinal direction of the outer periphery of the heating barrel, The temperature of each part of the heating barrel corresponding to the supply part (feed zone), compression part (compression zone) and metering part (metering zone), or the temperature of each part obtained by further dividing each part in the longitudinal direction Is appropriately controlled. This is because the pellet-shaped resin material supplied into the heating barrel is heated according to the function of each part, and finally plasticized (melted) and measured in an optimum state. Various control methods for optimally controlling the heating barrel temperature are disclosed.

例えば、特許文献1は、従来の加熱バレル温度制御方法では、最も高い温度に温度設定されるノズル部の熱容量が最も小さく、最も低い温度に設定される供給部の熱容量が最も大きいため、各加熱手段への通電開始時から設定成形温度に達するまでの昇温時間が、ノズル部で最も短く、供給部で最も長くなることを問題としている。すなわち、最も高い温度に温度設定されるノズル部における成形開始待機時間が長時間となり、樹脂の分解や焼け等が発生する虞があるというものである(特許文献1/段落0006)。   For example, in Patent Document 1, in the conventional heating barrel temperature control method, the heat capacity of the nozzle unit set to the highest temperature is the smallest and the heat capacity of the supply unit set to the lowest temperature is the largest. The problem is that the temperature rise time from the start of energization to the means until the set molding temperature is reached is the shortest in the nozzle part and the longest in the supply part. That is, there is a possibility that the molding start waiting time in the nozzle portion set to the highest temperature becomes long, and the resin may be decomposed or burnt (Patent Document 1 / paragraph 0006).

特許文献1の加熱バレル温度制御方法では、各部位の設定温度に、最も低い設定温度以下の二次設定温度を設定し、この二次設定温度をノズル部において最も低温に設定し、供給部において最も高温に設定することにより、各部位の二次設定温度到達後から正規設定温度に到達するまでの時間短縮が可能になり、ノズル部における樹脂不良の発生を防止できるとしている(特許文献1/段落0011)。   In the heating barrel temperature control method of Patent Document 1, a secondary set temperature lower than the lowest set temperature is set as the set temperature of each part, and this secondary set temperature is set to the lowest temperature in the nozzle part, and in the supply part By setting the highest temperature, it is possible to shorten the time from reaching the secondary set temperature of each part to reaching the normal set temperature, and to prevent the occurrence of resin defects in the nozzle part (Patent Document 1 / Paragraph 0011).

また、特許文献2は、従来の加熱バレル温度制御方法に採用されるPID制御において、射出機メーカーが予め制御手段に組み込むPID制御定数や、PID制御定数のオートチューニング機能では、ユーザーの工場環境をはじめ使用樹脂、金型温度及び加熱シリンダの設定温度などが異なるため、連続自動成形時の温度のオーバーシュートやアンダーシュート現象を十分に軽減することができないことを問題としており(特許文献1/段落0008他)、これを解決できるとする、射出成形機用の温度制御装置及び温度制御方法を開示している。   In addition, in PID control employed in the conventional heating barrel temperature control method, Patent Document 2 describes the user's factory environment in the PID control constant incorporated in the control means in advance by the injection machine manufacturer and the auto-tuning function of the PID control constant. Since the resin used, the mold temperature, and the set temperature of the heating cylinder are different at the beginning, it is a problem that the temperature overshoot and undershoot phenomena during continuous automatic molding cannot be sufficiently reduced (Patent Document 1 / paragraph). 0008 et al.) Discloses a temperature control device and a temperature control method for an injection molding machine that can solve this problem.

特開平8−281754号公報JP-A-8-281754 特開2006−289781号公報JP 2006-289781 A

連続成形運転の開始前、加熱バレルの加熱手段に通電し、加熱バレルの各部位がそれぞれの加熱設定温度に到達した後、供給部への材料供給が開始され、連続成形運転が開始される。供給される樹脂材料は、通常、常温でペレット状の固形材料であるため、供給部及び隣接する圧縮部の前半部のスクリュのフライトは、スクリュの回転によって、樹脂材料をノズル側へ流動させるために適した仕様(形状・ピッチ等)に設計されている。一方、加熱バレルの加熱により、供給部及び隣接する圧縮部の前半部の樹脂材料が必要以上に加熱され、表面の一部が溶融すると、樹脂材料同士が付着し供給部及び隣接する圧縮部の前半部でのブリッジ形成による閉塞や、供給部及び隣接する圧縮部の前半部のスクリュへの付着等による樹脂送り不良が生じる。そのため、供給部及び隣接する圧縮部の前半部の加熱手段は、供給される樹脂材料の温度よりは高く、供給された樹脂材料が供給部及び隣接する圧縮部の前半部で溶融しない程度に、圧縮部の後半部や計量部と比較して加熱設定温度が低く設定される。   Before starting the continuous molding operation, the heating means of the heating barrel is energized, and after each part of the heating barrel reaches the respective heating set temperature, the material supply to the supply unit is started and the continuous molding operation is started. Since the resin material to be supplied is normally a pellet-shaped solid material at normal temperature, the flight of the screw in the first half of the supply unit and the adjacent compression unit flows the resin material to the nozzle side by the rotation of the screw. Designed to suit specifications (shape, pitch, etc.). On the other hand, when the heating barrel heats the resin material in the first half of the supply unit and the adjacent compression unit more than necessary, and part of the surface melts, the resin materials adhere to each other and the supply unit and the adjacent compression unit Resin feed failure occurs due to blockage due to bridge formation in the front half, adhesion to the screw in the front half of the supply section and the adjacent compression section, and the like. Therefore, the heating means of the first half of the supply unit and the adjacent compression unit is higher than the temperature of the resin material to be supplied, so that the supplied resin material does not melt in the first half of the supply unit and the adjacent compression unit, The heating set temperature is set lower than the latter half of the compression unit and the metering unit.

このように、一般的な射出成形機による射出成形においては、加熱バレルの加熱設定温度よりも低い常温で、連続して供給される樹脂材料により、連続成形運転の開始前に、予め設定された加熱設定温度まで予熱された供給部及び隣接する圧縮部の前半部の加熱バレルが抜熱され、その実温度が加熱手段の加熱設定温度以下に低下し、供給部及び隣接する圧縮部の前半部の樹脂材料への加熱不足により、圧縮部や計量部において最適な可塑化(溶融状態化)が困難となり、供給部、圧縮部及び計量部の全体の樹脂送り不良等が生じる。その結果、可塑化・計量工程の不安定化を招くという問題がある。尚、吸湿しやすい成形材料においては、水分が除去できる程度に予め乾燥加熱した状態で材料供給されるが、乾燥加熱の温度は加熱バレルの加熱設定温度よりも低く、加熱バレルの抜熱による樹脂送り不良は発生する。   Thus, in the injection molding by a general injection molding machine, the resin material continuously supplied at a room temperature lower than the heating set temperature of the heating barrel is set in advance before the start of the continuous molding operation. The heating barrel in the first half of the supply unit and the adjacent compression unit preheated to the heating set temperature is removed, and the actual temperature falls below the heating set temperature of the heating means, and the first half of the supply unit and the adjacent compression unit Due to insufficient heating of the resin material, it becomes difficult to perform optimal plasticization (melting state) in the compression unit and the measurement unit, resulting in defective resin feed of the entire supply unit, compression unit, and measurement unit. As a result, there is a problem in that the plasticization / measurement process becomes unstable. In addition, in the molding material that easily absorbs moisture, the material is supplied in a state of being dried and heated in advance to such an extent that moisture can be removed. A feed failure occurs.

しかしながら、特許文献1のように、連続成形運転の開始前の加熱バレルの予熱に関する温度制御方法においては、このような、低い温度で連続して供給される樹脂材料による射出装置系の抜熱に対応する制御は想定されていない。   However, as in Patent Document 1, in the temperature control method related to preheating of the heating barrel before the start of the continuous molding operation, such heat removal of the injection device system by the resin material continuously supplied at a low temperature is performed. Corresponding control is not envisaged.

これに対して、特許文献2の射出成形機用の温度制御装置及び温度制御方法においては、連続自動成形時(連続成形運転時)の温度のオーバーシュートやアンダーシュート現象を十分に軽減することができるとされている。しかしながら、特許文献2のように、加熱バレルの各加熱手段が配置される部位、あるいは、配置される部位の近傍毎に温度検出手段が配置され、該温度検出手段により検出される加熱バレル自体の実温度に基づき、該加熱手段の加熱設定温度のフィードバック制御が行われる温度制御方法においては、後述する要因により、各部位が意図する温度に到達するまでのタイムラグが大きく、各部位の温度制御が難しいという問題がある。また、このタイムラグに起因して、検出された各部位の温度と、対応する各部位内の樹脂材料の温度とは必ずしも一致しないという問題がある。   In contrast, in the temperature control device and temperature control method for an injection molding machine disclosed in Patent Document 2, temperature overshoot and undershoot phenomena during continuous automatic molding (continuous molding operation) can be sufficiently reduced. It is supposed to be possible. However, as in Patent Document 2, a temperature detection unit is arranged at each site where the heating unit of the heating barrel is arranged, or in the vicinity of the site where the heating unit is arranged, and the heating barrel itself detected by the temperature detection unit. In the temperature control method in which feedback control of the heating set temperature of the heating means is performed based on the actual temperature, the time lag until each part reaches the intended temperature is large due to the factors described later, and the temperature control of each part is performed. There is a problem that it is difficult. Further, due to this time lag, there is a problem that the temperature of each detected part does not necessarily match the temperature of the resin material in each corresponding part.

ここで、加熱バレルの制御方法において、各部位が意図する温度に到達するまでのタイムラグが大きく、各部位の温度と対応する各部位内の樹脂材料の温度とが一致しない理由について簡単に説明する。加熱バレル内の可塑化・計量工程において、供給部から供給されたペレット状の樹脂材料は、加熱バレル内壁及びスクリュ間の樹脂流路において、回転するスクリュのフライトが、樹脂材料をせん断・混錬させることにより、樹脂材料に直接的に付与されるせん断熱エネルギーと、加熱バレルの外周面に配置される加熱手段から、加熱バレルを介して、樹脂材料に間接的に付与される熱エネルギーと、の2種類の熱エネルギーにより可塑化される。前者のせん断エネルギーに対して、後者の加熱手段の熱エネルギーは、加熱バレル内の樹脂材料を直接加熱させることができない。これが先に説明したタイムラグの主要因である。   Here, in the control method of the heating barrel, the reason why the time lag until each part reaches the intended temperature is large and the temperature of each part does not match the temperature of the resin material in each corresponding part will be briefly described. . In the plasticizing / metering process in the heating barrel, the pellet-shaped resin material supplied from the supply section is sheared and kneaded by the rotating screw flight in the resin flow path between the inner wall of the heating barrel and the screw. By making the shear heat energy directly applied to the resin material, and from the heating means disposed on the outer peripheral surface of the heating barrel, the thermal energy indirectly applied to the resin material through the heating barrel, It is plasticized by two types of thermal energy. In contrast to the former shear energy, the heat energy of the latter heating means cannot directly heat the resin material in the heating barrel. This is the main cause of the time lag described above.

すなわち、加熱手段による熱エネルギーは、まず、加熱バレル自体を加熱し、加熱された加熱バレルと直接接触している樹脂が、接触熱伝達のみで加熱される。ここで、加熱バレル等を構成する金属素材に対して、熱伝導率の低い樹脂材料の加熱には、加熱バレル以上の加熱時間を要する。一方、樹脂材料は前者のせん断エネルギーによっても加熱されるが、樹脂材料が接触しているスクリュの温度に対する、樹脂材料のその位置における温度関係により、互いに熱エネルギーの移動が生じる。   That is, the heat energy by the heating means first heats the heating barrel itself, and the resin that is in direct contact with the heated heating barrel is heated only by contact heat transfer. Here, heating of the resin material having low thermal conductivity with respect to the metal material constituting the heating barrel or the like requires a heating time longer than that of the heating barrel. On the other hand, although the resin material is also heated by the former shear energy, the thermal energy is transferred to each other depending on the temperature relationship at the position of the resin material with respect to the temperature of the screw with which the resin material is in contact.

このように、加熱手段により直接加熱される加熱バレル、加熱バレルにより加熱される熱伝導率の低い樹脂材料、その樹脂材料との接触により加熱されるスクリュ、そして、これらの熱エネルギーの移動等、様々な部位及び樹脂材料間の熱エネルギーの移動が生じ、これら熱エネルギーの移動がサチュレートして、初めて、加熱バレル自体の各部位の温度と対応する各部位内の樹脂材料の温度とが安定する。そのため、上記のような熱エネルギーの移動がサチュレートするまでのタイムラグ、すなわち、各部位や対応する各部位内の樹脂材料が各加熱手段の加熱設定温度に到達するまでのタイムラグが大きい。また、上記のような熱エネルギーの移動がサチュレートする前に検出される各部位の実温度は、各部位の最終的にサチュレートする実温度とは異なる。当然ながら、サチュレートする前の樹脂材料の実温度も、サチュレートする前に検出される各部位の温度とは一致しない。尚、上記は加熱バレルの温度を昇温させる場合について説明したが、降温させる場合も同様である。   Thus, the heating barrel directly heated by the heating means, the resin material with low thermal conductivity heated by the heating barrel, the screw heated by contact with the resin material, and the transfer of these thermal energy Only when the thermal energy transfer between various parts and the resin material occurs and the transfer of the thermal energy is saturated, the temperature of each part of the heating barrel itself and the temperature of the resin material in each corresponding part are stabilized. . Therefore, the time lag until the movement of the heat energy as described above is saturated, that is, the time lag until the resin material in each part or the corresponding part reaches the heating set temperature of each heating means is large. Moreover, the actual temperature of each part detected before the above-mentioned movement of thermal energy is saturated is different from the actual temperature at which each part is finally saturated. Naturally, the actual temperature of the resin material before saturating does not match the temperature of each part detected before saturating. Although the above has described the case where the temperature of the heating barrel is raised, the same applies to the case where the temperature is lowered.

