WO2017126193A1 - Method for ending molding cycle of injection molding machine - Google Patents

Method for ending molding cycle of injection molding machine Download PDF

Info

Publication number
WO2017126193A1
WO2017126193A1 PCT/JP2016/082774 JP2016082774W WO2017126193A1 WO 2017126193 A1 WO2017126193 A1 WO 2017126193A1 JP 2016082774 W JP2016082774 W JP 2016082774W WO 2017126193 A1 WO2017126193 A1 WO 2017126193A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
rotational torque
molding cycle
average rotational
torque
Prior art date
Application number
PCT/JP2016/082774
Other languages
French (fr)
Japanese (ja)
Inventor
祐一朗 有馬
岡崎 芳紀
努 坂尾
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to CN201680070278.3A priority Critical patent/CN108290330B/en
Publication of WO2017126193A1 publication Critical patent/WO2017126193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • the present invention includes an injection device having an injection device that rotates a screw in a heating barrel and plasticizes a resin material supplied into the heating barrel from the rear of the screw while flowing toward the front of the screw.
  • the present invention relates to a method for finishing a molding cycle of a molding machine.
  • the inline screw type injection device 1 is disposed in a heating barrel 15 in which a material supply unit 14 such as a hopper is formed on the rear side (right side in FIG. 1), and rotatably in the heating barrel 15.
  • a material supply unit 14 such as a hopper is formed on the rear side (right side in FIG. 1)
  • a screw 16 a metering drive mechanism (not shown) such as a servo motor for rotating the screw 16, and a heating means 15 a disposed on the outer peripheral surface of the heating barrel 15 are provided.
  • the screw 16 has a spiral flight 16a on its outer peripheral surface.
  • the resin flow path 10 that is spirally continuous is heated by the space between the flights 16 a, the outer peripheral surface of the screw 16, and the inner peripheral surface of the heating barrel 15. It is configured to be formed in the barrel 15.
  • the pellet-shaped (granular) resin material 14a supplied from the material supply unit 14 into the heating barrel 15 is made of resin. It flows toward the front of the screw 16 (left side in FIG. 1) through the flow path 10.
  • the resin material 14a is heated and plasticized (melted state) by the generated shear energy.
  • FIG. 1 shows the start of the weighing process of the in-line screw type injection device 1, and the screw 16 is at the measurement start position (injection completion position).
  • the resin material 14a flows toward the front of the screw 16, and plasticization (melting) proceeds as the heat receiving distance and the heat receiving time in the resin flow path 10 increase.
  • the resin material 14a is almost completely plasticized when it passes through the check ring 18 in front of the screw 16, and reaches the space (reservoir 15b) in front of the screw head 17 at the tip of the screw 16.
  • the nozzle 13 at the tip of the heating barrel 15 is pressed by a sprue bush of a mold (not shown), and the resin cutoff opening switching valve (not shown) arranged on the nozzle 13 or the mold is shut off. .
  • the storage part 15b forms the closed space, the plasticized resin material 14a (molten resin) can be stored in the storage part 15b.
  • the check ring 18 is a backflow prevention valve, and is a hollow cylindrical (ring-shaped) valve body disposed coaxially with the screw 16 so as to be movable by a predetermined amount in the longitudinal direction of the screw 16.
  • the check ring 18 itself is not provided with a drive source for moving the check ring 18 in the longitudinal direction with respect to the screw 16.
  • the check ring 18 is pressed to the front of the screw 16 and moved to the forward limit by the flow pressure of the resin material 14a for flowing the resin flow channel 10 to the front of the screw 16 during the measuring step. Is configured to be maintained in an open state.
  • the screw 16 in the in-line screw type injection apparatus 1, not only the screw 16 is rotated, but also for injection filling, it can be moved back and forth at a predetermined speed and pressure in the longitudinal direction by an injection driving mechanism (not shown). .
  • the screw 16 is rotated at a predetermined speed by the metering drive mechanism at the same time while the pressure (back pressure) in the forward direction (left side in FIG. 1) is applied by the injection drive mechanism.
  • the resin material 14a plasticized in the resin flow path 10 is continuously stored in the storage portion 15b in a state where substantially the same pressure as the back pressure in the forward direction is maintained.
  • the screw 16 moves backward while being rotated.
  • FIG. 2 shows the time when the weighing process of the in-line screw type injection device 1 is completed, and the screw 16 is at the measurement completion position (injection start position).
  • measuring means for measuring the longitudinal position of the screw 16 in the heating barrel 15 is arranged.
  • the plasticized resin material 14a required for one molding cycle is determined from the distance from the measurement start position (injection completion position) to the retracted position of the screw 16 (measurement completion position / injection start position).
  • the amount of resin material 14a necessary for one injection filling is generally calculated.
  • the resin shut-off switching valve in front of the screw 16 is opened, and the screw 16 is advanced at a predetermined speed (injection speed) by the injection drive mechanism, whereby the resin material 14a of the storage portion 15b is made to move.
  • the mold cavity in the mold can be injection filled.
  • the pressure of the resin material 14a in the reservoir 15b in front of the check ring 18 and the pressure of the resin material 14a in the rear resin flow path 10 are substantially the same pressure ( ⁇ back pressure). Therefore, the check ring 18 cannot follow the forward movement of the screw 16.
  • a sealing surface (not shown) for closing the resin flow path 10 formed at the retreat limit position of the check ring 18 in the screw 16 moves forward and is formed on the rear end surface of the check ring 18.
  • the resin flow path 10 is closed because it abuts against the sealing surface (not shown).
  • the molding cycle is completed after holding pressure and cooling solidification time.
  • a mold clamping device (not shown)
  • a product removal step is performed in which the mold is opened and the resin molded product is taken out of the mold.
  • the screw 16 is rotated and the supply of the resin material 14a from the material supply unit 14 is started, and the measurement process for the next molding cycle is started. Is done.
  • the screw 16 is advanced in a state where the supply of the resin material 14a from 14 is stopped. Therefore, when the supply of the resin material 14a is started, the resin flow path 10 within a predetermined distance from directly below the material supply unit 14 is in a sparse state (starvation state) with almost no resin material 14a.
  • “within a predetermined distance from directly below the material supply unit 14” means that the retraction distance of the screw 16 during the measurement process (retraction amount S shown in FIG. 3) (the screw 16 during the injection filling process) from directly below the material supply unit 14 Of the screw 16 in the longitudinal direction.
  • FIG. 3 shows a state in the heating barrel 15 at the start of the measurement process (at the start of rotation of the screw 16) when the resin material 14a is supplied to the material supply unit 14 in the measurement process described above.
  • a reservoir 15b in front of the screw 16 (check ring 18) in the heating barrel 15 is filled with the resin material 14a plasticized in the previous molding cycle.
  • the resin flow path 10 behind the check ring 18 is filled with the resin material 14a except for “within a predetermined distance from directly below the material supply unit 14” although the plasticized state is different.
  • a material supply stop command is transmitted to a material supply device (not shown) to stop the supply of the resin material 14a to the inline screw injection device 1. Even if the supply of the resin material 14a from the material supply unit 14 is stopped, a large amount of the resin material 14a is held in the heating barrel 15 although the plasticization state is different. Therefore, the molding cycle is continued even after the supply of the resin material 14a is stopped. Therefore, after the supply of the resin material 14a is stopped, as the molding cycle proceeds, the resin material 14a of the heating barrel 15 gradually decreases as shown in FIG.
  • the screw 16 does not retract to a preset position (measurement completion position / injection start position) ( If the time required for the screw 16 to reach the measurement completion position) or the time until the screw fluctuates fluctuates, a criterion for determining whether the measurement completion position of the screw 16 has not been reached is required.
  • the measurement process is started (start of rotation of the screw 16 or start of retraction of the screw 16).
  • the weighing time is monitored and compared with the set weighing time. If the measurement completion position of the screw 16 is not reached during the continuous molding cycle, the metering time is monitored without stopping the molding cycle and stopping the molding cycle. Made. Further, after the molding cycle is stopped, the resin material remaining in the injection apparatus (plasticizing mechanism) is plasticized and discharged (purged) to the outside.
  • the inline screw injection apparatus 1 After the molding cycle is finished, first, the inline screw injection apparatus 1 is separated from the mold, and the inline screw injection apparatus. A resin receiving container or the like is arranged in front of the nozzle 13 at the tip of 1. Thereafter, the screw 16 at the injection completion position (measurement start position) is rotated at that position at a constant speed to plasticize the resin material 14a remaining in the in-line screw type injection apparatus 1, while the resin receiving container or the like A method of discharging (purging) is generally used.
  • the molding cycle is stopped when the measurement completion position of the screw 16 is not reached during the weighing process. Therefore, even when the supply of the resin material 14a is stopped in order to end the molding cycle, the resin material 14a in the heating barrel 15 gradually decreases in the subsequent molding cycle as shown in FIG. When the situation where the measurement completion position of 16 is not reached is reached, the molding cycle is stopped, so that a defective product with insufficient metering resin amount should not be molded.
  • the backward movement of the screw 16 during the measuring process is controlled so that the back pressure applied in the forward direction by the injection drive mechanism is constant.
  • the retraction speed of the metering drive mechanism for maintaining the back pressure applied to the screw 16 decreases, and accordingly, the storage unit 15b has a unit time.
  • a situation occurs in which the volume of the resin material 14a that is flowed per contact also decreases. This also does not occur in the normal weighing process (reason 2).
  • Patent Document 1 In order to detect the lack of the resin material in the injection device (plasticizing mechanism) at the time of detection of material shortage or material shortage during molding, or purge processing (operation), the injection molding of Patent Document 1 is performed.
  • a material detection method for a machine and a method for stopping a purge operation of Patent Document 2 are known.
  • the material detection method of the injection molding machine of Patent Document 1 is intended to detect the presence or absence of a material (resin material) in a heating cylinder (heating barrel) during a molding cycle or during a purge operation.
  • the material detection method of the injection molding machine of patent document 1 detects the magnitude
  • a material non-detection signal is output when the following time continues for a preset time or more.
  • the method of stopping the purge operation in Patent Document 2 is intended to accurately detect the time when the resin discharged from the plasticizing apparatus (injection apparatus) runs out when the purge operation is automatically performed.
  • the screw driving torque is monitored while rotating the screw at a predetermined rotational speed in the plasticizing apparatus, and the driving torque is set to a predetermined value. The screw rotation is stopped immediately or after a predetermined time has elapsed.
  • the material detection method of the injection molding machine of Patent Document 1 detects the load current of the screw rotation drive motor, and the method of stopping the purge operation of Patent Document 2 Monitors the screw drive torque.
  • both the material detection method of the injection molding machine of Patent Document 1 and the purge operation stop method of Patent Document 2 monitor the rotational torque of the screw, and when this rotational torque becomes a set value or less, It is determined that the resin material in the injection device has reached a desired holding amount (remaining amount).
  • the rotational torque required to keep the rotational speed of the screw constant is not constant but varies.
  • the rotational torque of the screw is fluctuate.
  • the storage volume of the plasticized resin material 14a in the storage portion 15b increases, the rotational torque generated in the screw 16 changes with fluctuation.
  • unexpected unexpected factors for example, the resin in front of the screw 16 from directly below the material supply unit 14 due to a change in the material supply state such as the supply of the resin material 14a from the material supply unit 14 being stopped). If a flow failure or the like generated in the resin material 14a held in the flow path 10 occurs, fluctuations or changes in the rotational torque generated in the screw 16 may increase, but not decrease.
  • the load current in a state where the resin material in the injection device has reached the desired holding amount with respect to the fluctuating load current of the screw rotation drive motor Even if the current setting value is set as a pinpoint, the state in which the load current has decreased to the current setting value is a state in which the load current has temporarily decreased to the current setting value due to fluctuation, and the desired holding amount It may not be in a state of reaching.
  • the resin material in the injection device has reached the desired holding amount, that is, the resin amount is insufficient.
  • the screw torque corresponding to the timing at which the defective product is not molded and the amount of the resin material held in the plasticizing mechanism is minimized is obtained pinpoint by test molding or the like, and this is also set as a desired value. There is a high possibility that the above state cannot be detected accurately.
  • Patent Document 2 when the rotational torque of the screw is reduced to a set value, the resin material in the injection device has reached a desired holding amount (in the case of Patent Document 2, the resin material in the injection device is In addition to the method of “no longer being used”, the moving average value of the rotational torque of the screw is monitored, and when this moving average value drops to the set value, the resin material in the injection device has reached the desired holding amount A method (alternative method) is described (claim 2 of patent document 2 and others).
  • the moving average value is “in the time series data, an average value for each certain interval is obtained while shifting the interval, and if a graph is created using the moving average value, a long-term A smooth curve representing the trend is obtained ”(extracted from the Internet site“ Statistical WEB / Statistical Tips / Moving Average Calculation Method ”).
  • a setting value is provided for the moving average value of the screw rotation torque, not the screw rotation torque, so that the purge operation as shown in FIG. From the start to the end, it is considered that the screw driving torque (rotational torque) accompanied by the fluctuation can be converted to a smooth fluctuation to some extent as shown in FIG.
  • Patent Document 2 erroneously detects a decrease to a temporary set value due to a variation caused by a decrease in rotational torque generated in the screw during the purge operation as described above. It seems to contribute to avoiding the problem.
  • the moving average value described in the purge operation stopping method of Patent Document 2 can be adopted for changes or fluctuations in the rotational torque of the screw during one weighing process that is one time series. Even if an appropriate set value is set based on the average rotational torque obtained by moving average with respect to changes and fluctuations in the rotational torque of the screw during one metering process of a certain molding cycle, There is a problem that the reliability of the rotational torque is low. Therefore, in the method of stopping the purge operation of Patent Document 2, when the supply of the resin material is stopped, the resin material in the injection device has reached a desired holding amount (that is, a defective product with insufficient resin amount is molded).
  • the present invention has been made in view of the above-described problems. Specifically, after the supply of the resin material is stopped, a defective product with insufficient resin amount is not molded, and the resin material in the injection apparatus It is an object of the present invention to provide a molding cycle end method for an injection molding machine that can end a molding cycle at a timing at which the amount of holding is minimized.
  • An object of the present invention is to provide an injection apparatus that rotates a screw in a heating barrel and plasticizes the resin material supplied into the heating barrel from the rear of the screw toward the front of the screw.
  • a molding cycle end method of an injection molding machine having A first average rotational torque calculating step of calculating a first average rotational torque of the screw in a metering step of storing the plasticized resin material up to a set amount in the storage unit of the injection device in one molding cycle; From the arbitrary molding cycle, the first average rotational torque calculation step is performed in each of a plurality of selected molding cycles, and the plurality of selected molding cycles are determined from each of the obtained first average rotational torques.
  • the molding cycle end method of the injection molding machine it is preferable not to perform the first average rotational torque calculation step in a predetermined number of molding cycles after the start of molding.
  • the first average rotational torque calculation step is performed for each molding cycle, From the arbitrary molding cycle, start the second average rotational torque calculation step for each molding cycle, In the average rotational torque comparison step, the first average rotational torque in the molding cycle immediately after the molding cycle in which the stable molding torque reference value is set in the second average rotational torque calculation step is set in the immediately preceding molding cycle. You may make it compare with the said stable shaping
  • the selected multiple molding cycles in the second average rotational torque calculating step is set as one set, and the stable molding torque is set for each set.
  • the first average rotational torque of each molding cycle of the one set is compared with the stable molding torque reference value set in the immediately preceding one set. Also good.
  • the molding cycle end method of the injection molding machine according to the present invention as described above, each time the molding cycle is restarted after a stop operation including a temporary stop of the molding cycle, the second average rotational torque In the calculation step, it is preferable to set the stable molding torque reference value.
  • the screw in the heating barrel is rotated, and the resin material supplied into the heating barrel from the rear of the screw is caused to flow to the front of the screw.
  • a method for ending a molding cycle of an injection molding machine having an injection device to be plasticized in between A first average rotational torque calculating step of calculating a first average rotational torque of the screw in a metering step of storing the plasticized resin material up to a set amount in the storage unit of the injection device in one molding cycle; From the arbitrary molding cycle, the first average rotational torque calculation step is performed in each of a plurality of selected molding cycles, and the plurality of selected molding cycles are determined from each of the obtained first average rotational torques.
  • Example 1 It is a schematic sectional drawing which shows the time of the measurement process start of the inline screw type injection device of the injection molding machine based on Example 1 of this invention. It is a schematic sectional drawing which shows the time of completion
  • Example 1 it is a graph which shows the 1st average rotational torque etc. of the screw in the measurement process of the shaping
  • Example 2 it is an image figure for demonstrating the process for ending a shaping
  • FIG. 5 is an image diagram for explaining a process for ending the molding cycle in Example 1 with the horizontal axis as the number of molding cycles (N).
  • the resin flow path 10 of the screw 16 is not filled.
  • the screw 16 is rotated in a state where there is no resin material 14a, and supply of the resin material 14a is started. Therefore, it takes a predetermined time for the plasticization to proceed while the supplied resin material 14a flows to the front of the screw 16 through the resin flow path 10, and to start storing (measuring) in the storage portion 15b. .
  • the temperature of the inline screw type injection device 1 (such as the heating barrel 15 and the screw 16) in the cold state is increased to a temperature suitable for molding a non-defective product after the supply of the resin material 14a is started and stabilized (saturating). It takes a predetermined time to do so. Stable (saturating) until the temperature of the in-line screw injection device 1 is raised to a temperature suitable for molding a non-defective product, or the heat receiving and heat dissipation of the in-line screw injection device 1 itself is balanced.
  • the molding cycle before the molding cycle is started, that is, before the resin material 14a is supplied, it is possible to start heating by the heating means 15a of the heating barrel 15 and raise the temperature of the in-line screw injection apparatus 1 in advance.
  • the heat history of the inline screw injection device 1 until saturating with heat reception and heat dissipation cannot be complementarily controlled only by the heating control of the heating means 15a as described above. Therefore, the plastic material of the resin material 14a is not plasticized and injection filling is performed, and only the heating control of the heating means 15a is performed. It is difficult to suitably raise the temperature and saturate so that can be molded.
