JP6805682B2 - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6805682B2
JP6805682B2 JP2016189036A JP2016189036A JP6805682B2 JP 6805682 B2 JP6805682 B2 JP 6805682B2 JP 2016189036 A JP2016189036 A JP 2016189036A JP 2016189036 A JP2016189036 A JP 2016189036A JP 6805682 B2 JP6805682 B2 JP 6805682B2
Authority
JP
Japan
Prior art keywords
secondary battery
current value
electrolyte secondary
aqueous electrolyte
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189036A
Other languages
Japanese (ja)
Other versions
JP2018055901A (en
Inventor
一生 大谷
一生 大谷
将太郎 土井
将太郎 土井
智裕 蕪木
智裕 蕪木
剣一 豊島
剣一 豊島
宮本 隆司
隆司 宮本
拓真 松永
拓真 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016189036A priority Critical patent/JP6805682B2/en
Publication of JP2018055901A publication Critical patent/JP2018055901A/en
Application granted granted Critical
Publication of JP6805682B2 publication Critical patent/JP6805682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池の製造方法に係り、更に詳細には、固溶体正極とSi系負極とを備える非水電解質二次電池を充放電させて活性化する活性化工程を含む非水電解質二次電池の製造方法に関する。 The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, and more particularly, a non-aqueous electrolyte secondary battery including a solid solution positive electrode and a Si-based negative electrode includes an activation step of charging / discharging and activating the non-aqueous electrolyte secondary battery. The present invention relates to a method for manufacturing a water electrolyte secondary battery.

近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車やハイブリッド電気自動車の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用電池などの電気デバイスの開発が盛んに行われている。 In recent years, there is an urgent need to reduce the amount of carbon dioxide in order to cope with global warming. In the automobile industry, expectations are high for the reduction of carbon dioxide emissions by introducing electric vehicles and hybrid electric vehicles, and the development of electric devices such as motor drive batteries, which hold the key to their practical application, is being actively carried out. There is.

モータ駆動用電池としては、比較的高い理論エネルギーを有するリチウムイオン電池が注目を集めており、現在急速に開発が進められている。
リチウムイオン電池は、一般に、バインダを用いて正極活物質等を正極集電体に塗布した正極と、バインダを用いて負極活物質等を負極集電体に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
Lithium-ion batteries, which have relatively high theoretical energy, are attracting attention as motor drive batteries, and are currently being rapidly developed.
In a lithium ion battery, generally, a positive electrode in which a positive electrode active material or the like is applied to a positive electrode current collector using a binder and a negative electrode in which a negative electrode active material or the like is applied to a negative electrode current collector using a binder are formed via an electrolyte layer. It is connected and stored in a battery case.

こうしたリチウムイオン電池を搭載した電気自動車が広く普及するためには、リチウムイオン電池を高性能にして、一充電あたりの走行距離をガソリンエンジン車の一給油あたりの走行距離に近づける必要がある。 In order for electric vehicles equipped with such lithium-ion batteries to become widespread, it is necessary to improve the performance of lithium-ion batteries so that the mileage per charge is close to the mileage per refueling of gasoline engine vehicles.

したがって、リチウムイオン電池のエネルギー密度を向上させることが望まれており、正極と負極の単位質量当たりの電気容量を大きくする必要がある。 Therefore, it is desired to improve the energy density of the lithium ion battery, and it is necessary to increase the electric capacity per unit mass of the positive electrode and the negative electrode.

上記電気容量を大きくできる正極材料としては、いわゆる固溶体正極材料が知られており、特に、電気化学的に不活性で層状のLiMnOと、電気化学的に活性な層状のLiMO(式中のMは、Co,Niなどの遷移金属)との固溶体は、200mAh/gを超える大きな電気容量を示す。 As the positive electrode material capable of increasing the electric capacity, a so-called solid solution positive electrode material is known, and in particular, an electrochemically inactive and layered Li 2 MnO 3 and an electrochemically active layered Li MO 2 (formula). The solid solution with (M in, transition metal such as Co, Ni) shows a large electric capacity exceeding 200 mAh / g.

そして、上記固溶体を正極に用いた電池は、上限電圧を段階的に増加させながら充放電前処理することで耐久性(容量維持率)が向上することが知られている。 It is known that a battery using the solid solution as a positive electrode has improved durability (capacity retention rate) by pretreatment with charge / discharge while increasing the upper limit voltage stepwise.

特許文献1には、上記固溶体正極に対して充放電前処理を行う前に、上記固溶体正極の前処理で印加する電圧よりも低い3.5v以下で、電解液中の添加剤を分解してSEI(Solid Electrolyte Interface)膜を形成する負極のエージング処理を行うことが開示されている。
そして、上記エージング処理によって電解液や負極活物質の劣化を抑制でき、さらに耐久性(容量維持率)を向上できる旨が開示されている。
According to Patent Document 1, before the charge / discharge pretreatment of the solid solution positive electrode is performed, the additive in the electrolytic solution is decomposed at 3.5 v or less, which is lower than the voltage applied in the pretreatment of the solid solution positive electrode. It is disclosed that an aging treatment of a negative electrode forming a SEI (Solid Electrolyte Interface) film is performed.
It is disclosed that the aging treatment can suppress the deterioration of the electrolytic solution and the negative electrode active material, and further improve the durability (capacity retention rate).

特開2013−243116号公報Japanese Unexamined Patent Publication No. 2013-243116

しかしながら、特許文献1に記載のものは、負極材料としてグラファイト等の炭素系材料を用いるものであり、正極の高容量化に応じた負極の高容量化が困難である。 However, the one described in Patent Document 1 uses a carbon-based material such as graphite as the negative electrode material, and it is difficult to increase the capacity of the negative electrode in accordance with the increase in the capacity of the positive electrode.