一方、射出成形機の連続成形運転の停止時にも同様の問題がある。所定の成形サイクル終了条件を満たした後、射出装置への樹脂材料の供給を停止させる場合、通常、次回の運転を鑑み、樹脂材料の供給が停止された後も、加熱バレル内の樹脂材料をすべて排出(パージ)させるために、可塑化・計量工程が継続される(パージ工程)。このパージ工程は、通常の可塑化・計量工程と異なり、射出装置を後退させ、加熱バレルのノズル部を固定型から離間させた状態で行われる。具体的には、ノズル部にパージ樹脂受け等を配置させた上で、前回成形サイクルの射出工程完了時のスクリュ前進限位置もしくはその近傍位置にスクリュを前進させたまま回転動作を行わせ、加熱バレル内の樹脂材料をすべて可塑化させて、貯留部に貯留させずにノズルから連続して排出させるものである。   On the other hand, there is a similar problem when the continuous molding operation of the injection molding machine is stopped. When the supply of the resin material to the injection device is stopped after satisfying a predetermined molding cycle end condition, the resin material in the heating barrel is usually removed even after the supply of the resin material is stopped in view of the next operation. In order to completely discharge (purge), the plasticizing / metering process is continued (purge process). Unlike the normal plasticizing / metering step, this purging step is performed in a state where the injection device is retracted and the nozzle portion of the heating barrel is separated from the fixed mold. Specifically, after placing a purge resin receptacle or the like in the nozzle part, the rotation operation is performed while the screw is advanced to the screw advance limit position or the vicinity thereof at the completion of the injection process of the previous molding cycle, and heating is performed. All of the resin material in the barrel is plasticized and continuously discharged from the nozzle without being stored in the storage portion.

このパージ工程の際、加熱バレル内の樹脂材料の量が漸次パージされ減少していく状態に対して、各加熱手段の加熱設定温度が一定であれば、加熱バレルに付与される熱エネルギーの総量は一定で変化しない。そのため、加熱バレル内の樹脂材料に付与される熱エネルギーは過多状態となり、加熱バレル内に残っている樹脂材料が、スクリュ内に焼き付いたり、炭化したりして、運転再開前の加熱バレル内の清掃に時間がかかるという問題がある。加熱バレル内の樹脂材料の減少に合わせて、加熱バレル温度の制御を漸次降温させる温度補正制御を行おうとしても、温度検出手段により検出される各加熱手段の各部位の実温度に基づくフィードバック制御である限り、先に説明したようなタイムラグは回避することができず、問題を解消することは困難である。   In this purge process, the amount of the resin material in the heating barrel is gradually purged and reduced, whereas if the heating setting temperature of each heating means is constant, the total amount of heat energy applied to the heating barrel Is constant and does not change. Therefore, the thermal energy applied to the resin material in the heating barrel becomes excessive, and the resin material remaining in the heating barrel is baked into the screw or carbonized, so that the heat in the heating barrel before the operation is resumed. There is a problem that cleaning takes time. Feedback control based on the actual temperature of each part of each heating means detected by the temperature detection means, even if temperature correction control is performed to gradually lower the temperature of the heating barrel as the resin material in the heating barrel decreases. As long as this is the case, the time lag as described above cannot be avoided, and it is difficult to solve the problem.

本発明は、上記したような問題点に鑑みてなされたもので、具体的には、温度検出手段により検出される各加熱手段の各部位の実温度に基づかず、予め設定される補正開始点と温度補正式とに基づいて、加熱バレルの温度制御を行う、射出成形機の加熱バレル温度制御方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. Specifically, the correction start point is preset based on the actual temperature of each part of each heating unit detected by the temperature detection unit. It is an object of the present invention to provide a heating barrel temperature control method for an injection molding machine that controls the temperature of the heating barrel based on the temperature correction equation.

上記の目的を達成するための、本発明に係る、射出成形機の加熱バレル温度制御方法は、射出成形機の射出装置の、加熱バレルの長手方向に配置される複数の加熱手段が、それぞれ独立して制御される、射出成形機の加熱バレル温度制御方法において、
射出させる樹脂の目標可塑化樹脂温度Tmと、可塑化スクリュの供給部及び圧縮部の範囲に配置される前記各加熱手段に設定される初期加熱設定温度Tzxとが、Tm≧Tzxの関係において、前記各加熱手段の、補正1回分の加熱設定温度補正値ΔTzxを、0.1≦α≦1の範囲で設定されるαを用いて、式ΔTzx=α(Tm−Tzx)で設定する加熱設定温度補正準備工程と、
最初の補正開始点1が、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの差異が、予め設定される許容量Q1を超えた時点であって、
前記最初の補正開始点1から、予め設定される所定時間T1毎に前記差違と前記許容量Q1との比較を行い、前記差異が前記許容量の範囲を超えた時点を、2回目以降の前記補正開始点1とし、
予め設定した前記補正開始点1において、新たな加熱設定温度T’zxを、温度補正式1、T’zx=Tzx+ΔTzxで再設定すると共に、次の前記補正開始点1に到達する度に、前記温度補正式1の右辺のTzxを、前の前記補正開始点1において再設定された、前記新たな加熱設定温度T’zxに置き換えた前記温度補正式1に基づき、前記温度補正式1の左辺のT’zxを漸次昇温させる加熱設定温度補正工程1と、
を有する。
In order to achieve the above object, according to the present invention, there is provided a heating barrel temperature control method for an injection molding machine, wherein a plurality of heating means arranged in the longitudinal direction of the heating barrel of the injection device of the injection molding machine are independent of each other. In the heating barrel temperature control method of the injection molding machine controlled by
In the relationship of Tm ≧ Tzx, the target plasticizing resin temperature Tm of the resin to be injected and the initial heating setting temperature Tzx set in each of the heating means disposed in the range of the plasticizing screw supply unit and the compression unit are as follows: Heating setting for setting the heating setting temperature correction value ΔTzx for one correction of each heating means by an expression ΔTzx = α (Tm−Tzx) using α set in a range of 0.1 ≦ α ≦ 1. Temperature correction preparation process;
The first correction start point 1 is a point in time when at least one difference in the weighing time, the molded product weight, and the average rotational load factor of the screw exceeds a preset allowable amount Q1,
The difference is compared with the allowable amount Q1 at a predetermined time T1 set in advance from the first correction start point 1, and the time when the difference exceeds the allowable amount range is determined for the second and subsequent times. The correction start point is 1,
At the correction start point 1 set in advance, the new heating set temperature T′zx is reset by the temperature correction formula 1, T′zx = Tzx + ΔTzx, and each time the next correction start point 1 is reached, The left side of the temperature correction formula 1 is based on the temperature correction formula 1 in which the right side Tzx of the temperature correction formula 1 is replaced with the new heating set temperature T′zx reset at the previous correction start point 1. Heating set temperature correction step 1 for gradually increasing the temperature T'zx of
Have

また、本発明に係る、射出成形機の加熱バレル温度制御方法における補正開始点は、前記最初の補正開始点1から、予め設定される前記所定時間T1毎に行われる、前記差異と前記許容量Q1との比較が成形サイクル毎、又は、2回以上の成形サイクル毎に行われるとすることが好ましい。 Further, according to the present invention, the correction start point in the heating barrel temperature control method of the injection molding machine, from said first correction start point 1 is carried out every predetermined time T1 is set in advance, the difference between the allowable amount comparison with Q1 are each molding cycle, or, it is preferable that the Ru performed every molding cycle more than once.

更に、本発明に係る、射出成形機の加熱バレル温度制御方法は、前記新たな加熱設定温度T’zxが、Tm+(Tm−Tzx)≧T’zx≧Tmを満たす状態となった時点で、前記加熱設定温度補正工程1を終えることが好ましい。   Furthermore, in the heating barrel temperature control method for an injection molding machine according to the present invention, when the new heating set temperature T′zx satisfies Tm + (Tm−Tzx) ≧ T′zx ≧ Tm, It is preferable to finish the heating set temperature correction step 1.

次に、本発明に係る、射出成形機の加熱バレル温度制御方法は、前記加熱設定温度補正工程1における前記補正開始点1に、成形サイクルの停止予定から所定時間T2前である、成形サイクル停止準備補正開始点を含み、前記成形サイクル停止準備補正開始点において、前記温度補正式1を、温度補正式2、T”zx=T’zx−ΔTzxに切り換え、前記新たな加熱設定温度T”zxを再設定すると共に、前記成形サイクル停止準備補正開始点以降の補正開始点2を、所定時間T3経過後とし、次の前記補正開始点2に到達する度に、前記温度補正式2に基づき、前記新たな加熱設定温度を漸次降温させる加熱設定温度補正工程2を更に含んでいても良い。   Next, in the heating barrel temperature control method for an injection molding machine according to the present invention, at the correction start point 1 in the heating set temperature correction step 1, the molding cycle is stopped before a predetermined time T2 from the scheduled stop of the molding cycle. At the molding cycle stop preparation correction start point including the preparation correction start point, the temperature correction formula 1 is switched to the temperature correction formula 2, T ″ zx = T′zx−ΔTzx, and the new heating set temperature T ″ zx And the correction start point 2 after the molding cycle stop preparation correction start point after the predetermined time T3, and every time the next correction start point 2 is reached, based on the temperature correction formula 2, A heating set temperature correction step 2 for gradually lowering the new heating set temperature may be further included.

同様に、本発明に係る、射出成形機の加熱バレル温度制御方法は、前記加熱設定温度補正工程1において、前記差異が、予め設定される許容量Q2を超えた時点で、前記温度補正式1を前記温度補正式2に切り換え、前記新たな加熱設定温度を漸次降温させても良い。   Similarly, in the heating barrel temperature control method for an injection molding machine according to the present invention, when the difference exceeds a preset allowable amount Q2 in the heating set temperature correction step 1, the temperature correction formula 1 May be switched to the temperature correction formula 2, and the new heating set temperature may be gradually decreased.

一方、本発明に係る、射出成形機の加熱バレル温度制御方法は、前記加熱設定温度補正工程1、又は、前記加熱設定温度補正工程2において成形サイクル中に新たに設定変更された初期加熱設定温度Tzx又は目標可塑化樹脂温度Tmに基づいて、前記加熱設定温度補正準備工程、前記加熱設定温度補正工程1、又は、前記加熱設定温度補正工程2を行っても良い。 On the other hand, according to the present invention, heating barrel temperature control method of the injection molding machine, the heating setting temperature correction step 1, or, said have you to heat set temperature correction step 2, initial newly set change during the molding cycle The heating preset temperature correction preparation step, the heating preset temperature correction step 1, or the heating preset temperature correction step 2 may be performed based on the heating preset temperature Tzx or the target plasticizing resin temperature Tm.

本発明に係る、射出成形機の加熱バレル温度制御方法は、射出成形機の射出装置の、加熱バレルの長手方向に配置される複数の加熱手段が、それぞれ独立して制御される、射出成形機の加熱バレル温度制御方法において、
射出させる樹脂の目標可塑化樹脂温度Tmと、スクリュの供給部及び圧縮部の範囲に配置される前記各加熱手段に設定される初期加熱設定温度Tzxとが、Tm≧Tzxの関係において、前記各加熱手段の、補正1回分の加熱設定温度補正値ΔTzxを、0.1≦α≦1の範囲で設定されるαを用いて、式ΔTzx=α(Tm−Tzx)で設定する加熱設定温度補正準備工程と、
最初の補正開始点1が、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの差異が、予め設定される許容量Q1を超えた時点であって、
前記最初の補正開始点1から、予め設定される所定時間T1毎に前記差違と前記許容量Q1との比較を行い、前記差異が前記許容量の範囲を超えた時点を、2回目以降の前記補正開始点1とし、
予め設定した前記補正開始点1において、新たな加熱設定温度T’zxを、温度補正式1、T’zx=Tzx+ΔTzxで再設定すると共に、次の前記補正開始点1に到達する度に、前記温度補正式1の右辺のTzxを、前の前記補正開始点1において再設定された、前記新たな加熱設定温度T’zxに置き換えた前記温度補正式1に基づき、前記温度補正式1の左辺のT’zxを漸次昇温させる加熱設定温度補正工程1と、
を有するため、温度検出手段により検出される各加熱手段の各部位の実温度に基づかず、予め設定される補正開始点と温度補正式とに基づいて、加熱バレルの温度制御を行うことができる。
In the heating barrel temperature control method for an injection molding machine according to the present invention, the plurality of heating means arranged in the longitudinal direction of the heating barrel of the injection device of the injection molding machine are independently controlled. In the heating barrel temperature control method of
The target plasticization resin temperature Tm of the resin to be injected and the initial heating set temperature Tzx set in each heating means arranged in the range of the screw supply unit and the compression unit are in the relationship of Tm ≧ Tzx. Heating set temperature correction for setting the heating set temperature correction value ΔTzx for one correction of the heating means using α set in a range of 0.1 ≦ α ≦ 1 by the expression ΔTzx = α (Tm−Tzx) A preparation process;
The first correction start point 1 is a point in time when at least one difference in the weighing time, the molded product weight, and the average rotational load factor of the screw exceeds a preset allowable amount Q1,
The difference is compared with the allowable amount Q1 at a predetermined time T1 set in advance from the first correction start point 1, and the time when the difference exceeds the allowable amount range is determined for the second and subsequent times. The correction start point is 1,
At the correction start point 1 set in advance, the new heating set temperature T′zx is reset by the temperature correction formula 1, T′zx = Tzx + ΔTzx, and each time the next correction start point 1 is reached, The left side of the temperature correction formula 1 is based on the temperature correction formula 1 in which the right side Tzx of the temperature correction formula 1 is replaced with the new heating set temperature T′zx reset at the previous correction start point 1. Heating set temperature correction step 1 for gradually increasing the temperature T'zx of
Therefore, the temperature control of the heating barrel can be performed based on the preset correction start point and the temperature correction formula, not based on the actual temperature of each part of each heating means detected by the temperature detecting means. .

