JP6206259B2 - Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product - Google Patents

Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product Download PDF

Info

Publication number
JP6206259B2
JP6206259B2 JP2014046147A JP2014046147A JP6206259B2 JP 6206259 B2 JP6206259 B2 JP 6206259B2 JP 2014046147 A JP2014046147 A JP 2014046147A JP 2014046147 A JP2014046147 A JP 2014046147A JP 6206259 B2 JP6206259 B2 JP 6206259B2
Authority
JP
Japan
Prior art keywords
positive electrode
granulated product
active material
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014046147A
Other languages
Japanese (ja)
Other versions
JP2015170550A (en
Inventor
浩哉 梅山
浩哉 梅山
敬介 大原
敬介 大原
橋本 達也
達也 橋本
友嗣 横山
友嗣 横山
福本 友祐
友祐 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014046147A priority Critical patent/JP6206259B2/en
Publication of JP2015170550A publication Critical patent/JP2015170550A/en
Application granted granted Critical
Publication of JP6206259B2 publication Critical patent/JP6206259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用正極の製造方法およびリチウム二次電池用正極ならびに造粒物に関する。   The present invention relates to a method for producing a positive electrode for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a granulated product.

特開2008−112594号公報(特許文献1)には、正極合剤が、活性炭を含む正極活物質と、導電材として粉末状黒鉛と、鱗片状黒鉛および無定形炭素(カーボンブラック)と、結着材とを有することを特徴とするリチウム二次電池が開示されている。   In Japanese Patent Application Laid-Open No. 2008-112594 (Patent Document 1), a positive electrode mixture includes a positive electrode active material containing activated carbon, powdered graphite as a conductive material, flaky graphite, and amorphous carbon (carbon black). There is disclosed a lithium secondary battery characterized by having an adhesion material.

特開2008−112594号公報JP 2008-112594 A

車載用のリチウム二次電池は、低温特性(低温環境における大電流特性)に優れることが要求される。従来、リチウム二次電池の低温特性を高めるために、正極用の導電助材として鱗片状黒鉛等の黒鉛質粒子や、アセチレンブラック(AB)等の無定形炭素(すなわち炭素質粒子)が用いられている。   An in-vehicle lithium secondary battery is required to have excellent low temperature characteristics (large current characteristics in a low temperature environment). Conventionally, graphite particles such as flake graphite and amorphous carbon (that is, carbonaceous particles) such as acetylene black (AB) have been used as a conductive additive for the positive electrode in order to improve the low temperature characteristics of the lithium secondary battery. ing.

黒鉛質粒子は、黒鉛の結晶構造に由来して高い導電性を示し、かつ平均粒子径が大きいという特徴を有する。そのため黒鉛質粒子は、電極内で導電ネットワークを構築するための必要量が少ないという利点を有している。しかしその反面、黒鉛質粒子は、その粒子形状によって、正極活物質との接触率が低くなりやすい。そして充放電サイクルが繰り返されると、正極活物質の膨張収縮に追随できず、接触率は更に低下して、充放電特性の悪化を招くこととなる。すなわち黒鉛質粒子を導電助材として用いる場合には、サイクル特性に問題がある。   Graphite particles are characterized by high conductivity derived from the crystal structure of graphite and a large average particle diameter. For this reason, the graphite particles have the advantage that the amount required to build a conductive network in the electrode is small. However, on the other hand, the graphite particles tend to have a low contact rate with the positive electrode active material depending on the particle shape. When the charge / discharge cycle is repeated, the expansion and contraction of the positive electrode active material cannot be followed, and the contact rate further decreases, leading to deterioration of charge / discharge characteristics. That is, when graphite particles are used as a conductive additive, there is a problem in cycle characteristics.

他方、炭素質粒子は、黒鉛質粒子に比して導電性は低いものの、平均粒子径が10〜100nm程度という小径粒子であるため、正極活物質同士の間の微細な空隙に入り込むことができ、緻密な導電ネットワークの構築に適している。しかし、そのような緻密な導電ネットワークを構築するためには、粒子間の空隙のみならず、正極活物質と集電体との間にも炭素質粒子を充填する必要がある。すなわち炭素質粒子を導電助材として用いる場合には、導電助材の必要量が過大となるという問題がある。   On the other hand, although carbonaceous particles are low in conductivity compared to graphite particles, they are small-diameter particles having an average particle diameter of about 10 to 100 nm, and therefore can enter fine voids between the positive electrode active materials. Suitable for the construction of dense conductive networks. However, in order to construct such a dense conductive network, it is necessary to fill the carbonaceous particles not only between the voids between the particles but also between the positive electrode active material and the current collector. That is, when carbonaceous particles are used as a conductive additive, there is a problem that the necessary amount of conductive additive becomes excessive.

そのため現在は、黒鉛質粒子と炭素質粒子とを併用することにより、互いの欠点を補って中庸的な特性を示す正極が用いられている。しかしながら車載用のリチウム二次電池には、大電流特性とりわけ低温特性の更なる改善が望まれている。   For this reason, currently, a positive electrode is used in which graphite particles and carbonaceous particles are used in combination to compensate for each other's drawbacks and exhibit moderate characteristics. However, further improvements in large current characteristics, particularly low temperature characteristics are desired for in-vehicle lithium secondary batteries.

特許文献1では、黒鉛質粒子および炭素質粒子に加えて、活性炭という第3の導電助材を用いることにより、リチウム二次電池の大電流特性を改善する方法が提案されている。しかしながら、第3の導電助材の使用は、正極中における正極活物質の質量および体積比率の低下、すなわちエネルギー密度の低下をもたらしかねない。よしんば正極活物質の比率を維持したまま、第3の導電助材を加えたとしても、その場合は黒鉛質粒子および炭素質粒子のそれぞれが担う機能の低下を余儀なくされる。   Patent Document 1 proposes a method of improving the large current characteristics of a lithium secondary battery by using a third conductive additive called activated carbon in addition to graphite particles and carbonaceous particles. However, the use of the third conductive additive may cause a decrease in the mass and volume ratio of the positive electrode active material in the positive electrode, that is, a decrease in energy density. Even if the third conductive additive is added while maintaining the ratio of the positive electrode active material, the functions of the graphite particles and the carbonaceous particles are inevitably lowered.

また正極の充填率(正極密度)を高めれば、体積エネルギー密度を維持したまま、第3の導電助材の追加が可能であるとも考えられるが、正極の高密度化は、正極内の空隙率の低下、すなわち正極内の電解液保持量の減少を意味するものである。したがってこの場合には、正極内におけるリチウムイオン(Li+)の拡散が妨げられ、もとより低温特性の低下に帰結する。 If the filling rate (positive electrode density) of the positive electrode is increased, it is considered that the third conductive additive can be added while maintaining the volume energy density. This means a decrease in the amount of electrolyte solution retained in the positive electrode. Therefore, in this case, the diffusion of lithium ions (Li + ) in the positive electrode is hindered, resulting in deterioration of the low temperature characteristics.

本発明は上記のような課題に鑑みてなされたものであって、その目的とするところは、低温特性およびサイクル特性に優れるリチウム二次電池用正極を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a positive electrode for a lithium secondary battery excellent in low-temperature characteristics and cycle characteristics.

本発明者は、正極中における正極活物質、黒鉛質粒子および炭素質粒子の配置を制御することにより、第3の導電助材の使用やエネルギー密度の低下を伴わずに、正極内の導電ネットワークを構築できるのではないかとの着想を得、該着想に基づき更に研究を重ねることにより、本発明を完成させるに至った。すなわち本発明のリチウム二次電池用正極の製造方法は以下の構成を備える。   The present inventor controls the arrangement of the positive electrode active material, the graphite particles and the carbonaceous particles in the positive electrode, so that the conductive network in the positive electrode can be used without the use of the third conductive aid and the decrease in energy density. The present invention has been completed by obtaining an idea that it is possible to construct a model and further research based on the idea. That is, the manufacturing method of the positive electrode for lithium secondary batteries of this invention is equipped with the following structures.

(1)リチウム二次電池用正極の製造方法は、正極活物質と炭素質粒子とを混合して一次造粒物を得る第1工程と、該一次造粒物に黒鉛質粒子を付着させて二次造粒物を得る第2工程と、該二次造粒物をシート状の成形体に成形する第3工程と、該成形体を集電体上に配置する第4工程と、を備える。   (1) A method for producing a positive electrode for a lithium secondary battery includes a first step of mixing a positive electrode active material and carbonaceous particles to obtain a primary granulated product, and attaching graphite particles to the primary granulated product. A second step of obtaining a secondary granulated product, a third step of molding the secondary granulated product into a sheet-like molded product, and a fourth step of arranging the molded product on a current collector. .

従来、リチウム二次電池用正極の製造には、塗料(スラリーあるいはペーストともいう)を集電体上に塗工、乾燥する製法(以下「塗料化プロセス」ともいう)が用いられている。   Conventionally, a manufacturing method (hereinafter also referred to as a “coating process”) in which a coating material (also referred to as slurry or paste) is applied to a current collector and dried is used to manufacture a positive electrode for a lithium secondary battery.

本発明のリチウム二次電池用正極の製造方法は、塗料化プロセスとは異なり、正極活物質を含む造粒物の粉末から正極活物質層であるシート状の成形体を得(第3工程)、該成形体を集電体上に配置するプロセスを採用する(第4工程)。そしてさらに、当該製造方法は、必要材料を一括して混合および造粒を行なう従来の一段階造粒プロセスとも異なり、導電助材をそれぞれの形状および機能に着眼して、段階的に造粒を行なう二段階造粒プロセスを採用することを特徴とする(第1工程および第2工程)。   Unlike the paint process, the method for producing a positive electrode for a lithium secondary battery of the present invention obtains a sheet-like molded body which is a positive electrode active material layer from a granulated powder containing a positive electrode active material (third step). Then, a process of arranging the molded body on the current collector is employed (fourth step). Further, the manufacturing method is different from the conventional one-step granulation process in which necessary materials are mixed and granulated at once, focusing on the shape and function of the conductive auxiliary agent, and granulating step by step. A two-stage granulation process is employed (first step and second step).

本発明者の研究によれば、このような製法を採用することにより、従来プロセスに比して、正極中における正極活物質と、黒鉛質粒子および炭素質粒子との位置関係を制御しやすい。   According to the inventor's research, by adopting such a manufacturing method, it is easier to control the positional relationship between the positive electrode active material, the graphite particles, and the carbonaceous particles in the positive electrode than in the conventional process.

まず第1工程で得られる一次造粒物は、正極活物質と炭素質粒子とを混合して得られた造粒物である。ここで炭素質粒子は小径粒子であるため、一次造粒物の内部では正極活物質と炭素質粒子(導電助材)との接触率が容易に確保される。さらに炭素質粒子は、小径粒子であることにより、充放電サイクルに伴う正極活物質の膨張収縮にも追随することができる。   First, the primary granulated product obtained in the first step is a granulated product obtained by mixing a positive electrode active material and carbonaceous particles. Here, since the carbonaceous particles are small-diameter particles, the contact ratio between the positive electrode active material and the carbonaceous particles (conducting aid) is easily ensured inside the primary granulated product. Further, since the carbonaceous particles are small-diameter particles, they can follow the expansion and contraction of the positive electrode active material accompanying the charge / discharge cycle.