高容量の負極材料としては、ケイ素(Si)、酸化ケイ素(SiO)、Si合金等のSi系負極が知られているが、Si系負極材料は、充放電における体積変化が大きいため、Si系負極を用いた電池は充放電サイクルによる容量低下が大きいという問題がある。 As a high-capacity negative electrode material, a Si-based negative electrode such as silicon (Si), silicon oxide (SiO), or a Si alloy is known. However, the Si-based negative electrode material has a large volume change during charge and discharge, and therefore is a Si-based negative electrode material. A battery using a negative electrode has a problem that the capacity is greatly reduced due to a charge / discharge cycle.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、Si系負極と固溶体正極とを備える非水電解質二次電池において、初期容量と充放電サイクルによる容量維持率とを向上できる活性化工程を含む非水電解質二次電池の製造方法を提供することにある。 The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide an initial capacity and charge / discharge in a non-aqueous electrolyte secondary battery including a Si-based negative electrode and a solid solution positive electrode. It is an object of the present invention to provide a method for manufacturing a non-aqueous electrolyte secondary battery, which includes an activation step capable of improving the capacity retention rate by a cycle.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、Si系負極は、活性化工程における初回充電の際、低い電流値で充電すると初期容量が向上する一方で体積膨張によるシワが発生し易く、高い電流値で充電すると初期容量は小さくなるものの上記シワの発生を防止できることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventor has improved the initial capacity of the Si-based negative electrode when it is charged with a low current value at the time of initial charging in the activation step, while wrinkles due to volume expansion occur. We have found that the above-mentioned wrinkles can be prevented although the initial capacity becomes smaller when the battery is charged with a high current value because it is likely to occur, and the present invention has been completed.

即ち、本発明の非水電解質二次電池の製造方法は、非水電解質二次電池を充電・放電させて活性化する活性化工程を有する。
そして、上記非水電解質二次電池が、固溶体正極とSi系負極とを備え、
上記固溶体正極が、下記組成式(1)で表される活物質を含むものであり、
上記活性化工程が、初回充電の際最大電圧に到達するまでに、印加する充電電流値を高い充電電流値に一回以上切り替える処理であり、
上記充電電流値の一回目の切り替えを、充電電圧が3.75V以上4.52V以下で行い、一回目の充電電流値切り替え後に到達する最高充電電圧が4.55V〜4.80Vであることを特徴とする非水電解質二次電池の製造方法である。

[Li1.5][Li{0.5(1−x)}Mn1−x1.5x]O・・・組成式(1)

但し、組成式(1)中、xは0.1≦x≦ 0.8を満たし、MはNiαCoβMnγ であり、α、β、γは0≦α≦0.5、0≦β≦0.33、0≦γ≦0.5、かつα+β+γ=1を満たす。
That is, the method for producing a non-aqueous electrolyte secondary battery of the present invention includes an activation step of charging / discharging the non-aqueous electrolyte secondary battery to activate it.
The non-aqueous electrolyte secondary battery includes a solid solution positive electrode and a Si-based negative electrode.
The solid solution positive electrode contains an active material represented by the following composition formula (1).
The activation step is a process of switching the applied charging current value to a high charging current value one or more times before reaching the maximum voltage at the time of initial charging.
The first-time switching of the charging current value, that the charging voltage have 4.52V line below or 3.75V, the maximum charging voltage reached after the charging current value switching one time is 4.55V~4.80V This is a method for manufacturing a non-aqueous electrolyte secondary battery.

[Li 1.5 ] [Li {0.5 (1-x)} Mn 1-x M 1.5x ] O 3 ... Composition formula (1)

However, in the composition formula (1), x satisfies 0.1 ≦ x ≦ 0.8, M is Ni α Co β Mn γ , and α, β, γ are 0 ≦ α ≦ 0.5, 0 ≦. It satisfies β ≦ 0.33, 0 ≦ γ ≦ 0.5, and α + β + γ = 1.

本発明によれば、活性化工程における初回充電の際、低い電流値で充電して初期容量を発現させると共に、負極にシワが発生する前に、印加する充電電流値を高い充電電流値に切り替えてシワの発生を防止することとしたため、初期容量と容量維持率とを向上できる非水電解質二次電池の製造方法を提供することができる。 According to the present invention, at the time of initial charging in the activation step, the battery is charged with a low current value to develop the initial capacity, and the applied charging current value is switched to a high charging current value before wrinkles occur on the negative electrode. Since the occurrence of wrinkles is prevented, it is possible to provide a method for manufacturing a non-aqueous electrolyte secondary battery capable of improving the initial capacity and the capacity retention rate.

非水電解質二次電池の充電曲線の一例を示すグラフである。It is a graph which shows an example of the charge curve of the non-aqueous electrolyte secondary battery. 図1の充電曲線を元にしたdQ/dV曲線である。It is a dQ / dV curve based on the charge curve of FIG. 充電電圧とSi負極の膨張率との関係を示すグラフである。It is a graph which shows the relationship between the charge voltage and the expansion coefficient of a Si negative electrode. 充電電流値と、シワ面積率及び耐久性との関係を示すグラフである。It is a graph which shows the relationship between the charge current value, a wrinkle area ratio and durability.

[非水電解質二次電池の製造方法]
本発明の非水電解質二次電池の製造方法について詳細に説明する。
上記非水電解質二次電池の製造方法は、下記組成式(1)で表される活物質を含む固溶体正極とSi系負極とを備える非水電解質二次電池を充電・放電させて活性化する活性化工程を含む非水電解質二次電池の製造方法である。

Figure 0006805682
但し、組成式(1)中、xは0.1≦x≦ 0.8を満たし、MはNiαCoβMnγ であり、α、β、γは0≦α≦0.5、0≦β≦0.33、0≦γ≦0.5、かつα+β+γ=1を満たす。 [Manufacturing method of non-aqueous electrolyte secondary battery]
The method for manufacturing the non-aqueous electrolyte secondary battery of the present invention will be described in detail.
The method for producing a non-aqueous electrolyte secondary battery activates a non-aqueous electrolyte secondary battery including a solid solution positive electrode containing an active material represented by the following composition formula (1) and a Si-based negative electrode by charging / discharging. This is a method for manufacturing a non-aqueous electrolyte secondary battery including an activation step.
Figure 0006805682
However, in the composition formula (1), x satisfies 0.1 ≦ x ≦ 0.8, M is Ni α Co β Mn γ , and α, β, γ are 0 ≦ α ≦ 0.5, 0 ≦. It satisfies β ≦ 0.33, 0 ≦ γ ≦ 0.5, and α + β + γ = 1.