射出成形機の加熱バレル及び加熱手段を示す概略断面図である。It is a schematic sectional drawing which shows the heating barrel and heating means of an injection molding machine. 加熱設定温度まで予熱された加熱バレルが、供給される樹脂材料により抜熱され、各部位が各加熱手段の加熱設定温度以下になる状況のイメージを示すグラフである。It is a graph which shows the image of the situation where the heating barrel pre-heated to heating preset temperature is heat-removed with the resin material supplied, and each site | part becomes below the heating preset temperature of each heating means. 部位H3における加熱設定温度補正工程1による加熱バレルの昇温のイメージを示すグラフである。It is a graph which shows the image of temperature rising of the heating barrel by the heating preset temperature correction process 1 in the site | part H3. 部位H3における、成形サイクル停止準備補正開始点以降の加熱設定温度補正工程2による加熱バレルの降温のイメージを示すグラフである。It is a graph which shows the image of the temperature fall of the heating barrel by the heating preset temperature correction process 2 after the shaping | molding cycle stop preparation correction start point in the site | part H3.

以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。尚、本発明は、上記の実施の形態に限定されることなく、特許請求の範囲に示される範囲において、様々な方法で実施できる。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to said embodiment, It can implement with various methods in the range shown to a claim.

図1乃至図3を参照しながら、本発明の実施例1に係る、射出成形機の加熱バレル温度制御方法を説明する。本発明に係る、射出成形機の加熱バレル温度制御方法は、射出成形機側に特別な構成は不要であり、一般的な射出成形機を使用して実施することができる。よって、最初に、図1を参照しながら、一般的な射出成形機の射出装置の加熱バレル10の基本構成及び加熱バレル10内で行われる可塑化・計量工程(以下:計量工程)を簡単に説明する。   A heating barrel temperature control method for an injection molding machine according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3. The heating barrel temperature control method for an injection molding machine according to the present invention does not require a special configuration on the injection molding machine side, and can be implemented using a general injection molding machine. Therefore, first, referring to FIG. 1, the basic configuration of the heating barrel 10 of the injection device of a general injection molding machine and the plasticizing / metering process (hereinafter referred to as “metering process”) performed in the heating barrel 10 can be simplified. explain.

加熱バレル10内のスクリュ21の先端部には、円錐形状のスクリュヘッド22が固定されている。そして、スクリュヘッド22には、リング状の逆止弁24(チェックリング等とも呼称される。)が、スクリュヘッド22の長手方向に所定量移動可能に配置されている。   A conical screw head 22 is fixed to the tip of the screw 21 in the heating barrel 10. A ring-shaped check valve 24 (also referred to as a check ring or the like) is disposed in the screw head 22 so as to be movable by a predetermined amount in the longitudinal direction of the screw head 22.

また、加熱バレル10には、図1の左側(以下:前方)から、ノズル部12、貯留部11が形成されている。そして、スクリュヘッド22の逆止弁24より図面右側(以下:後方)のスクリュ21は、逆止弁24側(前方)から、計量部(メータリングゾーン)、圧縮部(コンプレッションゾーン)及び供給部(フィードゾーン)と呼称される3つの部位に分けられ、スクリュ21の外周面には、その全長に亘って、螺旋状のフライト21aが連続して形成されている。フライト21aの形状やピッチは、それぞれの部位(ゾーン)の機能に適した仕様で設計されている。   Moreover, the nozzle part 12 and the storage part 11 are formed in the heating barrel 10 from the left side (henceforth: front) of FIG. A screw 21 on the right side (hereinafter: rear) of the check head 24 of the screw head 22 is arranged from the check valve 24 side (front) to a metering unit (metering zone), a compression unit (compression zone), and a supply unit. The screw 21 is divided into three parts called “feed zones”, and the spiral flight 21 a is continuously formed on the outer peripheral surface of the screw 21 over the entire length thereof. The shape and pitch of the flight 21a are designed with specifications suitable for the function of each part (zone).

更に、加熱バレル10のノズル部12及び貯留部11の2つの部位の外周面、そして、スクリュ21の計量部、圧縮部及び供給部の3つの部位に対応する加熱バレル10の外周面には、各部位を加熱するための、加熱手段Hn、加熱手段H0、加熱手段H1、加熱手段H2及び加熱手段H3が配置されている。説明を簡単にするために、これら各加熱手段が配置される加熱バレル10の外周面についても、部位Hn(ノズル部12)、部位H0(貯留部11)、部位H1(計量部)、部位H2(圧縮部)及び部位H3(供給部)と呼称するものとする。本実施例1においては、説明を簡単にするために、加熱バレル10の各部位に配置される加熱手段を1つとしたが、先に説明したように、それぞれの部位を長手方向に更に分割した各分割部位に、複数の加熱手段が配置される形態であっても良い。   Furthermore, on the outer peripheral surface of the two parts of the nozzle part 12 and the storage part 11 of the heating barrel 10, and on the outer peripheral surface of the heating barrel 10 corresponding to the three parts of the measuring part, the compression part and the supply part of the screw 21, A heating unit Hn, a heating unit H0, a heating unit H1, a heating unit H2, and a heating unit H3 for heating each part are arranged. In order to simplify the explanation, the outer peripheral surface of the heating barrel 10 on which each of these heating means is arranged is also the part Hn (nozzle part 12), the part H0 (storage part 11), the part H1 (metering part), and the part H2. (Compression part) and the part H3 (supply part) shall be called. In the first embodiment, in order to simplify the description, one heating unit is provided in each part of the heating barrel 10, but each part is further divided in the longitudinal direction as described above. A form in which a plurality of heating means are arranged in each divided part may be used.

計量工程の間、加熱バレル10後方上部の材料供給部13から加熱バレル10内に供給されたペレット状の樹脂材料は、その外周面に螺旋状のフライト21aが形成されたスクリュ21の回転により、加熱バレル10の内周面とスクリュ21の外周面との間に形成される樹脂流路14において貯留部11側(前方)へ流動される。その間、加熱バレル10の外周面に配置された、加熱手段Hnから加熱手段H3の熱エネルギーと、スクリュ21の回転によりフライト21aから樹脂材料に直接付与されるせん断エネルギー(熱エネルギー)と、の2種類の熱エネルギーにより可塑化される。   During the weighing process, the pellet-shaped resin material supplied into the heating barrel 10 from the material supply unit 13 at the upper rear of the heating barrel 10 is rotated by the rotation of the screw 21 in which the spiral flight 21a is formed on the outer peripheral surface thereof. In the resin flow path 14 formed between the inner peripheral surface of the heating barrel 10 and the outer peripheral surface of the screw 21, the fluid flows toward the storage unit 11 (forward). Meanwhile, 2 of the heat energy from the heating means Hn to the heating means H3 and the shear energy (heat energy) directly applied from the flight 21a to the resin material by the rotation of the screw 21 disposed on the outer peripheral surface of the heating barrel 10. Plasticized by different types of thermal energy.

そして、この樹脂流動によって発生する樹脂圧力により、逆止弁24が貯留部11側へと押圧され、貯留部11側(前進限位置)へ移動された逆止弁24と、スクリュ21との間が開放される。更に、この状態において、開放された樹脂流路14と、スクリュヘッド22の、図示しない長手方向の凹部が連通され、スクリュ21の樹脂流路14の可塑化された樹脂がスクリュヘッド22前方の貯留部11に連続して貯留される。   The check valve 24 is pressed toward the storage unit 11 by the resin pressure generated by the resin flow, and between the check valve 24 moved to the storage unit 11 side (forward limit position) and the screw 21. Is released. Further, in this state, the resin flow path 14 that is opened and a recess (not shown) in the longitudinal direction of the screw head 22 communicate with each other, and the plasticized resin in the resin flow path 14 of the screw 21 is stored in front of the screw head 22. It is continuously stored in the part 11.

また、計量工程の間、貯留部11に貯留される樹脂量の増加に伴い、スクリュ21は、
その回転動作は維持されつつ、材料供給部13側(後方)へ押圧され移動する(スクリュ後退動作)。このスクリュ後退動作は、貯留部11に貯留される可塑化された樹脂に所定の圧力を付与させるために、後退動作に伴う抵抗力(背圧)をスクリュ21に付与させた状態で行われる。そして、予め設定された可塑化樹脂量が貯留部11に貯留された後、材料供給部13への材料供給及びスクリュ21の回転動作を停止させる(計量工程完了)。
Moreover, with the increase in the amount of resin stored in the storage unit 11 during the weighing process, the screw 21 is
While maintaining the rotational operation, the material is pressed and moved toward the material supply unit 13 (rearward) (screw retraction operation). The screw retreating operation is performed in a state where a resistance force (back pressure) accompanying the retreating operation is applied to the screw 21 in order to apply a predetermined pressure to the plasticized resin stored in the storage unit 11. Then, after a preset amount of plasticized resin is stored in the storage unit 11, the material supply to the material supply unit 13 and the rotation operation of the screw 21 are stopped (the measurement process is completed).

その後、スクリュ21を所定速度・所定圧力で前進させる射出工程へと移行させる。射出工程においては、前進するスクリュ21の前端が、スクリュ21の前進動作に追従しない逆止弁24の後端に接触することにより樹脂流路14が閉鎖され、逆止弁24はそのまま、貯留部11側の可塑化された樹脂の増大する樹脂圧力を受ける。この、スクリュ21側に押圧される逆止弁24が、貯留部11からスクリュ21側の樹脂流路14への可塑化樹脂の逆流を防止する。本発明に係る、射出成形機の加熱バレル温度制御方法は、射出工程中における加熱バレルの温度制御とは直接関係ないため、射出工程の詳細な説明は割愛する。   Thereafter, the process proceeds to an injection process in which the screw 21 is advanced at a predetermined speed and a predetermined pressure. In the injection process, the resin flow path 14 is closed when the front end of the screw 21 that moves forward contacts the rear end of the check valve 24 that does not follow the forward movement of the screw 21, and the check valve 24 remains as it is. Subject to increasing resin pressure of the 11 side plasticized resin. The check valve 24 that is pressed toward the screw 21 prevents the plastic resin from flowing backward from the storage portion 11 to the resin flow path 14 on the screw 21 side. Since the heating barrel temperature control method of the injection molding machine according to the present invention is not directly related to the temperature control of the heating barrel during the injection process, a detailed description of the injection process is omitted.

先に説明したように、計量工程においては、低い温度で、連続して供給される樹脂材料により、連続成形運転の開始前に、予め設定された加熱設定温度まで予熱された加熱バレル10が抜熱され、各部位の実温度が、各加熱手段の加熱設定温度以下となり、供給される樹脂材料の量が多いほど、計量時間が長いほど、成形サイクルが短いほど、抜熱の程度が大きくなり、加熱手段による加熱バレルの加熱が間に合わず、各部位の実温度が大きく低下する。抜熱の程度と加熱手段による加熱が平衡状態となると、各部位の実温度は大きく低下した状態でサチュレートする。これを図2に示す。図2は、加熱設定温度まで予熱された加熱バレルが、供給される樹脂材料により抜熱され、各部位が各加熱手段の加熱設定温度以下になる状況のイメージを示すグラフである。図2の横軸は加熱バレル10における各部位(部位H0、部位H1、部位H2及び、部位H3)を示し、縦軸は温度を示す。   As described above, in the weighing process, the heating barrel 10 preheated to a preset heating set temperature is removed by the resin material continuously supplied at a low temperature before the start of the continuous molding operation. Heated, the actual temperature of each part is below the heating set temperature of each heating means, the greater the amount of resin material supplied, the longer the metering time, the shorter the molding cycle, the greater the degree of heat removal The heating barrel is not heated in time by the heating means, and the actual temperature of each part is greatly reduced. When the degree of heat removal and the heating by the heating means are in an equilibrium state, the actual temperature of each part is saturated in a greatly lowered state. This is shown in FIG. FIG. 2 is a graph showing an image of a situation in which the heating barrel preheated to the heating set temperature is removed by the supplied resin material, and each part becomes equal to or lower than the heating set temperature of each heating means. The horizontal axis in FIG. 2 indicates each part (part H0, part H1, part H2, and part H3) in the heating barrel 10, and the vertical axis indicates the temperature.

図2に示すように、貯留部11(部位H0)、計量部(部位H1)、圧縮部(部位H2)、及び供給部(部位H3)までの各加熱手段の初期加熱設定温度Tzxは、それぞれ、Tz、Tz、Tz及びTzである。射出させる樹脂の目標可塑化樹脂温度Tmに対して、貯留部11(部位H0)の加熱手段H0の加熱設定温度Tzと、計量部(部位H1)の加熱手段H1の加熱設定温度Tzは、図2のようにTmと同じ温度が設定される。そして、これより後方の各部位の加熱設定温度が、供給部(部位H3)に近い程低く設定される。すなわち、各部位の加熱設定温度の関係は、Tm=Tz=Tz>Tz>Tz、とされることが一般的である。 As shown in FIG. 2, the initial heating set temperature Tzx of each heating means up to the reservoir 11 (part H0), the metering part (part H1), the compression part (part H2), and the supply part (part H3) is respectively , Tz 0 , Tz 1 , Tz 2 and Tz 3 . With respect to the target plasticization resin temperature Tm of the resin to be injected, the heating setting temperature Tz 0 of the heating means H0 of the storage part 11 (part H0) and the heating setting temperature Tz 1 of the heating means H1 of the measuring part (part H1) are As shown in FIG. 2, the same temperature as Tm is set. And the heating setting temperature of each site | part behind this is set so low that it is close to a supply part (part H3). That is, the relationship between the heating set temperatures of the respective parts is generally set to Tm = Tz 0 = Tz 1 > Tz 2 > Tz 3 .