次に第2工程で得られる二次造粒物は、一次造粒物に黒鉛質粒子を付着させた造粒物である。すなわち二次造粒物はその表面に黒鉛質粒子を備える。これにより成形体(正極活物質層)において、二次造粒物同士の導電パスは、導電性の高い黒鉛質粒子(導電助材)によって確保される。そして、黒鉛質粒子が直接正極活物質と接触する場合とは異なり、正極活物質の膨張収縮は、一次造粒物内の空隙等によって緩衝されるため、充放電サイクルに伴う一次造粒物と黒鉛質粒子との接触率の低下が抑制される。   Next, the secondary granulated product obtained in the second step is a granulated product obtained by attaching graphite particles to the primary granulated product. That is, the secondary granulated product has graphite particles on its surface. Thereby, in a molded object (positive electrode active material layer), the conductive path between secondary granulated materials is ensured by highly conductive graphite particles (conductive auxiliary material). And unlike the case where the graphite particles are in direct contact with the positive electrode active material, the expansion and contraction of the positive electrode active material is buffered by voids in the primary granulated material, so that the primary granulated product accompanying the charge / discharge cycle and A decrease in the contact ratio with the graphite particles is suppressed.

また、正極において二次造粒物と集電体との導電パスも、導電性の高い黒鉛質粒子によって確保できる。黒鉛質粒子は導電性が高くかつ大径粒子であるため、集電体との導電パスを確保するための必要量が少ない。これにより導電助材の無用な増量を回避することができる。   In addition, the conductive path between the secondary granulated product and the current collector in the positive electrode can be secured by the highly conductive graphite particles. Since the graphite particles have high conductivity and are large-diameter particles, the amount required for securing a conductive path with the current collector is small. Thereby, unnecessary increase of the conductive additive can be avoided.

以上のように、本発明のリチウム二次電池の製造方法によれば、正極活物質から集電体に至る導電パス、すなわち導電ネットワークが安定かつ効率的に構築され、低温特性を損なうことなくサイクル特性を向上させることができる。   As described above, according to the method for manufacturing a lithium secondary battery of the present invention, the conductive path from the positive electrode active material to the current collector, that is, the conductive network is stably and efficiently built, and the cycle is performed without impairing the low temperature characteristics. Characteristics can be improved.

(2)二次造粒物の固形分濃度は、73質量%以上であることが好ましい。
これにより二次造粒物内における各材料の配置が、経時的に変容することを防止することができる。そして、より好ましくは当該固形分濃度が73質量%以上である状態が保たれたまま、第3工程および第4工程が実行される。これにより二次造粒物における各材料の配置を安定して維持したまま、正極を製造することができる。なお二次造粒物の固形分濃度は75質量%以上であることがより好ましい。
(2) The solid content concentration of the secondary granulated product is preferably 73% by mass or more.
Thereby, it can prevent that arrangement | positioning of each material in a secondary granulated material changes with time. And more preferably, the third step and the fourth step are performed while the state where the solid content concentration is 73% by mass or more is maintained. Thereby, a positive electrode can be manufactured, maintaining the arrangement | positioning of each material in a secondary granulated material stably. The solid content concentration of the secondary granulated product is more preferably 75% by mass or more.

(3)第1工程は、正極活物質と炭素質粒子と増粘材とを混合して一次造粒物を得る工程であり、第2工程は、一次造粒物に黒鉛質粒子および結着材を付着させて二次造粒物を得る工程であることが好ましい。   (3) The first step is a step of mixing the positive electrode active material, the carbonaceous particles, and the thickener to obtain a primary granulated product, and the second step is a process of graphitized particles and binding to the primary granulated product. It is preferable that the step is a step of attaching a material to obtain a secondary granulated product.

これにより、いっそう確実に正極活物質と炭素質粒子とを含む一次造粒物を得、該一次造粒物の表面に黒鉛質粒子が付着した二次造粒物を得ることができる。   As a result, a primary granulated product containing the positive electrode active material and the carbonaceous particles can be obtained more reliably, and a secondary granulated product having graphite particles attached to the surface of the primary granulated product can be obtained.

(4)本発明は別の局面に従えば、リチウム二次電池用正極に用いられる造粒物であり、該造粒物は、一次造粒物の表面に導電層が付着した二次造粒物であって、該一次造粒物は、正極活物質と炭素質粒子とを含み、該導電層は、黒鉛質粒子と結着材とを含む。   (4) According to another aspect, the present invention is a granulated product used for a positive electrode for a lithium secondary battery, and the granulated product is a secondary granulated product in which a conductive layer is attached to the surface of the primary granulated product. The primary granulated product includes a positive electrode active material and carbonaceous particles, and the conductive layer includes graphite particles and a binder.

小径粒子である炭素質粒子は、正極活物質の膨張収縮に追随することができる。よって充放電サイクルに伴う導電助材と正極活物質との接触率の低下を抑制できる。また結着材と黒鉛質粒子は導電層を構成することができる。そして黒鉛質粒子は導電性が高い。したがって該造粒物から正極活物質層を成形した場合、造粒物同士あるいは集電体との間で、安定した導電ネットワークが構築される。   The carbonaceous particles that are small-diameter particles can follow the expansion and contraction of the positive electrode active material. Therefore, the fall of the contact rate of the conductive support material and positive electrode active material accompanying a charging / discharging cycle can be suppressed. The binder and the graphite particles can constitute a conductive layer. Graphite particles have high conductivity. Therefore, when a positive electrode active material layer is formed from the granulated material, a stable conductive network is constructed between the granulated materials or current collectors.

なお導電層は、一次造粒物の表面の少なくとも一部に付着していればよく、必ずしも全面を被覆している必要はない。   The conductive layer only needs to be attached to at least a part of the surface of the primary granulated product, and does not necessarily cover the entire surface.

(5)本発明はさらに別の局面に従えば、上記(4)に記載する造粒物を備えるリチウム二次電池用正極である。   (5) According to still another aspect of the present invention, there is provided a positive electrode for a lithium secondary battery comprising the granulated product described in (4) above.

該造粒物を備える正極では、安定した導電ネットワークが構築される。したがって当該正極は、低温特性およびサイクル特性に優れることができる。   In the positive electrode including the granulated material, a stable conductive network is constructed. Therefore, the positive electrode can be excellent in low temperature characteristics and cycle characteristics.

本発明によれば、低温特性およびサイクル特性に優れるリチウム二次電池用正極が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for lithium secondary batteries which is excellent in a low temperature characteristic and cycling characteristics is provided.

本発明の一実施形態に係るリチウム二次電池用正極の製造方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the manufacturing method of the positive electrode for lithium secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係わる一次造粒物の構成を示す模式図である。It is a schematic diagram which shows the structure of the primary granulated material concerning one Embodiment of this invention. 本発明の一実施形態に係わる二次造粒物の構成を示す模式図である。It is a schematic diagram which shows the structure of the secondary granulated material concerning one Embodiment of this invention. 本発明の一実施形態に係わるリチウム二次電池用正極の構成を示す模式的な部分断面図である。It is a typical fragmentary sectional view which shows the structure of the positive electrode for lithium secondary batteries concerning one Embodiment of this invention. 造粒装置の一例を示す模式図である。It is a schematic diagram which shows an example of a granulation apparatus. 第3工程の一例を図解する模式図である。It is a mimetic diagram illustrating an example of the 3rd process. 第4工程の一例を図解する模式図である。It is a mimetic diagram illustrating an example of the 4th process. 本発明の一実施形態に係わる評価用正極の一例を示す模式的な平面図である。It is a typical top view which shows an example of the positive electrode for evaluation concerning one Embodiment of this invention. 本発明の一実施形態に係わる評価用負極の一例を示す模式的な平面図である。It is a typical top view which shows an example of the negative electrode for evaluation concerning one Embodiment of this invention. 本発明の一実施形態に係わる評価用電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery for evaluation concerning one Embodiment of this invention. 本発明の一実施形態に係わる評価用電池の構成の一例を示す模式的な平面図である。It is a typical top view which shows an example of a structure of the battery for evaluation concerning one Embodiment of this invention. 本発明の一実施形態に係わるリチウム二次電池における低温IV抵抗とサイクル後容量維持率との関係の一例を示す散布図である。It is a scatter diagram which shows an example of the relationship between the low temperature IV resistance in the lithium secondary battery concerning one Embodiment of this invention, and the capacity maintenance rate after a cycle. 本発明の一実施形態に係わるリチウム二次電池における正極作製時の固形分濃度と低温IV抵抗との関係の一例を示す散布図である。It is a scatter diagram which shows an example of the relationship between the solid content concentration at the time of positive electrode preparation in the lithium secondary battery concerning one Embodiment of this invention, and low temperature IV resistance. 本発明の一実施形態に係わるリチウム二次電池における正極中の黒鉛質粒子の配合量と低温IV抵抗との関係の一例を示す散布図である。It is a scatter diagram which shows an example of the relationship between the compounding quantity of the graphite particle | grains in the positive electrode in the lithium secondary battery concerning one Embodiment of this invention, and low temperature IV resistance. 本発明の一実施形態に係わるリチウム二次電池の構成の一例を示す模式的な断面斜視図である。It is a typical section perspective view showing an example of the composition of the lithium secondary battery concerning one embodiment of the present invention. 本発明の一実施形態に係わるリチウム二次電池の製造方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the manufacturing method of the lithium secondary battery concerning one Embodiment of this invention.

以下、本発明の一実施形態(「本実施形態」とも記す。)について説明するが、本実施形態はこれらに限定されるものではない。なお以下の説明において平均粒子径は、レーザ回折散乱法によって測定されたメジアン径(いわゆるd50)を示すものとする。   Hereinafter, one embodiment of the present invention (also referred to as “this embodiment”) will be described, but the present embodiment is not limited thereto. In the following description, the average particle diameter represents a median diameter (so-called d50) measured by a laser diffraction scattering method.

〔第1の実施形態:リチウム二次電池用正極の製造方法〕
図1は本実施形態の製造方法の概略を示すフローチャートである。図1に示すように当該製造方法は、第1工程S110、第2工程S120、第3工程S130および第4工程S140を備える。
[First Embodiment: Method for Producing Positive Electrode for Lithium Secondary Battery]
FIG. 1 is a flowchart showing an outline of the manufacturing method of this embodiment. As shown in FIG. 1, the manufacturing method includes a first step S110, a second step S120, a third step S130, and a fourth step S140.

ここで第1工程S110は一次造粒工程、第2工程S120は二次造粒工程、第3工程S130は成形工程、第4工程S140は配置(圧着)工程とそれぞれ言い換えることもできる。   Here, the first step S110 can be rephrased as a primary granulation step, the second step S120 as a secondary granulation step, the third step S130 as a forming step, and the fourth step S140 as an arrangement (crimping) step.

まず本実施形態に用いられる材料および造粒装置について説明する。
(正極活物質)
正極活物質2は、リチウム二次電池の正極活物質として機能するものであればよく、特に限定されない。正極活物質2としては、たとえばLiCoO2、LiNiO2、LiNiaCob2(a+b=1、0<a<1、0<b<1)、LiMnO2、LiMn24、LiNiaCobMnc2(a+b+c=1、0<a<1、0<b<1、0<c<1)、LiFePO4等を例示することができる。
First, materials and a granulating apparatus used in this embodiment will be described.
(Positive electrode active material)
The positive electrode active material 2 is not particularly limited as long as it functions as a positive electrode active material of a lithium secondary battery. Examples of the positive electrode active material 2 include LiCoO 2 , LiNiO 2 , LiNi a Co b O 2 (a + b = 1, 0 <a <1, 0 <b <1), LiMnO 2 , LiMn 2 O 4 , LiNi a Co b. Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1), LiFePO 4 and the like can be exemplified.