上記活性化工程は、初回充電を定電流で充電を行い、所定電圧に到達した後、印加する充電電流値を切り替えて高くした後に最大電圧に到達させることで行う。上記初回充電における上記充電電流値の切り替えは、一回行えばよいが複数回切り替えて段階的に充電電流値を高くして最大電圧に到達させてもよい。そして、最大電圧に到達した後に初回放電させることで前処理を行うものである。
また、上記初回充放電の後、複数回充放電させるものであってもよい。
The activation step is performed by charging the initial charge with a constant current, reaching a predetermined voltage, switching the applied charging current value to increase it, and then reaching the maximum voltage. The switching of the charging current value in the initial charging may be performed once, but it may be switched a plurality of times to gradually increase the charging current value to reach the maximum voltage. Then, the pretreatment is performed by first discharging the voltage after reaching the maximum voltage.
Further, after the initial charge / discharge, the charge / discharge may be performed a plurality of times.

以下、本発明において、初回充電における印加する充電電流値の一回目の切り替え前の充電を低レート充電、切り替え後の充電を高レート充電ということがある。 Hereinafter, in the present invention, the charging before the first switching of the charging current value applied in the initial charging may be referred to as low-rate charging, and the charging after switching may be referred to as high-rate charging.

本発明においては、上記低レート充電によりSi系負極が活性化して初期容量が増加し、上記高レート充電によりSi系負極のシワの発生を抑制しつつ、固溶体正極が活性化して初期容量と容量維持率とを向上させることができる。 In the present invention, the low-rate charging activates the Si-based negative electrode to increase the initial capacity, and the high-rate charging activates the solid solution positive electrode while suppressing the occurrence of wrinkles in the Si-based negative electrode to activate the initial capacity and capacity. The maintenance rate and can be improved.

上記初回充電は、組み付けた非水電解質二次電池を充放電させて活性化させる活性化工程における、第1回目の充電から放電させるまでの充電をいい、初めてSi系負極にリチウム(Li)が侵入して体積膨張が生じる過程である。 The above-mentioned initial charging refers to charging from the first charging to discharging in the activation step of charging / discharging and activating the assembled non-aqueous electrolyte secondary battery, and lithium (Li) is applied to the Si-based negative electrode for the first time. This is the process of invading and causing volume expansion.

このときの体積膨張がSi系負極のシワの発生の有無に大きく影響し、初回充電の際に、印加する充電電流値を制御することで、その後の充電におけるSi系負極のシワ発生を防止できると共に、Si系負極の初期容量を向上させることができる。 The volume expansion at this time greatly affects the presence or absence of wrinkles on the Si-based negative electrode, and by controlling the charging current value applied during the initial charging, it is possible to prevent the occurrence of wrinkles on the Si-based negative electrode during subsequent charging. At the same time, the initial capacity of the Si-based negative electrode can be improved.

上記一回目の切り替えは充電電圧が3.75V以上4.52V以下で行う。低レート充電において充電反応が充分起こる電圧まで上げてから高レート充電に切り替えることで初期容量を増加させることができ、上記切り替えは3.90V以上で行うことがより好ましい。 The first switching is performed when the charging voltage is 3.75 V or more and 4.52 V or less. The initial capacity can be increased by switching to high-rate charging after raising the voltage to a voltage at which the charging reaction sufficiently occurs in low-rate charging, and the above switching is more preferably performed at 3.90 V or higher.

図1に充電曲線、図2に図1の充電曲線を詳細に解析するためのdQ/dV曲線を示す。図1、図2から3.75Vと3.90Vに変曲点を有し、Si系負極のLi含有量の変化に伴う相転移で電圧変化が生じていることがわかる。 FIG. 1 shows a charging curve, and FIG. 2 shows a dQ / dV curve for analyzing the charging curve of FIG. 1 in detail. It can be seen from FIGS. 1 and 2 that there are inflection points at 3.75 V and 3.90 V, and that the voltage change occurs due to the phase transition accompanying the change in the Li content of the Si-based negative electrode.

また、充電電圧が充分高くなるまで充電することで初期容量を向上させることができるが、低レート充電での充電電圧が4.52Vを超えるとSi系負極にLiが入り過ぎてシワが発生し、電極間距離が不均一になって充放電サイクルにおける耐久性(容量維持率)が低下することがある。
図3に充電電圧とSi負極の膨張率との関係を示す。
In addition, the initial capacity can be improved by charging until the charging voltage becomes sufficiently high, but if the charging voltage in low-rate charging exceeds 4.52V, too much Li enters the Si-based negative electrode and wrinkles occur. , The distance between the electrodes may become non-uniform and the durability (capacity retention rate) in the charge / discharge cycle may decrease.
FIG. 3 shows the relationship between the charging voltage and the expansion coefficient of the Si negative electrode.

上記初回充電における一回目の充電電流値切り替え前、すなわち、低レート充電は0.1C以下で行うことが好ましく、0.05C以下で行うことがより好ましい。 Before the first charge current value switching in the initial charge, that is, low rate charging is preferably performed at 0.1 C or less, and more preferably at 0.05 C or less.

図1に示すように、充電電流値が低いほど低い充電電圧で大きな初期容量が得られ、0.1Cを超えると充電電圧に対する初期容量の増加量が低下し始める。低レート充電を0.1C以下で行うことで、Si系負極の初期容量を増加させることができる。
なお、上記低レート充電は電流が流れればよく充電電流値が0Cを超えれば充電することが可能であるが、あまり低すぎると長時間を要するため0.0005C以上で行うことが好ましい。
As shown in FIG. 1, the lower the charging current value is, the larger the initial capacity is obtained at a lower charging voltage, and when it exceeds 0.1 C, the amount of increase in the initial capacity with respect to the charging voltage begins to decrease. By performing low-rate charging at 0.1 C or less, the initial capacity of the Si-based negative electrode can be increased.
It should be noted that the low-rate charging can be performed as long as a current flows and the charging current value exceeds 0C, but if it is too low, it takes a long time, so it is preferably performed at 0.0005C or more.

また、一回目の充電電流値の切り替え後、すなわち、高レート充電の充電電流値は、0.1Cを超えることが好ましく、0.3C以上10.0C以下であることがより好ましい。 Further, after the first switching of the charging current value, that is, the charging current value of high-rate charging preferably exceeds 0.1C, and more preferably 0.3C or more and 10.0C or less.