しかしながら、ほぼ、低い温度で、連続して供給される樹脂材料により加熱バレル10が抜熱され、抜熱作用の大きな供給部(部位H3)に近い程、各部位の実温度の低下幅が大きい。一方、樹脂材料が可塑化(溶融)された後の、樹脂材料による加熱バレルに対する抜熱作用の影響はほとんどないため、樹脂材料の可塑化が完了している貯留部11(部位H0)や計量部(部位H1)、及び、可塑化が進行する圧縮部(部位H2)後半における抜熱作用の影響は少ない。よって、図2においては、貯留部11(部位H0)及び計量部(部位H1)における抜熱作用の影響は無視できるものとして、供給部(部位H3)の実温度がTb まで、圧縮部(部位H2)の実温度がTb まで降温することを示している(点線:Tz −Tb >Tz −Tb )。尚、ノズル部12(部位Hn)については、他の部位と独立した温度制御も可能ではあるが、貯留部11と同様に抜熱作用の影響は無視できるものとする。 However, the heating barrel 10 is removed by the resin material that is continuously supplied at a low temperature, and the closer to the supply portion (part H3) that has a large heat removal effect, the greater the decrease in the actual temperature at each part. . On the other hand, since there is almost no influence of the heat removal action on the heating barrel by the resin material after the resin material is plasticized (melted), the storage part 11 (part H0) or the metering where the plasticization of the resin material is completed There is little influence of the heat removal action in the second half of the part (part H1) and the compression part (part H2) where plasticization proceeds. Therefore, in FIG. 2, the influence of the heat removal effect in the storage part 11 (part H0) and the measuring part (part H1) is assumed to be negligible, and the actual temperature of the supply part (part H3) is reduced to Tb 3 until the compression part ( the actual temperature of the portion H2) indicates that the lowered to Tb 2 (dotted line: Tz 3 -Tb 3> Tz 2 -Tb 2). In addition, about the nozzle part 12 (part Hn), although temperature control independent of another site | part is also possible, the influence of the heat removal effect | action can be disregarded similarly to the storage part 11. FIG.

このように、加熱バレル10の各部位の実温度が、成形サイクル毎の計量工程において抜熱され、対応する各加熱手段の加熱設定温度以下に降温される過程においては、樹脂材料が可塑化状態になるまでに供給される熱エネルギーの総量も減少するため、樹脂材料の可塑化状態が不安定となる。そして、加熱バレル10の各部位の降温による加熱バレル10の熱容量の減少量と、供給される樹脂材料による抜熱量とがサチュレートすると、各加熱手段の加熱設定温度に何らかの温度補正制御を行わない限り、各部位の温度が各加熱手段の加熱設定温度より低い温度でサチュレートしてしまう。その結果、想定外の軟化・溶融状態で圧縮部や計量部へ樹脂材料が流動され、樹脂送り不良等が生じ、計量工程の不安定化を招く。   As described above, in the process in which the actual temperature of each part of the heating barrel 10 is removed in the measuring step for each molding cycle and the temperature is lowered to the heating set temperature of the corresponding heating means, the resin material is in a plasticized state. Since the total amount of heat energy supplied until the time is reduced, the plasticized state of the resin material becomes unstable. Then, when the amount of decrease in the heat capacity of the heating barrel 10 due to the temperature drop of each part of the heating barrel 10 and the amount of heat removed by the supplied resin material are saturated, unless any temperature correction control is performed on the heating set temperature of each heating means. The temperature of each part is saturated at a temperature lower than the heating set temperature of each heating means. As a result, the resin material flows to the compression part and the weighing part in an unexpectedly softened / molten state, resulting in poor resin feed and the like, leading to instability of the weighing process.

この状態を、温度検出手段により検出される各加熱手段の各部位の実温度に基づいてフィードバック制御しても、先に説明したタイムラグにより、意図するような加熱バレルの温度制御が難しいことは先に説明したとおりである。一方、各加熱手段の加熱設定温度に、このようなタイムラグを減少させるような大きな温度制御幅を設定し、無理に加熱バレル10の各部位の実温度をフィードバック制御しようとすれば、目標制御温度からのハンチング幅が大きくなり、かえって、計量工程が不安定になる虞がある。   Even if this state is feedback controlled based on the actual temperature of each part of each heating means detected by the temperature detecting means, it is difficult to control the temperature of the heating barrel as intended due to the time lag described above. As described in the above. On the other hand, if a large temperature control width that reduces such a time lag is set for the heating set temperature of each heating means, and if the actual temperature of each part of the heating barrel 10 is forcibly feedback controlled, the target control temperature The hunting width from the side becomes large, and there is a possibility that the weighing process becomes unstable.

次に、図3を参照しながら、本発明の実施例1に係る、射出成形機の加熱バレル温度制御方法を説明する。図3は、部位H3における加熱設定温度補正工程1による加熱バレルの昇温のイメージを示すグラフである。図3の横軸は経過時間を示し、縦軸は温度を示す。本実施例1において、各部位における各加熱手段の加熱設定温度の制御方法については基本的に同じため、部位H3(供給部)を代表して、本発明に係る、射出成形機の加熱バレル温度制御方法を説明するものである。   Next, a heating barrel temperature control method for an injection molding machine according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 3 is a graph showing an image of the temperature rise of the heating barrel in the heating set temperature correction step 1 in the part H3. The horizontal axis in FIG. 3 indicates elapsed time, and the vertical axis indicates temperature. In the first embodiment, the control method of the heating set temperature of each heating means in each part is basically the same, so that the heating barrel temperature of the injection molding machine according to the present invention represents the part H3 (supply unit). A control method will be described.

まず、連続成形運転の開始前に、図示しない射出成形機の制御手段に、射出させる樹脂の目標可塑化温度Tmや、各加熱手段の初期加熱設定温度Tzx等を、操作盤等のインターフェイスから入力する。制御手段では、Tm≧Tzxの関係において、各加熱手段の、補正1回分の加熱設定温度補正値ΔTzxを、式ΔTzx=α(Tm−Tzx)で自動的に設定する(加熱設定温度補正準備工程)。部位H3(供給部)における、加熱手段H3の初期加熱設定温度はTz(Tm>Tz)、補正1回分の加熱設定温度補正値ΔTzはΔTz=α(Tm−Tz)となる。 First, before starting the continuous molding operation, the target plasticization temperature Tm of the resin to be injected, the initial heating set temperature Tzx of each heating means, etc. are input to the control means of an injection molding machine (not shown) from an interface such as an operation panel. To do. In the control means, in the relationship of Tm ≧ Tzx, the heating set temperature correction value ΔTzx for each heating means is automatically set by the expression ΔTzx = α (Tm−Tzx) (heating set temperature correction preparation step). ). In the part H3 (supply unit), the initial heating set temperature of the heating unit H3 is Tz 3 (Tm> Tz 3 ), and the heating set temperature correction value ΔTz 3 for one correction is ΔTz 3 = α (Tm−Tz 3 ). .

また、この加熱設定温度補正準備工程において、許容量Q1及び所定時間T1を入力する。許容量Q1は、最初の補正開始点1を設定するための、成形サイクル毎にモニタされる、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの項目の差異の許容量である。成形サイクル毎にモニタされるこれら項目を成形サイクル毎に比較し、差異を求め、これら差異の少なくとも1つの差異が、対応する項目の許容量Q1を超えた時点が、最初の補正開始点1として射出成形機の制御手段に認識される。   In this heating set temperature correction preparation step, an allowable amount Q1 and a predetermined time T1 are input. The permissible amount Q1 is a permissible amount of difference in at least one of the measurement time, the weight of the molded product, and the average rotational load factor of the screw monitored for each molding cycle for setting the first correction start point 1. . These items monitored for each molding cycle are compared for each molding cycle, and a difference is obtained. The time when at least one of these differences exceeds the allowable amount Q1 of the corresponding item is the first correction start point 1. Recognized by the control means of the injection molding machine.

最初の補正開始点1後、成形サイクル毎に前成形サイクルとこれら項目の比較を行い、それら差異の少なくとも1つの項目の差異が再び許容量Q1を超えた時点を次の補正開始点1としても良い。また、最初の補正開始点1から所定時間T1経過毎にこれら項目の比較を行い、それら差異の少なくとも1つの項目の差異が再び許容量Q1を超えた時点を以降の補正開始点1としても良い。具体的には、成形サイクル毎の計量時間、成形品重量及びスクリュの平均回転負荷率の代わりに、1つの成形サイクル中の計量工程における、微少時間内のスクリュ21の後退量の関係、すなわち、スクリュ21の後退速度や、微少時間内のスクリュの平均回転負荷率を、所定時間T1経過毎にモニタさせてその差異を求め、これらに対応する許容量Q1を超えた時点を以降の補正開始点1としても良い。   After the first correction start point 1, these items are compared with the previous molding cycle for each molding cycle, and the time when the difference of at least one of these differences again exceeds the allowable amount Q1 is set as the next correction start point 1. good. Further, these items are compared at every elapse of a predetermined time T1 from the first correction start point 1, and the time when the difference of at least one of the differences again exceeds the allowable amount Q1 may be set as the subsequent correction start point 1. . Specifically, instead of the weighing time for each molding cycle, the weight of the molded product and the average rotational load factor of the screw, the relationship of the retraction amount of the screw 21 within a minute time in the weighing process during one molding cycle, that is, The reverse speed of the screw 21 and the average rotational load factor of the screw within a minute time are monitored every predetermined time T1 to obtain the difference, and the time when the corresponding allowable amount Q1 is exceeded corresponds to the subsequent correction start point. It may be 1.

一方、成形サイクル毎にこれら項目の比較を行なわず、所定時間T1を2回以上の複数成形サイクル毎になるような入力を行い、最初の補正開始点1後、複数成形サイクル毎を以降の補正開始点1としても良い。   On the other hand, without comparing these items for each molding cycle, an input is made so that the predetermined time T1 is two or more molding cycles, and after the first correction start point 1, each of the molding cycles is corrected thereafter. It may be the starting point 1.

これら許容量Q1及び所定時間T1は、射出させる樹脂の種類や計量樹脂量及び成形サイクル等に応じて、テスト成形を予め行って求めることが好ましい。また、加熱設定温度補正値ΔTzxを設定する、式ΔTzx=α(Tm−Tzx)のαの範囲は、0.1≦α≦1であることが好ましい。その理由は後述する。これら加熱設定温度補正準備工程における諸設定値は、当初の値を、その後の射出成形や経験から得られた知見に基づき、より好適な値に修正することがより好ましい。   The allowable amount Q1 and the predetermined time T1 are preferably obtained by performing test molding in advance according to the type of resin to be injected, the amount of metered resin, the molding cycle, and the like. Further, the range of α in the equation ΔTzx = α (Tm−Tzx) for setting the heating set temperature correction value ΔTzx is preferably 0.1 ≦ α ≦ 1. The reason will be described later. It is more preferable that the various set values in the heating set temperature correction preparation step are modified from the initial values to more suitable values based on knowledge obtained from subsequent injection molding and experience.

このように、補正開始点1は加熱バレルの各部位の実温度ではなく、成形サイクル毎の、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの項目の差異、あるいは、1つの成形サイクル内における、スクリュ21の後退速度や、微小時間内のスクリュの平均回転負荷率の少なくとも1つの項目の差異に関するものである。スクリュの平均回転負荷率は、先に説明したような、樹脂材料に直接的に付与されるせん断熱エネルギーと深く関連する項目であり、計量時間及び成形品重量や、これに代替されるスクリュ21の後退速度はその結果としての項目であるため、加熱バレル10内の樹脂材料の可塑化状態を把握するのに、加熱バレルの各部位の実温度に対してタイムラグが少ない。そのため、このような補正開始点1の設定により、適切なタイミングで、各加熱手段の新たな加熱設定温度を再設定することができる。   Thus, the correction start point 1 is not the actual temperature of each part of the heating barrel, but the difference in at least one item of the weighing time, the molded product weight, and the average rotational load factor of the screw for each molding cycle, or one This relates to the difference in at least one item of the retraction speed of the screw 21 and the average rotational load factor of the screw within a minute time within the molding cycle. The average rotational load factor of the screw is an item deeply related to the shear heat energy directly applied to the resin material as described above, and the measurement time, the weight of the molded product, and the screw 21 replaced by this. Therefore, the time lag is less with respect to the actual temperature of each part of the heating barrel in order to grasp the plasticized state of the resin material in the heating barrel 10. Therefore, by setting the correction start point 1 as described above, a new heating set temperature of each heating unit can be reset at an appropriate timing.

加熱設定温度補正準備工程が完了し、加熱バレル10の各部位がそれぞれの初期加熱設定温度Tzxに到達した後、スクリュ21を回転させ、材料供給部13への材料供給を開始させて、連続成形運転を開始させる。図3に示すように、供給部(部位H3)においては、加熱手段H3の初期加熱設定温度Tzに対して、加熱バレル10の部位H3の実温度(点線)がTbまで降温した状態である。この降温により、固形樹脂材料の可塑化状態が変化し、最初の補正開始点1C1が射出成形機の制御手段に認識されたものとする。 After the heating set temperature correction preparation process is completed and each part of the heating barrel 10 reaches the initial heating set temperature Tzx, the screw 21 is rotated to start the material supply to the material supply unit 13 to perform continuous molding. Start driving. As shown in FIG. 3, in the feed unit (site H3), the initial heating set temperature Tz 3 of the heating unit H3, while the actual temperature (dotted line) was cooled to Tb 3 sites H3 of the heating barrel 10 is there. It is assumed that the plasticization state of the solid resin material changes due to this temperature decrease, and the first correction start point 1C1 is recognized by the control means of the injection molding machine.