造粒時の流動性の観点から、正極活物質2の平均粒子径は、好ましくは3μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、特に好ましくは8μm以上15μm以下である。なお正極活物質2として、2種以上の材料を用いてもよい。   From the viewpoint of fluidity during granulation, the average particle diameter of the positive electrode active material 2 is preferably 3 μm or more and 20 μm or less, more preferably 5 μm or more and 18 μm or less, and particularly preferably 8 μm or more and 15 μm or less. Two or more kinds of materials may be used as the positive electrode active material 2.

(炭素質粒子)
炭素質粒子4は、導電助材として機能を有する。炭素質粒子4は、いわゆる無定形炭素であり、黒鉛結晶構造を有しない炭素材料からなる粒子である。炭素質粒子4としては、たとえばサーマルブラック、アセチレンブラック(AB)、チャンネルブラック、ファーネスブラック、ランプブラック、ケッチェンブラック(登録商標)等のカーボンブラック類を例示することができる。
(Carbonaceous particles)
The carbonaceous particle 4 has a function as a conductive additive. The carbonaceous particles 4 are so-called amorphous carbon and are particles made of a carbon material having no graphite crystal structure. Examples of the carbonaceous particles 4 include carbon blacks such as thermal black, acetylene black (AB), channel black, furnace black, lamp black, and ketjen black (registered trademark).

正極活物質2との接触率を確保するとの観点から、炭素質粒子4の平均粒子径は、好ましくは10nm以上100nm以下であり、より好ましくは20nm以上80nm以下であり、特に好ましくは30nm以上50nm以下である。なお炭素質粒子4として、2種以上の材料を用いてもよい。   From the viewpoint of securing the contact ratio with the positive electrode active material 2, the average particle diameter of the carbonaceous particles 4 is preferably 10 nm or more and 100 nm or less, more preferably 20 nm or more and 80 nm or less, and particularly preferably 30 nm or more and 50 nm. It is as follows. Two or more kinds of materials may be used as the carbonaceous particles 4.

(黒鉛質粒子)
黒鉛質粒子6は、導電助材としての機能を有する。黒鉛質粒子6は、黒鉛結晶構造を有する炭素材料からなる粒子である。黒鉛質粒子6は、天然黒鉛であってもよいし人造黒鉛であってもよい。たとえば鱗片状黒鉛、土状黒鉛、球状化黒鉛、膨張化黒鉛等を用いることができる。これらのうち導電性の観点から鱗片状黒鉛が特に好ましい。
(Graphite particles)
The graphite particles 6 have a function as a conductive additive. The graphite particles 6 are particles made of a carbon material having a graphite crystal structure. The graphite particles 6 may be natural graphite or artificial graphite. For example, flaky graphite, earthy graphite, spheroidized graphite, expanded graphite, and the like can be used. Of these, scaly graphite is particularly preferable from the viewpoint of conductivity.

導電助材の使用量を抑えるとの観点から、黒鉛質粒子6の平均粒子径は、好ましくは1μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、特に好ましくは8μm以上15μm以下である。   From the viewpoint of suppressing the amount of conductive aid used, the average particle size of the graphite particles 6 is preferably 1 μm to 20 μm, more preferably 5 μm to 18 μm, and particularly preferably 8 μm to 15 μm. is there.

(増粘材)
本実施形態では、造粒時に増粘材(図示せず)を用いることができる。増粘材には、従来公知の増粘材を用いることができる。たとえば、カルボキシメチルセルロースナトリウム(CMC)、メチルセルロース(MC)、アルギン酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリビニルピロリドン(PVD)等を用いることができる。これらのうち取り扱いの容易性からCMCが特に好適である。
(Thickener)
In this embodiment, a thickener (not shown) can be used at the time of granulation. A conventionally well-known thickener can be used for a thickener. For example, sodium carboxymethylcellulose (CMC), methylcellulose (MC), sodium alginate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyvinylpyrrolidone (PVD) and the like can be used. Among these, CMC is particularly preferable because of easy handling.

(結着材)
結着材8は、成形体102において二次造粒物10同士あるいは二次造粒物10と集電体101とを接着する機能を有する。そして二次造粒物10においては、黒鉛質粒子6とともに導電層10bを構成するものである。
(Binder)
The binder 8 has a function of adhering the secondary granulated materials 10 to each other or the secondary granulated material 10 and the current collector 101 in the molded body 102. In the secondary granulated product 10, the conductive layer 10 b is configured together with the graphite particles 6.

結着材8には、たとえばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリビニルブチラール(PVB)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)等を用いることができる。これらのうち、導電層10bを形成しやすいとの観点から、PTFE等の繊維状の結着材が好ましい。   As the binder 8, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinyl butyral (PVB), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or the like can be used. Among these, a fibrous binder such as PTFE is preferable from the viewpoint that the conductive layer 10b is easily formed.

(溶媒)
溶媒は、たとえば増粘材や結着材8の分散性等を考慮して適宜選択すればよい。使用可能な溶媒としては、たとえば水(イオン交換水、超純水を含む)、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、テトラヒドロフラン(THF)、アセトン、ジエチルエーテル、ベンゼン、ヘキサン、トルエン等を例示することができる。
(solvent)
The solvent may be appropriately selected in consideration of, for example, the thickener or the dispersibility of the binder 8. Usable solvents include, for example, water (including ion-exchanged water and ultrapure water), N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), acetone, diethyl ether , Benzene, hexane, toluene and the like.

(造粒装置)
造粒装置には従来公知の粉体混合装置を用いることができる。たとえば図5に示す造粒装置50のように、容器52と主撹拌羽根54(アジテータ)と解砕羽根56(チョッパー)とを備えるものが好適である。造粒装置50では主撹拌羽根54および解砕羽根56の各回転数、撹拌時間、材料投入タイミング等を調整することにより、造粒物の粒子径あるいは構造を制御することが可能である。このような装置としては、たとえば株式会社アーステクニカ製の「ハイスピードミキサ」等がある。
(Granulating device)
A conventionally known powder mixing device can be used as the granulating device. For example, like the granulation apparatus 50 shown in FIG. 5, the thing provided with the container 52, the main stirring blade | wing 54 (agitator), and the crushing blade | wing 56 (chopper) is suitable. In the granulating apparatus 50, the particle diameter or structure of the granulated product can be controlled by adjusting the number of rotations of the main stirring blade 54 and the crushing blade 56, the stirring time, the material charging timing, and the like. An example of such an apparatus is “High Speed Mixer” manufactured by Earth Technica Co., Ltd.

以下、各工程について説明する。
<第1工程:一次造粒工程>
第1工程S110では、正極活物質2と炭素質粒子4とを混合して一次造粒物10aを得る。具体的には、これらの材料を計量し、造粒装置50の容器52にそれぞれ投入して、所定の条件で撹拌および混合することにより、一次造粒物10aを得ることができる。
Hereinafter, each step will be described.
<First step: primary granulation step>
In 1st process S110, the positive electrode active material 2 and the carbonaceous particle 4 are mixed, and the primary granulated material 10a is obtained. Specifically, the primary granulated material 10a can be obtained by measuring these materials, putting them into the containers 52 of the granulating apparatus 50, and stirring and mixing them under predetermined conditions.

第1工程S110では、正極活物質2および炭素質粒子4に加えて、増粘材(図示せず)を混合することが好ましい。そして、これらの粉末材料を乾式で混合した後、溶媒を加えて造粒を行なうことがより好ましい。これにより図2に示すように、正極活物質2と炭素質粒子4との接触率が確保された一次造粒物10aが得られやすいからである。   In the first step S110, it is preferable to mix a thickener (not shown) in addition to the positive electrode active material 2 and the carbonaceous particles 4. And after mixing these powder materials by a dry process, it is more preferable to add a solvent and perform granulation. Thereby, as shown in FIG. 2, it is easy to obtain a primary granulated product 10 a in which the contact ratio between the positive electrode active material 2 and the carbonaceous particles 4 is ensured.

ここで溶媒量は、後述する二次造粒物10の固形分濃度が73質量%以上となるように調整することが好ましい。固形分濃度が73質量%未満になると、造粒物内における材料の配置が安定して維持できず、後の工程において造粒物内の材料配置が変容してしまい、所望の低温特性を示さない場合があり得るからである。なお固形分濃度は、より好ましくは75質量%以上であり、特に好ましくは80質量%以上である。固形分濃度の上限値は特に限定されないが、造粒時の負荷(トルク)を低減するとの観点から、たとえば90質量%以下である。   Here, the amount of the solvent is preferably adjusted so that the solid content concentration of the secondary granulated product 10 described later is 73% by mass or more. When the solid content concentration is less than 73% by mass, the arrangement of the material in the granulated product cannot be stably maintained, and the material arrangement in the granulated product is changed in a later process, and the desired low-temperature characteristics are exhibited. This is because there may be no case. The solid content concentration is more preferably 75% by mass or more, and particularly preferably 80% by mass or more. The upper limit of the solid content concentration is not particularly limited, but is, for example, 90% by mass or less from the viewpoint of reducing the load (torque) during granulation.

<第2工程:二次造粒工程>
第2工程S120では、第1工程S110で得られた一次造粒物10aに黒鉛質粒子6を付着させて二次造粒物10を得る。一次造粒物10aに黒鉛質粒子6を付着させる方法は特に制限されるものではないが、たとえば一次造粒物10aと黒鉛質粒子6および結着材8とを接触させることにより、一次造粒物10aの表面に黒鉛質粒子6および結着材8を含む導電層10bを付着させることができる。具体的には、造粒装置50内において一次造粒物10aが得られた後、所定量の黒鉛質粒子6および結着材8を投入して、所定条件で、混合することにより二次造粒物10を得ることができる。
<Second step: secondary granulation step>
In 2nd process S120, the graphite particle 6 is made to adhere to the primary granulated material 10a obtained by 1st process S110, and the secondary granulated material 10 is obtained. The method for adhering the graphite particles 6 to the primary granulated material 10a is not particularly limited. For example, by bringing the primary granulated material 10a into contact with the graphite particles 6 and the binder 8, primary granulation is performed. The conductive layer 10b including the graphite particles 6 and the binder 8 can be attached to the surface of the object 10a. Specifically, after the primary granulated product 10a is obtained in the granulating apparatus 50, a predetermined amount of the graphite particles 6 and the binder 8 are charged and mixed under predetermined conditions to perform secondary granulation. Granules 10 can be obtained.

ここで結着材8は粉末状であってもよいが、導電層10bによる被覆率を高めるとの観点から、予め溶媒に分散した状態とし、溶媒とともに装置内に滴下されることが好ましい。   Here, the binder 8 may be in the form of powder, but from the viewpoint of increasing the coverage with the conductive layer 10b, it is preferable that the binder 8 is previously dispersed in a solvent and dropped into the apparatus together with the solvent.

<第3工程:成形工程>
第3工程S130では、二次造粒物10の粉末をシート状の成形体102に成形する。ここで成形方法は特に制限されるものではなく、従来公知の成形方法を採用することができる。たとえば、図6に示すように、二つのロール間において二次造粒物10の粉末を圧縮、延伸することによりシート状の成形体102を得ることができる。
<Third step: molding step>
In the third step S <b> 130, the powder of the secondary granulated product 10 is formed into a sheet-like molded body 102. Here, the molding method is not particularly limited, and a conventionally known molding method can be employed. For example, as shown in FIG. 6, a sheet-like molded body 102 can be obtained by compressing and stretching the powder of the secondary granulated product 10 between two rolls.

成形体102の目付量および厚さは、第1のロール62aおよび第2のロール62bから成形体102(二次造粒物10)に印加される荷重、ならびに第1のロール62aと第2のロール62bとの隙間(ギャップ)を調節することによって、所望の範囲に制御され得る。   The basis weight and thickness of the molded body 102 are the load applied to the molded body 102 (secondary granulated product 10) from the first roll 62a and the second roll 62b, and the first roll 62a and the second roll 62b. By adjusting the gap (gap) with the roll 62b, it can be controlled within a desired range.