  • the plasticized state of the resin material 14a in the storage portion 15b and the mold side In order to reach a molding cycle in which the temperature adjustment is stable and a good product can be molded, a predetermined number of molding cycles are required. Naturally, in the molding cycle until reaching the molding cycle capable of molding this good product, a defective product is molded. Between the average rotational torque generated in the screw 16 (first average rotational torque) in the molding cycle in which defective products are molded, and the first average rotational torque in the molding cycle in which non-defective products can be molded, there is an unavoidable variation. Difference more than the difference caused by.
  • Example 1 the average value of the rotational torque generated in the screw 16 (first average rotational torque) in the weighing step of storing the plasticized resin material 14a in the storage portion 15b up to a set amount in one molding cycle. ) Is calculated (first average rotational torque calculating step). While the supply of the resin material 14a into the heating barrel 15 is continued, the first average rotational torque calculated in the first average rotational torque calculation step is the second average rotational torque in the second average rotational torque calculation step described later. It is an important numerical value used to calculate the rotational torque.
  • the rotational torque generated in the screw 16 fluctuates even when measurement proceeds under normal measurement conditions.
  • the load current in a state in which the resin material in the injection device has reached a desired holding amount during the measurement process in which the rotational torque generated in the screw 16 fluctuates is pinpointed. Since the setting value is set, the above-described problem occurs.
  • variation which arose in the rotational torque of the screw 16 can be reduced by averaging the rotational torque which arises in the screw 16 in a measurement process, and handling it as a 1st average rotational torque. Therefore, the rotational torque of the screw 16 can be a stable reference.
  • the first average rotational torque calculation step is performed in a predetermined number of molding cycles after the molding is started. Preferably not. Depending on the resin molded product, its size and required quality, as well as the molding conditions and injection conditions, the number of molding cycles to reach a molding cycle capable of molding a good product from the start of molding varies. Therefore, it is preferable to obtain in advance a suitable predetermined number of times not to perform the first average rotational torque calculation step by test molding or the like. In Example 1, it is assumed that the predetermined number of times is five, and a good product can be molded from the sixth molding cycle B1.
  • the first average rotational torque calculation process described above is performed in each of a plurality of selected molding cycles from the sixth molding cycle B1 in which a good product can be molded, and the first average rotational torque of each molding cycle is calculated.
  • the selection method and the number of molding cycles are set to five consecutive times (from the sixth molding cycle B1 to the tenth molding cycle B5). These five molding cycles are collectively referred to as a B molding cycle.
  • the first average rotational torque calculation step is performed in each molding cycle (B1 to B5) of the B molding cycle, and the first average rotational torque of each molding cycle is calculated.
  • the first average rotational torque calculated in each of the molding cycles B1 to B5 is summed up almost simultaneously with the completion of the measuring step of the tenth molding cycle B5 (the last molding cycle in the B molding cycle), and the total value is obtained. Is calculated by dividing the number of times by the number of times selected (5 in the first embodiment). Then, the second average rotational torque calculated in the B molding cycle is set as a stable molding torque reference value by a control device (not shown).
  • the second average rotational torque calculation step is a step of calculating the second average rotational torque and setting the calculated second average rotational torque as the stable molding torque reference value.
  • the stable molding torque reference value set in the second average rotational torque calculation step of the B molding cycle is TB.
  • the first average rotational torque in the eleventh molding cycle immediately after the tenth molding cycle for which the stable molding torque reference value TB is set is the stable molding torque reference value TB that is set in the immediately preceding tenth molding cycle. (Average rotational torque comparison process).
  • a new second average rotational torque calculation step is started from the seventh molding cycle.
  • five molding cycles that are continuous from the seventh molding cycle are collectively referred to as a C molding cycle.
  • the second average rotational torque is calculated and set as the stable molding torque reference value TC.
  • the first average rotational torque in the twelfth molding cycle immediately after the eleventh molding cycle for which the stable molding torque reference value TC is set is set in the immediately preceding eleventh molding cycle. It is compared with the stable molding torque reference value TC (average rotational torque comparison step).
  • the second average rotational torque calculation step is newly performed in the same manner, so that the stable molding torque reference value is obtained.
  • TD and TE are set respectively.
  • Example 1 the first average rotational torque calculating step and the second average rotational torque calculating step are started from the sixth molding cycle in which good products can be molded, and the stable molding torque reference value is set.
  • an average rotational torque comparison step for comparing the stable molding torque reference value calculated and set from the most recent set number of molding cycles with the first average rotational torque in the molding cycle immediately thereafter is performed for each molding cycle. It is characterized by letting it be done.
  • FIG. 6 shows the first average rotational torque (solid line 1) of the screw 16 in the measuring step of a molding cycle in which a non-defective product can be molded in a certain test molding, and three types of candidate values (dotted line 2, It is a graph which shows the continuous line 3 and the dashed-dotted line 4).
  • the first average rotational torque is used to calculate the second average rotational torque for one set of molding cycles (five continuous molding cycles) to which the molding cycle related to the first average rotational torque belongs, It is used for comparison with a stable molding torque reference value obtained by one set of molding cycles immediately before the molding cycle related to the first average rotational torque.
  • the set molding end value is a reference value for determining the final molding cycle in the present invention, and is a difference of the first average rotational torque with respect to the stable molding torque reference value (second average rotational torque).
  • second average rotational torque the stable molding torque reference value
  • a method of obtaining a set molding end value by test molding or the like based on a stable molding torque reference value (second average rotational torque) having high reliability as a reference value will be described.
  • the horizontal axis indicates the number of molding cycles (N), and the 50th molding cycle and thereafter are shown.
  • the vertical axis indicates the rotational torque of the screw 16, and is not the rotational torque value itself, but the percentage when the rated rotational torque of the servomotor of the metering drive mechanism (not shown) that rotates the screw 16 is 100%. It is displayed.
  • the square plotted on the number of times of each molding cycle is the first average rotational torque of the metering step in the molding cycle, and a straight line connecting these squares (solid line 1) is the first average rotational torque of the screw 16. Shows changes. Although slight fluctuations that may be caused by factors that cannot be avoided are confirmed, the difference in the first average rotational torque for each molding cycle is not large and relatively stable from the 50th to the 58th molding cycle. Shows the value.
  • the dotted line 2, the solid line 3 and the one-dot chain line 4 in FIG. 6 are the stable molding torque reference values set in each molding cycle (the second average rotational torque of the screw 16 of the molding cycle of the five most recent molding cycles).
  • the three types of candidate values of the set molding end value based on the are plotted and smoothly connected.
  • the dotted line 2 is the stable molding torque reference value reduced by 10% (90% of the stable molding torque reference value)
  • the solid line 3 is the stable molding torque reference value reduced by 20%.
  • the one-dot chain line 4 is obtained by reducing the stable molding torque reference value by 30% (70% of the stable molding torque reference value).
  • the supply of the resin material 14a is stopped after the completion of the weighing process of the 58th molding cycle in FIG. Therefore, in the 59th and subsequent molding cycles, the first average rotational torque of the screw 16 decreases for each molding cycle. Since the second average rotational torque (stable molding torque reference value) calculated from the first average rotational torque in each of the latest five molding cycles is also affected by the decrease in the first average rotational torque, the dotted line 2, the solid line 3 and The alternate long and short dash line 4 also decreases with each molding cycle. In the case of the molding cycle of FIG.
  • the first average rotational torque is a value obtained by reducing the stable molding torque reference value by 20% (solid line 3). In other words, a result of reaching (decreasing) 80% of the stable molding torque reference value was obtained. Further, the 60th molding cycle was the last molding cycle in which a good product was molded.
  • Example 1 it was confirmed by the above-described test molding that 80% of the second average rotational torque (stable molding torque reference value) is the set molding end value.
  • the first average rotational torque of the screw 16 is molded under the condition that the amount of the resin material held in the injection device is minimized. It was confirmed that it was a molding cycle (60th in the case of Example 1) that reached (decreased) 80% of the second average rotational torque of the latest five times (set number). Therefore, even in actual molding for producing a resin molded product, the object of the present invention can be achieved by setting the molding cycle that satisfies this condition as the final molding cycle.
  • the present invention ends the molding cycle with the molding cycle in which the first average rotational torque is lower than the set molding end value as the final molding cycle. Therefore, in the first embodiment, the set molding end value may be set as 80% of the stable molding torque reference value.
  • Example 1 the first average rotational torque of the screw 16 is confirmed to be slightly fluctuated due to factors that cannot be avoided. However, the difference in the first average rotational torque for each molding cycle before stopping the supply of the resin material 14a is not large and shows a relatively stable value, and the set molding end value (stable molding torque reference value). There is no fluctuation to reach 80%).
  • the rotation torque average value first average rotation torque
  • the stable molding torque reference value since the rotation torque average value (first average rotation torque), not the rotation torque itself of the screw 16 in the weighing process, is compared with the stable molding torque reference value, the change in the rotation torque of the screw 16 varies. However, the possibility of erroneous detection as in the material detection method of the injection molding machine of Patent Document 1 is reduced.
  • the set molding end value is set based on the stable molding torque reference value (second average rotational torque).
  • the stable molding torque reference value (second average rotational torque) is a value obtained by averaging again the first average rotational torque in the molding cycle of the set number of consecutive times (last five times). Therefore, as shown by the solid line 3 in FIG. 6 and the like, the set molding end value of each molding cycle based on the stable molding torque reference value (second average rotational torque) is the first average of the same molding cycle for all three candidates. The fluctuation is suppressed more than the rotational torque. As a result, the possibility of erroneous detection as in the material detection method of the injection molding machine of Patent Document 1 is further reduced.
  • the stable molding torque reference value calculated in this way is the moving average of the rotational torque of the screw calculated as one time series for one metering step of a certain molding cycle, as in the method of stopping the purge operation in Patent Document 2. It is clear that the reliability is higher than the value.
  • the second average rotational torque is calculated from the first average rotational torque in the last five consecutive molding cycles, and the stable molding torque reference value is set each time. Therefore, as shown in FIG. 6, the set molding end value based on the stable molding torque reference value (second average rotational torque) in the change (decrease) in the first average rotational torque after the supply of the resin material 14 a is stopped. Changes immediately (follows down). In this way, by setting the latest stable molding torque reference value each time, it can occur even under conditions where good products are molded due to the influence of temperature changes in the environment in which molding is performed, temperature changes in the injection molding machine, etc. Thus, the influence of fluctuations in the first average rotational torque and the second average rotational torque (stable molding torque reference value) can be suppressed, and the desired timing of the molding cycle can be ended.
  • the setting molding end value, the selection method, and the number of times are changed for the setting molding end value and the molding cycle selection method and number of times for calculating the second average rotational torque. It is only necessary to obtain an appropriate set value that can determine the timing at which the defective amount of the resin material is not molded and the holding amount of the resin material in the injection apparatus is minimized by performing the test molding or the like. Further, the first average rotational torque, the second average rotational torque, and the setting end value may be displayed as rotational torque values instead of% display.
  • the setting end value is a test molding rather than setting the rotational torque value itself of the first average rotational torque obtained by the test molding or the like as the setting value.
  • the first average rotational torque obtained by the above method is set to a setting value associated with the second average rotational torque (stable molding torque reference value) obtained by the same test molding or the like (for example, as in the first embodiment, the setting is completed) It is more preferable that the value be a ratio (%) that decreases from the stable molding torque reference value.
  • Embodiment 2 of the present invention a method for terminating a molding cycle of an injection molding machine according to Embodiment 2 of the present invention will be described with reference to FIG. Also in the second embodiment, it is assumed that the injection molding machine having the inline screw injection device 1 described above is used. Further, the second embodiment differs from the first embodiment only in the timing at which the second average rotational torque calculating step and the average rotational torque comparing step of the screw 16 are performed in the selected molding cycle. Since the other points are basically the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used for the same components, and redundant description is omitted.
  • Example 2 as in Example 1, the predetermined number of times that the first average rotational torque calculation step is not performed is five, and a good product can be molded from the sixth molding cycle B1.
  • the molding cycle selection method and the number of times for calculating the second average rotational torque are also set to five consecutive times as in the first embodiment.
  • Example 2 as in Example 1, the first average rotational torque calculation step is performed in each of the five consecutive B molding cycles from the sixth molding cycle B1 in which a good product can be molded. Further, the second average rotational torque is calculated and the stable molding torque reference value TB is set substantially simultaneously with the completion of the measurement process of the tenth molding cycle B5.
  • the first average rotational torque calculation step is performed in each molding cycle of five consecutive C molding cycles from the eleventh molding cycle C1. Further, the second average rotational torque is calculated and the stable molding torque reference value TC is set substantially simultaneously with the completion of the metering step of the fifteenth molding cycle C5. Further, the first average rotational torque of each molding cycle (C1 to C5) of the C molding cycle is compared with the stable molding torque reference value TB set in the previous B molding cycle (average rotational torque comparison step).
  • Example 2 the first average rotational torque calculation step is performed in each molding cycle of the five consecutive D molding cycles from the 16th molding cycle D1, and the second average rotational torque calculation step is performed. Make it. Further, the first average rotational torque of each molding cycle (D1 to D5) of the D molding cycle is compared with the stable molding torque reference value TC set in the previous C molding cycle.
  • a plurality of (5 consecutive) molding cycles selected in the second average rotational torque calculation step are set as one set, and a stable molding torque reference value is set for each set.
  • the average rotational torque comparison step the first average rotational torque of each set of molding cycles is compared with a stable molding torque reference value set in the immediately preceding one set.
  • Example 2 is suitable for molding in which the first average rotational torque of the screw 16 does not vary and the first average rotational torque is relatively stable as compared with the molding of Example 1.
  • the second average By reducing the number of molding cycles selected in the rotational torque calculation step (2 to 3 times), the fluctuations in the first average rotational torque and the second average rotational torque can be controlled with a relatively simple control compared to the first embodiment. Even if it occurs, this can be reflected.
  • the setting molding end value employed in the average rotational torque comparison step, the molding cycle selection method and the number of times for calculating the second average rotational torque, and the like are the same as those in the first embodiment, and the description thereof will be omitted.
  • the present invention can be implemented in various forms without being limited to the above embodiment.
  • the first average rotational torque calculation step and the second average rotational torque calculation step are performed from the sixth molding cycle B1 in which a good product can be molded.
  • the present invention is not limited to this. It is not something.
  • the second average rotational torque calculation step is performed a plurality of times selected from an arbitrary molding cycle, and then the calculated stable molding torque reference value is stored in the control device, and another arbitrary From this molding cycle, the average rotational torque comparison step may be performed using this stable molding torque reference value.
  • Example 1 and Example 2 the first average rotational torque calculation step and the second average rotational torque calculation step are performed in five consecutive molding cycles from the sixth molding cycle B1 in which a good product can be molded.
  • the present invention is not limited to this.
  • a plurality of molding cycles may be selected, such as the first and third cycles.
  • a plurality of molding cycles may be selected by skipping a plurality of times such as the fifth and the tenth from 50 consecutive molding cycles.
  • an injection device of an injection molding machine includes a pre-plastic injection device having a configuration different from that of an inline screw injection device.
  • the pre-plastic injection device has a configuration in which a plasticizing cylinder for plasticizing a resin material and an injection cylinder for injecting and filling a resin material are connected on the nozzle side.
  • the pre-plastic injection device is configured to store a resin material plasticized by a plasticizing cylinder having a built-in rotating screw in a storage part in the injection cylinder connected to the front of the plasticizing cylinder through a resin flow path.
  • the pre-plastic injection device after completion of the metering process, advances the plunger that is slidable in the longitudinal direction in the injection cylinder so that the resin material stored in the storage portion is injected and filled into the mold. It is configured.
  • the pre-plastic injection device is greatly different from the configuration of the in-line screw injection device in that the plasticizing cylinder and the injection cylinder are independent.
  • the description has been made on the assumption of an injection molding machine having an inline screw type injection device.
  • the present invention is not limited to this, and the present invention is also implemented in an injection molding machine having a pre-plastic injection device. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A method for ending a molding cycle of an injection molding machine includes: a first average running torque calculation step of calculating a first average running torque of a screw 16 in a measurement step; a second average running torque calculation step of calculating a second average running torque in a plurality of times of molding cycles from respective first average running torques of the plurality of times of selected molding cycles and setting the calculated second average running torque as a stable molding torque reference value; and an average running torque comparison step of comparing the first average running torque with the stable molding torque reference value. In the average running torque comparison step, a molding cycle in which the first average running torque reaches an established molding end value from the stable molding torque reference value or falls below the established molding end value is regarded as a final molding cycle to end the molding cycle.