最初の補正開始点1C1の認識により、加熱設定温度補正工程1が開始される。射出成形機の制御手段は、加熱設定温度補正準備工程において予め、式ΔTzx=α(Tm−Tzx)、で設定されたΔTzxと、温度補正式1、T’zx=Tzx+ΔTzx、により、各加熱手段の新たな加熱設定温度T’zxを再設定し、各加熱手段の加熱設定温度は初期加熱設定温度TzxからT’zxへとΔTzx分だけ昇温される。部位H3の新たな加熱設定温度は、T’z=Tz+ΔTz、である。この加熱手段H3の加熱設定温度の昇温(補正)により、部位H3の実温度TbもΔTzに準ずる程度に上昇する。ここで、実施例1に係る加熱バレル温度制御方法は、この各部位の実温度の上昇幅の制御が目的ではなく、降温した各部位をその状態から、最小のタイムラグで回復させ、安定した可塑化状態へと、可能な限り早く回復させることを目的としている。 The heating set temperature correction step 1 is started by recognizing the first correction start point 1C1. In the heating setting temperature correction preparatory process, the control means of the injection molding machine uses each ΔTzx set by the equation ΔTzx = α (Tm−Tzx) in advance and the temperature correction equation 1, T′zx = Tzx + ΔTzx. The new heating setting temperature T′zx is reset, and the heating setting temperature of each heating means is increased from the initial heating setting temperature Tzx to T′zx by ΔTzx. The new heating set temperature of the part H3 is T′z 3 = Tz 3 + ΔTz 3 . The Atsushi Nobori of the heating setting temperature of the heating means H3 (corrected), the actual temperature Tb 3 sites H3 also increases the degree equivalent to ΔTz 3. Here, the heating barrel temperature control method according to the first embodiment is not intended to control the increase range of the actual temperature of each part, but recovers each part of the temperature lowered from the state with a minimum time lag, thereby stabilizing plasticity. The goal is to recover to the normalization state as soon as possible.

最初の補正開始点1C1の後、各部位の実温度の上昇が十分でなく、射出成形機の制御手段により2回目の補正開始点1C2が認識されると、温度補正式1、T’zx=Tzx+ΔTzx、により、再び、各加熱手段の、新たな加熱設定温度が設定される。このとき、温度補正式1左辺のT’zxは、最初の補正開始点C1において設定された新たな加熱設定温度T’zxではなく、2回目の補正開始点において設定される、更に新たな加熱設定温度T’zxであることは言うまでもない。同様に、温度補正式1右辺のTzxも、初期加熱設定温度Tzxではなく、最初の補正開始点1C1において設定された新たな加熱設定温度T’zxである。この加熱手段H3の2回目の加熱設定温度の昇温(補正)により、部位H3の実温度TbもΔTzに準ずる程度に再び上昇する。 After the first correction start point 1C1, if the actual temperature rise of each part is not sufficient and the second correction start point 1C2 is recognized by the control means of the injection molding machine, the temperature correction formula 1, T′zx = With Tzx + ΔTzx, a new heating set temperature for each heating unit is set again. At this time, T′zx on the left side of the temperature correction formula 1 is not the new heating set temperature T′zx set at the first correction start point C1, but is set at the second correction start point and further new heating is performed. Needless to say, this is the set temperature T'zx. Similarly, Tzx on the right side of the temperature correction formula 1 is not the initial heating setting temperature Tzx but a new heating setting temperature T′zx set at the first correction start point 1C1. By raising the temperature of the second heating set temperature of the heating means H3 (correction), once again rises to an extent equivalent to the actual temperature Tb 3 also DerutaTz 3 parts H3.

このように、本実施例1に係る加熱バレル温度制御方法の加熱設定温度補正工程1においては、補正開始点1が認識される度に、補正量ΔTzx及び温度補正式1に基づき、各加熱手段の加熱設定温度の再設定が行われ、各加熱手段に対応する各部位の実温度に依らず、ステップ状に各加熱手段の加熱設定温度を昇温させる。この昇温により、各加熱手段に対応する各部位の実温度もステップ状に上昇し、本来想定していた各加熱手段の初期加熱設定温度Tzxに近づく。   As described above, in the heating set temperature correction step 1 of the heating barrel temperature control method according to the first embodiment, each time the correction start point 1 is recognized, each heating means is based on the correction amount ΔTzx and the temperature correction formula 1. The heating set temperature is reset, and the heating set temperature of each heating means is raised stepwise regardless of the actual temperature of each part corresponding to each heating means. As a result of this temperature increase, the actual temperature of each part corresponding to each heating means also rises in a step-like manner, and approaches the originally set initial heating set temperature Tzx of each heating means.

また、本実施例1に係る加熱バレル温度制御方法の加熱設定温度補正工程1においては、補正開始点1の数に依らず、補正開始点1において再設定された新たな加熱設定温度T’zxが、最初に、Tm+(Tm−Tzx)≧T’zx≧Tmを満たす状態となった時点でその補正を終えることが好ましい。再設定させる加熱手段の加熱設定温度の上限を、射出させる樹脂の目標可塑化樹脂温度Tm基準とすることにより、経験や勘に依らず設定することができる。また、必要以上に大きな温度制御幅を設定することによる、供給部における、過剰な加熱による成形材料の溶融による材料送り不良の発生を防止できる。   Further, in the heating set temperature correction step 1 of the heating barrel temperature control method according to the first embodiment, the new heating set temperature T′zx reset at the correction start point 1 regardless of the number of correction start points 1. However, it is preferable to finish the correction at the time when Tm + (Tm−Tzx) ≧ T′zx ≧ Tm is first satisfied. By setting the upper limit of the heating set temperature of the heating means to be reset as the target plasticizing resin temperature Tm of the resin to be injected, it can be set regardless of experience or intuition. In addition, by setting a temperature control width that is larger than necessary, it is possible to prevent the material feeding failure due to melting of the molding material due to excessive heating in the supply unit.

図3においては、補正を終える条件をT’z=Tmとした場合を示している。具体的には、4回の補正開始点1において新たな加熱設定温度の再設定を行い、4回目の補正開始点1C4において加熱設定温度補正工程1が完了している(T’z=Tm)。また、この時の部位H3の実温度Tbが、加熱手段H3の初期加熱設定温度Tzに近い温度まで上昇している。しかしながら、先に説明したように、本実施例1においては、加熱設定温度補正工程完了時において、部位H3の実温度Tbと加熱手段H3の初期加熱設定温度Tzとが、必ずしも、Tb=Tz、あるいは、Tb≒Tz、になる必要はない。また、加熱温度補正工程完了時において、新たな加熱設定温度T’zが、目標樹脂温度Tmよりも高くなっても良い(T’z>Tm)。 FIG. 3 shows a case where the condition for completing the correction is T′z 3 = Tm. Specifically, a new heating set temperature is reset at the four correction start points 1 and the heating set temperature correction step 1 is completed at the fourth correction start point 1C4 (T′z 3 = Tm). ). Moreover, the actual temperature Tb 3 sites H3 of the time this has risen to a temperature close to the initial heating set temperature Tz 3 of the heating unit H3. However, as described above, in the first embodiment, when the heating set temperature correction step is completed, the actual temperature Tb 3 of the portion H3 and the initial heating set temperature Tz 3 of the heating unit H3 are not necessarily Tb 3. = Tz 3 or Tb 3 ≈Tz 3 is not necessary. Further, when the heating temperature correction process is completed, the new heating set temperature T′z 3 may be higher than the target resin temperature Tm (T′z 3 > Tm).

すなわち、連続成形運転の開始後に発生する、供給される樹脂材料による加熱バレル10の抜熱に対して、本実施例1に係る加熱バレル温度制御方法が実施され、最終的に、補正開始点1が発生しない連続成形運転が継続されれば良い。補正開始点1が発生しない状態とは、言い換えれば、加熱バレル10が抜熱状態から回復して、樹脂材料が適切な実温度範囲で且つ安定した可塑化状態にあるということである。各加熱手段の加熱設定温度Tzxの増減に対するタイムラグが大きい、加熱バレル10の各部位の実温度Tbxは、制御上の目安にはなっても、樹脂材料の実温度とは必ずしも一致しないため、各加熱手段の加熱設定温度の制御に取り込むには好適でない要素と言える。   That is, the heating barrel temperature control method according to the first embodiment is implemented for the heat removal of the heating barrel 10 by the supplied resin material that occurs after the start of the continuous molding operation, and finally the correction start point 1 It suffices if the continuous molding operation that does not occur continues. In other words, the state in which the correction start point 1 does not occur means that the heating barrel 10 has recovered from the heat removal state, and the resin material is in a stable plasticized state within an appropriate actual temperature range. The actual temperature Tbx of each part of the heating barrel 10 that has a large time lag with respect to the increase / decrease in the heating set temperature Tzx of each heating means does not necessarily match the actual temperature of the resin material even if it becomes a guideline for control. It can be said that it is an element that is not suitable for taking in the control of the heating set temperature of the heating means.

これまで説明したように、本実施例1の、射出成形機の加熱バレル温度制御方法においては、各加熱手段の加熱設定温度を、加熱バレル10の実温度ではなく、予め設定した補正開始点1において再設定するため、射出装置系全体の温度変化のタイムラグの影響を受けることなく、適切なタイミングで、各加熱手段の新たな加熱設定温度を設定することができる。また、新たな加熱設定温度を設定する温度補正式1において、補正1回分の加熱設定温度補正値ΔTzxが、射出させる樹脂の目標可塑化樹脂温度Tmと、加熱手段毎に設定される初期加熱設定温度Tzxに基づいた数値であるため、経験や勘に依らず設定可能であり、本数値に乗ずる係数αの変更のみで、実際の成形状況に応じて本数値を適切な数値に変更することができる。   As described so far, in the heating barrel temperature control method of the injection molding machine according to the first embodiment, the heating setting temperature of each heating unit is not the actual temperature of the heating barrel 10 but a preset correction start point 1. Therefore, a new heating set temperature of each heating means can be set at an appropriate timing without being affected by the time lag of the temperature change of the entire injection apparatus system. Further, in the temperature correction formula 1 for setting a new heating set temperature, the heating set temperature correction value ΔTzx for one correction is set to the target plasticizing resin temperature Tm of the resin to be injected and the initial heating setting set for each heating means. Since it is a numerical value based on the temperature Tzx, it can be set regardless of experience and intuition, and it is possible to change this numerical value to an appropriate numerical value according to the actual molding situation only by changing the coefficient α multiplied by this numerical value. it can.

ここで、温度補正式1における、補正1回分の加熱設定温度補正値ΔTzxに係る係数αの範囲について、0.1≦α≦1とすることが好ましい理由について説明する。加熱設定温度補正値ΔTzxは、射出させる樹脂の目標可塑化樹脂温度Tmと、加熱手段毎に設定される初期加熱設定温度Tzxとが、Tm≧Tzxの関係において、これら温度の差異に乗じられる係数である。よって、先に説明したように、1回分の補正値がこのような差異を超えるような補正値(すなわち、α≧1)の場合、制御上、ハンチング幅が大きくなる可能性が高い。   Here, the reason why it is preferable to satisfy 0.1 ≦ α ≦ 1 in the range of the coefficient α related to the heating set temperature correction value ΔTzx for one correction in the temperature correction formula 1 will be described. The heating set temperature correction value ΔTzx is a coefficient by which a difference between the target plasticizing resin temperature Tm of the resin to be injected and the initial heating set temperature Tzx set for each heating means is multiplied by these temperatures in the relationship of Tm ≧ Tzx. It is. Therefore, as described above, when the correction value for one time exceeds such a difference (that is, α ≧ 1), there is a high possibility that the hunting width is increased in terms of control.

よって、このように、大きな補正が必要な場合は、1回分の補正値を大きくするよりは、補正開始点1の適切な設定により、補正回数を増やす制御の方が好ましい。具体的には、所定時間T1と合わせて、許容量Q1をより狭い範囲に設定すれば良い。一方、1回分の補正値がこのような差異を大きく下回るような補正値(すなわち、α<0.1)の場合、1回の補正による効果が少ない。また、補正回数を増やして対応するにも、補正回数にも限度がある。これらを鑑みると、加熱設定温度補正値ΔTzxのαの範囲は、0.1≦α≦1とした上で、所定時間T1及び許容量Q1を適切に設定することにより、加熱設定温度補正工程が行われることが好ましい。   Therefore, when large correction is required in this way, it is preferable to increase the number of corrections by appropriately setting the correction start point 1 rather than increasing the correction value for one time. Specifically, the allowable amount Q1 may be set in a narrower range together with the predetermined time T1. On the other hand, when the correction value for one time is a correction value that greatly falls below such a difference (that is, α <0.1), the effect of one correction is small. In addition, there is a limit to the number of corrections to deal with by increasing the number of corrections. In view of these, the range of α of the heating set temperature correction value ΔTzx is set to 0.1 ≦ α ≦ 1, and the heating set temperature correction step is performed by appropriately setting the predetermined time T1 and the allowable amount Q1. Preferably, it is done.

また、本実施例1の、射出成形機の加熱バレル温度制御方法1においては、成形サイクル中に、射出成形機のオペレータ等が、成形品を確認してその状況に応じて、当初設定した数値から、初期加熱設定温度Tzxや目標可塑化樹脂温度Tmの設定変更を行っても、新たに入力された初期加熱設定温度Tzxや目標可塑化樹脂温度Tmに基いて、先に説明した加熱設定温度補正工程1が行われることは言うまでもない。当然ながら、上記α、許容量Q1及び所定時間1の、成形サイクル中の設定変更もこれに含まれるものである。   Further, in the heating barrel temperature control method 1 of the injection molding machine according to the first embodiment, during the molding cycle, the operator of the injection molding machine checks the molded product and initially sets the numerical value according to the situation. Thus, even if the initial heating set temperature Tzx and the target plasticizing resin temperature Tm are changed, the heating setting temperature described above is based on the newly input initial heating setting temperature Tzx and the target plasticizing resin temperature Tm. Needless to say, the correction step 1 is performed. Of course, the setting change during the molding cycle of the above-described α, the allowable amount Q1, and the predetermined time 1 is also included in this.