上記高レート充電は、Si系負極のシワの発生を抑制しながら、固溶体正極を活性化するものである。図4に充電電流値と、シワ面積率及び耐久性との関係を示す。
図4に示すように、充電電流値が0.1Cを超えることで、Si系負極のシワの発生を抑制できると共に耐久性を向上できる。
The high-rate charging activates the solid solution positive electrode while suppressing the occurrence of wrinkles on the Si-based negative electrode. FIG. 4 shows the relationship between the charging current value, the wrinkle area ratio, and the durability.
As shown in FIG. 4, when the charging current value exceeds 0.1 C, the occurrence of wrinkles on the Si-based negative electrode can be suppressed and the durability can be improved.

初回充電の際、低レート充電時には体積膨張によるシワが発生し、高レート充電時にはシワの発生を防止できる理由は明らかにされているわけではないが、以下のように推定される。 At the time of initial charging, wrinkles due to volume expansion occur during low-rate charging, and the reason why wrinkles can be prevented during high-rate charging has not been clarified, but it is presumed as follows.

上記低レート充電では、充電電圧が高くなるとLiがSi系負極中のポリイミド等のバインダとも反応して上記バインダが分解し、電極材料同士の結合が弱くなってSi系負極の変形自由度が増加する。これに対し、高レート充電においては、反応抵抗の高いバインダとはLiが反応しないためSi系負極の変形が抑制されるものと考えられる。 In the low-rate charging, when the charging voltage becomes high, Li + reacts with a binder such as polyimide in the Si-based negative electrode, the binder is decomposed, the bond between the electrode materials is weakened, and the degree of freedom of deformation of the Si-based negative electrode is increased. To increase. On the other hand, in high-rate charging, it is considered that the deformation of the Si-based negative electrode is suppressed because Li + does not react with the binder having a high reaction resistance.

また、初回充電時には、高レート充電により最高充電電圧が4.55V〜4.80Vまで到達することが好ましい。充電電圧が上記範囲に到達させることで、固溶体正極を充分活性化することができ、初期容量を向上させることができる。 Further, at the time of initial charging, it is preferable that the maximum charging voltage reaches 4.55V to 4.80V by high rate charging. When the charging voltage reaches the above range, the solid solution positive electrode can be sufficiently activated and the initial capacity can be improved.

上記非水電解質二次電池の製造方法は、どのような大きさの非水電解質二次電池にも適用することができるが、大型の電池に適用することで優れた効果を奏する。
具体的には、定格容量が3Ah以上、かつ定格容量に対する電池体積の比が8cm/Ah以下である電池、特に定格容量が5Ah以上である大型電池において本発明の効果が大きい。
なお、本発明において、電池体積とは電池外装体まで含めた電池の投影面積と厚みの積をいう。
The above-mentioned method for manufacturing a non-aqueous electrolyte secondary battery can be applied to a non-aqueous electrolyte secondary battery of any size, but when applied to a large-sized battery, an excellent effect is obtained.
Specifically, the effect of the present invention is large in a battery having a rated capacity of 3 Ah or more and a ratio of the battery volume to the rated capacity of 8 cm 3 / Ah or less, particularly a large battery having a rated capacity of 5 Ah or more.
In the present invention, the battery volume refers to the product of the projected area and the thickness of the battery including the battery exterior.

つまり、電池が大型化し、電極面積が大きくなればなるほど、Si系負極における負極活物質の均一分散性の他、塗工ムラによる電極の厚さムラや、電極積層時の加圧ムラによる電極のたわみ等により、Si系負極と固溶体正極の極間距離を均一にすることが困難になる。 That is, as the size of the battery increases and the electrode area increases, the uniform dispersibility of the negative electrode active material in the Si-based negative electrode, the thickness unevenness of the electrode due to uneven coating, and the uneven pressurization during electrode lamination cause the electrode. Due to deflection and the like, it becomes difficult to make the distance between the electrodes of the Si-based negative electrode and the solid solution positive electrode uniform.

そして、Si系負極の面内において厚さにムラがあるとSi系負極の膨張収縮にもムラが生じてシワが発生し易くなり、Si系負極と固溶体正極との極間距離が不均一になる。さらに、上記Si系負極のシワと上記電極のたわみ等とが相俟って、Si系負極と固溶体正極との極間距離のバラツキが大きくなる。 If the thickness is uneven in the plane of the Si-based negative electrode, the expansion and contraction of the Si-based negative electrode is also uneven and wrinkles are likely to occur, and the distance between the electrodes of the Si-based negative electrode and the solid solution positive electrode becomes non-uniform. Become. Further, the wrinkles of the Si-based negative electrode and the deflection of the electrode are combined to increase the variation in the distance between the electrodes between the Si-based negative electrode and the solid solution positive electrode.

すると、極間距離が遠い箇所では、抵抗が大きくなって電流量が少なくなり電池反応が進み難くなる一方、極間距離が近い箇所では抵抗が小さくなり電流量が多くなって、電池反応が進み易くなる。
したがって、極間距離が遠い箇所は電池容量に寄与しなくなって電池容量が低下し、上記極間距離が近い箇所において選択的に電池反応が生じ、電解液との副反応や活物質の劣化等が起こり易くなるため、電池の容量維持率が低下する。
Then, in the place where the distance between the poles is long, the resistance becomes large and the amount of current becomes small, which makes it difficult for the battery reaction to proceed. It will be easier.
Therefore, the location where the distance between the poles is long does not contribute to the battery capacity and the battery capacity decreases, and the battery reaction selectively occurs at the location where the distance between the poles is short, and a side reaction with the electrolytic solution, deterioration of the active material, etc. Is likely to occur, so that the capacity retention rate of the battery is lowered.

[非水電解質二次電池]
次に、本発明の非水電解質二次電池の製造方法を用いることができる非水電解質二次電池について説明する。
上記非水電解質二次電池は、固溶体正極、非水電解質、及びSi系負極を備え、これらがこの順に積層されて成るものである。そして、上記非水電解質二次電池が1又は2以上積層されて外装体に収容され、正極集電板及び負極集電板を介して外部に電力が取り出される。
[Non-aqueous electrolyte secondary battery]
Next, a non-aqueous electrolyte secondary battery that can use the method for producing a non-aqueous electrolyte secondary battery of the present invention will be described.
The non-aqueous electrolyte secondary battery includes a solid solution positive electrode, a non-aqueous electrolyte, and a Si-based negative electrode, and these are laminated in this order. Then, one or two or more of the non-aqueous electrolyte secondary batteries are stacked and housed in the exterior body, and electric power is taken out to the outside through the positive electrode current collector plate and the negative electrode current collector plate.