Description

射出成形機の成形サイクル終了方法Method for ending molding cycle of injection molding machine
 本発明は、加熱バレル内のスクリュを回転させて、前記スクリュの後方から前記加熱バレル内に供給させた樹脂材料を、前記スクリュの前方に向けて流動させる間に可塑化させる射出装置を有する射出成形機の成形サイクル終了方法に関する。 The present invention includes an injection device having an injection device that rotates a screw in a heating barrel and plasticizes a resin material supplied into the heating barrel from the rear of the screw while flowing toward the front of the screw. The present invention relates to a method for finishing a molding cycle of a molding machine.
 初めに、射出成形機の射出装置において、1成形サイクル分の溶融樹脂を可塑化(溶融状態に)させる計量工程について説明する。図1に示すように、インラインスクリュ式射出装置1は、後方側(図1右側)にホッパー等の材料供給部14が形成された加熱バレル15と、加熱バレル15内に回転可能に配置されたスクリュ16と、スクリュ16を回転させるサーボモータ等の計量用駆動機構(図示せず)と、加熱バレル15の外周面に配置される加熱手段15aとを備えている。スクリュ16は、その外周面に螺旋状のフライト16aを有している。また、スクリュ16は、加熱バレル15内に配置された際に、フライト16a間と、スクリュ16の外周面と、加熱バレル15の内周面とによって、螺旋状に連続する樹脂流路10が加熱バレル15内に形成されるよう構成されている。このようなインラインスクリュ式射出装置1においては、スクリュ16を計量用駆動機構により回転させることにより、材料供給部14から加熱バレル15内に供給されたペレット状(粒状)の樹脂材料14aが、樹脂流路10を介してスクリュ16前方(図1左側)に向けて流動される。また、インラインスクリュ式射出装置1においては、樹脂材料14aが流動される間に、加熱手段15aからの熱エネルギや、回転するフライト16と樹脂材料14aとの接触時や樹脂材料14a同士の接触時に生じるせん断エネルギにより、樹脂材料14aを加熱して可塑化(溶融状態)させる。尚、図1は、インラインスクリュ式射出装置1の計量工程開始時を示しており、スクリュ16が計量開始位置(射出完了位置)にある。 First, a measurement process for plasticizing (in a molten state) molten resin for one molding cycle in an injection apparatus of an injection molding machine will be described. As shown in FIG. 1, the inline screw type injection device 1 is disposed in a heating barrel 15 in which a material supply unit 14 such as a hopper is formed on the rear side (right side in FIG. 1), and rotatably in the heating barrel 15. A screw 16, a metering drive mechanism (not shown) such as a servo motor for rotating the screw 16, and a heating means 15 a disposed on the outer peripheral surface of the heating barrel 15 are provided. The screw 16 has a spiral flight 16a on its outer peripheral surface. Further, when the screw 16 is disposed in the heating barrel 15, the resin flow path 10 that is spirally continuous is heated by the space between the flights 16 a, the outer peripheral surface of the screw 16, and the inner peripheral surface of the heating barrel 15. It is configured to be formed in the barrel 15. In such an in-line screw type injection device 1, by rotating the screw 16 by the measuring drive mechanism, the pellet-shaped (granular) resin material 14a supplied from the material supply unit 14 into the heating barrel 15 is made of resin. It flows toward the front of the screw 16 (left side in FIG. 1) through the flow path 10. Further, in the in-line screw injection device 1, while the resin material 14a is flowing, the thermal energy from the heating means 15a, the contact between the rotating flight 16 and the resin material 14a, or the contact between the resin materials 14a. The resin material 14a is heated and plasticized (melted state) by the generated shear energy. FIG. 1 shows the start of the weighing process of the in-line screw type injection device 1, and the screw 16 is at the measurement start position (injection completion position).
 樹脂材料14aは、スクリュ16の前方に向けて流動され、樹脂流路10における受熱距離及び受熱時間の増加に伴って可塑化(溶融)が進行する。そして、樹脂材料14aは、スクリュ16前方のチェックリング18を通過する時点においてほぼ完全に可塑化され、スクリュ16先端のスクリュヘッド17前方の空間(貯留部15b)に到達する。計量工程において、加熱バレル15先端のノズル13は、図示しない金型のスプルブッシュに押圧されており、また、ノズル13又は金型に配置された図示しない樹脂遮断開放切換弁は、遮断されている。これにより、貯留部15bは、閉空間を形成しているため、可塑化させた樹脂材料14a(溶融樹脂)を貯留部15bに貯留させることができる。 The resin material 14a flows toward the front of the screw 16, and plasticization (melting) proceeds as the heat receiving distance and the heat receiving time in the resin flow path 10 increase. The resin material 14a is almost completely plasticized when it passes through the check ring 18 in front of the screw 16, and reaches the space (reservoir 15b) in front of the screw head 17 at the tip of the screw 16. In the measuring step, the nozzle 13 at the tip of the heating barrel 15 is pressed by a sprue bush of a mold (not shown), and the resin cutoff opening switching valve (not shown) arranged on the nozzle 13 or the mold is shut off. . Thereby, since the storage part 15b forms the closed space, the plasticized resin material 14a (molten resin) can be stored in the storage part 15b.
 ここで、チェックリング18は、逆流防止弁であって、スクリュ16の長手方向に所定量移動可能にスクリュ16と同軸に配置された中空円筒状(リング状)の弁体である。チェックリング18自体には、チェックリング18をスクリュ16に対して長手方向に移動させる駆動源は設けられていない。チェックリング18は、計量工程時に、樹脂流路10を流動させる樹脂材料14aのスクリュ16前方への流動圧力により、スクリュ16前方へ押圧されてその前進限まで移動され、これにより、樹脂流路10を開放状態で維持させるよう構成されている。 Here, the check ring 18 is a backflow prevention valve, and is a hollow cylindrical (ring-shaped) valve body disposed coaxially with the screw 16 so as to be movable by a predetermined amount in the longitudinal direction of the screw 16. The check ring 18 itself is not provided with a drive source for moving the check ring 18 in the longitudinal direction with respect to the screw 16. The check ring 18 is pressed to the front of the screw 16 and moved to the forward limit by the flow pressure of the resin material 14a for flowing the resin flow channel 10 to the front of the screw 16 during the measuring step. Is configured to be maintained in an open state.
 一方、インラインスクリュ式射出装置1においては、スクリュ16を回転させるだけでなく、射出充填のために、図示しない射出用駆動機構により長手方向に所定の速度及び圧力で前後進させることが可能である。スクリュ16は、射出用駆動機構により前進方向(図1左側)の圧力(背圧)が付与されながら、同時に、計量用駆動機構により所定速度で回転される。これにより、樹脂流路10において可塑化させた樹脂材料14aは、前進方向の前記背圧と略同じ圧力を維持させた状態で、貯留部15bに連続して貯留される。その結果、図2に示すように、スクリュ16が回転されながら後退する。このスクリュ16の後退動作中も、チェックリング18前方の貯留部15b内の樹脂材料14aの圧力と、後方の樹脂流路10内の樹脂材料14aの圧力とが略同じ圧力(≒背圧)であるため、チェックリング18は、その前進限位置に留まり、樹脂流路10の開放状態を継続させる。尚、図2は、インラインスクリュ式射出装置1の計量工程完了時を示しており、スクリュ16が計量完了位置(射出開始位置)にある。 On the other hand, in the in-line screw type injection apparatus 1, not only the screw 16 is rotated, but also for injection filling, it can be moved back and forth at a predetermined speed and pressure in the longitudinal direction by an injection driving mechanism (not shown). . The screw 16 is rotated at a predetermined speed by the metering drive mechanism at the same time while the pressure (back pressure) in the forward direction (left side in FIG. 1) is applied by the injection drive mechanism. As a result, the resin material 14a plasticized in the resin flow path 10 is continuously stored in the storage portion 15b in a state where substantially the same pressure as the back pressure in the forward direction is maintained. As a result, as shown in FIG. 2, the screw 16 moves backward while being rotated. Even during the backward movement of the screw 16, the pressure of the resin material 14a in the reservoir 15b in front of the check ring 18 and the pressure of the resin material 14a in the rear resin flow path 10 are substantially the same pressure (≈back pressure). For this reason, the check ring 18 remains in its forward limit position, and the resin channel 10 is kept open. FIG. 2 shows the time when the weighing process of the in-line screw type injection device 1 is completed, and the screw 16 is at the measurement completion position (injection start position).
 射出用駆動機構には、加熱バレル15内のスクリュ16の長手方向の位置を計測する計測手段が配置されている。このような射出用駆動機構においては、計量開始位置(射出完了位置)からスクリュ16の後退位置(計量完了位置/射出開始位置)までの距離から、1成形サイクルに要する可塑化させた樹脂材料14aの量、すなわち、1回の射出充填に必要な樹脂材料14aの量(計量樹脂量)を算出することが一般的である。射出用駆動機構では、予め設定させた位置(計量完了位置/射出開始位置)までスクリュ16を後退させることで計量工程完了と判定し、スクリュ16の回転及び材料供給部14への樹脂材料14aの供給を停止させる。そして、射出用駆動機構では、スクリュ16前方の樹脂遮断開放切換弁を開放させ、射出用駆動機構によりスクリュ16を所定の速度(射出速度)で前進させることにより、貯留部15bの樹脂材料14aを金型内の金型キャビティに射出充填させることができる。 In the injection drive mechanism, measuring means for measuring the longitudinal position of the screw 16 in the heating barrel 15 is arranged. In such an injection drive mechanism, the plasticized resin material 14a required for one molding cycle is determined from the distance from the measurement start position (injection completion position) to the retracted position of the screw 16 (measurement completion position / injection start position). In other words, the amount of resin material 14a necessary for one injection filling (amount of metered resin) is generally calculated. In the injection drive mechanism, it is determined that the measurement process is completed by moving the screw 16 back to a preset position (measurement completion position / injection start position), and the rotation of the screw 16 and the resin material 14a to the material supply unit 14 are determined. Stop supplying. In the injection drive mechanism, the resin shut-off switching valve in front of the screw 16 is opened, and the screw 16 is advanced at a predetermined speed (injection speed) by the injection drive mechanism, whereby the resin material 14a of the storage portion 15b is made to move. The mold cavity in the mold can be injection filled.
 射出充填開始時においては、チェックリング18前方の貯留部15b内の樹脂材料14aの圧力と、同後方の樹脂流路10内の樹脂材料14aの圧力とが略同じ圧力(≒背圧)であるため、スクリュ16の前進動作に対してチェックリング18が追従できない。一方、スクリュ16の前進動作により、スクリュ16におけるチェックリング18の後退限位置に形成させた樹脂流路10の閉塞用シール面(図示せず)が前進して、チェックリング18後方端面に形成させたシール面(図示せず)に当接するため、樹脂流路10が閉塞される。また、樹脂流路10の閉塞後、スクリュ16の前進動作に伴い、貯留部15b内の樹脂材料14aの圧力が急激に上昇し、スクリュ16の前進動作の間、チェックリング18をスクリュ16後方へ押圧させる。そのため、スクリュ16の前進動作の間、貯留部15b内の樹脂材料14aの樹脂流路10への逆流が防止され、樹脂材料14bを金型キャビティ内へ射出充填させることができる。 At the start of injection filling, the pressure of the resin material 14a in the reservoir 15b in front of the check ring 18 and the pressure of the resin material 14a in the rear resin flow path 10 are substantially the same pressure (≈back pressure). Therefore, the check ring 18 cannot follow the forward movement of the screw 16. On the other hand, due to the forward movement of the screw 16, a sealing surface (not shown) for closing the resin flow path 10 formed at the retreat limit position of the check ring 18 in the screw 16 moves forward and is formed on the rear end surface of the check ring 18. The resin flow path 10 is closed because it abuts against the sealing surface (not shown). In addition, after the resin flow path 10 is closed, the pressure of the resin material 14a in the reservoir 15b suddenly increases with the advance operation of the screw 16, and the check ring 18 is moved rearward of the screw 16 during the advance operation of the screw 16. Press. Therefore, during the forward movement of the screw 16, the backflow of the resin material 14a in the storage portion 15b to the resin flow path 10 is prevented, and the resin material 14b can be injected and filled into the mold cavity.
 射出充填工程が完了した後、保圧及び冷却固化時間を経て成形サイクルが完了する。図示しない型締装置では、金型を型開きさせて、樹脂成形品を金型から取り出す製品取り出し工程が行われる。また、インラインスクリュ式射出装置1では、図1に示すように、スクリュ16を回転させると共に、材料供給部14からの樹脂材料14aの供給が開始され、次の成形サイクルのための計量工程が開始される。 After the injection filling process is completed, the molding cycle is completed after holding pressure and cooling solidification time. In a mold clamping device (not shown), a product removal step is performed in which the mold is opened and the resin molded product is taken out of the mold. Further, in the in-line screw injection apparatus 1, as shown in FIG. 1, the screw 16 is rotated and the supply of the resin material 14a from the material supply unit 14 is started, and the measurement process for the next molding cycle is started. Is done.
 尚、直前の成形サイクルの射出充填工程においては、図2に示すスクリュ16の射出開始位置(計量完了位置)から、図1に示すスクリュ16の射出完了位置(計量開始位置)まで、材料供給部14からの樹脂材料14aの供給を停止させた状態でスクリュ16を前進させている。そのため、樹脂材料14aの供給開始時において、材料供給部14の直下から所定距離内の樹脂流路10には、樹脂材料14aがほとんどない疎の状態(飢餓状態)である。ここで、材料供給部14の直下から所定距離内とは、材料供給部14の直下から、計量工程時のスクリュ16の後退距離(図3に示す後退量S)(射出充填工程時のスクリュ16の前進距離)と略同じ、スクリュ16の長手方向の距離内である。 In the injection filling process of the immediately preceding molding cycle, the material supply unit from the injection start position (measurement completion position) of the screw 16 shown in FIG. 2 to the injection completion position (measurement start position) of the screw 16 shown in FIG. The screw 16 is advanced in a state where the supply of the resin material 14a from 14 is stopped. Therefore, when the supply of the resin material 14a is started, the resin flow path 10 within a predetermined distance from directly below the material supply unit 14 is in a sparse state (starvation state) with almost no resin material 14a. Here, “within a predetermined distance from directly below the material supply unit 14” means that the retraction distance of the screw 16 during the measurement process (retraction amount S shown in FIG. 3) (the screw 16 during the injection filling process) from directly below the material supply unit 14 Of the screw 16 in the longitudinal direction.
 次に、インラインスクリュ式射出装置1を備える射出成形機において、成形サイクルを終了させる場合について、図3及び図4を参照しながら説明する。図を簡単にするために、これらの図においては、加熱バレル15内を簡易的に図示している。 Next, the case of terminating the molding cycle in the injection molding machine including the inline screw type injection device 1 will be described with reference to FIGS. In order to simplify the drawings, the inside of the heating barrel 15 is simply illustrated in these drawings.
 先に説明した計量工程において、材料供給部14へ樹脂材料14aが供給されている場合における、計量工程開始時(スクリュ16の回転開始時)の加熱バレル15内の状態を図3に示す。加熱バレル15内における、スクリュ16(チェックリング18)前方の貯留部15bは、前の成形サイクルで可塑化された樹脂材料14aで満たされている。また、チェックリング18後方の樹脂流路10も、可塑化状態は異なるものの、「材料供給部14の直下から所定距離内」以外の領域が樹脂材料14aで満たされている。 FIG. 3 shows a state in the heating barrel 15 at the start of the measurement process (at the start of rotation of the screw 16) when the resin material 14a is supplied to the material supply unit 14 in the measurement process described above. A reservoir 15b in front of the screw 16 (check ring 18) in the heating barrel 15 is filled with the resin material 14a plasticized in the previous molding cycle. Also, the resin flow path 10 behind the check ring 18 is filled with the resin material 14a except for “within a predetermined distance from directly below the material supply unit 14” although the plasticized state is different.
 図3に示す状態から成形サイクルを終了させる場合、まず、材料供給装置(図示せず)に材料供給停止指令を発信させて、インラインスクリュ式射出装置1への樹脂材料14aの供給を停止させる。材料供給部14からの樹脂材料14aの供給を停止させても、可塑化状況は異なるものの、加熱バレル15内には多くの樹脂材料14aが保持されている。そのため、樹脂材料14aの供給を停止させた後も成形サイクルを継続させる。そのため、樹脂材料14aの供給停止後、成形サイクルが進行する毎に、図4に示すように、加熱バレル15の樹脂材料14aが漸次減少する。 When the molding cycle is ended from the state shown in FIG. 3, first, a material supply stop command is transmitted to a material supply device (not shown) to stop the supply of the resin material 14a to the inline screw injection device 1. Even if the supply of the resin material 14a from the material supply unit 14 is stopped, a large amount of the resin material 14a is held in the heating barrel 15 although the plasticization state is different. Therefore, the molding cycle is continued even after the supply of the resin material 14a is stopped. Therefore, after the supply of the resin material 14a is stopped, as the molding cycle proceeds, the resin material 14a of the heating barrel 15 gradually decreases as shown in FIG.
 ここで、計量工程において、1回の射出充填に必要な樹脂材料14aが貯留部15bに貯留されない場合、すなわち、予め設定させた位置(計量完了位置/射出開始位置)までスクリュ16が後退しない(スクリュ16の計量完了位置未達)、あるいは、後退するまでの時間が変動する場合には、スクリュ16の計量完了位置未達を判定するための基準が必要となる。 Here, in the measurement process, when the resin material 14a necessary for one injection filling is not stored in the storage portion 15b, that is, the screw 16 does not retract to a preset position (measurement completion position / injection start position) ( If the time required for the screw 16 to reach the measurement completion position) or the time until the screw fluctuates fluctuates, a criterion for determining whether the measurement completion position of the screw 16 has not been reached is required.
 そのため、スクリュ16の計量完了位置未達の判定に、スクリュ16の計量完了位置(射出開始位置)への到達に加えて、計量工程開始(スクリュ16の回転開始、あるいは、スクリュ16の後退開始)からの計量時間の監視も行わせて、設定計量時間と比較させることが一般的である。この計量時間の監視の併用により、連続する成形サイクル中、スクリュ16の計量完了位置未達が発生した場合には、射出充填工程へ移行させず、成形サイクルを停止させた後、その要因追及がなされる。また、成形サイクルの停止後、射出装置(可塑化機構)内に残留する樹脂材料を可塑化させて外部に排出(パージ)させる。 For this reason, in addition to reaching the measurement completion position (injection start position) of the screw 16 in addition to the determination that the measurement completion position of the screw 16 has not been reached, the measurement process is started (start of rotation of the screw 16 or start of retraction of the screw 16). In general, the weighing time is monitored and compared with the set weighing time. If the measurement completion position of the screw 16 is not reached during the continuous molding cycle, the metering time is monitored without stopping the molding cycle and stopping the molding cycle. Made. Further, after the molding cycle is stopped, the resin material remaining in the injection apparatus (plasticizing mechanism) is plasticized and discharged (purged) to the outside.
 尚、パージ処理(動作)には様々な方法があるが、インラインスクリュ式射出装置1では、成形サイクル終了後、まず、インラインスクリュ式射出装置1を金型から離間させて、インラインスクリュ式射出装置1の先端のノズル13前方に樹脂受け容器等を配置させる。その後、射出完了位置(計量開始位置)にあるスクリュ16をその位置において一定速度で回転させて、インラインスクリュ式射出装置1内に残留している樹脂材料14aを可塑化させながら、樹脂受け容器等に排出(パージ)させる方法が一般的である。 There are various methods for purging (operation). In the inline screw injection apparatus 1, after the molding cycle is finished, first, the inline screw injection apparatus 1 is separated from the mold, and the inline screw injection apparatus. A resin receiving container or the like is arranged in front of the nozzle 13 at the tip of 1. Thereafter, the screw 16 at the injection completion position (measurement start position) is rotated at that position at a constant speed to plasticize the resin material 14a remaining in the in-line screw type injection apparatus 1, while the resin receiving container or the like A method of discharging (purging) is generally used.