<第4工程:配置工程>
第4工程S140では、シート状の成形体102を集電体101上に配置する。成形体102を集電体101上に配置する方法は特に制限されるものではなく、従来公知の方法を採用することができる。たとえば、図7に示すように、二つのロール間に成形体102および集電体101を供給し、成形体102と集電体101とが互いに押し合うように、それらをロールで押圧して、成形体102を集電体101に圧着することができる。
<4th process: Arrangement process>
In the fourth step S <b> 140, the sheet-like molded body 102 is disposed on the current collector 101. The method for disposing the molded body 102 on the current collector 101 is not particularly limited, and a conventionally known method can be employed. For example, as shown in FIG. 7, the molded body 102 and the current collector 101 are supplied between two rolls, and they are pressed with a roll so that the molded body 102 and the current collector 101 are pressed against each other. The molded body 102 can be pressure-bonded to the current collector 101.

なお第4工程S140が実行された後、熱風等を用いた乾燥操作が行なわれてもよい。
集電体101としては、従来公知の材料を用いることができる。たとえばAl箔やAl合金箔等が好適に用いられる。
In addition, after 4th process S140 is performed, drying operation using a hot air etc. may be performed.
As the current collector 101, a conventionally known material can be used. For example, Al foil or Al alloy foil is preferably used.

以上のように第1工程S110〜第4工程S140を順次実行することによって、低温特性およびサイクル特性に優れるリチウム二次電池用正極が製造される。   By sequentially executing the first step S110 to the fourth step S140 as described above, a positive electrode for a lithium secondary battery excellent in low temperature characteristics and cycle characteristics is manufactured.

〔第2の実施形態:造粒物〕
第2の実施形態は、リチウム二次電池用正極に用いられる造粒物である。前述のように該造粒物は、第1工程S110および第2工程S120を実行することによって製造される。
[Second Embodiment: Granulated Product]
2nd Embodiment is the granulated material used for the positive electrode for lithium secondary batteries. As described above, the granulated product is manufactured by executing the first step S110 and the second step S120.

図3は、本実施形態の造粒物(すなわち二次造粒物10)を示す模式図である。図3を参照して、本実施形態の造粒物は、一次造粒物10aの表面に導電層10bが付着した二次造粒物10であって、一次造粒物10aは、正極活物質2と炭素質粒子4とを含み、導電層10bは、黒鉛質粒子6と結着材8とを含む。   FIG. 3 is a schematic diagram showing the granulated product (that is, secondary granulated product 10) of the present embodiment. With reference to FIG. 3, the granulated product of this embodiment is a secondary granulated product 10 in which a conductive layer 10b is attached to the surface of the primary granulated product 10a, and the primary granulated product 10a is a positive electrode active material. 2 and carbonaceous particles 4, and the conductive layer 10 b includes graphite particles 6 and a binder 8.

一次造粒物10aにおいて、炭素質粒子4は正極活物質2の膨張収縮に追随できるため、サイクル耐久時においても炭素質粒子4と正極活物質2との接触が確保できる。また導電性の高い黒鉛質粒子6を含む導電層10bを形成することにより、二次造粒物10を含む成形体102において、二次造粒物10同士の間および二次造粒物10と集電体101との間において、良好な導電ネットワークが構築できる。   In the primary granulated product 10a, since the carbonaceous particles 4 can follow the expansion and contraction of the positive electrode active material 2, contact between the carbonaceous particles 4 and the positive electrode active material 2 can be ensured even during cycle durability. Further, by forming the conductive layer 10b including the highly conductive graphite particles 6, in the molded body 102 including the secondary granulated product 10, between the secondary granulated products 10 and the secondary granulated product 10 and A good conductive network can be constructed with the current collector 101.

一次造粒物10aは、CMC等の増粘材をさらに含むことが好ましい。一次造粒物10aおよび二次造粒物10における形状の安定性が高まるからである。   The primary granulated product 10a preferably further contains a thickener such as CMC. This is because the shape stability of the primary granulated product 10a and the secondary granulated product 10 is increased.

ここで導電層10bは、一次造粒物10aの表面の少なくとも一部に付着している限り、導電ネットワークの構築に寄与することができる。したがって導電層10bは、一次造粒物10aの表面の少なくとも一部に付着していればよく、必ずしも全面を被覆している必要はない。   Here, as long as the conductive layer 10b adheres to at least a part of the surface of the primary granulated product 10a, it can contribute to the construction of a conductive network. Therefore, the conductive layer 10b only needs to adhere to at least a part of the surface of the primary granulated product 10a, and does not necessarily have to cover the entire surface.

成形体102における充填性の観点から、二次造粒物10の平均粒子径は、好ましくは10μm以上300μm以下であり、より好ましくは20μm以上200μm以下であり、特に好ましくは30μm以上150μm以下である。二次造粒物10の平均粒子径は、造粒時の条件によって調整可能である。   From the viewpoint of fillability in the molded body 102, the average particle size of the secondary granulated product 10 is preferably 10 μm or more and 300 μm or less, more preferably 20 μm or more and 200 μm or less, and particularly preferably 30 μm or more and 150 μm or less. . The average particle diameter of the secondary granulated product 10 can be adjusted according to the conditions during granulation.

前述のように二次造粒物10の固形分濃度は73質量%以上であることが好ましい。ここで固形分を構成する各成分の仕込み比は、次のような態様とすることができる。次のような態様であればエネルギー密度を低下させることなく、低温特性およびサイクル特性を向上させることができるからである。   As described above, the solid content concentration of the secondary granulated product 10 is preferably 73% by mass or more. Here, the charging ratio of each component constituting the solid content can be set as follows. This is because the low temperature characteristics and cycle characteristics can be improved without lowering the energy density in the following manner.

固形分における正極活物質2の占める割合は、たとえば80質量%以上99質量%以下であり、好ましくは85質量%以上95質量%以下である。   The proportion of the positive electrode active material 2 in the solid content is, for example, 80% by mass or more and 99% by mass or less, and preferably 85% by mass or more and 95% by mass or less.

固形分における炭素質粒子4の占める割合は、たとえば1質量%以上5質量%以下であり、好ましくは2質量%以上4質量%以下である。   The proportion of the carbonaceous particles 4 in the solid content is, for example, 1% by mass or more and 5% by mass or less, and preferably 2% by mass or more and 4% by mass or less.

固形分における黒鉛質粒子6の占める割合は、たとえば1質量%以上5質量%以下であり、好ましくは2質量%以上4質量%以下であり、より好ましくは2質量%以上3質量%以下であり、特に好ましくは2.5質量%以上3質量%以下である。本実施形態では、黒鉛質粒子6は造粒物の外層(導電層10b)に配置されるため、このような少量の添加であっても十分な導電作用を示すことができる。   The proportion of the graphite particles 6 in the solid content is, for example, 1% by mass to 5% by mass, preferably 2% by mass to 4% by mass, and more preferably 2% by mass to 3% by mass. Especially preferably, it is 2.5 mass% or more and 3 mass% or less. In the present embodiment, since the graphite particles 6 are disposed in the outer layer (conductive layer 10b) of the granulated product, a sufficient conductive effect can be exhibited even with such a small amount of addition.

固形分における増粘材の占める割合は、たとえば1質量%以上5質量%以下、好ましくは1質量%以上4質量%以下であり、特に好ましくは1質量%以上3質量%以下である。   The proportion of the thickener in the solid content is, for example, 1% by mass to 5% by mass, preferably 1% by mass to 4% by mass, and particularly preferably 1% by mass to 3% by mass.

固形分における結着材の占める割合は、たとえば0.5質量%以上3質量%以下であり、好ましくは0.5質量%以上2.5質量%以下であり、特に好ましくは0.5質量%以上2.0質量%以下である。   The proportion of the binder in the solid content is, for example, 0.5% by mass or more and 3% by mass or less, preferably 0.5% by mass or more and 2.5% by mass or less, and particularly preferably 0.5% by mass. More than 2.0 mass%.

〔第3の実施形態:リチウム二次電池用正極〕
第3の実施形態は、第2の実施形態に係る造粒物を備えるリチウム二次電池用正極である。該正極の製造には、第1の実施形態に係る製造方法(すなわち第1工程S110〜第4工程S140)が好適に用いられる。
[Third Embodiment: Positive Electrode for Lithium Secondary Battery]
3rd Embodiment is a positive electrode for lithium secondary batteries provided with the granulated material which concerns on 2nd Embodiment. For the production of the positive electrode, the production method according to the first embodiment (that is, the first step S110 to the fourth step S140) is preferably used.

図4は、本実施形態のリチウム二次電池用正極100の断面構造を図解する模式的な部分断面図である。図4を参照して、正極100は、集電体101と集電体101上に正極活物質層である成形体102を備える。そして成形体102は、複数の二次造粒物10を含む。   FIG. 4 is a schematic partial cross-sectional view illustrating the cross-sectional structure of the positive electrode 100 for a lithium secondary battery according to this embodiment. Referring to FIG. 4, positive electrode 100 includes current collector 101 and formed body 102 that is a positive electrode active material layer on current collector 101. And the molded object 102 contains the some secondary granulated material 10. FIG.

図4に示すように、成形体102において二次造粒物10同士は導電層10bを介して互いに密着している。そして導電層10bは結着材8と、導電性の高い黒鉛質粒子6とを含む。さらに二次造粒物10の内部(一次造粒物10a)では、正極活物質2と炭素質粒子4との接触が確保されている。よって、正極活物質2および炭素質粒子4から導電層10bを経て、別の二次造粒物10あるいは集電体101へと広がる導電ネットワークが構築される。これにより低温での大電流充放電に耐え得る導電性が実現される。   As shown in FIG. 4, in the molded body 102, the secondary granules 10 are in close contact with each other via the conductive layer 10b. The conductive layer 10b includes a binder 8 and highly conductive graphite particles 6. Furthermore, the contact between the positive electrode active material 2 and the carbonaceous particles 4 is ensured inside the secondary granulated product 10 (primary granulated product 10a). Therefore, a conductive network is constructed that spreads from the positive electrode active material 2 and the carbonaceous particles 4 to another secondary granulated product 10 or the current collector 101 through the conductive layer 10b. This realizes conductivity that can withstand large current charging and discharging at low temperatures.

なお正極100は、二次造粒物10を含んでいる限り、前述の低温特性およびサイクル特性を発揮し得るものであり、一部にその他の造粒物(たとえば導電層10bを有しない一次造粒物10a)等を含んでいても構わない。   The positive electrode 100 can exhibit the above-described low-temperature characteristics and cycle characteristics as long as the secondary granulated product 10 is included, and other granulated products (for example, the primary granulated material having no conductive layer 10b). It may contain granules 10a) and the like.

正極100が、本実施形態の二次造粒物10を含むことは、従来公知の方法によって確認することができる。たとえば、クロスセクションポリッシャ装置(CP)や集束イオンビーム装置(FIB)等の断面加工装置を用いて、正極100の断面サンプルを作製し、該断面サンプルの電子顕微鏡(SEM)観察および電子線マイクロアナライザ(EPMA)による元素分析を行なうことによって、正極100に含まれる造粒物の構成を確認することができる。   It can be confirmed by a conventionally known method that the positive electrode 100 includes the secondary granulated product 10 of the present embodiment. For example, a cross-section sample of the positive electrode 100 is prepared using a cross-section processing apparatus such as a cross-section polisher apparatus (CP) or a focused ion beam apparatus (FIB), and the cross-section sample is observed with an electron microscope (SEM) and an electron beam microanalyzer. By performing the elemental analysis by (EPMA), the structure of the granulated material contained in the positive electrode 100 can be confirmed.