(固溶体正極)
上記固溶体正極は、下記組成式(1)で表される活物質を含む。

Figure 0006805682
但し、組成式(1)中、xは0.1≦x≦ 0.8を満たし、MはNiαCoβMnγ であり、α、β、γは0≦α≦0.5、0≦β≦0.33、0≦γ≦0.5、かつα+β+γ=1を満たす。 (Solid solution positive electrode)
The solid solution positive electrode contains an active material represented by the following composition formula (1).
Figure 0006805682
However, in the composition formula (1), x satisfies 0.1 ≦ x ≦ 0.8, M is Ni α Co β Mn γ , and α, β, γ are 0 ≦ α ≦ 0.5, 0 ≦. It satisfies β ≦ 0.33, 0 ≦ γ ≦ 0.5, and α + β + γ = 1.

上記活物質はLiMnO−LiMO系(M=NiαCoβMnγ)固溶体であり、理論容量が高いが不活性であるLiMnOと、活性なLiMOとを固溶体化し、その組成をよりLiMnO側に近づけて高容量を引き出しつつ、LiMOの高活性な性質を利用したものであり、上記活物質を含む固溶体正極に対して4 .55〜4.80Vまで充電することでと高容量が得られる。 The active material is Li 2 MnO 3 -LiMO 2 system (M = Ni α Co β Mn γ) solid solution, and Li 2 MnO 3 theoretical capacity is high, but inactive, and active LiMO 2 and solid solution, The composition is closer to the Li 2 MnO 3 side to draw out a high capacity, and the highly active properties of LiMO 2 are utilized. With respect to the solid solution positive electrode containing the above active material, 4. High capacity can be obtained by charging to 55-4.80V.

上記固溶体正極は、活物質及びバインダを含むスラリーを集電体等に塗布・乾燥し、次いでプレスすること等により形成できる。 The solid solution positive electrode can be formed by applying a slurry containing an active material and a binder to a current collector or the like, drying the slurry, and then pressing the slurry.

上記スラリーの塗布方法としては、スクリーン印刷法、スプレーコート法、インクジェットコート法、ドクターブレードコート法等を挙げることができる。また、プレス方法おとしては、カレンダーロール、平板プレス等を挙げることができる。 Examples of the slurry coating method include a screen printing method, a spray coating method, an inkjet coating method, and a doctor blade coating method. In addition, examples of the pressing method include a calendar roll and a flat plate press.

上記バインダとしては、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等を挙げることができる。 Examples of the binder include the following materials. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile (PEN), polyacrylonitrile, polyimide, polyamide, polyamideimide, cellulose, carboxymethyl cellulose (CMC), ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene / butadiene Rubber (SBR), isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and its hydrogen additive, styrene / isoprene / styrene block copolymer and Thermoplastic polymers such as the hydrogenated products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether co-weight. Fluororesin such as coalescence (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF), etc. Vinylidene Fluoride-Hexafluoropropylene Fluororesin (VDF-HFP Fluororesin), Vinylidene Fluoride-Hexafluoropropylene-Tetrafluoroethylene Fluororesin (VDF-HFP-TFE Fluororesin), Vinylidene Fluoride-Pentafluoro Propylene-based fluororubber (VDF-PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene Examples thereof include vinylidene fluoride-based fluororubbers such as vinylidene fluoride-chlorotrifluoroethylene-based fluororubbers (VDF-CTFE-based fluororubbers) and epoxy resins. ..

(Si系負極)
上記Si系負極は、シリコン単体(Si)、シリコン合金、SiO、SiO等のシリコン酸化物を活物質として含むものであり、スズ単体(Sn)、スズ合金、スズ酸化物、炭素材料等、他の活物質を含んでいてもよい。
(Si-based negative electrode)
The Si-based negative electrode contains silicon oxide such as silicon simple substance (Si), silicon alloy, SiO 2 , SiO as an active material, and is composed of tin simple substance (Sn), tin alloy, tin oxide, carbon material, etc. It may contain other active materials.

上記Si系負極は、上記活物質及びバインダを含むスラリーを集電体等に塗布すること等により形成できる。上記バインダとしては固溶体正極と同様のバインダを用いることができる。 The Si-based negative electrode can be formed by applying a slurry containing the active material and a binder to a current collector or the like. As the binder, a binder similar to that of the solid solution positive electrode can be used.

(非水電解質)
非水電解質を構成する電解質としては、液体電解質またはポリマー電解質を挙げることができる。
上記液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解したものであり、ゲル電解質は、上記液体電解質をイオン伝導性ポリマーからなるマトリックスポリマー中に保持したものである。
(Non-aqueous electrolyte)
Examples of the electrolyte constituting the non-aqueous electrolyte include a liquid electrolyte and a polymer electrolyte.
The liquid electrolyte is a solution of a lithium salt (electrolyte salt) in an organic solvent, and the gel electrolyte is a liquid electrolyte held in a matrix polymer made of an ionic conductive polymer.

上記有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類を挙げることができる。 Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). , Methylpropyl carbonate (MPC) and other carbonates.

また、上記リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の活物質層に添加され得る化合物を挙げることができる。 Furthermore, as the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc. Examples of compounds that can be added to the active material layer of the electrode of.

上記ポリマー電解質マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等を挙げることができる。 Examples of the ionic conductive polymer used as the polymer electrolyte matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.

上記非水電解質にはセパレータを用いてもよい。セパレータ(不織布を含む)の具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布が挙げられる。 A separator may be used for the non-aqueous electrolyte. Specific forms of the separator (including non-woven fabric) include, for example, a microporous membrane made of polyolefin such as polyethylene or polypropylene, a porous flat plate, and a non-woven fabric.

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

<非水電解質二次電池1の作製>
(正極活物質の作製)
硫酸ニッケル、硫酸コバルト、および硫酸マンガンを溶解した水溶液(1mol/L)に、60℃にて水酸化ナトリウムおよびアンモニアを連続的に供給してpHを11.3に調整し、共沈法によりニッケルとマンガンとコバルトとが1:1:4のモル比で固溶して成る金属複合水酸化物を作製した。
<Manufacturing of non-aqueous electrolyte secondary battery 1>
(Preparation of positive electrode active material)
Sodium hydroxide and ammonia were continuously supplied at 60 ° C. to an aqueous solution (1 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved to adjust the pH to 11.3, and nickel was prepared by the coprecipitation method. And manganese and cobalt were dissolved at a molar ratio of 1: 1: 4 to prepare a metal composite hydroxide.