 上記で説明したように、樹脂成形品の成形においては、計量工程時にスクリュ16の計量完了位置未達が発生した場合には成形サイクルを停止させる。そのため、成形サイクルを終了させるために樹脂材料14aの供給を停止させた場合においても、図4に示すように、その後の成形サイクルにおいて、加熱バレル15内の樹脂材料14aが漸次減少して、スクリュ16の計量完了位置未達が発生する状況に到れば、成形サイクルが停止されるため、計量樹脂量不足の不良品が成形されることはないはずである。 As described above, in the molding of a resin molded product, the molding cycle is stopped when the measurement completion position of the screw 16 is not reached during the weighing process. Therefore, even when the supply of the resin material 14a is stopped in order to end the molding cycle, the resin material 14a in the heating barrel 15 gradually decreases in the subsequent molding cycle as shown in FIG. When the situation where the measurement completion position of 16 is not reached is reached, the molding cycle is stopped, so that a defective product with insufficient metering resin amount should not be molded.
 しかしながら、成形サイクルを終了させるために、樹脂材料14aの供給を停止させた場合においては、スクリュ16の計量完了位置未達が発生する状況に到る前の数回の成形サイクル(スクリュ16が計量完了位置に到達する成形サイクル)においても、計量樹脂量不足の不良品が成形される。 However, when the supply of the resin material 14a is stopped in order to finish the molding cycle, several molding cycles before the situation where the measurement completion position of the screw 16 is not reached (the screw 16 is metered) are reached. Also in the molding cycle reaching the completion position), a defective product with insufficient metering resin amount is molded.
 これは、射出装置(加熱バレル15)内の樹脂材料14aの減少に起因する、主に2つの理由によるものである。すなわち、樹脂材料14aの供給を停止させた後の計量工程においては、図3及び図4に示すように、成形サイクル毎に、計量工程開始時における加熱バレル15内の樹脂材料14aは漸次減少していく。計量工程中のスクリュ16は、計量用駆動機構により所定の回転速度で等速制御される。このため、加熱バレル15内の樹脂材料14aの減少に伴い、スクリュ16の所定の回転速度を維持させるための計量用駆動機構の回転トルクが減少し、これに伴って、貯留部15bに単位時間当りに流動される樹脂材料14aの容積が減少する状況が発生する。樹脂材料14aの供給が継続される通常の計量工程においてこの状況は発生しない(理由1)。 This is mainly due to two reasons due to the decrease in the resin material 14a in the injection device (heating barrel 15). That is, in the weighing process after the supply of the resin material 14a is stopped, as shown in FIGS. 3 and 4, the resin material 14a in the heating barrel 15 at the start of the weighing process gradually decreases for each molding cycle. To go. The screw 16 in the measuring process is controlled at a constant speed at a predetermined rotational speed by a measuring drive mechanism. For this reason, as the resin material 14a in the heating barrel 15 decreases, the rotational torque of the metering drive mechanism for maintaining the predetermined rotational speed of the screw 16 decreases, and accordingly, the storage unit 15b has a unit time. A situation occurs in which the volume of the resin material 14a that is allowed to flow is reduced. This situation does not occur in a normal measurement process in which the supply of the resin material 14a is continued (reason 1).
 一方、計量工程中のスクリュ16は、射出用駆動機構により前進方向に付与される背圧が一定となるようにその後退動作が制御される。このため、加熱バレル15内の樹脂材料14aの減少に伴い、スクリュ16に付与させる背圧を維持させるための計量用駆動機構の後退速度が減少し、これに伴って、貯留部15bに単位時間当りに流動される樹脂材料14aの容積も減少する状況が発生する。こちらも、通常の計量工程においては発生しない(理由2)。 On the other hand, the backward movement of the screw 16 during the measuring process is controlled so that the back pressure applied in the forward direction by the injection drive mechanism is constant. For this reason, with the decrease in the resin material 14a in the heating barrel 15, the retraction speed of the metering drive mechanism for maintaining the back pressure applied to the screw 16 decreases, and accordingly, the storage unit 15b has a unit time. A situation occurs in which the volume of the resin material 14a that is flowed per contact also decreases. This also does not occur in the normal weighing process (reason 2).
 上記のような理由1及び理由2により、成形サイクルを終了させるために樹脂材料14aの供給を停止させた場合において、スクリュ16が計量完了位置に到達する成形サイクルであっても、貯留部15bに貯留される樹脂材料14aの容積が、通常の計量工程において貯留される容積よりも減少する状況が発生し、これにより、計量樹脂量不足の不良品が成形される。そのため、樹脂材料の供給を停止させた場合であっても、計量樹脂量不足の不良品が成形されず、射出装置内の樹脂材料の保持量を最小にさせるタイミングで、成形サイクルを終了させることができる、射出成形機の成形サイクル終了方法が望まれている。 For the reasons 1 and 2 described above, when the supply of the resin material 14a is stopped in order to end the molding cycle, even in the molding cycle in which the screw 16 reaches the measurement completion position, the reservoir 15b A situation occurs in which the volume of the stored resin material 14a is smaller than the volume stored in a normal weighing process, and thereby a defective product having an insufficient amount of measured resin is formed. Therefore, even when the supply of resin material is stopped, defective products with insufficient metered resin amount are not molded, and the molding cycle is terminated at the timing to minimize the amount of resin material held in the injection device. Therefore, there is a demand for a method for completing a molding cycle of an injection molding machine.
 ここで、成形中の材料不足や材料切れの検出、あるいは、パージ処理(動作)時に、射出装置(可塑化機構)内の樹脂材料が無くなったことを検出するために、特許文献1の射出成形機の材料検知方法や、特許文献2のパージ動作の停止方法が知られている。 Here, in order to detect the lack of the resin material in the injection device (plasticizing mechanism) at the time of detection of material shortage or material shortage during molding, or purge processing (operation), the injection molding of Patent Document 1 is performed. A material detection method for a machine and a method for stopping a purge operation of Patent Document 2 are known.
 特許文献1の射出成形機の材料検知方法は、成形サイクル中、あるいは、パージ動作中に、加熱筒(加熱バレル)内における材料(樹脂材料)の有無を検知することを目的としている。特許文献1の射出成形機の材料検知方法は、スクリュ回転駆動モータの作動時に、駆動モータの負荷電流の大きさを検出し、電流検出値が予め設定した電流設定値以下となり、かつ電流設定値以下の時間が予め設定した設定時間以上継続したときに、材料不検知信号を出力するものである。 The material detection method of the injection molding machine of Patent Document 1 is intended to detect the presence or absence of a material (resin material) in a heating cylinder (heating barrel) during a molding cycle or during a purge operation. The material detection method of the injection molding machine of patent document 1 detects the magnitude | size of the load current of a drive motor at the time of the action | operation of a screw rotational drive motor, and an electric current detection value becomes below the preset current setting value, and an electric current setting value A material non-detection signal is output when the following time continues for a preset time or more.
 特許文献2のパージ動作の停止方法は、パージ動作を自動で行わせる場合に、可塑化装置(射出装置)内から排出される樹脂が無くなる時点を正確に検出することを目的としている。特許文献2のパージ動作の停止方法は、パージ動作の開始後、可塑化装置内でスクリュを所定の回転速度で回転させながらスクリュの駆動トルクを監視し、この駆動トルクが予め定められた設定値まで低下したとき、直ちにまたは所定時間経過後に、スクリュの回転を停止させるものである。 The method of stopping the purge operation in Patent Document 2 is intended to accurately detect the time when the resin discharged from the plasticizing apparatus (injection apparatus) runs out when the purge operation is automatically performed. According to the method for stopping the purge operation in Patent Document 2, after the purge operation is started, the screw driving torque is monitored while rotating the screw at a predetermined rotational speed in the plasticizing apparatus, and the driving torque is set to a predetermined value. The screw rotation is stopped immediately or after a predetermined time has elapsed.
特開平4-334426号公報JP-A-4-334426 特開2006-088557号公報JP 2006-088557 A
 射出装置内の樹脂材料が無くなったことを検出するため、特許文献1の射出成形機の材料検知方法においてはスクリュの回転駆動モータの負荷電流を検出し、特許文献2のパージ動作の停止方法においてはスクリュの駆動トルクを監視している。言い換えれば、特許文献1の射出成形機の材料検知方法と特許文献2のパージ動作の停止方法は、いずれも、スクリュの回転トルクを監視し、この回転トルクが設定値以下になった際に、射出装置内の樹脂材料が所望する保持量(残量)に到達した状態だと判定するものである。 In order to detect the loss of the resin material in the injection device, the material detection method of the injection molding machine of Patent Document 1 detects the load current of the screw rotation drive motor, and the method of stopping the purge operation of Patent Document 2 Monitors the screw drive torque. In other words, both the material detection method of the injection molding machine of Patent Document 1 and the purge operation stop method of Patent Document 2 monitor the rotational torque of the screw, and when this rotational torque becomes a set value or less, It is determined that the resin material in the injection device has reached a desired holding amount (remaining amount).
 ここで、計量工程中やパージ動作中のスクリュにおいては、回転速度を一定に制御することが一般的である。その場合、スクリュの回転速度を一定に維持するために必要な回転トルクは、一定ではなく変動する。例えば、図3に示すように、加熱バレル15(可塑化機構)内がほぼ樹脂材料14aで満たされた状態から、正常な計量状態下で計量工程を進行させた場合でも、スクリュの回転トルクは変動する。また、可塑化させた樹脂材料14aの貯留部15bにおける貯留容積の増加に伴い、スクリュ16に生じる回転トルクは変動を伴いながら変化する。更に、想定外の突発的な要因(例えば、材料供給部14からの樹脂材料14aの供給が停止される等の材料供給状態の変化に起因して、材料供給部14直下からスクリュ16前方の樹脂流路10に保持された樹脂材料14aに生じる流動不良等)が発生すれば、スクリュ16に生じる回転トルクの変動や変化は、大きくなることはあっても、小さくなることはない。 Here, it is common to control the rotation speed to be constant in the screw during the measuring process or purging operation. In that case, the rotational torque required to keep the rotational speed of the screw constant is not constant but varies. For example, as shown in FIG. 3, even when the weighing process is performed under a normal weighing state from a state where the inside of the heating barrel 15 (plasticizing mechanism) is almost filled with the resin material 14a, the rotational torque of the screw is fluctuate. Further, as the storage volume of the plasticized resin material 14a in the storage portion 15b increases, the rotational torque generated in the screw 16 changes with fluctuation. Furthermore, unexpected unexpected factors (for example, the resin in front of the screw 16 from directly below the material supply unit 14 due to a change in the material supply state such as the supply of the resin material 14a from the material supply unit 14 being stopped). If a flow failure or the like generated in the resin material 14a held in the flow path 10 occurs, fluctuations or changes in the rotational torque generated in the screw 16 may increase, but not decrease.
 また、パージ動作においては、正常なパージ動作状態下でパージ動作が進行した場合、射出装置内の樹脂材料の減少に伴って、スクリュに生じる回転トルクが低下する。しかしながら、パージ動作においても、スクリュを所定の回転速度で回転させる速度制御が行われるため、スクリュの回転速度を一定に維持するために必要な回転トルクは一定ではなく変動し、スクリュに生じる回転トルクは変動を伴いながら低下する。更に、想定外の突発的な要因や、射出装置内の樹脂材料の減少に対して、射出装置の加熱手段の加熱制御が維持されることによる、射出装置内の樹脂材料の可塑化状態の変化等を鑑みると、スクリュに生じる回転トルクの変動は回避し得ない(特許文献2の図2/パージ動作の開始から終了までのスクリュの駆動トルク(回転トルク)参照)。 Also, in the purge operation, when the purge operation proceeds under a normal purge operation state, the rotational torque generated in the screw decreases as the resin material in the injection device decreases. However, since the speed control for rotating the screw at a predetermined rotational speed is also performed in the purge operation, the rotational torque necessary to keep the screw rotational speed constant is not constant, and the rotational torque generated in the screw Decreases with fluctuations. Furthermore, the change in the plasticized state of the resin material in the injection device is maintained by maintaining the heating control of the heating means of the injection device against unexpected unexpected factors and a decrease in the resin material in the injection device. In view of the above, fluctuations in the rotational torque generated in the screw cannot be avoided (see FIG. 2 of Patent Document 2 / screw driving torque (rotational torque) from the start to the end of the purge operation).
 そのため、特許文献1の射出成形機の材料検知方法のように、スクリュの回転駆動モータの変動する負荷電流に対して、射出装置内の樹脂材料が所望する保持量に到達した状態の負荷電流をピンポイントで電流設定値として設定させたとしても、その電流設定値まで負荷電流が低下した状態が、負荷電流が変動により一時的にその電流設定値まで低下した状態であって、所望する保持量に到達した状態ではない可能性がある。 Therefore, as in the material detection method of the injection molding machine of Patent Document 1, the load current in a state where the resin material in the injection device has reached the desired holding amount with respect to the fluctuating load current of the screw rotation drive motor. Even if the current setting value is set as a pinpoint, the state in which the load current has decreased to the current setting value is a state in which the load current has temporarily decreased to the current setting value due to fluctuation, and the desired holding amount It may not be in a state of reaching.
 更に、特許文献1の射出成形機の材料検知方法では、その電流設定値以下の時間が予め設定した設定時間以上継続することを検知の条件に加えている。これは、上記のような、スクリュの回転トルクの低下に伴う、回転トルクの変動や、想定外の突発的な要因等により、スクリュの回転駆動モータの負荷電流が変動により一時的にその電流設定値まで低下することによる誤検知を回避するためと推測される。しかしながら、その電流設定値まで低下した状態が維持される時間が、それら変動の要因の種類、状況及び程度により様々であるため、好適な設定時間を設定することが難しい。その結果、特許文献1の射出成形機の材料検知方法では、その電流設定値まで負荷電流が低下し、かつ電流設定値以下の時間が予め設定させた設定時間以上継続した状態であっても、射出装置内の樹脂材料が所望する保持量に到達した状態ではない可能性が依然として残る。 Furthermore, in the material detection method of the injection molding machine of Patent Document 1, the condition that the time below the current set value continues for a preset time or longer is added to the detection condition. This is because the load current of the screw rotation drive motor temporarily changes due to fluctuations in the rotation torque due to a decrease in the screw rotation torque as described above, unexpected unexpected factors, etc. It is presumed to avoid false detection due to the drop to the value. However, since the time during which the state reduced to the current set value is maintained varies depending on the type, situation, and degree of the factors of these fluctuations, it is difficult to set a suitable set time. As a result, in the material detection method of the injection molding machine of Patent Document 1, even if the load current decreases to the current set value and the time equal to or less than the current set value continues for a preset time or more, There still remains a possibility that the resin material in the injection apparatus is not in the state of reaching the desired holding amount.
 このように、特許文献1の射出成形機の材料検知方法では、樹脂材料の供給を停止させた場合の、射出装置内の樹脂材料が所望する保持量に到達した状態、すなわち、樹脂量不足の不良品が成形されず、可塑化機構内の樹脂材料の保持量を最小にさせるタイミングに相当するスクリュの回転トルクを、試験成形等によりピンポイントで求め、これをその設定値としても、所望する上記状態を正確に検知できない可能性が高い。 Thus, in the material detection method of the injection molding machine of patent document 1, when supply of the resin material is stopped, the resin material in the injection device has reached the desired holding amount, that is, the resin amount is insufficient. The screw torque corresponding to the timing at which the defective product is not molded and the amount of the resin material held in the plasticizing mechanism is minimized is obtained pinpoint by test molding or the like, and this is also set as a desired value. There is a high possibility that the above state cannot be detected accurately.
 一方、特許文献2には、スクリュの回転トルクが設定値まで低下したときを、射出装置内の樹脂材料が所望する保持量に到達した状態(特許文献2の場合は射出装置内の樹脂材料が無くなった状態)とする方法以外に、スクリュの回転トルクの移動平均値を監視し、この移動平均値が設定値まで低下したときを、射出装置内の樹脂材料が所望する保持量に到達した状態とする方法(代替方法)が記載されている(特許文献2の請求項2他)。 On the other hand, in Patent Document 2, when the rotational torque of the screw is reduced to a set value, the resin material in the injection device has reached a desired holding amount (in the case of Patent Document 2, the resin material in the injection device is In addition to the method of “no longer being used”, the moving average value of the rotational torque of the screw is monitored, and when this moving average value drops to the set value, the resin material in the injection device has reached the desired holding amount A method (alternative method) is described (claim 2 of patent document 2 and others).
 ここで、移動平均値とは、「時系列データにおいて、ある一定区間毎の平均値を、その区間をずらしながら求めたものであって、移動平均値を用いてグラフを作成すると、長期的な傾向を表す滑らかな曲線が得られる」ものである(インターネットサイト「統計WEB/統計Tips/移動平均の計算方法」より抜粋)。特許文献2に記載された代替方法では、スクリュの回転トルクではなく、スクリュの回転トルクの移動平均値に対して設定値を設けることにより、特許文献2の図2に示すような、パージ動作の開始から終了までの、変動を伴うスクリュの駆動トルク(回転トルク)を、特許文献2の図4に示すように、ある程度まで滑らかな変動に変換させることができると思われる。また、これにより、特許文献2に記載された代替方法は、上述したような、パージ動作時においてスクリュに生じる回転トルクの低下に伴う変動による、一時的な設定値までの低下を誤検知することの回避に寄与すると思われる。 Here, the moving average value is “in the time series data, an average value for each certain interval is obtained while shifting the interval, and if a graph is created using the moving average value, a long-term A smooth curve representing the trend is obtained ”(extracted from the Internet site“ Statistical WEB / Statistical Tips / Moving Average Calculation Method ”). In the alternative method described in Patent Document 2, a setting value is provided for the moving average value of the screw rotation torque, not the screw rotation torque, so that the purge operation as shown in FIG. From the start to the end, it is considered that the screw driving torque (rotational torque) accompanied by the fluctuation can be converted to a smooth fluctuation to some extent as shown in FIG. Accordingly, the alternative method described in Patent Document 2 erroneously detects a decrease to a temporary set value due to a variation caused by a decrease in rotational torque generated in the screw during the purge operation as described above. It seems to contribute to avoiding the problem.
 しかしながら、上記のような移動平均値は、特許文献2が、スクリュの長手方向への移動がない、回転動作だけのパージ動作時のスクリュの回転トルクの変化や変動を、パージ動作の開始から終了までを1つの時系列として取り扱うことにより採用できるものである。これに対して、計量工程は、1成形サイクル中の1計量工程が1つの時系列であるから、射出装置内の樹脂材料が所望する保持量に到達した状態と判定させる場合に、特許文献2の移動平均値を採用できるのは、ある1成形サイクルの1計量工程中のスクリュの回転トルクの変化や変動に対してだけである。 However, the moving average value as described above is disclosed in Japanese Patent Application Laid-Open No. 2003-259542. The change and fluctuation of the rotational torque of the screw during the purge operation without rotation in the longitudinal direction of the screw are terminated from the start of the purge operation. Can be adopted by treating up to one time series. On the other hand, in the weighing process, since one weighing process in one molding cycle is one time series, when it is determined that the resin material in the injection device has reached a desired holding amount, Patent Document 2 The moving average value can be used only for changes or fluctuations in the rotational torque of the screw during one metering process of a certain molding cycle.