たとえば、PTFEのようにフッ素(F)含有樹脂を結着材8として用いている場合には、EPMAによってフッ素(F)のマッピングを行なうことにより、PTFEおよび黒鉛質粒子6を含む導電層10bの存在を確認することができる。   For example, when a fluorine (F) -containing resin is used as the binder 8 as in PTFE, the conductive layer 10b containing PTFE and the graphite particles 6 is mapped by EPF mapping of fluorine (F). The existence can be confirmed.

また結着材の同定も従来公知の方法で行なうことができる。たとえば正極活物質層(成形体102)の一部を集電体101から剥離し、溶媒抽出によって得たサンプルについて、フーリエ変換型赤外分光(FT−IR)分析を行ない、そのFT−IRスペクトルから結着材を同定することもできる。   Also, the binder can be identified by a conventionally known method. For example, a part of the positive electrode active material layer (molded body 102) is peeled off from the current collector 101, a sample obtained by solvent extraction is subjected to Fourier transform infrared spectroscopy (FT-IR) analysis, and the FT-IR spectrum is obtained. The binder can also be identified from the above.

〔第4の実施形態:リチウム二次電池〕
第4の実施形態は、第3の実施形態に係るリチウム二次電池用正極を備える、リチウム二次電池である。以下、円筒形電池を例示して説明を行なうが、本実施形態は角形電池あるいはパウチ形電池(ラミネート型電池ともいう)とすることもできる。
[Fourth Embodiment: Lithium Secondary Battery]
4th Embodiment is a lithium secondary battery provided with the positive electrode for lithium secondary batteries which concerns on 3rd Embodiment. Hereinafter, although a cylindrical battery will be described as an example, the present embodiment may be a prismatic battery or a pouch battery (also referred to as a laminate battery).

図15は、本実施形態のリチウム二次電池の構成の一例を示す模式的な断面斜視図である。図15に示すように、リチウム二次電池1000は、円筒形の外装体500の内部に電極体400と電解液(図示せず)とを備えている。電極体400は、正極100、負極200およびセパレータ300を有する。正極100および負極200は長尺帯状のシート部材である。電極体400は、セパレータ300を挟んで正極100と負極200とが対向するように巻回されることにより構成されている。セパレータ300は、たとえばポリエチレン(PE)やポリプロピレン(PP)製の微多孔膜である。   FIG. 15 is a schematic cross-sectional perspective view showing an example of the configuration of the lithium secondary battery of the present embodiment. As shown in FIG. 15, the lithium secondary battery 1000 includes an electrode body 400 and an electrolytic solution (not shown) inside a cylindrical exterior body 500. The electrode body 400 includes a positive electrode 100, a negative electrode 200, and a separator 300. The positive electrode 100 and the negative electrode 200 are long belt-like sheet members. The electrode body 400 is configured by winding the separator 300 so that the positive electrode 100 and the negative electrode 200 face each other. The separator 300 is a microporous film made of, for example, polyethylene (PE) or polypropylene (PP).

ここで正極100において、正極活物質層は二次造粒物10を備える成形体102からなる。したがってリチウム二次電池1000は低温特性およびサイクル特性に優れることができる。   Here, in the positive electrode 100, the positive electrode active material layer is formed of a molded body 102 including the secondary granulated product 10. Therefore, the lithium secondary battery 1000 can be excellent in low temperature characteristics and cycle characteristics.

負極200の構成は特に制限されない。負極200の構成としては、たとえばCu箔等の負極集電体上に、天然黒鉛、人造黒鉛、コークス等の炭素系負極活物質あるいは珪素、錫等の合金系負極活物質を含む負極活物質層を備えるものを例示することができる。   The configuration of the negative electrode 200 is not particularly limited. As the configuration of the negative electrode 200, for example, a negative electrode active material layer containing a carbon-based negative electrode active material such as natural graphite, artificial graphite, or coke or an alloy-based negative electrode active material such as silicon or tin on a negative electrode current collector such as a Cu foil. The thing provided with can be illustrated.

電解液の成分も特に制限されない。電解液には、たとえばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)およびビニレンカーボネート(VC)等の環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)等の鎖状カーボネート類からなる混合溶媒に、たとえばLiPF6、LiBF4、LiClO4、LiAsF6、Li(CF3SO22N、LiCF3SO3等のLi塩を溶解させたものを用いることができる。なお電解液の代わりに、固体状あるいはゲル状の電解質を用いることもできる。 The component of the electrolytic solution is not particularly limited. Examples of the electrolyte include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (GBL) and vinylene carbonate (VC), dimethyl carbonate (DMC), ethyl For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 are mixed in a mixed solvent composed of chain carbonates such as methyl carbonate (EMC) and diethyl carbonate (DEC). What dissolved Li salts, such as, can be used. A solid or gel electrolyte can also be used instead of the electrolyte.

〔第5の実施形態:リチウム二次電池の製造方法〕
第5の実施形態は、第1の実施形態に係るリチウム二次電池用正極の製造方法を含むリチウム二次電池の製造方法である。
[Fifth Embodiment: Manufacturing Method of Lithium Secondary Battery]
5th Embodiment is a manufacturing method of a lithium secondary battery including the manufacturing method of the positive electrode for lithium secondary batteries which concerns on 1st Embodiment.

図16は、本実施形態のリチウム二次電池の製造方法の概略を示すフローチャートである。図16に示すように、当該製造方法は、工程S100、工程S200、工程S300、工程S400、工程S500および工程S600を備える。ここで工程S100は、第1の実施形態に係るリチウム二次電池用正極の製造方法である。   FIG. 16 is a flowchart showing an outline of a method for manufacturing the lithium secondary battery of the present embodiment. As shown in FIG. 16, the manufacturing method includes a step S100, a step S200, a step S300, a step S400, a step S500, and a step S600. Here, step S100 is a method for manufacturing a positive electrode for a lithium secondary battery according to the first embodiment.

工程S200では負極200を作製する。たとえば従来の塗料化プロセスによって負極活物質を含む負極塗料を作製し、該負極塗料を負極集電体上に塗工することにより、負極を作製することができる。   In step S200, the negative electrode 200 is produced. For example, a negative electrode paint containing a negative electrode active material can be produced by a conventional coating process, and the negative electrode paint can be applied onto a negative electrode current collector to produce a negative electrode.

工程S300では電極体400を作製する。電極体400は、セパレータ300を挟んで正極100と負極200とが対向するように巻回または積層することにより得られる。次いで電極体400を外装体500に挿入する(工程S400)。そして外装体500に電解液を注液し(工程S500)、さらに外装体500を封止することにより(工程S600)、リチウム二次電池1000を製造することができる。   In step S300, the electrode body 400 is produced. The electrode body 400 is obtained by winding or laminating so that the positive electrode 100 and the negative electrode 200 face each other with the separator 300 interposed therebetween. Next, the electrode body 400 is inserted into the exterior body 500 (step S400). Then, the lithium secondary battery 1000 can be manufactured by injecting an electrolytic solution into the outer package 500 (step S500) and further sealing the outer package 500 (step S600).

以下、実施例を挙げて本実施形態をより詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, although an example is given and this embodiment is described in detail, this embodiment is not limited to these.

以下のようにして、各種条件を変更しながら塗料化、一段階造粒、二段階造粒によって塗料あるいは造粒物を経由して正極を作製した。そして該正極を用いた評価用電池(リチウム二次電池)を作製して低温特性(−10℃環境におけるIV抵抗)およびサイクル特性を評価した。   In the following manner, a positive electrode was produced via a paint or a granulated material by changing to various conditions and forming a paint, one-stage granulation, or two-stage granulation. Then, an evaluation battery (lithium secondary battery) using the positive electrode was produced, and the low-temperature characteristics (IV resistance in a −10 ° C. environment) and the cycle characteristics were evaluated.

以下、塗料化を経由する製法を「プロセスA」、一段階造粒を経由する製法を「プロセスB」、二段階造粒を経由する製法を「プロセスC」と称する。   Hereinafter, the production method that passes through the coating process is called “Process A”, the production method that goes through one-step granulation is called “Process B”, and the production method that goes through two-step granulation is called “Process C”.

<共通事項>
まず以下の実施例および比較例において共通する事項について記載する。以下の記述において特に説明がない限り、各実施例および比較例にはこれらの材料、条件および製法等が用いられているものとする。なお以下の説明において平均粒子径は、レーザ回折散乱法によって測定されたメジアン径を示すものとする。
<Common items>
First, common items in the following examples and comparative examples will be described. Unless otherwise specified in the following description, these materials, conditions, manufacturing methods, and the like are used in the examples and comparative examples. In the following description, the average particle diameter is a median diameter measured by a laser diffraction scattering method.

(正極に用いた材料)
[1]正極活物質
正極活物質には、LiNi0.33Co0.33Mn0.332の粉末(平均粒子径:10μm)を用いた。
(Material used for positive electrode)
[1] Cathode Active Material LiNi 0.33 Co 0.33 Mn 0.33 O 2 powder (average particle size: 10 μm) was used as the cathode active material.

[2]炭素質粒子
炭素質粒子には、無定形炭素であるアセチレンブラック(AB)の粉末〔平均粒子径:35nm、(製品名「デンカブラック」、電気化学工業株式会社製)〕を用いた。
[2] Carbonaceous particles Acetylene black (AB) powder [average particle diameter: 35 nm, (product name “DENKA BLACK”, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is amorphous carbon, was used as the carbonaceous particles. .

[3]黒鉛質粒子
黒鉛質粒子には、鱗片状黒鉛の粉末〔平均粒子径:3.6μm、(品種「KS−4」、Timical社製)〕を用いた。
[3] Graphite particles As graphite particles, scaly graphite powder [average particle size: 3.6 μm (variety “KS-4”, manufactured by Timical)] was used.

[4]増粘材
増粘材には、CMC(品種「BSH−6」、第一工業製薬株式会社製)を用いた。
[4] Thickening material CMC (variety “BSH-6”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used as the thickening material.

[5]結着材
結着材には、PTFE(品番「D−210C」、ダイキン工業株式会社製)を水溶媒に分散させたもの(以下「PTFE水分散液」と記す)を用いた。
[5] Binder The PTFE (product number “D-210C”, manufactured by Daikin Industries, Ltd.) dispersed in an aqueous solvent (hereinafter referred to as “PTFE aqueous dispersion”) was used as the binder.

[6]溶媒
溶媒にはイオン交換水を用いた。
[6] Solvent Ion exchange water was used as the solvent.

(負極の作製)
評価用電池に用いる負極は、天然黒鉛と、増粘材であるCMC(品種「BSH−6」、第一工業製薬株式会社製)と、結着材であるスチレンブタジエンゴム(SBR)(JSR株式会社製)とを、天然黒鉛:CMC:SBR=100:1:1(質量比)となるように混合し、さらにこれらを水中で混練して得た負極塗料を、Cu箔上に塗工して作製した。
(Preparation of negative electrode)
The negative electrode used for the evaluation battery is natural graphite, CMC as a thickener (variety “BSH-6”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and styrene butadiene rubber (SBR) as a binder (JSR shares) The negative electrode paint obtained by mixing natural graphite: CMC: SBR = 100: 1: 1 (mass ratio) and kneading these in water is applied onto the Cu foil. Made.

(評価用電池の構成)
図8〜図11を参照して、評価用電池80(定格容量16mAhのラミネート型電池)を作製した。
(Configuration of evaluation battery)
With reference to FIGS. 8 to 11, an evaluation battery 80 (laminated battery having a rated capacity of 16 mAh) was produced.