上記金属複合水酸化物に含まれる金属(ニッケル、コバルト、マンガン)の合計モル数と、リチウムのモル数の比が2:3となるように、上記金属複合水酸化物と炭酸リチウムとを秤量して充分混合した。昇温速度5℃/minで900℃まで昇温し、空気雰囲気中で2時間仮焼成した後、昇温速度3℃/minで920℃まで昇温し、10時間焼成した後、室温まで冷却して正極活物質Li1.5[Ni0.20Co0.20Mn0.80[Li]0.30を得た。 The metal composite hydroxide and lithium carbonate are weighed so that the ratio of the total number of moles of metals (nickel, cobalt, manganese) contained in the metal composite hydroxide to the number of moles of lithium is 2: 3. And mixed well. The temperature is raised to 900 ° C. at a heating rate of 5 ° C./min, temporarily fired in an air atmosphere for 2 hours, then raised to 920 ° C. at a heating rate of 3 ° C./min, fired for 10 hours, and then cooled to room temperature. As a result, the positive electrode active material Li 1.5 [Ni 0.20 Co 0.20 Mn 0.80 [Li] 0.30 O 3 was obtained.

(固溶体正極の作製)
上記正極活物質94.5質量%、導電助剤(ケッチェンブラック、平均粒径:300nm)3質量%、バインダ(ポリフッ化ビニリデン(PIDF))2.5質量%、及び粘度調整溶媒(N−メチル−2ピロリドン(NMP))を適量混合して正極活物質スラリーを調節した。
(Preparation of solid solution positive electrode)
94.5% by mass of the positive electrode active material, 3% by mass of a conductive additive (Ketjen black, average particle size: 300 nm), 2.5% by mass of binder (polyvinylidene fluoride (PIDF)), and a viscosity adjusting solvent (N-). An appropriate amount of methyl-2pyrrolidone (NMP) was mixed to prepare a positive electrode active material slurry.

この正極活物質スラリーを集電体(アルミニウム箔、厚さ20μm)に塗布し、120℃で3分間乾燥した後、ロールプレス機で圧縮成形し、3×4cmに裁断することで正極活物質層の片面塗工量が23.5mg/cmの固溶体正極を作製した。 This positive electrode active material slurry is applied to a current collector (aluminum foil, thickness 20 μm), dried at 120 ° C. for 3 minutes, compression-molded with a roll press, and cut into 3 × 4 cm to obtain a positive electrode active material layer. A solid solution positive electrode having a single-sided coating amount of 23.5 mg / cm 2 was prepared.

(Si系負極電極の作製)
遊星型ボールミル(ドイツ フリッチュ社製P−6)を用いて、メカニカルアロイ法により金属粉末を合金化させた。具体的には、質量比で、Si:Sn:Ti=60:10:30となるように調製した金属粉末と、ジルコニア製粉砕ボールとを、ジルコニア製容器に投入した。その後、ジルコニア製容器を固定する台座を、600rpmで12.5時間回転させて、金属粉末を合金化した。
(Manufacturing of Si-based negative electrode)
The metal powder was alloyed by the mechanical alloy method using a planetary ball mill (P-6 manufactured by Frichchu, Germany). Specifically, the metal powder prepared so that the mass ratio of Si: Sn: Ti = 60: 10: 30 and the zirconia crushed balls were put into a zirconia container. Then, the pedestal for fixing the zirconia container was rotated at 600 rpm for 12.5 hours to alloy the metal powder.

上記Si合金粉末80質量%と、導電助剤(ケッチェンブラック、平均粒径:300nm)5質量%、ポリイミド(PI)15質量%とを、N−メチルピロリドンに添加して混合して[負極活物質スラリー]を作製した。 80% by mass of the Si alloy powder, 5% by mass of a conductive auxiliary agent (Ketchen black, average particle size: 300 nm), and 15% by mass of polyimide (PI) were added to N-methylpyrrolidone and mixed [negative electrode]. Active material slurry] was prepared.

上記[負極活物質スラリー]を、集電体(銅箔、厚さ10μm)に塗布し充分乾燥した後、ロールプレス機で圧縮成形し、3×4cmに裁断することで負極活物質層の片面塗工量が6.8mg/cmの[Si系負極]を作製した。 The above [negative electrode active material slurry] is applied to a current collector (copper foil, thickness 10 μm), dried sufficiently, compression-molded with a roll press, and cut into 3 × 4 cm to cut one side of the negative electrode active material layer. A [Si-based negative electrode] having a coating amount of 6.8 mg / cm 2 was prepared.

(電解液の作製)
エチレンカーボネート(EC)とジメチルカーボネート(DEC)とが3:7(体積比)の混合溶媒に、LiPFを溶解してLiPFが1.0Mの[電解液]を作製した。
(Preparation of electrolyte)
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DEC) in a ratio of 3: 7 (volume ratio) to prepare an [electrolyte solution] having a LiPF 6 of 1.0 M.

上記固溶体正極と[Si系負極]とを対向させ、この間に、セパレータ(ポリプロピレン(PP))を配置し、固溶体正極・セパレータ・負極の積層体を作製した。この積層体をアルミラミネート製セル入れ、上記[電解液]をセル内に注入して密閉し、小型の[リチウムイオン二次電池1]を得た。 The solid solution positive electrode and the [Si-based negative electrode] were opposed to each other, and a separator (polypropylene (PP)) was placed between them to prepare a laminated body of the solid solution positive electrode, the separator, and the negative electrode. This laminate was placed in an aluminum laminate cell, and the above [electrolyte solution] was injected into the cell to seal the laminate to obtain a small [lithium ion secondary battery 1].

<非水電解質二次電池2の作製>
正極及び負極の集電体を120×210cmに変え、それぞれの集電体の両面に活物質層を塗工成形した。セパレータを介して固溶体正極及びSi合金負極を交互に積層し、正極2枚、負極3枚の積層体とする他は[リチウムイオン二次電池1]と同様にして、大型の[リチウムイオン二次電池2]を得た。
<Manufacturing of non-aqueous electrolyte secondary battery 2>
The current collectors of the positive electrode and the negative electrode were changed to 120 × 210 cm, and active material layers were coated and molded on both sides of each current collector. Similar to [Lithium Ion Secondary Battery 1], a large [Lithium Ion Secondary Battery 1] is formed by alternately laminating a solid solution positive electrode and a Si alloy negative electrode via a separator to form a laminate of two positive electrodes and three negative electrodes. Battery 2] was obtained.