 そこで、ある1成形サイクルの1計量工程を1時系列として移動平均化した平均回転トルクを基準にして、適切な設定値を設定することが考えられる。しかしながら、その1計量工程において、想定外の突発的な要因等が生じるおそれがあり、この場合には、その要因が生じていない場合と比較して異常な回転トルクが生じることとなる。そして、そのような異常な回転トルクを含めて、1計量工程を移動平均化した平均回転トルクは、その要因が生じていない1計量工程を移動平均化した平均回転トルクと比較して所定量の差異が生じている可能性があり、それゆえ、基準とする平均回転トルクの信頼性が低いという問題がある。 Therefore, it is conceivable to set an appropriate set value on the basis of the average rotational torque obtained by moving and averaging one weighing process of one molding cycle as one time series. However, an unexpected sudden factor or the like may occur in the one weighing process, and in this case, an abnormal rotational torque is generated as compared with a case where the factor does not occur. The average rotational torque obtained by moving average of one weighing process including such abnormal rotational torque is a predetermined amount compared with the average rotational torque obtained by moving average of one weighing process in which the factor does not occur. There is a possibility that a difference has occurred, and therefore there is a problem that the reliability of the reference average rotational torque is low.
 このように、特許文献2のパージ動作の停止方法に記載されている移動平均値を採用できるのは、1つの時系列である1つの計量工程中のスクリュの回転トルクの変化や変動に対してだけであり、ある1成形サイクルの1計量工程中のスクリュの回転トルクの変化や変動に対して移動平均化した平均回転トルクを基準に、適切な設定値を設定したとしても、基準とする平均回転トルクの信頼性が低いという問題がある。そのため、特許文献2のパージ動作の停止方法では、樹脂材料の供給を停止させた場合における、射出装置内の樹脂材料が所望する保持量に到達した状態(すなわち、樹脂量不足の不良品が成形されず、可塑化機構内の樹脂材料の保持量を最小にさせるタイミングに相当するスクリュの回転トルク)を、試験成形等により求め、これをその設定値としても、設定値と比較させる基準である平均回転トルクの信頼性が低いため、所望する上記状態を正確に検知できない可能性がある。 In this way, the moving average value described in the purge operation stopping method of Patent Document 2 can be adopted for changes or fluctuations in the rotational torque of the screw during one weighing process that is one time series. Even if an appropriate set value is set based on the average rotational torque obtained by moving average with respect to changes and fluctuations in the rotational torque of the screw during one metering process of a certain molding cycle, There is a problem that the reliability of the rotational torque is low. Therefore, in the method of stopping the purge operation of Patent Document 2, when the supply of the resin material is stopped, the resin material in the injection device has reached a desired holding amount (that is, a defective product with insufficient resin amount is molded). This is a reference for obtaining a screw rotation torque (corresponding to the timing of minimizing the amount of the resin material held in the plasticizing mechanism) by test molding and comparing it with the set value. Since the reliability of the average rotational torque is low, there is a possibility that the desired state cannot be accurately detected.
 本発明は、上記したような問題点に鑑みてなされたもので、具体的には、樹脂材料の供給を停止させた後、樹脂量不足の不良品が成形されず、射出装置内の樹脂材料の保持量を最小にさせるタイミングで、成形サイクルを終了させることができる、射出成形機の成形サイクル終了方法を提供することを目的とする。 The present invention has been made in view of the above-described problems. Specifically, after the supply of the resin material is stopped, a defective product with insufficient resin amount is not molded, and the resin material in the injection apparatus It is an object of the present invention to provide a molding cycle end method for an injection molding machine that can end a molding cycle at a timing at which the amount of holding is minimized.
 本発明の上記目的は、加熱バレル内のスクリュを回転させて、前記スクリュの後方から前記加熱バレル内に供給させた樹脂材料を、前記スクリュの前方に向けて流動させる間に可塑化させる射出装置を有する射出成形機の成形サイクル終了方法であって、
 1成形サイクルにおいて、可塑化させた前記樹脂材料を、前記射出装置の貯留部に設定量まで貯留させる計量工程における前記スクリュの第1平均回転トルクを算出させる第1平均回転トルク算出工程と、
 任意の成形サイクルから、選択された複数回の各成形サイクルにおいて前記第1平均回転トルク算出工程を行わせて、求められた各前記第1平均回転トルクから、前記選択された複数回の成形サイクルにおける第2平均回転トルクを算出させると共に、該第2平均回転トルクを安定成形トルク基準値として設定させる第2平均回転トルク算出工程と、
 前記安定成形トルク基準値を設定させた後の、任意の1成形サイクルにおける前記第1平均回転トルクを前記安定成形トルク基準値と比較させる平均回転トルク比較工程と、
 を有し、
 前記平均トルク比較工程において、前記第1平均回転トルクが、前記安定成形トルク基準値から、設定成形終了値に到達、あるいは、設定成形終了値を下回った成形サイクルを最終成形サイクルとして、該最終成形サイクルにおいて成形サイクルを終了させる、射出成形機の成形サイクル終了方法によって達成される。
An object of the present invention is to provide an injection apparatus that rotates a screw in a heating barrel and plasticizes the resin material supplied into the heating barrel from the rear of the screw toward the front of the screw. A molding cycle end method of an injection molding machine having
A first average rotational torque calculating step of calculating a first average rotational torque of the screw in a metering step of storing the plasticized resin material up to a set amount in the storage unit of the injection device in one molding cycle;
From the arbitrary molding cycle, the first average rotational torque calculation step is performed in each of a plurality of selected molding cycles, and the plurality of selected molding cycles are determined from each of the obtained first average rotational torques. And calculating a second average rotational torque at the same time, and setting the second average rotational torque as a stable molding torque reference value;
An average rotational torque comparison step of comparing the first average rotational torque in any one molding cycle after setting the stable molding torque reference value with the stable molding torque reference value;
Have
In the average torque comparison step, the first molding torque reaches a set molding end value from the stable molding torque reference value, or a molding cycle in which the first molding torque falls below the set molding end value is defined as a final molding cycle. This is achieved by an injection molding machine molding cycle termination method that terminates the molding cycle in the cycle.
 本発明に係る、射出成形機の成形サイクル終了方法においては、成形開始後の所定回数の成形サイクルにおいて、前記第1平均回転トルク算出工程を行わないことが好ましい。 In the molding cycle end method of the injection molding machine according to the present invention, it is preferable not to perform the first average rotational torque calculation step in a predetermined number of molding cycles after the start of molding.
 また、本発明に係る、射出成形機の成形サイクル終了方法においては、任意の成形サイクルから、成形サイクル毎に前記第1平均回転トルク算出工程を行わせると共に、
 前記任意の成形サイクルから、成形サイクル毎に前記第2平均回転トルク算出工程を開始させ、
 前記平均回転トルク比較工程において、前記第2平均回転トルク算出工程により、前記安定成形トルク基準値を設定させた成形サイクルの直後の成形サイクルにおける前記第1平均回転トルクを、直前の成形サイクルで設定させた前記安定成形トルク基準値と比較させても良い。
Moreover, in the molding cycle end method of the injection molding machine according to the present invention, from any molding cycle, the first average rotational torque calculation step is performed for each molding cycle,
From the arbitrary molding cycle, start the second average rotational torque calculation step for each molding cycle,
In the average rotational torque comparison step, the first average rotational torque in the molding cycle immediately after the molding cycle in which the stable molding torque reference value is set in the second average rotational torque calculation step is set in the immediately preceding molding cycle. You may make it compare with the said stable shaping | molding torque reference value made.
 更に、本発明に係る、射出成形機の成形サイクル終了方法においては、前記第2平均回転トルク算出工程の前記選択された複数回の成形サイクルを1セットとして、前記1セット毎に前記安定成形トルク基準値を設定させると共に、前記平均回転トルク比較工程において、前記1セットの各成形サイクルの前記第1平均回転トルクを、直前の前記1セットで設定させた前記安定成形トルク基準値と比較させても良い。 Furthermore, in the molding cycle end method of the injection molding machine according to the present invention, the selected multiple molding cycles in the second average rotational torque calculating step is set as one set, and the stable molding torque is set for each set. In addition to setting a reference value, in the average rotational torque comparison step, the first average rotational torque of each molding cycle of the one set is compared with the stable molding torque reference value set in the immediately preceding one set. Also good.
 一方、上記のような、本発明に係る、射出成形機の成形サイクル終了方法においては、成形サイクルの一時的な停止も含む停止操作後、成形サイクルが再開される都度、前記第2平均回転トルク算出工程において、前記安定成形トルク基準値を設定させることが好ましい。 On the other hand, in the molding cycle end method of the injection molding machine according to the present invention as described above, each time the molding cycle is restarted after a stop operation including a temporary stop of the molding cycle, the second average rotational torque In the calculation step, it is preferable to set the stable molding torque reference value.
 本発明に係る、射出成形機の成形サイクル終了方法においては、加熱バレル内のスクリュを回転させて、前記スクリュの後方から前記加熱バレル内に供給させた樹脂材料を、前記スクリュの前方に流動させる間に可塑化させる射出装置を有する射出成形機の成形サイクル終了方法であって、
 1成形サイクルにおいて、可塑化させた前記樹脂材料を、前記射出装置の貯留部に設定量まで貯留させる計量工程における前記スクリュの第1平均回転トルクを算出させる第1平均回転トルク算出工程と、
 任意の成形サイクルから、選択された複数回の各成形サイクルにおいて前記第1平均回転トルク算出工程を行わせて、求められた各前記第1平均回転トルクから、前記選択された複数回の成形サイクルにおける第2平均回転トルクを算出させると共に、該第2平均回転トルクを安定成形トルク基準値として設定させる第2平均回転トルク算出工程と、
 前記安定成形トルク基準値を設定させた後の、任意の1成形サイクルにおける前記第1平均回転トルクを前記安定成形トルク基準値と比較させる平均回転トルク比較工程と、
を有し、
 前記平均トルク比較工程において、前記第1平均回転トルクが、前記安定成形トルク基準値から、設定成形終了値に到達、あるいは、設定成形終了値を下回った成形サイクルを最終成形サイクルとして、該最終成形サイクルにおいて成形サイクルを終了させるため、樹脂材料の供給を停止させた後、樹脂量不足の不良品が成形されず、射出装置内の樹脂材料の保持量を最小にさせるタイミングで、成形サイクルを終了させることができる。
In the molding cycle end method of the injection molding machine according to the present invention, the screw in the heating barrel is rotated, and the resin material supplied into the heating barrel from the rear of the screw is caused to flow to the front of the screw. A method for ending a molding cycle of an injection molding machine having an injection device to be plasticized in between,
A first average rotational torque calculating step of calculating a first average rotational torque of the screw in a metering step of storing the plasticized resin material up to a set amount in the storage unit of the injection device in one molding cycle;
From the arbitrary molding cycle, the first average rotational torque calculation step is performed in each of a plurality of selected molding cycles, and the plurality of selected molding cycles are determined from each of the obtained first average rotational torques. And calculating a second average rotational torque at the same time, and setting the second average rotational torque as a stable molding torque reference value;
An average rotational torque comparison step of comparing the first average rotational torque in any one molding cycle after setting the stable molding torque reference value with the stable molding torque reference value;
Have
In the average torque comparison step, the first molding torque reaches a set molding end value from the stable molding torque reference value, or a molding cycle in which the first molding torque falls below the set molding end value is defined as a final molding cycle. In order to finish the molding cycle in the cycle, after the supply of the resin material is stopped, the defective product with insufficient resin amount is not molded, and the molding cycle ends at the timing to minimize the amount of resin material retained in the injection device Can be made.
本発明の実施例1に係る、射出成形機のインラインスクリュ式射出装置の計量工程開始時を示す概略断面図である。It is a schematic sectional drawing which shows the time of the measurement process start of the inline screw type injection device of the injection molding machine based on Example 1 of this invention. 本発明の実施例1に係る、射出成形機のインラインスクリュ式射出装置の計量工程完了時を示す概略断面図である。It is a schematic sectional drawing which shows the time of completion | finish of the measurement process of the in-line screw type injection apparatus of the injection molding machine based on Example 1 of this invention. 材料供給部へ樹脂材料が供給されている、計量工程開始時の加熱バレル内を示す概略断面図である。It is a schematic sectional drawing which shows the inside of the heating barrel at the time of the measurement process start in which the resin material is supplied to the material supply part. 材料供給部への樹脂材料の供給が停止された後の、計量工程開始時の加熱バレル内を示す概略断面図である。It is a schematic sectional drawing which shows the inside of the heating barrel at the time of the measurement process start after supply of the resin material to a material supply part was stopped. 実施例1において、成形サイクルを終了させるための工程を説明するためのイメージ図である。In Example 1, it is an image figure for demonstrating the process for complete | finishing a shaping | molding cycle. 実施例1において、成形サイクルを終了させる直前の成形サイクルの計量工程におけるスクリュの第1平均回転トルク等を示すグラフである。In Example 1, it is a graph which shows the 1st average rotational torque etc. of the screw in the measurement process of the shaping | molding cycle just before ending a shaping | molding cycle. 実施例2において、成形サイクルを終了させるための工程を説明するためのイメージ図である。In Example 2, it is an image figure for demonstrating the process for ending a shaping | molding cycle.
 以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
 図5及び図6を参照して、本発明の実施例1に係る、射出成形機の成形サイクル終了方法を説明する。実施例1に係る、射出成形機の成形サイクル終了方法は、図1乃至図4を用いて上述した、インラインスクリュ式射出装置1を有する射出成形機で実施することを前提にして説明する。 With reference to FIG.5 and FIG.6, the molding cycle completion | finish method of the injection molding machine based on Example 1 of this invention is demonstrated. The method for ending the molding cycle of the injection molding machine according to the first embodiment will be described on the assumption that it is implemented by the injection molding machine having the inline screw type injection device 1 described above with reference to FIGS.
 図5は、横軸を成形サイクル回数(N)として、実施例1において、成形サイクルを終了させるための工程を説明するためのイメージ図である。成形サイクルを開始(N=1)してから5回目(N=5)までの成形サイクル(A1~A5)をA成形サイクルとする。材料供給部14へ樹脂材料14aが供給されている場合の計量工程開始時を示す図3とは異なり、新たに成形サイクルを開始させた直後の成形サイクルA1では、スクリュ16の樹脂流路10に樹脂材料14aが全くない状態でスクリュ16を回転させ、樹脂材料14aの供給を開始させる。そのため、供給させた樹脂材料14aを、樹脂流路10を介してスクリュ16前方に流動させる間に可塑化を進行させ、貯留部15bへの貯留(計量)が開始されるまで所定の時間を要する。 FIG. 5 is an image diagram for explaining a process for ending the molding cycle in Example 1 with the horizontal axis as the number of molding cycles (N). The molding cycle (A1 to A5) from the start of the molding cycle (N = 1) to the fifth (N = 5) is defined as the A molding cycle. Unlike FIG. 3 showing the start of the weighing process when the resin material 14a is being supplied to the material supply unit 14, in the molding cycle A1 immediately after starting a new molding cycle, the resin flow path 10 of the screw 16 is not filled. The screw 16 is rotated in a state where there is no resin material 14a, and supply of the resin material 14a is started. Therefore, it takes a predetermined time for the plasticization to proceed while the supplied resin material 14a flows to the front of the screw 16 through the resin flow path 10, and to start storing (measuring) in the storage portion 15b. .
 また、冷間状態のインラインスクリュ式射出装置1(加熱バレル15やスクリュ16等)の温度が、樹脂材料14aの供給開始後、良品を成形するのに好適な温度に昇温され安定(サチュレート)するまでにも所定の時間を要する。インラインスクリュ式射出装置1の温度が良品を成形するのに好適な温度に昇温されるまでの間、あるいは、インラインスクリュ式射出装置1自体の受熱と放熱とがバランスして、安定(サチュレート)するまでの間、加熱手段15aや、回転するフライト16aと樹脂材料14aとの接触時や樹脂材料14a同士の接触時に生じるせん断エネルギによる熱エネルギの一部が、樹脂材料14aの可塑化ではなく、これら樹脂材料14aが直接的に接触するインラインスクリュ式射出装置1の昇温に消費される。 In addition, the temperature of the inline screw type injection device 1 (such as the heating barrel 15 and the screw 16) in the cold state is increased to a temperature suitable for molding a non-defective product after the supply of the resin material 14a is started and stabilized (saturating). It takes a predetermined time to do so. Stable (saturating) until the temperature of the in-line screw injection device 1 is raised to a temperature suitable for molding a non-defective product, or the heat receiving and heat dissipation of the in-line screw injection device 1 itself is balanced. In the meantime, part of the thermal energy due to the shearing energy generated when the heating means 15a, the contact between the rotating flight 16a and the resin material 14a or the contact between the resin materials 14a is not plasticization of the resin material 14a, These resin materials 14a are consumed to raise the temperature of the in-line screw type injection device 1 in direct contact.
 一方、成形サイクル開始前、すなわち、樹脂材料14aを供給させる前から、加熱バレル15の加熱手段15aによる加熱を開始させて、インラインスクリュ式射出装置1の温度を予め昇温させることは可能である。しかしながら、成形サイクルにおける、インラインスクリュ式射出装置1に関する受熱及び放熱を伴うサチュレートするまでの熱履歴は、先に説明したように加熱手段15aの加熱制御のみによって補完制御できるものではない。従って、樹脂材料14aの可塑化や射出充填を行わせることなく、加熱手段15aの加熱制御のみで、冷間状態のインラインスクリュ式射出装置1を、樹脂材料14aの供給開始直後の成形サイクルで良品を成形できるように、好適に昇温及びサチュレートさせることは難しい。 On the other hand, before the molding cycle is started, that is, before the resin material 14a is supplied, it is possible to start heating by the heating means 15a of the heating barrel 15 and raise the temperature of the in-line screw injection apparatus 1 in advance. . However, in the molding cycle, the heat history of the inline screw injection device 1 until saturating with heat reception and heat dissipation cannot be complementarily controlled only by the heating control of the heating means 15a as described above. Therefore, the plastic material of the resin material 14a is not plasticized and injection filling is performed, and only the heating control of the heating means 15a is performed. It is difficult to suitably raise the temperature and saturate so that can be molded.