次に、図4を参照しながら、本発明の実施例2に係る射出成形方法を説明する。図4は、部位H3における、成形サイクル停止準備補正開始点以降の加熱設定温度補正工程2による加熱バレルの降温のイメージを示すグラフである。   Next, an injection molding method according to Example 2 of the present invention will be described with reference to FIG. FIG. 4 is a graph showing an image of the temperature drop of the heating barrel in the heating setting temperature correction step 2 after the molding cycle stop preparation correction start point in the portion H3.

実施例2に係る加熱バレル温度制御方法2が実施例1に係る加熱バレル温度制御方法1と異なる点は、連続成形運転の開始時における、加熱バレルの抜熱に対する温度補正制御(昇温)ではなく、予め、成形回数等で決められている成形サイクル停止時における、実施例1に係る加熱バレル温度制御方法1により昇温された加熱バレルに対する温度補正制御(降温)である点である。実施例1と同じく、一般的な射出成形機の射出装置の加熱バレル10における、本実施例2に係る加熱バレル温度制御方法を、実施例1との相違点を中心に説明する。   The heating barrel temperature control method 2 according to the second embodiment is different from the heating barrel temperature control method 1 according to the first embodiment in that temperature correction control (temperature increase) with respect to heat removal from the heating barrel at the start of the continuous molding operation. Rather, the temperature correction control (temperature decrease) is performed on the heated barrel heated by the heated barrel temperature control method 1 according to the first embodiment when the molding cycle is stopped in advance determined by the number of moldings. Similar to the first embodiment, the heating barrel temperature control method according to the second embodiment in the heating barrel 10 of the injection device of a general injection molding machine will be described focusing on the differences from the first embodiment.

成形サイクル停止時の運転内容は、2通りに分けられる。1つは、次回の運転を鑑み、樹脂材料の供給が停止された後も、加熱バレル10内の樹脂材料をすべて排出(パージ)させるために、計量工程が継続されるパージ工程で行われる停止運転である。もう1つは、例えば同じ樹脂材料で次回の運転を行う場合、加熱バレル10内の樹脂材料は排出せずに、そのまま残存した状態で停止させる停止運転である。前者の場合は、先に説明したように、加熱バレル10内の樹脂材料の量が漸次パージされ減少していく状態に対して、各加熱手段の加熱設定温度が一定であれば、加熱バレルに付与される熱エネルギーの総量は一定で変化しない。そのため、加熱バレル10内の樹脂材料に付与される熱エネルギーが過多状態とならないように、各加熱手段の加熱設定温度を漸次降温させる制御が必須となる。後者の場合は、加熱バレル10内に残存する樹脂材料が過剰に加熱されることによる樹脂材料の送り不良等の危険性が高くなる。特に、加熱温度補正工程1の完了時において、新たな加熱設定温度T’zxが射出時の目標樹脂温度Tmよりも高くなっている(T’zx>Tm)温度補正の場合においては、更に危険性が増す。そのため、各加熱手段の加熱設定温度を漸次降温させる制御が必須となる。   There are two types of operation when the molding cycle is stopped. First, in view of the next operation, after the supply of the resin material is stopped, in order to discharge (purge) all the resin material in the heating barrel 10, the stop is performed in the purge process in which the measurement process is continued. Driving. The other is a stop operation in which, for example, when the next operation is performed with the same resin material, the resin material in the heating barrel 10 is not discharged but is stopped as it is. In the former case, as described above, the amount of the resin material in the heating barrel 10 is gradually purged and decreased. The total amount of thermal energy applied is constant and does not change. Therefore, it is indispensable to gradually lower the heating set temperature of each heating means so that the thermal energy applied to the resin material in the heating barrel 10 does not become excessive. In the latter case, there is an increased risk of defective feeding of the resin material due to excessive heating of the resin material remaining in the heating barrel 10. In particular, when the heating temperature correction step 1 is completed, the new heating set temperature T′zx is higher than the target resin temperature Tm at the time of injection (T′zx> Tm). Increases nature. For this reason, it is essential to gradually lower the heating set temperature of each heating means.

図4を参照しながら、本発明の実施例2に係る、射出成形機の加熱バレル温度制御方法(降温)を説明する。図4は、部位H3における、成形サイクル停止準備補正開始点以降の加熱設定温度補正工程2による加熱バレルの降温のイメージを示すグラフである。図4の横軸は経過時間を示し、縦軸は温度を示す。各部位における各加熱手段の加熱設定温度の制御については基本的に同じため、部位H3(供給部)を代表して、本発明に係る、射出成形機の加熱バレル温度制御方法を説明するものである。   A heating barrel temperature control method (temperature decrease) of an injection molding machine according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a graph showing an image of the temperature drop of the heating barrel in the heating setting temperature correction step 2 after the molding cycle stop preparation correction start point in the portion H3. The horizontal axis of FIG. 4 shows elapsed time, and the vertical axis shows temperature. Since the control of the heating set temperature of each heating means in each part is basically the same, the heating barrel temperature control method for an injection molding machine according to the present invention will be described on behalf of the part H3 (supply part). is there.

連続成形運転の開始前に、図示しない射出成形機の制御手段に、射出させる樹脂の目標可塑化温度Tmや、加熱手段毎に初期加熱設定温度Tzx等を、操作盤等のインターフェイスから入力する点や、制御手段において、加熱手段毎の、補正1回分の加熱設定温度補正値ΔTzxが、式ΔTzx=α(Tm−Tzx)で自動的に設定される(加熱設定温度補正準備工程)点は実施例1と同じである。Tm>Tzxの関係を前提とする点も同様である。   Prior to the start of the continuous molding operation, the target plasticization temperature Tm of the resin to be injected and the initial heating set temperature Tzx for each heating means are input to the control means of an injection molding machine (not shown) from an interface such as an operation panel. In the control means, the heating set temperature correction value ΔTzx for one correction for each heating means is automatically set by the formula ΔTzx = α (Tm−Tzx) (heating set temperature correction preparation step). Same as Example 1. The same applies to the premise of the relationship of Tm> Tzx.

次に、本実施例2においては、この加熱設定温度補正準備工程において、所定時間T2及び所定時間T3を入力する。前者の所定時間T2の入力により、成形サイクル停止準備補正開始点C’1が設定される。成形サイクル停止準備補正開始点C’1は、成形サイクルの停止予定から所定時間T2前の、昇温された加熱バレル10に対する温度補正制御(降温)を開始させる点である。また、後者の所定時間T3の入力により、補正開始点2が設定される。補正開始点2は、成形サイクル停止準備補正開始点C’1以降、昇温された加熱バレル10に対する温度補正制御(降温)を行う点であり、成形サイクル停止準備補正開始点C’1以降、射出成形機の制御手段により、所定時間T3毎に補正開始点2が認識され、この温度補正制御(降温)が、成形サイクル完了まで補正開始点2毎に繰り返されるものである。   Next, in the second embodiment, the predetermined time T2 and the predetermined time T3 are input in this heating set temperature correction preparation step. By the input of the former predetermined time T2, the molding cycle stop preparation correction start point C'1 is set. The molding cycle stop preparation correction start point C'1 is a point at which temperature correction control (temperature decrease) is started for the heated barrel 10 that has been heated, a predetermined time T2 before the molding cycle is scheduled to stop. Further, the correction start point 2 is set by the latter input of the predetermined time T3. The correction start point 2 is a point at which temperature correction control (temperature decrease) is performed on the heated barrel 10 after the molding cycle stop preparation correction start point C′1, and after the molding cycle stop preparation correction start point C′1. The correction start point 2 is recognized every predetermined time T3 by the control means of the injection molding machine, and this temperature correction control (temperature decrease) is repeated for each correction start point 2 until the molding cycle is completed.

連続成形運転中、成形サイクルの停止予定から所定時間T2前に到達し、成形サイクル停止準備補正開始点C’1が、射出成形機の制御手段に認識されたものとする。   It is assumed that during the continuous molding operation, a predetermined time T2 is reached from the scheduled stop of the molding cycle, and the molding cycle stop preparation correction start point C'1 is recognized by the control unit of the injection molding machine.

成形サイクル停止準備補正開始点C’1の認識により、加熱設定温度補正工程2が開始される。この成形サイクル停止準備補正開始点C’1以降の、加熱設定温度補正工程2においては、加熱設定温度補正準備工程で予め設定されたΔTzxはそのままで、昇温用の温度補正式1、T’zx=Tzx+ΔTzx、が、降温用の温度補正式2、T”zx=T’zx−ΔTzx、に切り換えられる。そして、この温度補正式2により、各加熱手段の新たな加熱設定温度T”zxが再設定され、各加熱手段の加熱設定温度は、成形サイクル停止準備補正開始点C’1における加熱設定温度T’zxからT”zxへと降温される。部位H3の新たな加熱設定温度は、T”z=T’z−ΔTz、である。この加熱手段H3の加熱設定温度の降温(補正)により、部位H3の実温度TbもΔTzに準ずる程度に下降する。 The heating set temperature correction step 2 is started by recognizing the molding cycle stop preparation correction start point C′1. In the heating set temperature correction step 2 after the molding cycle stop preparation correction start point C′1, ΔTzx set in advance in the heating set temperature correction preparation step is left as it is, and the temperature correction formula 1 for increasing the temperature, T ′. zx = Tzx + ΔTzx is switched to a temperature correction formula 2 for lowering temperature, T ″ zx = T′zx−ΔTzx. By this temperature correction formula 2, a new heating set temperature T ″ zx of each heating means is obtained. The heating set temperature of each heating means is reset, and the temperature is lowered from the heating set temperature T′zx to T ″ zx at the molding cycle stop preparation correction start point C′1. The new heating set temperature of the part H3 is T ″ z 3 = T′z 3 −ΔTz 3 . The cooling of the heat setting temperature of the heating means H3 (corrected), the actual temperature Tb 3 sites H3 also lowered to an extent equivalent to ΔTz 3.

実施例2に係る成形サイクル停止前の加熱バレル温度制御方法も、この各部位の実温度の下降幅の制御が目的ではなく、昇温された各部位をその状態から適宜降温させ、加熱バレル10内の樹脂材料に付与される熱エネルギーが過多状態とならないようにすることを目的としている。   The heating barrel temperature control method before stopping the molding cycle according to the second embodiment is not intended to control the decrease width of the actual temperature of each part. The purpose is to prevent excessive heat energy from being applied to the resin material inside.

本実施例2の温度補正制御(降温)における最初の補正開始点である成形サイクル停止準備補正開始点C’1の後、所定時間T3毎に2回目以降の補正開始点2(2回目の補正開始点2C’2、3回目の補正開始点2C’3・・・)が認識され、温度補正式2、T”zx=T’zx−ΔTzx、により、各加熱手段の新たな加熱設定温度T”zxが次々と再設定される。このとき、温度補正式2左辺のT”zxは、成形サイクル停止準備補正開始点C’1において設定された新たな加熱設定温度T”zxではなく、2回目の補正開始点2C’2において設定される、更に新たな加熱設定温度T”zxであることは言うまでもない。   After the molding cycle stop preparation correction start point C′1, which is the first correction start point in the temperature correction control (temperature decrease) of the second embodiment, the second and subsequent correction start points 2 (second correction) every predetermined time T3. Start point 2C′2, the third correction start point 2C′3...) Are recognized, and a new heating set temperature T of each heating means is obtained by the temperature correction formula 2, T ″ zx = T′zx−ΔTzx. “Zx is reset one after another. At this time, T ″ zx on the left side of the temperature correction formula 2 is set not at the new heating set temperature T ″ zx set at the molding cycle stop preparation correction start point C′1 but at the second correction start point 2C′2. Needless to say, this is a new heating set temperature T ″ zx.

同様に、温度補正式2右辺のT’zxも、昇温された加熱設定温度T’zxではなく、成形サイクル停止準備補正開始点C’1において設定された新たな加熱設定温度T”zxである。この加熱手段H3の2回目の加熱設定温度の昇温(補正)により、部位H3の実温度TbもΔTzに準ずる程度に再び下降する。 Similarly, T′zx on the right side of the temperature correction formula 2 is not the heated heating set temperature T′zx but the new heating set temperature T ″ zx set at the molding cycle stop preparation correction start point C′1. there. the heating of the second heating set temperature of the heating means H3 (correction) again descends to an extent equivalent to the actual temperature Tb 3 also DerutaTz 3 parts H3.

このように、本実施例2に係る加熱バレル温度制御方法の加熱設定温度補正工程2においては、成形サイクル停止準備補正開始点C’1の後、補正開始点2が認識される度に、補正量ΔTzx及び温度補正式2に基づき、各加熱手段の加熱設定温度の再設定が行われ、各加熱手段に対応する各部位の実温度に依らず、ステップ状に各加熱手段の加熱設定温度を降温させる。この降温により、各加熱手段に対応する各部位の実温度もステップ状に下降する。   Thus, in the heating set temperature correction step 2 of the heating barrel temperature control method according to the second embodiment, every time the correction start point 2 is recognized after the molding cycle stop preparation correction start point C′1, the correction is performed. Based on the amount ΔTzx and the temperature correction formula 2, the heating setting temperature of each heating unit is reset, and the heating setting temperature of each heating unit is set stepwise regardless of the actual temperature of each part corresponding to each heating unit. Let the temperature drop. Due to this temperature decrease, the actual temperature of each part corresponding to each heating means also decreases stepwise.

図4においては、3回の補正開始点2C’3における、新たな加熱設定温度の再設定の後、時間Tfにおいて、パージ工程が完了し、成形サイクルが完了している。尚、パージ工程を必要としない成形サイクル停止においては、時間Tfは削除される。この時の部位H3の実温度Tb3も、成形サイクル停止準備補正開始点C’1以降の、加熱手段H3の加熱設定温度の降温に準ずる程度に下降している。先に説明したように、成形サイクル完了時の各加熱手段の加熱設定温度T”zxが、必ずしも、T”zx=Tzx、あるいは、T”zx≒Tzx、になる必要はない。   In FIG. 4, the purge process is completed and the molding cycle is completed at time Tf after resetting a new heating set temperature at the correction start point 2C′3 three times. Note that the time Tf is deleted when the molding cycle is stopped without the purge step. The actual temperature Tb3 of the part H3 at this time is also lowered to the extent that the temperature of the heating setting temperature of the heating unit H3 after the molding cycle stop preparation correction start point C′1 is met. As described above, the heating set temperature T ″ zx of each heating unit at the completion of the molding cycle does not necessarily have to be T ″ zx = Tzx or T ″ zx≈Tzx.