[1]評価用正極
評価用正極81は、後述する各実施例および比較例で得られた正極を所定の大きさ切り出して作製した。図8を参照して、評価用正極81は、Al箔81a(集電体)の片方の表面(主面)に正極活物質層81bが形成されたものである。具体的な構成は次の通りである。
[1] Positive electrode for evaluation The positive electrode for evaluation 81 was produced by cutting out the positive electrode obtained in each of Examples and Comparative Examples described later to a predetermined size. Referring to FIG. 8, a positive electrode for evaluation 81 is obtained by forming a positive electrode active material layer 81b on one surface (main surface) of an Al foil 81a (current collector). The specific configuration is as follows.

正極活物質層81bの目付量:14mg/cm2
正極活物質層81bの厚さ:50μm
正極活物質層81bの面積:400mm2(縦20mm×横20mm)
Al箔81aの厚さ:15μm
集電部:正極活物質層81bが剥離された部分(縦5mm×横5mm)にAl製正極集電リード81c(樹脂製溶着部付き)を溶接して集電部とした。
Weight per unit area of the positive electrode active material layer 81b: 14 mg / cm 2
The thickness of the positive electrode active material layer 81b: 50 μm
Area of positive electrode active material layer 81b: 400 mm 2 (vertical 20 mm × horizontal 20 mm)
The thickness of the Al foil 81a: 15 μm
Current collector: A positive electrode current collector lead 81c (with a resin welded portion) was welded to a portion (5 mm long × 5 mm wide) from which the positive electrode active material layer 81b was peeled to form a current collecting portion.

[2]評価用負極
評価用負極82は、前述の負極を所定の大きさに切り出して作製した。図9を参照して、評価用負極82は、Cu箔82a(集電体)の両方の表面(主面)に負極活物質層82bが形成されたものである。具体的な構成は次の通りである。
[2] Negative electrode for evaluation The negative electrode for evaluation 82 was prepared by cutting the negative electrode described above into a predetermined size. Referring to FIG. 9, evaluation negative electrode 82 is one in which negative electrode active material layer 82 b is formed on both surfaces (main surfaces) of Cu foil 82 a (current collector). The specific configuration is as follows.

負極活物質層82bの目付量(片面の値):7.5mg/cm2
負極活物質層82bの厚さ(片面の値):60μm
負極活物質層82bの面積:441mm2(縦21mm×横21mm)
Cu箔82aの厚さ:10μm
集電部:負極活物質層82bが剥離された部分(縦5mm×横5mm)にCu製負極集電リード82c(樹脂製溶着部付き)を溶接して集電部とした。
Weight per unit area of negative electrode active material layer 82b (value on one side): 7.5 mg / cm 2
Negative electrode active material layer 82b thickness (single-sided value): 60 μm
Area of negative electrode active material layer 82b: 441 mm 2 (length 21 mm × width 21 mm)
Cu foil 82a thickness: 10 μm
Current collector: Cu negative electrode current collector lead 82c (with resin welded portion) was welded to the portion (5 mm long × 5 mm wide) from which negative electrode active material layer 82b was peeled to form a current collecting portion.

[3]評価用セパレータ
評価用セパレータ83には、PP/PE/PPの3層構造を有するセパレータ(厚さ20μm)を用いた。
[3] Evaluation Separator As the evaluation separator 83, a separator (thickness 20 μm) having a three-layer structure of PP / PE / PP was used.

[4]評価用電解液
評価用電解液には、混合溶媒にLi塩が溶解したもの〔LiPF6=1.0mol/L、EC:DMC:EMC=3:4:3(体積比)〕を用いた。
[4] Evaluation Electrolytic Solution The evaluation electrolytic solution is a solution in which a Li salt is dissolved in a mixed solvent [LiPF 6 = 1.0 mol / L, EC: DMC: EMC = 3: 4: 3 (volume ratio)]. Using.

[5]組み立て
図10を参照して、ラミネートフィルム85と、評価用セパレータ(図示せず)、評価用正極81、評価用負極82、評価用セパレータ83、評価用正極81、評価用セパレータ(図示せず)、およびラミネートフィルム85をこの順序に積層した。次いで、注液ができるスペースを残してラミネートフィルム85の周縁部を、市販のヒートシーラーを用いて熱溶着した。さらに評価用電解液(2ml)を注液し、内部を減圧脱気しながら、注液のために残されたスペースを熱溶着した。
[5] Assembly Referring to FIG. 10, laminate film 85, evaluation separator (not shown), evaluation positive electrode 81, evaluation negative electrode 82, evaluation separator 83, evaluation positive electrode 81, evaluation separator (FIG. Not shown), and a laminate film 85 were laminated in this order. Subsequently, the peripheral part of the laminate film 85 was heat-welded using the commercially available heat sealer, leaving the space which can be poured. Further, an electrolytic solution for evaluation (2 ml) was injected, and the space left for the injection was thermally welded while degassing the inside under reduced pressure.

(低温特性およびサイクル特性の評価方法)
評価用電池80の評価は次のようにして行なった。なお電流値の単位「It」とは、電池の定格容量を1時間で放電する電流値を示すものとする。
(Evaluation method for low temperature characteristics and cycle characteristics)
The evaluation battery 80 was evaluated as follows. The unit of current value “It” is assumed to indicate a current value for discharging the rated capacity of the battery in one hour.

[1]仕上げ充放電
25℃環境において、0.2It(3.2mA)の定電流で、上限電圧4.2V、下限電圧3.0Vとする充放電サイクルを5サイクル実行した。そして5サイクル目の放電容量を初期容量とした。
[1] Finishing charging / discharging In a 25 ° C. environment, five charging / discharging cycles with a constant current of 0.2 It (3.2 mA) and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V were executed. The discharge capacity at the fifth cycle was set as the initial capacity.

[2]低温特性の評価
室温環境において評価用電池80の充電状態(SOC)を60%に調整した。次いで評価用電池80を−10℃に設定した恒温槽内に5時間保管した。そして該恒温槽内において、5.0It(80mA)の定電流で10秒間の放電を実行し、電圧降下量を測定した。そして放電電流値と電圧降下量との関係から、−10℃環境におけるIV抵抗を算出した。
[2] Evaluation of low-temperature characteristics The state of charge (SOC) of the evaluation battery 80 was adjusted to 60% in a room temperature environment. Next, the evaluation battery 80 was stored in a thermostat set at −10 ° C. for 5 hours. And in this thermostat, the discharge for 10 second was performed with the constant current of 5.0 It (80 mA), and the amount of voltage drops was measured. And IV resistance in a -10 degreeC environment was computed from the relationship between a discharge current value and a voltage drop amount.

[3]サイクル特性
5.0Itの定電流で、上限電圧4.2V、下限電圧3.0Vとする充放電サイクルを500サイクル実行した。500サイクル後に再度0.2Itの定電流で、上限電圧4.2V、下限電圧3.0Vとする充放電サイクルを1サイクル実行して、サイクル後放電容量を測定した。そしてサイクル後放電容量を初期容量で除することにより容量維持率を算出した。
[3] Cycle characteristics A charge / discharge cycle having an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V at a constant current of 5.0 It was executed 500 times. After 500 cycles, a charge / discharge cycle with an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V was performed again at a constant current of 0.2 It, and the post-cycle discharge capacity was measured. Then, the capacity retention rate was calculated by dividing the discharge capacity after the cycle by the initial capacity.

<プロセスA(塗料化):比較例1〜3>
(比較例1)
以下の[1]〜[6]の各操作を順次実行して、評価用電池を製造し、低温特性およびサイクル特性を評価した。結果を表1に示す。
<Process A (coating): Comparative Examples 1-3>
(Comparative Example 1)
The following operations [1] to [6] were sequentially performed to produce an evaluation battery, and the low temperature characteristics and cycle characteristics were evaluated. The results are shown in Table 1.

[1]LiNi0.33Co0.33Mn0.332と、鱗片状黒鉛と、ABと、CMCとを市販のプラネタリミキサに投入し、所定の時間、乾式混合を行なった。 [1] LiNi 0.33 Co 0.33 Mn 0.33 O 2 , scaly graphite, AB, and CMC were put into a commercially available planetary mixer, and dry mixed for a predetermined time.

[2]プラネタリミキサにイオン交換水(必要量の一部)を投入し、30分間に亘って固練りを行なった。   [2] Ion exchange water (a part of the required amount) was charged into the planetary mixer and kneaded for 30 minutes.

[3]プラネタリミキサに残りのイオン交換水を投入し、10分間に亘って混練を行なった。   [3] The remaining ion-exchanged water was put into a planetary mixer and kneaded for 10 minutes.

[4]プラネタリミキサにPTFE水分散液を投入し、10分間に亘って、減圧脱泡を行ないながら混練を行なって塗料を得た。   [4] A PTFE aqueous dispersion was charged into the planetary mixer, and kneaded while performing degassing under reduced pressure for 10 minutes to obtain a paint.

[5]コンマコーター(登録商標)を用いて、塗料をAl箔(集電体)上に塗工、乾燥し、さらにロール圧延機を用いて圧延することにより正極を得た。   [5] Using a comma coater (registered trademark), the paint was coated on an Al foil (current collector), dried, and further rolled using a roll rolling mill to obtain a positive electrode.

[6]正極を所定のサイズに裁断し、前述の方法に従って評価用電池を作製し、低温特性およびサイクル特性を評価した。   [6] The positive electrode was cut into a predetermined size, an evaluation battery was prepared according to the above-described method, and the low-temperature characteristics and cycle characteristics were evaluated.

ここで比較例1では、上記塗料の固形分濃度〔concentration of Non-Volatile contents:NV(以下「NV」と略記することがある)〕を60質量%とした。また塗料の固形分の仕込み比は、正極活物質(91質量部)、炭素質粒子(3質量部)、黒鉛質粒子(3質量部)、増粘材(2質量部)、結着材(1質量部)とした。   Here, in Comparative Example 1, the solid content concentration (concentration of Non-Volatile contents: NV (hereinafter sometimes abbreviated as “NV”)) of the paint was 60% by mass. Moreover, the charging ratio of the solid content of the paint is as follows: positive electrode active material (91 parts by mass), carbonaceous particles (3 parts by mass), graphite particles (3 parts by mass), thickener (2 parts by mass), binder ( 1 part by mass).

(比較例2および3)
表1に示すように、固形分の仕込み比を変更することを除いては、比較例1と同様にして正極を得、評価用電池を作製して低温特性およびサイクル特性を評価した。結果を表1に示す。
(Comparative Examples 2 and 3)
As shown in Table 1, except that the charging ratio of the solid content was changed, a positive electrode was obtained in the same manner as in Comparative Example 1, an evaluation battery was prepared, and the low temperature characteristics and cycle characteristics were evaluated. The results are shown in Table 1.

<プロセスB(一段階造粒):比較例4〜9>
(比較例4)
以下の[1]〜[6]の各操作を順次実行して、評価用電池を製造し、低温特性およびサイクル特性を評価した。結果を表1に示す。
<Process B (one-step granulation): Comparative Examples 4 to 9>
(Comparative Example 4)
The following operations [1] to [6] were sequentially performed to produce an evaluation battery, and the low temperature characteristics and cycle characteristics were evaluated. The results are shown in Table 1.

[1]LiNi0.33Co0.33Mn0.332と、鱗片状黒鉛と、ABと、CMCとをハイスピードミキサ(株式会社アーステクニカ製)に一括して投入し、1分間に亘って、乾式混合を行なった。 [1] LiNi 0.33 Co 0.33 Mn 0.33 O 2 , scaly graphite, AB, and CMC are charged all at once into a high-speed mixer (manufactured by Earth Technica Co., Ltd.) and dry-mixed for 1 minute. I did it.