 また、図示しない型締機構及び金型側でも、同様の理由で、所定の温度に昇温され安定(サチュレート)するまでにも所定の時間を要すると共に、樹脂材料14aの射出充填を行わせることなく、金型側に接続させた金型温度調整装置(温調機)等の温度制御のみで、型締機構及び金型を好適に昇温及びサチュレートさせることは難しい。そのため、次の成形サイクルA2以降のA成形サイクルにおいて、図3に示す状態から計量工程を開始させることができたとしても、貯留部15bの樹脂材料14aの可塑化状態、及び、金型側の温度調整が安定して、良品を成形できる成形サイクルに到達するには、所定回数の成形サイクルが必要となる。当然ながら、この良品を成形できる成形サイクルに到達するまでの成形サイクルにおいては、不良品が成形される。不良品が成形される成形サイクルにおいてスクリュ16に生じる回転トルクの平均値(第1平均回転トルク)と、良品を成形できる成形サイクルにおける第1平均回転トルクとの間には、回避し得ない変動に起因する差異以上の差異が生じる。 Further, on the mold clamping mechanism and the mold side (not shown), for the same reason, a predetermined time is required until the temperature is raised to a predetermined temperature and stabilized (saturated), and the injection filling of the resin material 14a is performed. In addition, it is difficult to appropriately raise the temperature and saturate the mold clamping mechanism and the mold only by controlling the temperature of a mold temperature adjusting device (temperature controller) connected to the mold side. Therefore, in the A molding cycle after the next molding cycle A2, even if the weighing process can be started from the state shown in FIG. 3, the plasticized state of the resin material 14a in the storage portion 15b and the mold side In order to reach a molding cycle in which the temperature adjustment is stable and a good product can be molded, a predetermined number of molding cycles are required. Naturally, in the molding cycle until reaching the molding cycle capable of molding this good product, a defective product is molded. Between the average rotational torque generated in the screw 16 (first average rotational torque) in the molding cycle in which defective products are molded, and the first average rotational torque in the molding cycle in which non-defective products can be molded, there is an unavoidable variation. Difference more than the difference caused by.
 ここで、実施例1においては、1成形サイクルにおける、可塑化させた樹脂材料14aを貯留部15bに設定量まで貯留させる計量工程において、スクリュ16に生じる回転トルクの平均値(第1平均回転トルク)を算出させる(第1平均回転トルク算出工程)。加熱バレル15内への樹脂材料14aの供給を継続させている間に、第1平均回転トルク算出工程において算出させる第1平均回転トルクは、後述する第2平均回転トルク算出工程において、第2平均回転トルクを算出するために用いられる重要な数値である。 Here, in Example 1, the average value of the rotational torque generated in the screw 16 (first average rotational torque) in the weighing step of storing the plasticized resin material 14a in the storage portion 15b up to a set amount in one molding cycle. ) Is calculated (first average rotational torque calculating step). While the supply of the resin material 14a into the heating barrel 15 is continued, the first average rotational torque calculated in the first average rotational torque calculation step is the second average rotational torque in the second average rotational torque calculation step described later. It is an important numerical value used to calculate the rotational torque.
 また、上述したとおり、正常な計量状態下で計量が進行した場合でも、スクリュ16に生じる回転トルクは変動する。特許文献1の射出成形機の材料検知方法は、スクリュ16に生じる回転トルクが変動する計量工程中に、射出装置内の樹脂材料が所望する保持量に到達した状態の負荷電流をピンポイントで電流設定値として設定させるものであるから、上述した問題が生じる。これに対し、実施例1においては、計量工程中のスクリュ16に生じる回転トルクを平均化して第1平均回転トルクとして取り扱うことにより、スクリュ16の回転トルクに生じる変動の影響を減少させることができるため、スクリュ16の回転トルクを安定した基準とすることができる。 Also, as described above, the rotational torque generated in the screw 16 fluctuates even when measurement proceeds under normal measurement conditions. In the material detection method of the injection molding machine disclosed in Patent Document 1, the load current in a state in which the resin material in the injection device has reached a desired holding amount during the measurement process in which the rotational torque generated in the screw 16 fluctuates is pinpointed. Since the setting value is set, the above-described problem occurs. On the other hand, in Example 1, the influence of the fluctuation | variation which arose in the rotational torque of the screw 16 can be reduced by averaging the rotational torque which arises in the screw 16 in a measurement process, and handling it as a 1st average rotational torque. Therefore, the rotational torque of the screw 16 can be a stable reference.
 そのため、上記のような、良品を成形できる成形サイクルに到達する前の不安定な成形サイクルを除外するために、成形開始後の所定回数の成形サイクルにおいては、第1平均回転トルク算出工程を行わないことが好ましい。樹脂成形品やそのサイズ及び要求品質、更に、成形条件及び射出条件によって、成形開始から、良品を成形できる成形サイクルに到達する成形サイクルの回数は様々である。そこで、第1平均回転トルク算出工程を行わない好適な所定回数を、試験成形等により予め求めることが好ましい。実施例1では、上記所定回数を5回とし、6回目の成形サイクルB1から良品を成形できるものとする。 Therefore, in order to exclude the unstable molding cycle before reaching the molding cycle capable of molding a good product as described above, the first average rotational torque calculation step is performed in a predetermined number of molding cycles after the molding is started. Preferably not. Depending on the resin molded product, its size and required quality, as well as the molding conditions and injection conditions, the number of molding cycles to reach a molding cycle capable of molding a good product from the start of molding varies. Therefore, it is preferable to obtain in advance a suitable predetermined number of times not to perform the first average rotational torque calculation step by test molding or the like. In Example 1, it is assumed that the predetermined number of times is five, and a good product can be molded from the sixth molding cycle B1.
 次に、良品を成形できる6回目の成形サイクルB1から、選択された複数回の各成形サイクルにおいて上述した第1平均回転トルク算出工程を行わせ、各成形サイクルの第1平均回転トルクを算出させる。説明の理解を容易にするため、実施例1では、成形サイクルの選択方法及び回数を、連続する5回(6回目の成形サイクルB1から10回目の成形サイクルB5まで)とし、以下の説明では、これら5回の成形サイクルをまとめてB成形サイクルと呼ぶ。また、実施例1では、B成形サイクルの各成形サイクル(B1~B5)において、第1平均回転トルク算出工程を行わせ、各成形サイクルの第1平均回転トルクを算出させるものとする。そして、10回目の成形サイクルB5(B成形サイクルにおける最後の成形サイクル)の計量工程の完了と略同時に、各成形サイクルB1~B5において算出させた第1平均回転トルクを合計して、その合計値を選択された回数(実施例1では5)で除した第2平均回転トルクを算出させる。そして、B成形サイクルで算出させた第2平均回転トルクを安定成形トルク基準値として、図示しない制御装置に設定させる。このように、第2平均回転トルク算出工程は、第2平均回転トルクを算出させ、算出させた第2平均回転トルクを安定成形トルク基準値として設定させる工程である。 Next, the first average rotational torque calculation process described above is performed in each of a plurality of selected molding cycles from the sixth molding cycle B1 in which a good product can be molded, and the first average rotational torque of each molding cycle is calculated. . In order to facilitate understanding of the description, in Example 1, the selection method and the number of molding cycles are set to five consecutive times (from the sixth molding cycle B1 to the tenth molding cycle B5). These five molding cycles are collectively referred to as a B molding cycle. In the first embodiment, the first average rotational torque calculation step is performed in each molding cycle (B1 to B5) of the B molding cycle, and the first average rotational torque of each molding cycle is calculated. The first average rotational torque calculated in each of the molding cycles B1 to B5 is summed up almost simultaneously with the completion of the measuring step of the tenth molding cycle B5 (the last molding cycle in the B molding cycle), and the total value is obtained. Is calculated by dividing the number of times by the number of times selected (5 in the first embodiment). Then, the second average rotational torque calculated in the B molding cycle is set as a stable molding torque reference value by a control device (not shown). Thus, the second average rotational torque calculation step is a step of calculating the second average rotational torque and setting the calculated second average rotational torque as the stable molding torque reference value.
 以下の説明では、B成形サイクルの第2平均回転トルク算出工程で設定させた安定成形トルク基準値をTBとする。一方、安定成形トルク基準値TBを設定させた10回目の成形サイクルの直後の11回目の成形サイクルにおける第1平均回転トルクを、直前の10回目の成形サイクルで設定させた安定成形トルク基準値TBと比較させる(平均回転トルク比較工程)。 In the following description, the stable molding torque reference value set in the second average rotational torque calculation step of the B molding cycle is TB. On the other hand, the first average rotational torque in the eleventh molding cycle immediately after the tenth molding cycle for which the stable molding torque reference value TB is set is the stable molding torque reference value TB that is set in the immediately preceding tenth molding cycle. (Average rotational torque comparison process).
 また、B成形サイクルにおける第2平均回転トルク算出工程と並行して、7回目の成形サイクルから、新たな第2平均回転トルク算出工程を開始させる。以下の説明では、7回目の成形サイクルから連続する5回の成形サイクル(7回目の成形サイクルC1から11回目までの成形サイクルC5まで)をまとめて、C成形サイクルと呼ぶ。そして、11回目の成形サイクルC5(C成形サイクルにおける最後の成形サイクル)の計量工程の完了と略同時に、第2平均回転トルクを算出させて、これを安定成形トルク基準値TCとして設定させる。そして、B成形サイクルと同様に、安定成形トルク基準値TCを設定させた11回目の成形サイクルの直後の12回目の成形サイクルにおける第1平均回転トルクを、直前の11回目の成形サイクルで設定させた安定成形トルク基準値TCと比較させる(平均回転トルク比較工程)。 Further, in parallel with the second average rotational torque calculation step in the B molding cycle, a new second average rotational torque calculation step is started from the seventh molding cycle. In the following description, five molding cycles that are continuous from the seventh molding cycle (from the seventh molding cycle C1 to the eleventh molding cycle C5) are collectively referred to as a C molding cycle. Then, substantially simultaneously with the completion of the measurement process of the eleventh molding cycle C5 (the last molding cycle in the C molding cycle), the second average rotational torque is calculated and set as the stable molding torque reference value TC. Similarly to the B molding cycle, the first average rotational torque in the twelfth molding cycle immediately after the eleventh molding cycle for which the stable molding torque reference value TC is set is set in the immediately preceding eleventh molding cycle. It is compared with the stable molding torque reference value TC (average rotational torque comparison step).
 更に、8回目の成形サイクルから開始されるD成形サイクル及び9回目の成形サイクルから開始されるE成形サイクルにおいても同様に、新たに第2平均回転トルク算出工程をそれぞれ行い、安定成形トルク基準値TD、TEをそれぞれ設定させる。そして、それぞれの安定成形トルク基準値を設定させた成形サイクルの直後の成形サイクルにおける第1平均回転トルクを、直前の成形サイクルで設定させた安定成形トルク基準値と比較させる平均回転トルク比較工程を行わせる。 Further, in the D molding cycle starting from the eighth molding cycle and the E molding cycle starting from the ninth molding cycle, the second average rotational torque calculation step is newly performed in the same manner, so that the stable molding torque reference value is obtained. TD and TE are set respectively. Then, an average rotational torque comparison step of comparing the first average rotational torque in the molding cycle immediately after the molding cycle in which the respective stable molding torque reference values are set with the stable molding torque reference value set in the immediately preceding molding cycle. Let it be done.
 このように、実施例1においては、良品を成形できる6回目の成形サイクルから、第1平均回転トルク算出工程及び第2平均回転トルク算出工程を開始させて、安定成形トルク基準値を設定させた後の成形サイクルにおいて、直近の設定回数の成形サイクルから算出及び設定させた安定成形トルク基準値と、その直後の成形サイクルにおける第1平均回転トルクとを比較させる平均回転トルク比較工程を成形サイクル毎に行わせることを特徴としている。 As described above, in Example 1, the first average rotational torque calculating step and the second average rotational torque calculating step are started from the sixth molding cycle in which good products can be molded, and the stable molding torque reference value is set. In the subsequent molding cycle, an average rotational torque comparison step for comparing the stable molding torque reference value calculated and set from the most recent set number of molding cycles with the first average rotational torque in the molding cycle immediately thereafter is performed for each molding cycle. It is characterized by letting it be done.
 ここで、図6は、ある試験成形における、良品を成形できる成形サイクルの計量工程におけるスクリュ16の第1平均回転トルク(実線1)と、設定成形終了値に関する3種類の候補値(点線2、実線3、一点鎖線4)を示すグラフである。第1平均回転トルクは、上述したとおり、該第1平均回転トルクに関する成形サイクルが属する1セットの成形サイクル(連続する5回の成形サイクル)についての第2平均回転トルクの算出に用いられると共に、該第1平均回転トルクに関する成形サイクルの直前の1セットの成形サイクルにより得られた安定成形トルク基準値との比較に用いられる。設定成形終了値は、本発明において、最終成形サイクルを判断するための基準値であり、安定成形トルク基準値(第2平均回転トルク)に対する第1平均回転トルクの差異である。実施例1においては、基準値としての信頼性が高い、安定成形トルク基準値(第2平均回転トルク)をベースとして、試験成形等で設定成形終了値を求める方法を説明する。 Here, FIG. 6 shows the first average rotational torque (solid line 1) of the screw 16 in the measuring step of a molding cycle in which a non-defective product can be molded in a certain test molding, and three types of candidate values (dotted line 2, It is a graph which shows the continuous line 3 and the dashed-dotted line 4). As described above, the first average rotational torque is used to calculate the second average rotational torque for one set of molding cycles (five continuous molding cycles) to which the molding cycle related to the first average rotational torque belongs, It is used for comparison with a stable molding torque reference value obtained by one set of molding cycles immediately before the molding cycle related to the first average rotational torque. The set molding end value is a reference value for determining the final molding cycle in the present invention, and is a difference of the first average rotational torque with respect to the stable molding torque reference value (second average rotational torque). In the first embodiment, a method of obtaining a set molding end value by test molding or the like based on a stable molding torque reference value (second average rotational torque) having high reliability as a reference value will be described.
 図6のグラフは、横軸が成形サイクルの回数(N)で、50回目の成形サイクル以降が示されている。縦軸は、スクリュ16の回転トルクを示しており、回転トルク値そのものではなく、スクリュ16を回転駆動させる、図示しない計量用駆動機構のサーボモータの定格回転トルクを100%とした場合の%で表示したものである。各成形サイクルの回数上にプロットされた四角が、その成形サイクルにおける計量工程の第1平均回転トルクであり、これら四角を直線で結んだもの(実線1)が、スクリュ16の第1平均回転トルクの変化を示している。回避し得ない要因等に起因すると思われる若干の変動が確認されるが、成形サイクルの50回目から58回目までは、成形サイクル毎の第1平均回転トルクの差異は大きくはなく、比較的安定した値を示している。 In the graph of FIG. 6, the horizontal axis indicates the number of molding cycles (N), and the 50th molding cycle and thereafter are shown. The vertical axis indicates the rotational torque of the screw 16, and is not the rotational torque value itself, but the percentage when the rated rotational torque of the servomotor of the metering drive mechanism (not shown) that rotates the screw 16 is 100%. It is displayed. The square plotted on the number of times of each molding cycle is the first average rotational torque of the metering step in the molding cycle, and a straight line connecting these squares (solid line 1) is the first average rotational torque of the screw 16. Shows changes. Although slight fluctuations that may be caused by factors that cannot be avoided are confirmed, the difference in the first average rotational torque for each molding cycle is not large and relatively stable from the 50th to the 58th molding cycle. Shows the value.
 ここで、図6の点線2、実線3及び一点鎖線4は、各成形サイクルにおいて設定させた安定成形トルク基準値(各成形サイクルの直近5回の成形サイクルのスクリュ16の第2平均回転トルク)をベースとする設定成形終了値の3種類の候補値をプロットし、滑らかに結んだものである。それぞれの候補値を説明すると、点線2は、安定成形トルク基準値を10%ダウンさせたもの(安定成形トルク基準値の90%)で、実線3は、安定成形トルク基準値を20%ダウンさせたもの(安定成形トルク基準値の80%)で、一点鎖線4は、安定成形トルク基準値を30%ダウンさせたもの(安定成形トルク基準値の70%)である。 Here, the dotted line 2, the solid line 3 and the one-dot chain line 4 in FIG. 6 are the stable molding torque reference values set in each molding cycle (the second average rotational torque of the screw 16 of the molding cycle of the five most recent molding cycles). The three types of candidate values of the set molding end value based on the are plotted and smoothly connected. Explaining each candidate value, the dotted line 2 is the stable molding torque reference value reduced by 10% (90% of the stable molding torque reference value), and the solid line 3 is the stable molding torque reference value reduced by 20%. The one-dot chain line 4 is obtained by reducing the stable molding torque reference value by 30% (70% of the stable molding torque reference value).
 実施例1の試験成形においては、図6の58回目の成形サイクルの計量工程完了後に、樹脂材料14aの供給を停止させている。そのため、59回目以降の成形サイクルにおいては、成形サイクル毎にスクリュ16の第1平均回転トルクが減少する。直近5回の各成形サイクルにおける第1平均回転トルクから算出させた第2平均回転トルク(安定成形トルク基準値)も、第1平均回転トルクの減少の影響を受けるため、点線2、実線3及び一点鎖線4も成形サイクル毎に減少する。この図6の成形サイクルの場合、60回目(三角形表示)の成形サイクルの平均回転トルク比較工程において、その第1平均回転トルクが、安定成形トルク基準値を20%ダウンさせた値(実線3)、すなわち、安定成形トルク基準値の80%に到達(低下)するとの結果を得た。また、この60回目の成形サイクルが、良品が成形された最後の成形サイクルとなる結果を得た。 In the test molding of Example 1, the supply of the resin material 14a is stopped after the completion of the weighing process of the 58th molding cycle in FIG. Therefore, in the 59th and subsequent molding cycles, the first average rotational torque of the screw 16 decreases for each molding cycle. Since the second average rotational torque (stable molding torque reference value) calculated from the first average rotational torque in each of the latest five molding cycles is also affected by the decrease in the first average rotational torque, the dotted line 2, the solid line 3 and The alternate long and short dash line 4 also decreases with each molding cycle. In the case of the molding cycle of FIG. 6, in the average rotational torque comparison step of the 60th (triangle display) molding cycle, the first average rotational torque is a value obtained by reducing the stable molding torque reference value by 20% (solid line 3). In other words, a result of reaching (decreasing) 80% of the stable molding torque reference value was obtained. Further, the 60th molding cycle was the last molding cycle in which a good product was molded.
 このように、実施例1においては、上述した試験成形により、第2平均回転トルク(安定成形トルク基準値)の80%が、設定成形終了値であることが確認された。また、樹脂材料の供給を停止させた後、樹脂量不足の不良品が成形されず、射出装置内の樹脂材料の保持量を最小にさせる条件が、スクリュ16の第1平均回転トルクがその成形サイクル直近5回(設定回数)の第2平均回転トルクの80%に到達(低下)する成形サイクル(実施例1の場合は60回目)であることが確認された。従って、樹脂成形品を製造する実際の成形においても、この条件を満たす成形サイクルを最終成形サイクルとすることにより、本発明の目的を達成することができる。 Thus, in Example 1, it was confirmed by the above-described test molding that 80% of the second average rotational torque (stable molding torque reference value) is the set molding end value. In addition, after the supply of the resin material is stopped, a defective product with insufficient resin amount is not molded, and the first average rotational torque of the screw 16 is molded under the condition that the amount of the resin material held in the injection device is minimized. It was confirmed that it was a molding cycle (60th in the case of Example 1) that reached (decreased) 80% of the second average rotational torque of the latest five times (set number). Therefore, even in actual molding for producing a resin molded product, the object of the present invention can be achieved by setting the molding cycle that satisfies this condition as the final molding cycle.