上記[リチウムイオン二次電池1]と[リチウムイオン二次電池2]の定格容量及び定格容量に対する電池体積の比(電池体積/定格容量)を、以下の方法で測定した。 The rated capacity of the above [lithium ion secondary battery 1] and [lithium ion secondary battery 2] and the ratio of the battery volume to the rated capacity (battery volume / rated capacity) were measured by the following method.

<定格容量の測定>
定格容量は試験用電池に電解液を注入した後、10時間程度放置して、温度25℃、0V〜4.6Vの電圧範囲で以下のようにして測定した。
(1)0.05Cの定電流充電で4.6Vに到達した後、5分間休止する。
(2)0.05Cの定電流放電で0Vに到達した後、5分間休止する。
(3)0.1Cの定電流充電で4.45Vに到達した後、合計充電時間が10時間となるように定電圧充電し、その後5分間休止する。
(4)0.1Cの定電流放電で1.8Vに到達した後、5分間休止する。
上記(3)〜(4)を5回繰り返し、最後の定電流放電における放電容量を定格容量とした。
<Measurement of rated capacity>
The rated capacity was measured as follows in a voltage range of 0 V to 4.6 V at a temperature of 25 ° C. after injecting the electrolytic solution into the test battery and leaving it to stand for about 10 hours.
(1) After reaching 4.6V with a constant current charge of 0.05C, rest for 5 minutes.
(2) After reaching 0V with a constant current discharge of 0.05C, it is paused for 5 minutes.
(3) After reaching 4.45 V with a constant current charge of 0.1 C, the battery is charged with a constant voltage so that the total charging time is 10 hours, and then pauses for 5 minutes.
(4) After reaching 1.8V with a constant current discharge of 0.1C, rest for 5 minutes.
The above (3) to (4) were repeated 5 times, and the discharge capacity at the final constant current discharge was set as the rated capacity.

<電池体積の測定>
電池体積を電池外装体まで含めた電池の投影面積と、該投影方向の厚みとの積により求めた。
投影面積は、正面、背面、右側面、左側面、平面、底面の6つの投影面積の売り最大の投影面積を用いた。
なお、通常は電池を平板上に最も安定した状態に置いた際の平面又は底面の投影面積である。
また、電池外装体まで含めた電池の厚みは、満充電時の厚みを測定箇所によるバラツキを考慮して複数箇所測定し、その平均を
電池の厚みとした。
<Measurement of battery volume>
The battery volume was determined by the product of the projected area of the battery including the battery exterior and the thickness in the projection direction.
As the projected area, the selling maximum projected area of the six projected areas of front, back, right side, left side, plane, and bottom was used.
Usually, it is the projected area of the flat surface or the bottom surface when the battery is placed on the flat plate in the most stable state.
The thickness of the battery including the battery exterior was measured at a plurality of locations in consideration of the variation in the thickness at the time of full charge, and the average was taken as the thickness of the battery.

上記[リチウムイオン二次電池1]及び[リチウムイオン二次電池2]を、25℃の環境下で、表1に示す方法で定電流充電し、0.1Cで定電流放電させて活性化処理した。 The above [lithium ion secondary battery 1] and [lithium ion secondary battery 2] are charged at a constant current by the method shown in Table 1 in an environment of 25 ° C., and discharged at a constant current at 0.1 C for activation treatment. did.

活性化処理した各非水電解質二次電池について、下記の方法により、電池初期容量、Si系負極のシワの発生の有無、容量維持率を測定した。評価結果を表1に示す。 For each activated non-aqueous electrolyte secondary battery, the initial capacity of the battery, the presence or absence of wrinkles on the Si-based negative electrode, and the capacity retention rate were measured by the following methods. The evaluation results are shown in Table 1.

(初期容量の測定)
充電電流は定電流−定電圧方式とし、各評価電池に対して、25℃の環境下で0.1Cの電流値で4.45Vまで定電流充電を行い、合計充電時間が10時間となるように定電圧充電を行って満充電状態とした。その後、25℃の環境下で定電流方式により、0.1Cの電流値で1.8Vまで放電した。
この0.1Cでの充放電サイクルを5回繰り返し、最後の定電流放電時の容量を初期容量とした。
(Measurement of initial capacity)
The charging current is a constant current-constant voltage method, and each evaluation battery is constantly charged to 4.45 V with a current value of 0.1 C in an environment of 25 ° C, so that the total charging time is 10 hours. The battery was fully charged by constant voltage charging. Then, it was discharged to 1.8 V at a current value of 0.1 C by a constant current method in an environment of 25 ° C.
This charge / discharge cycle at 0.1 C was repeated 5 times, and the capacity at the time of the final constant current discharge was set as the initial capacity.

(シワの有無)
リチウムイオン二次電池を分解してSi系負極のシワの有無を目視で確認した。
○:シワの発生なし
△:軽微なシワが発生
×:顕著なシワが発生
(Presence or absence of wrinkles)
The lithium ion secondary battery was disassembled and the presence or absence of wrinkles on the Si-based negative electrode was visually confirmed.
○: No wrinkles △: Minor wrinkles occur ×: Significant wrinkles occur

(容量維持率)
容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
なお、表1中、電池初期容量は比較例2を100として容量発現率(%)で表した。
(Capacity maintenance rate)
Capacity retention rate (%) = 100th cycle discharge capacity / 1st cycle discharge capacity x 100
In Table 1, the initial battery capacity is represented by the capacity expression rate (%) with Comparative Example 2 as 100.

Figure 0006805682
Figure 0006805682

0.1C以下で最高電圧まで充電した比較例1,2は、初期容量が大きくなったがシワが発生し、容量維持率が低下した。
0.1Cを超える電流値で最高電圧まで充電した比較例4,5は、シワが発生しなかったが初期容量が小さくなった。
初め0.05Cで充電し、最高電圧に到達する前に充電電流値を切り替えて高くした実施例は、初期容量と容量維持率を両立できた。
In Comparative Examples 1 and 2 charged to the maximum voltage at 0.1 C or less, the initial capacity was large, but wrinkles were generated and the capacity retention rate was lowered.
In Comparative Examples 4 and 5 charged to the maximum voltage with a current value exceeding 0.1 C, wrinkles did not occur, but the initial capacitance became small.
In the example in which the battery was initially charged at 0.05 C and the charging current value was switched to increase before reaching the maximum voltage, both the initial capacity and the capacity retention rate could be achieved.