これまで説明したように、本実施例2の、射出成形機の加熱バレル温度制御方法においては、予め決定されている成形サイクルの完了タイミング及び所定時間T2から、成形サイクル停止準備補正開始点C’1として設定しておき、そのまま各加熱手段の温度補正制御(降温)が行われなければ発生する可能性のある可塑化不良を、加熱バレル10の実温度ではなく、予め設定した補正開始点2(成形サイクル停止準備補正開始点C’1後、所定時間T3毎)において再設定するため、射出装置系全体の温度変化のタイムラグの影響を受けることなく、適切なタイミングで、各加熱手段の新たな加熱設定温度を設定することができる。   As described above, in the heating barrel temperature control method of the injection molding machine according to the second embodiment, the molding cycle stop preparation correction start point C ′ is determined from a predetermined molding cycle completion timing and a predetermined time T2. If the temperature correction control (temperature decrease) of each heating means is not performed as it is, the plasticization failure that may occur is not the actual temperature of the heating barrel 10, but a correction start point 2 set in advance. Since the resetting is performed at a predetermined time T3 after the molding cycle stop preparation correction start point C′1, the heating unit is renewed at an appropriate timing without being affected by the time lag of the temperature change of the entire injection apparatus system. It is possible to set a proper heating set temperature.

所定時間T3については、成形サイクル停止工程に要する所定時間T2を、本実施例1に係る加熱バレル温度制御方法の加熱設定温度補正工程2において決定されている、補正1回分の加熱設定温度補正値ΔTzxに応じて、成形サイクル停止準備補正開始点C’1の各加熱手段の加熱設定温度T’zxを何℃程度降温させるかによって決定すれば良く、実際に行われる連続成形運転の状況やデータから、適宜設定値を変更していけば良い。   For the predetermined time T3, the predetermined time T2 required for the molding cycle stop step is determined in the heating set temperature correction step 2 of the heating barrel temperature control method according to the first embodiment. According to ΔTzx, it suffices to determine how many degrees Celsius the heating set temperature T′zx of each heating means at the molding cycle stop preparation correction start point C′1 is lowered. Therefore, the set value may be changed as appropriate.

また、成形サイクル完了後、各加熱手段の加熱を継続させるか停止させるかに依らず、少なくとも各加熱手段の加熱設定温度の設定値を、自動的に各加熱手段の初期設定温度Tzxに設定し直すようにしても良い。この再設定により、次回成形サイクル再開時において、各加熱手段の加熱設定温度を初期設定温度に再設定する手間や、再設定を失念したまま運転を再開させてしまう虞を開始することができる。   In addition, after completion of the molding cycle, regardless of whether the heating of each heating unit is continued or stopped, at least the setting value of the heating set temperature of each heating unit is automatically set to the initial set temperature Tzx of each heating unit. You may fix it. By this resetting, when the next molding cycle is restarted, it is possible to start the trouble of resetting the heating set temperature of each heating means to the initial set temperature, or the possibility of restarting the operation while forgetting the resetting.

更に、補正1回分の加熱設定温度補正値ΔTzxに係る係数αについて、実施例1に係る、加熱バレル温度制御方法の加熱設定温度補正工程時の温度補正式1と、本実施例2に係る、加熱バレル温度制御方法の加熱設定温度補正工程時の温度補正式2とで、異なるαが設定されても良い。これにより、より適切な昇温制御と降温制御とが可能になる。   Furthermore, regarding the coefficient α related to the heating set temperature correction value ΔTzx for one correction, the temperature correction formula 1 in the heating set temperature correction step of the heating barrel temperature control method according to the first embodiment, and the second embodiment, A different α may be set in the temperature correction equation 2 in the heating set temperature correction step of the heating barrel temperature control method. Thereby, more appropriate temperature increase control and temperature decrease control are possible.

また、本実施例2の、射出成形機の加熱バレル温度制御方法2においても、成形サイクル中に、射出成形機のオペレータ等が、成形品を確認してその状況に応じて、当初設定した数値から、初期加熱設定温度Tzxや目標可塑化樹脂温度Tmの設定変更を行っても、新たに入力された初期加熱設定温度Tzxや目標可塑化樹脂温度Tmに基いて、先に説明した加熱設定温度補正工程2が行われることは言うまでもない。   Also in the heating barrel temperature control method 2 of the injection molding machine of the second embodiment, during the molding cycle, the operator of the injection molding machine checks the molded product and initially sets the numerical value according to the situation. Thus, even if the initial heating set temperature Tzx and the target plasticizing resin temperature Tm are changed, the heating setting temperature described above is based on the newly input initial heating setting temperature Tzx and the target plasticizing resin temperature Tm. Needless to say, the correction step 2 is performed.

本発明に係る、射出成形機の加熱バレル温度制御方法は、実施例1の加熱設定温度補正工程1と、実施例2の加熱温度補正工程2とを組み合わせて、連続成形運転中の可塑化状況の異常発生時における、加熱バレルの各加熱手段の加熱設定温度の温度補正制御(降温)も可能である。   The heating barrel temperature control method for an injection molding machine according to the present invention combines the heating set temperature correction step 1 of the first embodiment and the heating temperature correction step 2 of the second embodiment, and the plasticizing state during the continuous molding operation. When the abnormality occurs, temperature correction control (temperature decrease) of the heating set temperature of each heating means of the heating barrel is also possible.

具体的には、実施例1の加熱設定温度補正準備工程において、同準備工程で説明した許容値Q1とは別に、許容値Q2を設定する。先に説明したように、許容値Q1は、成形サイクル毎の、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの項目の差異、あるいは、1つの成形サイクル内における、スクリュ21の後退速度や、微小時間内のスクリュの平均回転負荷率の少なくとも1つの項目の差異に関するもので、これらは、樹脂材料に直接的に付与されるせん断熱エネルギーと深く関連する項目やその項目に基づく結果である。そのため、加熱バレル10内の樹脂材料の可塑化状況を最小のタイムラグで把握するのに好適な項目である。   Specifically, in the heating set temperature correction preparation process of the first embodiment, a tolerance value Q2 is set separately from the tolerance value Q1 described in the preparation process. As described above, the allowable value Q1 is a difference in at least one item of the weighing time, the molded product weight, and the average rotational load factor of the screw for each molding cycle, or the screw 21 in one molding cycle. This relates to the difference in at least one item of the retraction speed and the average rotational load factor of the screw within a minute time, and these are based on the item deeply related to the shear heat energy directly applied to the resin material and the item. It is a result. Therefore, it is an item suitable for grasping the plasticization state of the resin material in the heating barrel 10 with a minimum time lag.

そのため、許容値Q1は、連続して供給される樹脂材料による加熱バレル10の抜熱に対して、計量工程の不安定化を防止するために、加熱バレル10を昇温させる温度補正制御の開始タイミング(補正開始点1)として設定される。同様に、成形サイクル毎の、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの項目の差異について、計量工程の不安定より更に問題が大きな、可塑化状態の異常状態が予想されるような、許容値Q1を超える差異が、新たに許容量Q2として設定されることにより、これら項目の少なくとも1つの項目の差異が許容値Q2を超えた時点を、計量工程の異常発生として、射出成形機の制御手段に認識させることができる。   Therefore, the allowable value Q1 is the start of temperature correction control for raising the temperature of the heating barrel 10 in order to prevent the measurement process from becoming unstable with respect to the heat removal of the heating barrel 10 by the continuously supplied resin material. It is set as the timing (correction start point 1). Similarly, an abnormal state of the plasticized state, which is more problematic than instability of the weighing process, is expected with respect to the difference in at least one item of the weighing time, the weight of the molded product and the average rotational load factor of the screw for each molding cycle. When a difference exceeding the allowable value Q1 is newly set as the allowable amount Q2, the time when the difference of at least one of these items exceeds the allowable value Q2 It can be recognized by the control means of the injection molding machine.

尚、1つの成形サイクル内における、スクリュ21の後退速度や、微小時間内のスクリュの平均回転負荷率の少なくとも1つの項目の差異に基づいて許容量Q2を設定することも可能ではあるが、短時間での各項目の差異で、計量工程の異常発生を判断させることは難しく、必要以上に厳しい許容量Q2を設定すれば、連続成形運転を停止させる程の異常でない場合や、異常とは見なせないような差異が生じた場合でも、射出成形機の制御手段が異常と認識してしまう虞がある。そのため、成形サイクル毎、もしくは、複数サイクル毎の差異に基づく許容量Q2の設定が好ましい。   Although the allowable amount Q2 can be set based on the difference in at least one item of the retraction speed of the screw 21 and the average rotational load factor of the screw within a minute time in one molding cycle, It is difficult to determine the occurrence of an abnormality in the weighing process due to differences in each item over time. If an allowable amount Q2 that is stricter than necessary is set, it is not an abnormality that stops continuous molding operation, or an abnormality is considered. Even when a difference that cannot be made occurs, there is a possibility that the control means of the injection molding machine may recognize that it is abnormal. Therefore, it is preferable to set the allowable amount Q2 based on the difference between each molding cycle or every plural cycles.

一般的に、連続成形運転時の、射出成形機の運転を停止させざるを得ないような計量工程の異常とは、供給部における樹脂材料の供給不良や、圧縮部や計量部への樹脂送り不良が悪化し、樹脂材料がほとんど供給されない状態や、供給された樹脂材料が可塑化不良等により閉塞し、加熱バレル10内の樹脂流路14における樹脂流動が停止してしまう状態等が考えられる。   In general, abnormalities in the metering process that require the operation of the injection molding machine to be stopped during continuous molding operations are poor supply of resin material in the supply unit, and resin feed to the compression unit and measurement unit. It is conceivable that the defect deteriorates and the resin material is hardly supplied or the supplied resin material is blocked due to plasticization failure or the like and the resin flow in the resin flow path 14 in the heating barrel 10 stops. .

前者の場合、樹脂温度の上昇に伴う樹脂粘度の低下と、樹脂流路14中の樹脂量の低下とにより、スクリュ21の回転トルクが減少し、平均回転負荷率も減少する。後者の場合、樹脂温度の上昇に伴い、樹脂粘度が低下しても、樹脂流路14中の樹脂材料の閉塞により、スクリュ21の回転トルクが増加し、平均回転負荷率も増加する。また、両者いずれの場合も、当然ながら計量時間が長くなり、かろうじて成形可能であったとしても、成形品重量が安定しないことは疑いない。更に、両者いずれの場合も、計量工程における樹脂材料への熱エネルギー供給が過多状態となり、加熱バレル10の各部位の実温度が上昇する。   In the former case, the rotational torque of the screw 21 decreases and the average rotational load factor also decreases due to the decrease in the resin viscosity accompanying the increase in the resin temperature and the decrease in the amount of resin in the resin flow path 14. In the latter case, even if the resin viscosity decreases as the resin temperature increases, the rotational torque of the screw 21 increases and the average rotational load factor also increases due to the blockage of the resin material in the resin flow path 14. In both cases, of course, the weighing time is long, and there is no doubt that the weight of the molded product will not be stable even if the molding is barely possible. Furthermore, in both cases, the supply of thermal energy to the resin material in the metering process becomes excessive, and the actual temperature of each part of the heating barrel 10 rises.

このような異常発生が確認された場合、異常の程度にも依るが、装置の保護という観点からは、ただちに連続成形運転を停止させることが好ましい。しかしながら、いきなり、各加熱手段の加熱を停止させ、連続成形運転を停止させるのは、加熱バレル10内の樹脂材料のスクリュ21への固着等による後処理工程を鑑みると好ましくはない。そのため、加熱バレル10の各部位の加熱手段の加熱設定温度が漸次降温され、そのままパージ工程を開始させ、できるだけ早く連続成形運転を停止させることが、装置の保護及び後処理工程の両方の観点から好ましい。   When such an abnormality is confirmed, although depending on the degree of abnormality, it is preferable to immediately stop the continuous molding operation from the viewpoint of protecting the apparatus. However, suddenly stopping the heating of each heating means and stopping the continuous molding operation is not preferable in view of a post-processing step due to fixing of the resin material in the heating barrel 10 to the screw 21 or the like. Therefore, the heating set temperature of the heating means of each part of the heating barrel 10 is gradually lowered, and the purge process is started as it is, and the continuous molding operation is stopped as soon as possible from the viewpoint of both the protection of the apparatus and the post-processing process. preferable.

そこで、本実施例3に係る、射出成形機の加熱バレル温度制御方法においては、連続成形運転中において、成形サイクル毎の、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの項目の差異が、許容値Q2を超えた時点を、計量工程の異常発生として、射出成形機の制御手段に認識させる。この時点を、射出成形機の制御手段に、実施例2における成形サイクル停止準備補正開始点C’1と同様に認識させることにより、加熱設定温度補正工程1における温度補正式を温度補正式1から温度補正式2に切り換え、実施例2における加熱設定温度補正工程2に基づき、各加熱手段のその時点における加熱設定温度T’zxを漸次降温させる。   Therefore, in the heating barrel temperature control method for an injection molding machine according to the third embodiment, during continuous molding operation, at least one item of weighing time, molded product weight, and average screw rotational load factor for each molding cycle. Of the injection molding machine is recognized as the occurrence of an abnormality in the weighing process. By making this point of time recognized by the control means of the injection molding machine in the same manner as the molding cycle stop preparation correction start point C′1 in the second embodiment, the temperature correction formula in the heating setting temperature correction step 1 is changed from the temperature correction formula 1. Switching to the temperature correction formula 2, and based on the heating set temperature correction step 2 in the second embodiment, the heating set temperature T′zx at each time of each heating means is gradually lowered.