 本発明は、平均回転トルク比較工程において、第1平均回転トルクが、設定成形終了値を下回った成形サイクルを最終成形サイクルとして、成形サイクルを終了させるものである。従って、実施例1においては、設定成形終了値を安定成形トルク基準値の80%として設定させれば良い。 In the average rotational torque comparison step, the present invention ends the molding cycle with the molding cycle in which the first average rotational torque is lower than the set molding end value as the final molding cycle. Therefore, in the first embodiment, the set molding end value may be set as 80% of the stable molding torque reference value.
 実施例1においては、スクリュ16の第1平均回転トルクに、回避し得ない要因等に起因すると思われる若干の変動が確認される。しかしながら、樹脂材料14aの供給を停止させる前の、成形サイクル毎の第1平均回転トルクの差異は大きくはなく、比較的安定した値を示しており、設定成形終了値(安定成形トルク基準値の80%)に到達する程の変動はない。実施例1においては、計量工程におけるスクリュ16の回転トルクそのものではなく、回転トルクの平均値(第1平均回転トルク)を安定成形トルク基準値と比較させるため、スクリュ16の回転トルクの変化が変動を伴っても、特許文献1の射出成形機の材料検知方法のような誤検知の可能性を低下させる。 In Example 1, the first average rotational torque of the screw 16 is confirmed to be slightly fluctuated due to factors that cannot be avoided. However, the difference in the first average rotational torque for each molding cycle before stopping the supply of the resin material 14a is not large and shows a relatively stable value, and the set molding end value (stable molding torque reference value). There is no fluctuation to reach 80%). In the first embodiment, since the rotation torque average value (first average rotation torque), not the rotation torque itself of the screw 16 in the weighing process, is compared with the stable molding torque reference value, the change in the rotation torque of the screw 16 varies. However, the possibility of erroneous detection as in the material detection method of the injection molding machine of Patent Document 1 is reduced.
 また、実施例1においては、安定成形トルク基準値(第2平均回転トルク)に基づいて設定成形終了値を設定させている。安定成形トルク基準値(第2平均回転トルク)は、連続する設定回数(直近5回)の成形サイクルにおける第1平均回転トルクを再び平均化した値である。このため、図6の実線3等に示すように、安定成形トルク基準値(第2平均回転トルク)に基づく、各成形サイクルの設定成形終了値は、3候補共に、同じ成形サイクルの第1平均回転トルクよりも変動が抑制される。その結果、特許文献1の射出成形機の材料検知方法のような誤検知の可能性をより低下させる。 In Example 1, the set molding end value is set based on the stable molding torque reference value (second average rotational torque). The stable molding torque reference value (second average rotational torque) is a value obtained by averaging again the first average rotational torque in the molding cycle of the set number of consecutive times (last five times). Therefore, as shown by the solid line 3 in FIG. 6 and the like, the set molding end value of each molding cycle based on the stable molding torque reference value (second average rotational torque) is the first average of the same molding cycle for all three candidates. The fluctuation is suppressed more than the rotational torque. As a result, the possibility of erroneous detection as in the material detection method of the injection molding machine of Patent Document 1 is further reduced.
 更に、ある1成形サイクルの計量工程において、想定外の突発的な要因により回転トルクの大きな変動が生じ、その成形サイクルの第1平均回転トルクに変動を生じさせたとしても、複数の第1平均回転トルクを平均化させて安定成形トルク基準値(第2平均回転トルク)を算出することにより、その変動の影響を抑制することができる。このようにして算出させる安定成形トルク基準値は、特許文献2のパージ動作の停止方法のように、ある1成形サイクルの1計量工程を1時系列として算出させた、スクリュの回転トルクの移動平均値より信頼性が高いことは明らかである。 Further, in a weighing process of a certain molding cycle, a large variation in rotational torque occurs due to an unexpected sudden factor, and even if a variation occurs in the first average rotational torque of the molding cycle, a plurality of first averages By averaging the rotational torque and calculating the stable molding torque reference value (second average rotational torque), the influence of the fluctuation can be suppressed. The stable molding torque reference value calculated in this way is the moving average of the rotational torque of the screw calculated as one time series for one metering step of a certain molding cycle, as in the method of stopping the purge operation in Patent Document 2. It is clear that the reliability is higher than the value.
 更に、実施例1においては、連続する直近5回の成形サイクルにおける第1平均回転トルクから第2平均回転トルクを都度算出させ、安定成形トルク基準値を都度設定させる。そのため、図6に示すように、樹脂材料14aの供給を停止させた後の第1平均回転トルクの変化(低下)に、安定成形トルク基準値(第2平均回転トルク)に基づく設定成形終了値がすぐに追従して変化(低下)している。このように、都度、最新の安定成形トルク基準値が設定されることにより、成形が行われる環境の温度変化や射出成形機の温度変化等の影響により良品が成形される状態下においても生じる可能性がある、第1平均回転トルクや第2平均回転トルク(安定成形トルク基準値)の変動の影響を抑制して、成形サイクルを所望するタイミング終了させることができる。 Furthermore, in Example 1, the second average rotational torque is calculated from the first average rotational torque in the last five consecutive molding cycles, and the stable molding torque reference value is set each time. Therefore, as shown in FIG. 6, the set molding end value based on the stable molding torque reference value (second average rotational torque) in the change (decrease) in the first average rotational torque after the supply of the resin material 14 a is stopped. Changes immediately (follows down). In this way, by setting the latest stable molding torque reference value each time, it can occur even under conditions where good products are molded due to the influence of temperature changes in the environment in which molding is performed, temperature changes in the injection molding machine, etc. Thus, the influence of fluctuations in the first average rotational torque and the second average rotational torque (stable molding torque reference value) can be suppressed, and the desired timing of the molding cycle can be ended.
 このような設定成形終了値や、第2平均回転トルクを算出させるための成形サイクルの選択方法や回数等は、図6を用いて上述したように、設定成形終了値や選択方法や回数を変更させながら試験成形等を行うことで、樹脂量不足の不良品が成形されず、且つ、射出装置内の樹脂材料の保持量を最小にさせるタイミングを判定できる適切な設定値を求めれば良い。また、第1平均回転トルク、第2平均回転トルク及び上記設定終了値は、%表示ではなく回転トルク値表示あっても良い。 As described above with reference to FIG. 6, the setting molding end value, the selection method, and the number of times are changed for the setting molding end value and the molding cycle selection method and number of times for calculating the second average rotational torque. It is only necessary to obtain an appropriate set value that can determine the timing at which the defective amount of the resin material is not molded and the holding amount of the resin material in the injection apparatus is minimized by performing the test molding or the like. Further, the first average rotational torque, the second average rotational torque, and the setting end value may be displayed as rotational torque values instead of% display.
 しかしながら、本発明における安定成形トルク基準値の高い信頼性を鑑みれば、上記設定終了値は、試験成形等で求めた第1平均回転トルクの回転トルク値そのものを設定値とするよりも、試験成形等で求めた第1平均回転トルクを、同じく試験成形等で求めた第2平均回転トルク(安定成形トルク基準値)に関連付けた設定値とすること(例えば実施例1のように、上記設定終了値を同安定成形トルク基準値から低下する割合(%)とすること)がより好ましい。 However, in view of the high reliability of the stable molding torque reference value in the present invention, the setting end value is a test molding rather than setting the rotational torque value itself of the first average rotational torque obtained by the test molding or the like as the setting value. The first average rotational torque obtained by the above method is set to a setting value associated with the second average rotational torque (stable molding torque reference value) obtained by the same test molding or the like (for example, as in the first embodiment, the setting is completed) It is more preferable that the value be a ratio (%) that decreases from the stable molding torque reference value.
 次に、図7を参照しながら、本発明の実施例2に係る、射出成形機の成形サイクル終了方法を説明する。実施例2においても、先に説明したインラインスクリュ式射出装置1を有する射出成形機で実施することを前提にする。また、実施例2が実施例1と異なる点は、選択された成形サイクルにおける、スクリュ16の第2平均回転トルク算出工程及び平均回転トルク比較工程が行われるタイミングのみである。それ以外の点については実施例1と基本的に同じため、同じ構成については、実施例1と同じ符号を使用すると共に、重複する説明は割愛する。 Next, a method for terminating a molding cycle of an injection molding machine according to Embodiment 2 of the present invention will be described with reference to FIG. Also in the second embodiment, it is assumed that the injection molding machine having the inline screw injection device 1 described above is used. Further, the second embodiment differs from the first embodiment only in the timing at which the second average rotational torque calculating step and the average rotational torque comparing step of the screw 16 are performed in the selected molding cycle. Since the other points are basically the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used for the same components, and redundant description is omitted.
 実施例2においては、実施例1と同様に、第1平均回転トルク算出工程を行わない所定回数を5回とし、6回目の成形サイクルB1から良品を成形できるものとする。また、第2平均回転トルク算出工程において、第2平均回転トルクを算出させるための成形サイクルの選択方法及び回数も、実施例1と同じ連続する5回とする。 In Example 2, as in Example 1, the predetermined number of times that the first average rotational torque calculation step is not performed is five, and a good product can be molded from the sixth molding cycle B1. In the second average rotational torque calculation step, the molding cycle selection method and the number of times for calculating the second average rotational torque are also set to five consecutive times as in the first embodiment.
 実施例2においては、実施例1と同様に、良品を成形できる6回目の成形サイクルB1から、連続する5回のB成形サイクルの各成形サイクルにおいて第1平均回転トルク算出工程を行わせる。また、10回目の成形サイクルB5の計量工程の完了と略同時に、第2平均回転トルクを算出させ、安定成形トルク基準値TBを設定させる。 In Example 2, as in Example 1, the first average rotational torque calculation step is performed in each of the five consecutive B molding cycles from the sixth molding cycle B1 in which a good product can be molded. Further, the second average rotational torque is calculated and the stable molding torque reference value TB is set substantially simultaneously with the completion of the measurement process of the tenth molding cycle B5.
 そして、実施例2においては、実施例1と異なり、続く11回目の成形サイクルC1から、連続する5回のC成形サイクルの各成形サイクルにおいて第1平均回転トルク算出工程を行わせる。また、15回目の成形サイクルC5の計量工程の完了と略同時に、第2平均回転トルクを算出させ、安定成形トルク基準値TCを設定させる。さらに、C成形サイクルの各成形サイクル(C1~C5)の第1平均回転トルクを、前のB成形サイクルで設定させた安定成形トルク基準値TBと比較させる(平均回転トルク比較工程)。 In the second embodiment, unlike the first embodiment, the first average rotational torque calculation step is performed in each molding cycle of five consecutive C molding cycles from the eleventh molding cycle C1. Further, the second average rotational torque is calculated and the stable molding torque reference value TC is set substantially simultaneously with the completion of the metering step of the fifteenth molding cycle C5. Further, the first average rotational torque of each molding cycle (C1 to C5) of the C molding cycle is compared with the stable molding torque reference value TB set in the previous B molding cycle (average rotational torque comparison step).
 更に、実施例2においては、16回目の成形サイクルD1から、連続する5回のD成形サイクルの各成形サイクルにおいて第1平均回転トルク算出工程を行わせると共に、第2平均回転トルク算出工程を行わせる。また、D成形サイクルの各成形サイクル(D1~D5)の第1平均回転トルクを、前のC成形サイクルで設定させた安定成形トルク基準値TCと比較させる。 Furthermore, in Example 2, the first average rotational torque calculation step is performed in each molding cycle of the five consecutive D molding cycles from the 16th molding cycle D1, and the second average rotational torque calculation step is performed. Make it. Further, the first average rotational torque of each molding cycle (D1 to D5) of the D molding cycle is compared with the stable molding torque reference value TC set in the previous C molding cycle.
 このように、実施例2においては、第2平均回転トルク算出工程の選択された複数回(連続する5回)の成形サイクルを1セットとして、1セット毎に安定成形トルク基準値を設定させると共に、平均回転トルク比較工程において、1セットの各成形サイクルの第1平均回転トルクを、直前の1セットで設定させた安定成形トルク基準値と比較させることを特徴としている。 As described above, in the second embodiment, a plurality of (5 consecutive) molding cycles selected in the second average rotational torque calculation step are set as one set, and a stable molding torque reference value is set for each set. In the average rotational torque comparison step, the first average rotational torque of each set of molding cycles is compared with a stable molding torque reference value set in the immediately preceding one set.
 実施例2の形態は、実施例1の成形に対して、スクリュ16の第1平均回転トルクの変動が無く、比較的第1平均回転トルクが安定している成形に好適である。特に、射出装置のサイズに対して1成形サイクルに要する計量樹脂量が少なく、材料供給を停止しても5回から6回程度の成形サイクルにおいて良品が成形できるような場合においては、第2平均回転トルク算出工程の成形サイクルの選択回数をこれより少なく(2~3回)することにより、実施例1よりも比較的簡易な制御で、第1平均回転トルクや第2平均回転トルクの変動が生じた場合でも、これを反映させることができる。尚、平均回転トルク比較工程において採用する設定成形終了値や、第2平均回転トルクを算出させるための成形サイクルの選択方法及び回数等については実施例1と同様であるため説明は割愛する。 The form of Example 2 is suitable for molding in which the first average rotational torque of the screw 16 does not vary and the first average rotational torque is relatively stable as compared with the molding of Example 1. In particular, when the amount of metering resin required for one molding cycle is small with respect to the size of the injection device, and a non-defective product can be molded in about 5 to 6 molding cycles even if the material supply is stopped, the second average By reducing the number of molding cycles selected in the rotational torque calculation step (2 to 3 times), the fluctuations in the first average rotational torque and the second average rotational torque can be controlled with a relatively simple control compared to the first embodiment. Even if it occurs, this can be reflected. The setting molding end value employed in the average rotational torque comparison step, the molding cycle selection method and the number of times for calculating the second average rotational torque, and the like are the same as those in the first embodiment, and the description thereof will be omitted.
 本発明は、上記の実施の形態に限定されることなく色々な形で実施できる。例えば、実施例1及び実施例2においては、良品を成形できる6回目の成形サイクルB1から第1平均回転トルク算出工程及び第2平均回転トルク算出工程を行わせるものとしたが、これに限定されるものではない。例えば、成形開始後、任意の成形サイクルから、選択された複数回で第2平均回転トルク算出工程を行わせた後、算出させた安定成形トルク基準値を制御装置に記憶させて、別の任意の成形サイクルから、この安定成形トルク基準値を使用して平均回転トルク比較工程を行わせても良い。 The present invention can be implemented in various forms without being limited to the above embodiment. For example, in Example 1 and Example 2, the first average rotational torque calculation step and the second average rotational torque calculation step are performed from the sixth molding cycle B1 in which a good product can be molded. However, the present invention is not limited to this. It is not something. For example, after the molding is started, the second average rotational torque calculation step is performed a plurality of times selected from an arbitrary molding cycle, and then the calculated stable molding torque reference value is stored in the control device, and another arbitrary From this molding cycle, the average rotational torque comparison step may be performed using this stable molding torque reference value.
 また、実施例1及び実施例2においては、良品を成形できる6回目の成形サイクルB1から、連続する5回の成形サイクルにおいて、第1平均回転トルク算出工程及び第2平均回転トルク算出工程を行わせるものとしたが、これに限定されるものではない。例えば、連続する10回の成形サイクルから、1回目、3回目、のように1つ飛ばしの複数回の成形サイクルが選択されても良い。また、例えば、連続する50回の成形サイクルから、5回目、10回目、のように複数回飛ばしの複数回の成形サイクルが選択されても良い。このような成形サイクルの選択により、制御装置の負荷を増加させることなく、第2平均回転トルクの値の安定性の確保が期待できる。 In Example 1 and Example 2, the first average rotational torque calculation step and the second average rotational torque calculation step are performed in five consecutive molding cycles from the sixth molding cycle B1 in which a good product can be molded. However, the present invention is not limited to this. For example, from one continuous molding cycle, a plurality of molding cycles may be selected, such as the first and third cycles. In addition, for example, a plurality of molding cycles may be selected by skipping a plurality of times such as the fifth and the tenth from 50 consecutive molding cycles. By selecting such a molding cycle, it is possible to ensure the stability of the value of the second average rotational torque without increasing the load on the control device.
 一方、射出成形機の射出装置には、インラインスクリュ式射出装置とは構成が異なるプリプラ式射出装置がある。プリプラ式射出装置は、樹脂材料を可塑化させる可塑化シリンダと、樹脂材料を射出充填させる射出シリンダとが、ノズル側で連結された構成を備えている。プリプラ式射出装置は、回転するスクリュを内蔵した可塑化シリンダにより可塑化させた樹脂材料を、樹脂流路を介して可塑化シリンダ前方と連結されている射出シリンダ内の貯留部に貯留させるよう構成されている。また、プリプラ式射出装置は、計量工程完了後、射出シリンダ内で長手方向に摺動可能に配置させたプランジャを前進させることで、貯留部に貯留させた樹脂材料を金型に射出充填させるよう構成されている。このように、プリプラ式射出装置は、可塑化シリンダと射出シリンダとが独立している点において、インラインスクリュ式射出装置の構成と大きく異なっている。実施例1及び実施例2において、インラインスクリュ式射出装置を有する射出成形機を前提に説明したが、これに限定されず、プリプラ式射出装置を有する射出成形機においても、本発明を実施することが可能である。 On the other hand, an injection device of an injection molding machine includes a pre-plastic injection device having a configuration different from that of an inline screw injection device. The pre-plastic injection device has a configuration in which a plasticizing cylinder for plasticizing a resin material and an injection cylinder for injecting and filling a resin material are connected on the nozzle side. The pre-plastic injection device is configured to store a resin material plasticized by a plasticizing cylinder having a built-in rotating screw in a storage part in the injection cylinder connected to the front of the plasticizing cylinder through a resin flow path. Has been. In addition, the pre-plastic injection device, after completion of the metering process, advances the plunger that is slidable in the longitudinal direction in the injection cylinder so that the resin material stored in the storage portion is injected and filled into the mold. It is configured. Thus, the pre-plastic injection device is greatly different from the configuration of the in-line screw injection device in that the plasticizing cylinder and the injection cylinder are independent. In the first and second embodiments, the description has been made on the assumption of an injection molding machine having an inline screw type injection device. However, the present invention is not limited to this, and the present invention is also implemented in an injection molding machine having a pre-plastic injection device. Is possible.
1        インラインスクリュ式射出装置
10       樹脂流路
13       ノズル
14       材料供給部
14a      樹脂材料
15       加熱バレル
15a      加熱手段
15b      貯留部
16       スクリュ
16a      フライト
17       スクリュヘッド
18       チェックリング
 