[2]ハイスピードミキサにイオン交換水(全量)とPTFE水分散液とを投入し、アジテータの回転数を800rpm、チョッパーの回転数を2000rpmに設定して5分間に亘って混合および造粒を行なった。   [2] Charge ion exchange water (total amount) and PTFE aqueous dispersion into a high-speed mixer, set the rotational speed of the agitator to 800 rpm and the rotational speed of the chopper to 2000 rpm, and mix and granulate for 5 minutes. I did it.

[3]得られた造粒物の粉末を篩過して(目開き300μm)、粗大粒を除外した。
[4]図6を参照して、手動式プレス装置60のロール間に造粒物の粉末を供給し、造粒物を圧縮、延伸してシート状の成形体を得た。
[3] The obtained granulated powder was sieved (aperture 300 μm) to exclude coarse particles.
[4] Referring to FIG. 6, the granulated powder was supplied between the rolls of manual press device 60, and the granulated product was compressed and stretched to obtain a sheet-like molded body.

[5]図7を参照して、手動式プレス装置60のロール間にシート状の成形体およびAl箔(集電体)を供給して、成形体をAl箔に圧着した。そして得られた成形体とAl箔とからなる一体物を乾燥して、比較例4に係る正極を得た。   [5] Referring to FIG. 7, a sheet-like molded body and an Al foil (current collector) were supplied between the rolls of manual press device 60, and the molded body was pressure-bonded to the Al foil. And the integrated object which consists of the obtained molded object and Al foil was dried, and the positive electrode which concerns on the comparative example 4 was obtained.

[6]正極を所定のサイズに裁断し、前述の方法に従って評価用電池を作製し、低温特性およびサイクル特性を評価した。   [6] The positive electrode was cut into a predetermined size, an evaluation battery was prepared according to the above-described method, and the low-temperature characteristics and cycle characteristics were evaluated.

ここで比較例4では、上記造粒物の固形分濃度(NV)を80質量%とした。また造粒物の固形分の仕込み比は、正極活物質(91質量部)、炭素質粒子(3質量部)、黒鉛質粒子(3質量部)、増粘材(2質量部)、結着材(1質量部)とした。   Here, in Comparative Example 4, the solid content concentration (NV) of the granulated product was 80% by mass. Moreover, the charged ratio of the solid content of the granulated product is as follows: positive electrode active material (91 parts by mass), carbonaceous particles (3 parts by mass), graphite particles (3 parts by mass), thickener (2 parts by mass), binding A material (1 part by mass) was used.

(比較例5〜9)
表1に示すように、固形分の仕込み比および固形分濃度(NV)を変更することを除いては、比較例4と同様にして正極を得、評価用電池を作製して低温特性およびサイクル特性を評価した。結果を表1に示す。
(Comparative Examples 5-9)
As shown in Table 1, a positive electrode was obtained in the same manner as in Comparative Example 4 except that the solid content ratio and the solid content concentration (NV) were changed. Characteristics were evaluated. The results are shown in Table 1.

なお固形分濃度(NV)を70質量%とした比較例7では、造粒物が塗料化してしまい、前述の方法によるシート成形が困難であったため、電池評価は行なわなかった。   In Comparative Example 7 in which the solid content concentration (NV) was 70% by mass, the granulated material was turned into a paint, and it was difficult to form a sheet by the above-described method, so the battery evaluation was not performed.

<プロセスC(二段階造粒):実施例1〜5>
(実施例1)
以下の[1]〜[7]の各操作を順次実行して、評価用電池を製造し、低温特性およびサイクル特性を評価した。結果を表1に示す。
<Process C (two-stage granulation): Examples 1 to 5>
Example 1
The following operations [1] to [7] were sequentially executed to manufacture an evaluation battery, and the low temperature characteristics and cycle characteristics were evaluated. The results are shown in Table 1.

[1]LiNi0.33Co0.33Mn0.332と、ABと、CMCとをハイスピードミキサ(株式会社アーステクニカ製)に投入し、1分間に亘って、乾式混合を行なった。 [1] LiNi 0.33 Co 0.33 Mn 0.33 O 2 , AB and CMC were put into a high-speed mixer (manufactured by Earth Technica Co., Ltd.), and dry mixing was performed for 1 minute.

[2]ハイスピードミキサにイオン交換水(全量)を投入し、アジテータの回転数を800rpm、チョッパーの回転数を2000rpmに設定して3分間に亘って混合および造粒を行なって一次造粒物を得た(第1工程)。   [2] Charge ion-exchanged water (total amount) into a high-speed mixer, set the rotational speed of the agitator to 800 rpm and the rotational speed of the chopper to 2000 rpm, and mix and granulate for 3 minutes to produce the primary granulated product. Was obtained (first step).

[3]ハイスピードミキサに鱗片状黒鉛およびPTFE水分散液を投入し、アジテータとチョッパーの回転数を維持したまま、2分間亘って混合および造粒を行なって、二次造粒物10を得た(第2工程)。   [3] The graphite flake and the PTFE aqueous dispersion are charged into the high speed mixer, and the mixture and granulation are performed for 2 minutes while maintaining the rotational speed of the agitator and chopper to obtain the secondary granulated product 10. (Second step).

[4]得られた二次造粒物10の粉末を篩過して(目開き300μm)、粗大粒を除外した。   [4] The powder of the obtained secondary granulated product 10 was sieved (aperture 300 μm) to exclude coarse particles.

[5]図6を参照して、手動式プレス装置60のロール間に二次造粒物10の粉末を供給し、二次造粒物10を圧縮、延伸してシート状の成形体102を得た(第3工程)。   [5] Referring to FIG. 6, the powder of the secondary granulated product 10 is supplied between the rolls of the manual press device 60, and the secondary granulated product 10 is compressed and stretched to form the sheet-like compact 102. Obtained (third step).

[6]図7を参照して、手動式プレス装置60のロール間にシート状の成形体102およびAl箔(集電体101)を供給して、成形体102をAl箔に圧着して、成形体102を集電体101上に配置した(第4工程)。そして得られた成形体102とAl箔とからなる一体物を乾燥して、実施例1に係る正極100を得た。   [6] Referring to FIG. 7, the sheet-like molded body 102 and the Al foil (current collector 101) are supplied between the rolls of the manual press device 60, and the molded body 102 is crimped to the Al foil. The molded body 102 was disposed on the current collector 101 (fourth step). Then, the obtained integral body made of the molded body 102 and the Al foil was dried to obtain the positive electrode 100 according to Example 1.

[7]正極100を所定のサイズに裁断し、前述の方法に従って評価用電池を作製し、低温特性およびサイクル特性を評価した。   [7] The positive electrode 100 was cut into a predetermined size, an evaluation battery was produced according to the above-described method, and the low-temperature characteristics and cycle characteristics were evaluated.

ここで実施例1では、二次造粒物10の固形分濃度(NV)を80質量%とした。また造粒時の固形分量(処理量)は0.8kgとし、固形分の仕込み比は、正極活物質(91質量部)、炭素質粒子(3質量部)、黒鉛質粒子(3質量部)、増粘材(2質量部)、結着材(1質量部)とした。   Here, in Example 1, the solid content concentration (NV) of the secondary granulated product 10 was set to 80% by mass. Moreover, the solid content (processing amount) at the time of granulation shall be 0.8 kg, and the preparation ratio of solid content is a positive electrode active material (91 mass parts), carbonaceous particles (3 mass parts), and graphite particles (3 mass parts). , Thickener (2 parts by mass) and binder (1 part by mass).

(実施例2〜5)
表1に示すように、固形分の仕込み比および固形分濃度(NV)を変更することを除いては、実施例1と同様にして正極を得、評価用電池を作製して低温特性およびサイクル特性を評価した。結果を表1に示す。
(Examples 2 to 5)
As shown in Table 1, a positive electrode was obtained in the same manner as in Example 1 except that the charge ratio of solid content and the solid content concentration (NV) were changed, and an evaluation battery was prepared to produce low temperature characteristics and cycle. Characteristics were evaluated. The results are shown in Table 1.

Figure 0006206259
Figure 0006206259

<結果と考察>
(i)正極製造プロセスについて
図12は、−10℃環境におけるIV抵抗を横軸、サイクル後容量維持率を縦軸として、各実施例および比較例での測定結果をプロットした散布図である。この散布図内では、座標が左上の領域に位置するほど、低温特性に優れ、かつサイクル特性に優れることを意味する。
<Results and discussion>
(I) Positive Electrode Manufacturing Process FIG. 12 is a scatter diagram in which the measurement results in each example and comparative example are plotted with the IV resistance in a −10 ° C. environment as the horizontal axis and the post-cycle capacity retention rate as the vertical axis. In this scatter diagram, the closer the coordinates are to the upper left region, the better the low-temperature characteristics and the better the cycle characteristics.

図12から、プロセスC(二段階造粒)を採用した実施例1〜5は、プロセスA(塗料化)およびプロセスB(一段階造粒)を採用した比較例1〜9に比して、−10℃におけるIV抵抗が低く、かつサイクル後容量維持率が高い傾向が認められる。   From FIG. 12, Examples 1-5 which employ | adopted process C (two-stage granulation) are compared with Comparative Examples 1-9 which employ | adopted process A (coating) and process B (one-stage granulation), There is a tendency that IV resistance at −10 ° C. is low and capacity retention after cycling is high.

プロセスAおよびプロセスBによって得られた正極では、黒鉛質粒子が正極活物質の膨張収縮に追随できないため、充放電サイクルに伴って正極活物質と黒鉛質粒子との接触率が低下し、サイクル後容量維持率が低下したものと考えられる。また黒鉛質粒子と正極活物質との接触率が確保し難い為、IV抵抗が高いものと考えられる。   In the positive electrode obtained by the process A and the process B, since the graphite particles cannot follow the expansion and contraction of the positive electrode active material, the contact ratio between the positive electrode active material and the graphite particles decreases with the charge / discharge cycle. It is thought that the capacity maintenance rate has decreased. Moreover, since it is difficult to ensure the contact ratio between the graphite particles and the positive electrode active material, it is considered that the IV resistance is high.

これに対して実施例であるプロセスC(二段階造粒)によって得られた正極では、一次造粒物において正極活物質と炭素質粒子との接触が確保される。よってサイクル後容量を高く維持できると考えられる。また黒鉛質粒子を一次造粒物の表面に配置したことにより、効率的に導電ネットワークが構築される。したがって低温におけるIV抵抗を低減できるものと考えられる。   On the other hand, in the positive electrode obtained by the process C (two-stage granulation) as an example, contact between the positive electrode active material and the carbonaceous particles is ensured in the primary granulated product. Therefore, it is considered that the capacity after the cycle can be maintained high. Further, the conductive network is efficiently constructed by arranging the graphite particles on the surface of the primary granulated material. Therefore, it is considered that IV resistance at a low temperature can be reduced.

(ii)固形分濃度(NV)について
図13は、固形分の仕込みが同一(黒鉛質粒子:2.5質量部)である、比較例2(プロセスA)、比較例5、8および9(プロセスB)、ならびに実施例2、4および5(プロセスC)における低温IV抵抗とNVとの関係を示した散布図である。
(Ii) Solid Content Concentration (NV) FIG. 13 shows Comparative Example 2 (Process A), Comparative Examples 5, 8 and 9 in which the solid content is the same (graphite particles: 2.5 parts by mass). It is the scatter diagram which showed the relationship between the low temperature IV resistance and NV in Process B) and Examples 2, 4 and 5 (Process C).