このように、許容値Q2の設定により、計量工程における加熱バレル10内の可塑化状態の異常状態を、射出成形機の制御手段に認識させることができるので、射出成形機のオペレータに、異常の発生可能性を、最小のタイムラグで、自動的にアナウンスすることができる。また、実施例2において説明したように、加熱設定温度補正工程2に基づき、各加熱手段の加熱設定温度を漸次降温させて、加熱バレル10の必要以上の加熱状態を回避して、成形サイクルの緊急停止に対応させることができる。これによって、射出成形機の装置としての保護が図れると共に、停止後の後処理工程の負荷を低減させることができる。   Thus, by setting the allowable value Q2, the abnormal state of the plasticizing state in the heating barrel 10 in the weighing process can be recognized by the control means of the injection molding machine, so that the operator of the injection molding machine Probability can be automatically announced with minimal time lag. Further, as described in the second embodiment, based on the heating set temperature correction step 2, the heating set temperature of each heating means is gradually lowered to avoid an excessive heating state of the heating barrel 10 and the molding cycle Can respond to an emergency stop. As a result, it is possible to protect the injection molding machine as an apparatus and to reduce the load of the post-processing step after the stop.

10 加熱バレル
C1 最初の補正開始点1
C2 2回目の補正開始点1
C3 3回目の補正開始点1
C4 4回目の補正開始点1
C’1 成形サイクル停止準備補正開始点
C’2 2回目の補正開始点2
C’3 3回目の補正開始点2
Hn 加熱手段/部位(ノズル部)
H0 加熱手段/部位(貯留部)
H1 加熱手段/部位(計量部)
H2 加熱手段/部位(圧縮部)
H3 加熱手段/部位(供給部)
T1 所定時間
T2 所定時間
T3 所定時間
10 Heating barrel C1 First correction start point 1
C2 Second correction start point 1
C3 3rd correction start point 1
C4 4th correction start point 1
C′1 Molding cycle stop preparation correction start point C′2 Second correction start point 2
C'3 Third correction start point 2
Hn Heating means / part (nozzle part)
H0 heating means / part (reservoir)
H1 Heating means / part (measuring unit)
H2 heating means / part (compression part)
H3 heating means / part (supply part)
T1 predetermined time T2 predetermined time T3 predetermined time

Claims (7)

射出成形機の射出装置の、加熱バレルの長手方向に配置される複数の加熱手段が、それぞれ独立して制御される、射出成形機の加熱バレル温度制御方法において、
射出させる樹脂の目標可塑化樹脂温度Tmと、スクリュの供給部及び圧縮部の範囲に配置される前記各加熱手段に設定される初期加熱設定温度Tzxとが、Tm≧Tzxの関係において、前記各加熱手段の、補正1回分の加熱設定温度補正値ΔTzxを、0.1≦α≦1の範囲で設定されるαを用いて、式ΔTzx=α(Tm−Tzx)で設定する加熱設定温度補正準備工程と、
最初の補正開始点1が、計量時間、成形品重量及びスクリュの平均回転負荷率の少なくとも1つの差異が、予め設定される許容量Q1を超えた時点であって、
前記最初の補正開始点1から、予め設定される所定時間T1毎に前記差違と前記許容量Q1との比較を行い、前記差異が前記許容量の範囲を超えた時点を、2回目以降の前記補正開始点1とし、
予め設定した前記補正開始点1において、新たな加熱設定温度T’zxを、温度補正式1、T’zx=Tzx+ΔTzxで再設定すると共に、次の前記補正開始点1に到達する度に、前記温度補正式1の右辺のTzxを、前の前記補正開始点1において再設定された、前記新たな加熱設定温度T’zxに置き換えた前記温度補正式1に基づき、前記温度補正式1の左辺のT’zxを漸次昇温させる加熱設定温度補正工程1と、
を有する射出成形機の加熱バレル温度制御方法。
In the heating barrel temperature control method of an injection molding machine, a plurality of heating means arranged in the longitudinal direction of the heating barrel of the injection device of the injection molding machine are independently controlled.
The target plasticization resin temperature Tm of the resin to be injected and the initial heating set temperature Tzx set in each heating means arranged in the range of the screw supply unit and the compression unit are in the relationship of Tm ≧ Tzx. Heating set temperature correction for setting the heating set temperature correction value ΔTzx for one correction of the heating means using α set in a range of 0.1 ≦ α ≦ 1 by the expression ΔTzx = α (Tm−Tzx) A preparation process;
The first correction start point 1 is a point in time when at least one difference in the weighing time, the molded product weight, and the average rotational load factor of the screw exceeds a preset allowable amount Q1,
The difference is compared with the allowable amount Q1 at a predetermined time T1 set in advance from the first correction start point 1, and the time when the difference exceeds the allowable amount range is determined for the second and subsequent times. The correction start point is 1,
At the correction start point 1 set in advance, the new heating set temperature T′zx is reset by the temperature correction formula 1, T′zx = Tzx + ΔTzx, and each time the next correction start point 1 is reached, The left side of the temperature correction formula 1 is based on the temperature correction formula 1 in which the right side Tzx of the temperature correction formula 1 is replaced with the new heating set temperature T′zx reset at the previous correction start point 1. Heating set temperature correction step 1 for gradually increasing the temperature T'zx of
A heating barrel temperature control method for an injection molding machine.
前記最初の前記補正開始点1から、予め設定される前記所定時間T1後毎に行われる、前記差異と前記許容量Q1との比較が、成形サイクル毎、又は、2回以上の成形サイクル毎に行われる、請求項1に記載の射出成形機の加熱バレル温度制御方法。   The comparison between the difference and the allowable amount Q1 performed after the predetermined time T1 set in advance from the first correction start point 1 is performed every molding cycle or every two or more molding cycles. The heating barrel temperature control method of the injection molding machine according to claim 1, which is performed. 前記新たな加熱設定温度T’zxが、Tm+(Tm−Tzx)≧T’zx≧Tmを満たす状態となった時点で、前記加熱設定温度補正工程1を終える、請求項1及び請求項2のいずれか1項に記載の射出成形機の加熱バレル温度制御方法。   The heating set temperature correction step 1 is finished when the new heating set temperature T'zx is in a state satisfying Tm + (Tm-Tzx) ≥T'zx≥Tm. The heating barrel temperature control method of the injection molding machine of any one of Claims 1. 前記加熱設定温度補正工程1における前記補正開始点1に、成形サイクルの停止予定から所定時間T2前である、成形サイクル停止準備補正開始点を含み、前記成形サイクル停止準備補正開始点において、前記温度補正式1を、温度補正式2、T”zx=T’zx−ΔTzxに切り換え、前記新たな加熱設定温度T”zxを再設定すると共に、前記成形サイクル停止準備補正開始点以降の補正開始点2を、所定時間T3経過後とし、次の前記補正開始点2に到達する度に、前記温度補正式2に基づき、前記新たな加熱設定温度を漸次降温させる加熱設定温度補正工程2を更に含む、請求項1乃至請求項3に記載の射出成形機の加熱バレル温度制御方法。   The correction start point 1 in the heating set temperature correction step 1 includes a molding cycle stop preparation correction start point that is a predetermined time T2 before the molding cycle is scheduled to stop, and at the molding cycle stop preparation correction start point, the temperature The correction formula 1 is switched to the temperature correction formula 2, T ″ zx = T′zx−ΔTzx, the new heating set temperature T ″ zx is reset, and the correction start point after the molding cycle stop preparation correction start point 2 further includes a heating set temperature correction step 2 for gradually lowering the new heating set temperature based on the temperature correction formula 2 every time when the predetermined time T3 has passed and the next correction start point 2 is reached. The heating barrel temperature control method of the injection molding machine according to any one of claims 1 to 3. 前記加熱設定温度補正工程1において、前記差異が、予め設定される許容量Q2を超えた時点で、前記温度補正式1を前記温度補正式2に切り換え、前記新たな加熱設定温度を漸次降温させる、請求項4に記載の射出成形機の加熱バレル温度制御方法。   In the heating set temperature correction step 1, when the difference exceeds a preset allowable amount Q2, the temperature correction formula 1 is switched to the temperature correction formula 2, and the new heating set temperature is gradually lowered. The heating barrel temperature control method of the injection molding machine according to claim 4. 前記加熱設定温度補正工程1において、成形サイクル中に新たに設定変更された初期加熱設定温度Tzx又は目標可塑化樹脂温度Tmに基づいて、前記加熱設定温度補正準備工程、前記加熱設定温度補正工程1を行う、請求項1乃至請求項3のいずれか1項に記載の射出成形機の加熱バレル温度制御方法。   In the heating set temperature correction step 1, based on the initial heating set temperature Tzx or the target plasticizing resin temperature Tm newly changed during the molding cycle, the heating set temperature correction preparation step, the heating set temperature correction step 1 The heating barrel temperature control method for an injection molding machine according to any one of claims 1 to 3, wherein: 前記加熱設定温度補正工程2において、成形サイクル中に新たに設定変更された初期加熱設定温度Tzx又は目標可塑化樹脂温度Tmに基づいて、前記加熱設定温度補正準備工程、前記加熱設定温度補正工程1、又は、前記加熱設定温度補正工程2を行う、請求項4又は請求項5に記載の射出成形機の加熱バレル温度制御方法。   In the heating set temperature correction step 2, the heating set temperature correction preparation step, the heating set temperature correction step 1 based on the initial heating set temperature Tzx or the target plasticizing resin temperature Tm newly changed during the molding cycle. Or the heating barrel temperature control method of the injection molding machine of Claim 4 or Claim 5 which performs the said heating preset temperature correction process 2.
JP2014040406A 2014-03-03 2014-03-03 Heating barrel temperature control method for injection molding machine Active JP6206719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040406A JP6206719B2 (en) 2014-03-03 2014-03-03 Heating barrel temperature control method for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040406A JP6206719B2 (en) 2014-03-03 2014-03-03 Heating barrel temperature control method for injection molding machine

Publications (2)

Publication Number Publication Date
JP2015164782A JP2015164782A (en) 2015-09-17
JP6206719B2 true JP6206719B2 (en) 2017-10-04

Family

ID=54187499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040406A Active JP6206719B2 (en) 2014-03-03 2014-03-03 Heating barrel temperature control method for injection molding machine

Country Status (1)

Country Link
JP (1) JP6206719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835456B (en) * 2020-06-24 2023-04-25 超级智慧家(上海)物联网科技有限公司 Temperature controller and temperature compensation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857930A (en) * 1981-10-02 1983-04-06 Sumitomo Heavy Ind Ltd Temperature controlling unit of injection molding machine
JPH0698656B2 (en) * 1988-11-09 1994-12-07 東芝機械株式会社 Method and device for setting optimum allowable value of monitoring data of injection molding machine
JPH0387225A (en) * 1989-08-31 1991-04-12 Sodick Co Ltd Control method for injection molding machine and its device
JP2618588B2 (en) * 1993-05-12 1997-06-11 株式会社日本製鋼所 Method and apparatus for controlling plasticization of injection molding machine
JPH07137098A (en) * 1993-11-19 1995-05-30 Ube Ind Ltd Method and apparatus for controlling injection molding machine
JP3683677B2 (en) * 1997-05-14 2005-08-17 株式会社日本製鋼所 Method of raising nozzle / cylinder temperature in injection molding machine
JP2000176983A (en) * 1998-12-16 2000-06-27 Toshiba Mach Co Ltd Method and apparatus for controlling resin temperature of injection molding machine
JP3309280B2 (en) * 2000-04-05 2002-07-29 住友重機械工業株式会社 Control method of injection molding machine
JP3838997B2 (en) * 2003-06-17 2006-10-25 ファナック株式会社 Temperature control device for injection molding machine
JP3947543B2 (en) * 2005-04-11 2007-07-25 株式会社日本製鋼所 Temperature control device and temperature control method for injection molding machine
JP5300246B2 (en) * 2007-11-13 2013-09-25 東洋機械金属株式会社 Injection molding machine
JP5778639B2 (en) * 2012-08-03 2015-09-16 日精樹脂工業株式会社 Molding condition setting method and apparatus for injection molding machine

Also Published As

Publication number Publication date
JP2015164782A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6244165B2 (en) Molding condition diagnosis device
JP6678658B2 (en) How to use a modified injection molding machine with faster cycle times
JP4824081B2 (en) Injection molding machine
US9975288B2 (en) Control device of injection molding machine having resin purge function
JP5563229B2 (en) Control device for injection molding machine and control method therefor
JP5891217B2 (en) Molding condition diagnosis device
JP6483049B2 (en) Injection molding machine setting support method
JP6206719B2 (en) Heating barrel temperature control method for injection molding machine
JP2011230381A (en) Automatic temperature rise control method for molding machine
JP5222316B2 (en) Abnormal processing method for injection molding machine
WO2013061991A1 (en) Method for controlling temperature of thermoplastic resin in injection molding machine
JP5180891B2 (en) Control device for injection molding machine
EP2572854B1 (en) Injection molding machine
JP4889574B2 (en) Control method of injection molding machine
JP5216525B2 (en) Automatic temperature rise control method for molding machine
JP6740383B2 (en) Molding condition setting support method and device
JP2016203615A (en) Vent type injection molding device and injection molding method
JP2016215541A (en) Injection molding machine and control method thereof
JPH04164622A (en) Controlling method for temperature of heating cylinder of injection molding machine
KR100958592B1 (en) Temperature control method of injection molding device
US20230398725A1 (en) Injection molding machine and control device of injection molding machine
US20230166438A1 (en) Controller for injection molding machine, injection molding machine, method of controlling injection molding machine, and storage medium
JP5425420B2 (en) Nozzle temperature control method in injection molding machine
WO2017126193A1 (en) Method for ending molding cycle of injection molding machine
JPH07156235A (en) Heat control device for injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6206719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250