DESCRIPTION OF SYMBOLS 1 In-line screw type injection apparatus 10 Resin flow path 13 Nozzle 14 Material supply part 14a Resin material 15 Heating barrel 15a Heating means 15b Storage part 16 Screw 16a Flight 17 Screw head 18 Check ring

Claims (5)

  1.  加熱バレル内のスクリュを回転させて、前記スクリュの後方から前記加熱バレル内に供給させた樹脂材料を、前記スクリュの前方に向けて流動させる間に可塑化させる射出装置を有する射出成形機の成形サイクル終了方法であって、
     1成形サイクルにおいて、可塑化させた前記樹脂材料を、前記射出装置の貯留部に設定量まで貯留させる計量工程における前記スクリュの第1平均回転トルクを算出させる第1平均回転トルク算出工程と、
     任意の成形サイクルから、選択された複数回の各成形サイクルにおいて前記第1平均回転トルク算出工程を行わせて、求められた各前記第1平均回転トルクから、前記選択された複数回の成形サイクルにおける第2平均回転トルクを算出させると共に、該第2平均回転トルクを安定成形トルク基準値として設定させる第2平均回転トルク算出工程と、
     前記安定成形トルク基準値を設定させた後の、任意の1成形サイクルにおける前記第1平均回転トルクを前記安定成形トルク基準値と比較させる平均回転トルク比較工程と、
     を有し、
     前記平均トルク比較工程において、前記第1平均回転トルクが、前記安定成形トルク基準値から、設定成形終了値に到達、あるいは、設定成形終了値を下回った成形サイクルを最終成形サイクルとして、該最終成形サイクルにおいて成形サイクルを終了させる、射出成形機の成形サイクル終了方法。
    Molding of an injection molding machine having an injection device that rotates a screw in a heating barrel and plasticizes the resin material supplied into the heating barrel from the rear of the screw while flowing toward the front of the screw A cycle end method,
    A first average rotational torque calculating step of calculating a first average rotational torque of the screw in a metering step of storing the plasticized resin material up to a set amount in the storage unit of the injection device in one molding cycle;
    From the arbitrary molding cycle, the first average rotational torque calculation step is performed in each of a plurality of selected molding cycles, and the plurality of selected molding cycles are determined from each of the obtained first average rotational torques. And calculating a second average rotational torque at the same time, and setting the second average rotational torque as a stable molding torque reference value;
    An average rotational torque comparison step of comparing the first average rotational torque in any one molding cycle after setting the stable molding torque reference value with the stable molding torque reference value;
    Have
    In the average torque comparison step, the first molding torque reaches a set molding end value from the stable molding torque reference value, or a molding cycle in which the first molding torque falls below the set molding end value is defined as a final molding cycle. A method for terminating a molding cycle of an injection molding machine, wherein the molding cycle is terminated in the cycle.
  2.  成形開始後の所定回数の成形サイクルにおいて、前記第1平均回転トルク算出工程を行わない、請求項1に記載の射出成形機の成形サイクル終了方法。 2. The molding cycle end method for an injection molding machine according to claim 1, wherein the first average rotational torque calculation step is not performed in a predetermined number of molding cycles after the start of molding.
  3.  任意の成形サイクルから、成形サイクル毎に前記第1平均回転トルク算出工程を行わせると共に、
     前記任意の成形サイクルから、成形サイクル毎に前記第2平均回転トルク算出工程を開始させ、
     前記平均回転トルク比較工程において、前記第2平均回転トルク算出工程により、前記安定成形トルク基準値を設定させた成形サイクルの直後の成形サイクルにおける前記第1平均回転トルクを、直前の成形サイクルで設定させた前記安定成形トルク基準値と比較させる、請求項1又は請求項2に記載の射出成形機の成形サイクル終了方法。
    From any molding cycle, the first average rotational torque calculation step is performed for each molding cycle,
    From the arbitrary molding cycle, start the second average rotational torque calculation step for each molding cycle,
    In the average rotational torque comparison step, the first average rotational torque in the molding cycle immediately after the molding cycle in which the stable molding torque reference value is set in the second average rotational torque calculation step is set in the immediately preceding molding cycle. The molding cycle end method of the injection molding machine according to claim 1, wherein the method is compared with the stable molding torque reference value.
  4.  前記第2平均回転トルク算出工程の前記選択された複数回の成形サイクルを1セットとして、前記1セット毎に前記安定成形トルク基準値を設定させると共に、前記平均回転トルク比較工程において、前記1セットの各成形サイクルの前記第1平均回転トルクを、直前の前記1セットで設定させた前記安定成形トルク基準値と比較させる、請求項1又は請求項2に記載の射出成形機の成形サイクル終了方法。 The selected plurality of molding cycles in the second average rotational torque calculation step is set as one set, and the stable molding torque reference value is set for each set, and in the average rotational torque comparison step, the one set The molding cycle end method for an injection molding machine according to claim 1 or 2, wherein the first average rotational torque of each molding cycle is compared with the stable molding torque reference value set in the immediately preceding one set. .
  5.  成形サイクルの一時的な停止も含む停止操作後、成形サイクルが再開される都度、前記第2平均回転トルク算出工程において、前記安定成形トルク基準値を設定させる、請求項1乃至請求項4のいずれか1項に記載の射出成形機の成形サイクル終了方法。 5. The stable molding torque reference value is set in the second average rotational torque calculation step every time the molding cycle is restarted after a stop operation including a temporary stop of the molding cycle. 6. A molding cycle end method for an injection molding machine according to claim 1.
PCT/JP2016/082774 2016-01-21 2016-11-04 Method for ending molding cycle of injection molding machine WO2017126193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680070278.3A CN108290330B (en) 2016-01-21 2016-11-04 Method for ending molding cycle of injection molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009735 2016-01-21
JP2016009735A JP6107984B1 (en) 2016-01-21 2016-01-21 Method for ending molding cycle of injection molding machine

Publications (1)

Publication Number Publication Date
WO2017126193A1 true WO2017126193A1 (en) 2017-07-27

Family

ID=58666307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082774 WO2017126193A1 (en) 2016-01-21 2016-11-04 Method for ending molding cycle of injection molding machine

Country Status (3)

Country Link
JP (1) JP6107984B1 (en)
CN (1) CN108290330B (en)
WO (1) WO2017126193A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262889A (en) * 1996-03-28 1997-10-07 Japan Steel Works Ltd:The Displaying device of load condition of motor in motorized injection molder
JP2002018924A (en) * 2000-07-11 2002-01-22 Toshiba Mach Co Ltd Method for sensing abnormality in injection molding machine
JP2005014308A (en) * 2003-06-24 2005-01-20 Niigata Machine Techno Co Ltd Screw rotation control method in injection molding machine and screw rotation control device
JP2006088557A (en) * 2004-09-24 2006-04-06 Toshiba Mach Co Ltd Stopping method of purge operation in plasticator of injection molding machine and control device
JP2013154551A (en) * 2012-01-30 2013-08-15 Japan Steel Works Ltd:The Flushing method of injection apparatus
JP2014069415A (en) * 2012-09-28 2014-04-21 Sumitomo Heavy Ind Ltd Injection molding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1013179B (en) * 1985-07-19 1991-07-17 东芝机械株式会社 Method for controlling diecasting machine
JPH0425427A (en) * 1990-05-22 1992-01-29 Sumitomo Heavy Ind Ltd Breakage of screw preventing device for injection molding machine
JP4235240B2 (en) * 2007-07-17 2009-03-11 ファナック株式会社 Injection molding machine having backflow prevention valve closed state determination means
US20160016369A1 (en) * 2014-05-21 2016-01-21 University Of South Carolina Novel Additive Manufacturing-Based Electric Poling Process of PVDF Polymer for Piezoelectric Device Applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262889A (en) * 1996-03-28 1997-10-07 Japan Steel Works Ltd:The Displaying device of load condition of motor in motorized injection molder
JP2002018924A (en) * 2000-07-11 2002-01-22 Toshiba Mach Co Ltd Method for sensing abnormality in injection molding machine
JP2005014308A (en) * 2003-06-24 2005-01-20 Niigata Machine Techno Co Ltd Screw rotation control method in injection molding machine and screw rotation control device
JP2006088557A (en) * 2004-09-24 2006-04-06 Toshiba Mach Co Ltd Stopping method of purge operation in plasticator of injection molding machine and control device
JP2013154551A (en) * 2012-01-30 2013-08-15 Japan Steel Works Ltd:The Flushing method of injection apparatus
JP2014069415A (en) * 2012-09-28 2014-04-21 Sumitomo Heavy Ind Ltd Injection molding machine

Also Published As

Publication number Publication date
CN108290330B (en) 2020-05-22
JP6107984B1 (en) 2017-04-05
CN108290330A (en) 2018-07-17
JP2017128059A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
US9821498B2 (en) Injection molding method and injection molding device
JP4038226B2 (en) Measuring method and control device for injection molding machine
JP2004216808A (en) Injection molding machine
EP3100840B1 (en) Injection molding machine
US9339961B2 (en) Metering controller for injection molding machine
US9162386B2 (en) Controller for an injection molding machine
US20210178649A1 (en) Control device and control method for injection molding machine
US9090015B2 (en) Controller of injection molding machine
JP2009255452A (en) Preplasticating injection molding machine
JP2013256019A (en) Pressure control device for injection molding machine
WO2017126193A1 (en) Method for ending molding cycle of injection molding machine
JP5661007B2 (en) Injection device and injection control method thereof
JP2010247411A (en) Method of switching mode of injection molding machine
JP7260424B2 (en) Injection molding machine
JP4889574B2 (en) Control method of injection molding machine
JP7299125B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE
JP6075693B2 (en) Control method of metering process of injection molding machine
JP6429923B2 (en) Method of operating an injection device comprising a plasticizing device and a plunger type injection device
JP2021070210A (en) Control device, injection molding machine, and control method
JP2004188798A (en) Metering method for injection molding machine
WO2023203716A1 (en) Control device and control method
JP7274348B2 (en) Method for measuring fluidity index of molten resin
JP2018153969A (en) Raw material supply control system for injection molding machine and raw material supply control method for injection molding machine
WO2023203714A1 (en) Control device and control method
WO2023203715A1 (en) Control device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886432

Country of ref document: EP

Kind code of ref document: A1