図13より、プロセスC(実施例)は、プロセスAおよびB(比較例)と比較して、IV抵抗が低い傾向が認められる。そしてプロセスC(実施例)において、固形分濃度(NV)が73質量%(実施例4)から75質量%(実施例5)に上がると、顕著にIV抵抗が低下している。この理由は、実施例4では固形分濃度がやや低いために、二次造粒物における各材料の配置が安定に維持できないものと推定される。したがって二次造粒物の固形分濃度(NV)は、好ましくは73質量%以上であり、より好ましくは75質量%以上であり、特に好ましくは80質量%以上である。   From FIG. 13, it is recognized that the process C (Example) tends to have a lower IV resistance than the processes A and B (Comparative Example). In Process C (Example), when the solid content concentration (NV) is increased from 73 mass% (Example 4) to 75 mass% (Example 5), the IV resistance is significantly reduced. The reason for this is presumed that the arrangement of the materials in the secondary granulated product cannot be stably maintained because the solid content concentration in Example 4 is slightly low. Therefore, the solid content concentration (NV) of the secondary granulated product is preferably 73% by mass or more, more preferably 75% by mass or more, and particularly preferably 80% by mass or more.

(iii)黒鉛質粒子の配合量について
図14は各正極製造プロセスにおける黒鉛質粒子の配合量と低温IV抵抗との関係をプロットした散布図である。
(Iii) Compounding amount of graphitic particles FIG. 14 is a scatter diagram plotting the relationship between the compounding amount of graphite particles and low-temperature IV resistance in each positive electrode manufacturing process.

図14より、プロセスC(実施例)は、各黒鉛質粒子の配合量において、プロセスAおよびC(比較例)よりもIV抵抗が低いことが認められる。すなわち実施例に係る正極では、所望のIV抵抗(出力特性)を得るために必要な黒鉛質粒子の量が少ないといえる。   From FIG. 14, it is recognized that the IV resistance is lower in Process C (Example) than in Process A and C (Comparative Example) in the blending amount of each graphite particle. That is, in the positive electrode according to the example, it can be said that the amount of graphite particles necessary for obtaining desired IV resistance (output characteristics) is small.

以上の実験結果より、以下の(i)〜(iii)の結論が導かれる。
(i)正極活物質と炭素質粒子とを混合して一次造粒物を得る第1工程と、該一次造粒物に黒鉛質粒子を付着させて二次造粒物を得る第2工程と、該二次造粒物をシート状の成形体に成形する第3工程と、該成形体を集電体上に配置する第4工程と、を備える、リチウム二次電池用正極の製造方法によれば、低温特性およびサイクル特性に優れるリチウム二次電池用正極が提供される。
From the above experimental results, the following conclusions (i) to (iii) are derived.
(I) a first step in which a positive active material and carbonaceous particles are mixed to obtain a primary granulated product, and a second step in which graphite particles are adhered to the primary granulated product to obtain a secondary granulated product, A method for producing a positive electrode for a lithium secondary battery, comprising: a third step of forming the secondary granulated product into a sheet-like molded body; and a fourth step of arranging the molded body on a current collector. According to this, a positive electrode for a lithium secondary battery excellent in low temperature characteristics and cycle characteristics is provided.

(ii)一次造粒物の表面に導電層が付着した二次造粒物であって、該一次造粒物は、正極活物質と炭素質粒子とを含み、該導電層は、黒鉛質粒子と結着材とを含む、造粒物から成形体(正極活物質層)を形成することにより、低温特性およびサイクル特性に優れるリチウム二次電池用正極が提供される。   (Ii) A secondary granulated product in which a conductive layer is attached to the surface of the primary granulated product, the primary granulated product including a positive electrode active material and carbonaceous particles, and the conductive layer is composed of graphite particles. By forming a molded body (positive electrode active material layer) from a granulated product containing a binder and a binder, a positive electrode for a lithium secondary battery excellent in low temperature characteristics and cycle characteristics is provided.

(iii)上記の二次造粒物を備えるリチウム二次電池用正極は、低温特性およびサイクル特性に優れる。   (Iii) The positive electrode for a lithium secondary battery provided with the above-mentioned secondary granulated product is excellent in low temperature characteristics and cycle characteristics.

以上、本実施形態および実施例について説明を行なったが、上述の各実施形態および実施例の構成を適宜組み合わせることも当初から予定している。   Although the present embodiment and examples have been described above, it is also planned from the beginning to combine the configurations of the above-described embodiments and examples as appropriate.

今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

2 正極活物質、4 炭素質粒子、6 黒鉛質粒子、8 結着材、10 二次造粒物、10a 一次造粒物、10b 導電層、50 造粒装置、52 容器、54 主撹拌羽根、56 解砕羽根、60 手動プレス装置、61 ハンドル、62a 第1のロール、62b 第2のロール、80 評価用電池、81 評価用正極、81a Al箔、81b 正極活物質層、81c 正極集電リード、82 評価用負極、82a Cu箔、82b 負極活物質層、82c 負極集電リード、83 評価用セパレータ、85 ラミネートフィルム、100 正極、101 集電体、102 成形体、200 負極、300 セパレータ、400 電極体、500 外装体、1000 リチウム二次電池。   2 positive electrode active material, 4 carbonaceous particles, 6 graphite particles, 8 binder, 10 secondary granulated product, 10a primary granulated product, 10b conductive layer, 50 granulator, 52 container, 54 main stirring blade, 56 Crushing blade, 60 Manual pressing device, 61 Handle, 62a First roll, 62b Second roll, 80 Evaluation battery, 81 Evaluation positive electrode, 81a Al foil, 81b Positive electrode active material layer, 81c Positive electrode current collecting lead , 82 Evaluation negative electrode, 82a Cu foil, 82b Negative electrode active material layer, 82c Negative electrode current collector lead, 83 Evaluation separator, 85 Laminate film, 100 Positive electrode, 101 Current collector, 102 Molded body, 200 Negative electrode, 300 Separator, 400 Electrode body, 500 exterior body, 1000 lithium secondary battery.

Claims (5)

正極活物質と炭素質粒子とを混合して一次造粒物を得る第1工程と、
前記一次造粒物の表面に黒鉛質粒子を付着させて二次造粒物を得る第2工程と、
前記二次造粒物をシート状の成形体に成形する第3工程と、
前記成形体を集電体上に配置する第4工程と、を備え
前記一次造粒物は、複数個の前記正極活物質を含む、リチウム二次電池用正極の製造方法。
A first step of mixing a positive electrode active material and carbonaceous particles to obtain a primary granulated product,
A second step of obtaining a secondary granulated product by attaching graphite particles to the surface of the primary granulated product,
A third step of forming the secondary granulated product into a sheet-like molded body;
A fourth step of disposing the molded body on a current collector ,
The said primary granulated material is a manufacturing method of the positive electrode for lithium secondary batteries containing several said positive electrode active material .
前記二次造粒物の固形分濃度は、73質量%以上である、請求項1に記載のリチウム二次電池用正極の製造方法。   The manufacturing method of the positive electrode for lithium secondary batteries of Claim 1 whose solid content concentration of the said secondary granulated material is 73 mass% or more. 前記第1工程は、前記正極活物質と前記炭素質粒子と増粘材とを混合して前記一次造粒物を得る工程であり、
前記第2工程は、前記一次造粒物の前記表面に前記黒鉛質粒子および結着材を付着させて前記二次造粒物を得る工程である、請求項1または請求項2に記載のリチウム二次電池用正極の製造方法。
The first step is a step of obtaining the primary granulated material by mixing the positive electrode active material, the carbonaceous particles, and a thickener.
3. The lithium according to claim 1, wherein the second step is a step of obtaining the secondary granulated product by attaching the graphite particles and a binder to the surface of the primary granulated product. A method for producing a positive electrode for a secondary battery.
一次造粒物の表面に導電層が付着した二次造粒物であって、
前記一次造粒物は、複数個の正極活物質と炭素質粒子とを含み、
前記導電層は、黒鉛質粒子と結着材とを含む、造粒物。
A secondary granulated product with a conductive layer attached to the surface of the primary granulated product,
It said primary granules may include a plurality of positive electrode active material, a carbonaceous particle,
The conductive layer is a granulated product containing graphite particles and a binder.
請求項4に記載の造粒物を備える、リチウム二次電池用正極。   A positive electrode for a lithium secondary battery, comprising the granulated product according to claim 4.
JP2014046147A 2014-03-10 2014-03-10 Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product Active JP6206259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046147A JP6206259B2 (en) 2014-03-10 2014-03-10 Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046147A JP6206259B2 (en) 2014-03-10 2014-03-10 Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product

Publications (2)

Publication Number Publication Date
JP2015170550A JP2015170550A (en) 2015-09-28
JP6206259B2 true JP6206259B2 (en) 2017-10-04

Family

ID=54203094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046147A Active JP6206259B2 (en) 2014-03-10 2014-03-10 Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product

Country Status (1)

Country Link
JP (1) JP6206259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091779A (en) * 2014-11-04 2016-05-23 トヨタ自動車株式会社 Method for manufacturing electrode for nonaqueous electrolyte secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300021B2 (en) * 2014-06-23 2018-03-28 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017098029A (en) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 Electrode plate manufacturing method
JP6878831B2 (en) * 2016-10-28 2021-06-02 トヨタ自動車株式会社 Lithium-ion secondary battery and its manufacturing method
JP6897430B2 (en) * 2017-08-29 2021-06-30 トヨタ自動車株式会社 Electrode manufacturing method
KR20220122625A (en) * 2019-12-27 2022-09-02 니폰 제온 가부시키가이샤 A method for manufacturing or recycling a member for an electrochemical device, a method for manufacturing an electrochemical device, a member for an electrochemical device, and an electrochemical device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297034B2 (en) * 1999-02-22 2002-07-02 ティーディーケイ株式会社 Secondary battery and method of manufacturing the same
JP2005174631A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Positive electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013077560A (en) * 2011-09-14 2013-04-25 Nippon Zeon Co Ltd Method for manufacturing electrode for electrochemical element
JP5880956B2 (en) * 2012-04-09 2016-03-09 トヨタ自動車株式会社 SECONDARY BATTERY ELECTRODE, MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY HAVING THE SECONDARY BATTERY ELEMENT
JP2014017199A (en) * 2012-07-11 2014-01-30 Sharp Corp Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091779A (en) * 2014-11-04 2016-05-23 トヨタ自動車株式会社 Method for manufacturing electrode for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2015170550A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP5648869B2 (en) Battery electrode and use thereof
JP6007942B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR102378118B1 (en) Method for Preparing Electrode for Secondary Battery And Electrode Prepared by the Same
JP6015591B2 (en) Non-aqueous electrolyte secondary battery
JP6098878B2 (en) Non-aqueous electrolyte secondary battery
JP6206259B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product
WO2013018182A1 (en) Lithium ion secondary battery
WO2011036759A1 (en) Lithium secondary battery and process for producing same
WO2015033665A1 (en) Secondary battery control device and control method
US9219278B2 (en) Non-aqueous electrolyte secondary battery and use thereof
CN105474449B (en) Lithium secondary battery
JP6168078B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
WO2015033666A1 (en) Secondary battery charging method and charging device
JP2007234277A (en) Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2015141876A (en) Method for manufacturing electrode for lithium secondary batteries
JP5605614B2 (en) Method for manufacturing lithium secondary battery
JP6805682B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP6209844B2 (en) Nonaqueous battery electrode and manufacturing method thereof
JP2017103139A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP2017091701A (en) Method for manufacturing electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2023520193A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
WO2015033659A1 (en) Secondary battery charging method and charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R151 Written notification of patent or utility model registration

Ref document number: 6206259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250