Claims (7)

非水電解質二次電池を充電・放電させて活性化する活性化工程を含む非水電解質二次電池の製造方法であって、
上記非水電解質二次電池が、固溶体正極とSi系負極とを備え、
上記固溶体正極が、下記組成式(1)で表される活物質を含むものであり、
上記活性化工程が、初回充電の際、最大電圧に到達するまでに、印加する充電電流値を高い充電電流値に一回以上切り替える処理であり、
上記充電電流値の一回目の切り替えを、充電電圧が3.75V以上4.52V以下で行い、一回目の充電電流値切り替え後に到達する最高充電電圧が4.55V〜4.80Vであることを特徴とする非水電解質二次電池の製造方法。

[Li1.5][Li{0.5(1−x)}Mn1−x1.5x]O・・・組成式(1)

但し、組成式(1)中、xは0.1≦x≦ 0.8を満たし、MはNiαCoβMnγ であり、α、β、γは0≦α≦0.5、0≦β≦0.33、0≦γ≦0.5、かつα+β+γ=1を満たす。
A method for manufacturing a non-aqueous electrolyte secondary battery, which comprises an activation step of charging / discharging and activating the non-aqueous electrolyte secondary battery.
The non-aqueous electrolyte secondary battery includes a solid solution positive electrode and a Si-based negative electrode.
The solid solution positive electrode contains an active material represented by the following composition formula (1).
The activation step is a process of switching the applied charging current value to a high charging current value one or more times before reaching the maximum voltage at the time of initial charging.
The first switching of the charging current value is performed when the charging voltage is 3.75V or more and 4.52V or less, and the maximum charging voltage reached after the first switching of the charging current value is 4.55V to 4.80V. method of manufacturing a nonaqueous electrolyte secondary battery you characterized.

[Li 1.5 ] [Li {0.5 (1-x)} Mn 1-x M 1.5x ] O 3 ... Composition formula (1)

However, in the composition formula (1), x satisfies 0.1 ≦ x ≦ 0.8, M is Ni α Co β Mn γ , and α, β, γ are 0 ≦ α ≦ 0.5, 0 ≦. It satisfies β ≦ 0.33, 0 ≦ γ ≦ 0.5, and α + β + γ = 1.
上記充電電流値の一回目の切り替えを3.90V以上で行うことを特徴とする請求項1に記載の非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1, wherein the first switching of the charging current value is performed at 3.90 V or higher. 一回目の充電電流値切り替えまでの充電電流値の上限が、0.1C以下であることを特徴とする請求項1又は2に記載の非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the upper limit of the charging current value until the first charging current value switching is 0.1 C or less. 一回目の充電電流値切り替えまでの充電電流値の上限が、0.05C以下であることを特徴とする請求項3に記載の非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 3, wherein the upper limit of the charging current value until the first charging current value switching is 0.05 C or less. 一回目の充電電流値切り替え後の充電電流値が0.1Cを超えることを特徴とする請求項1〜4のいずれか1つの項に記載の非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the charging current value after the first switching of the charging current value exceeds 0.1 C. 一回目の充電電流値切り替え後の充電電流値が0.3C以上であることを特徴とする請求項5に記載の非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 5, wherein the charging current value after the first charging current value switching is 0.3 C or more. 上記非水電解質二次電池が、定格容量が3Ah以上、かつ定格容量に対する電池体積の比が8cm/Ah以下であることを特徴とする請求項1〜6のいずれか1つの項に記載の非水電解質二次電池の製造方法。
但し、上記電池体積は、電池外装体まで含めた電池の投影面積と厚みの積である。
The item according to any one of claims 1 to 6, wherein the non-aqueous electrolyte secondary battery has a rated capacity of 3 Ah or more and a ratio of the battery volume to the rated capacity of 8 cm 3 / Ah or less. A method for manufacturing a non-aqueous electrolyte secondary battery.
However, the battery volume is the product of the projected area and the thickness of the battery including the battery exterior.
JP2016189036A 2016-09-28 2016-09-28 Manufacturing method of non-aqueous electrolyte secondary battery Active JP6805682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189036A JP6805682B2 (en) 2016-09-28 2016-09-28 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189036A JP6805682B2 (en) 2016-09-28 2016-09-28 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2018055901A JP2018055901A (en) 2018-04-05
JP6805682B2 true JP6805682B2 (en) 2020-12-23

Family

ID=61836954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189036A Active JP6805682B2 (en) 2016-09-28 2016-09-28 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6805682B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987304B (en) * 2020-08-21 2021-12-03 东莞东阳光科研发有限公司 Ternary cathode material precursor and preparation method thereof, ternary cathode material and preparation method thereof, and lithium ion battery
WO2022198577A1 (en) * 2021-03-25 2022-09-29 东莞新能源科技有限公司 Electrochemical device and electronic device
KR102468985B1 (en) * 2022-02-07 2022-11-22 (주)케이엔씨 Charging device and the operation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446195B2 (en) * 2008-09-26 2014-03-19 日産自動車株式会社 Lithium ion battery system and manufacturing method thereof
JP6066306B2 (en) * 2012-07-04 2017-01-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
EP2772968B1 (en) * 2013-02-28 2016-11-30 Samsung SDI Co., Ltd. Composite positive active material, method of preparing the same, and positive electrode and lithium battery containing the material
JP6102556B2 (en) * 2013-06-19 2017-03-29 日産自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
CN105934847B (en) * 2014-01-24 2019-11-05 日产自动车株式会社 Electrical part

Also Published As

Publication number Publication date
JP2018055901A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US8597837B2 (en) Method for producing nonaqueous electrolyte lithium-ion secondary battery
KR101984727B1 (en) Electrode and lithium secondary battery comprising the same
JP5311157B2 (en) Lithium secondary battery
WO2013018182A1 (en) Lithium ion secondary battery
JP5936406B2 (en) Lithium ion secondary battery
WO2016024394A1 (en) Positive electrode plate for non-aqueous electrolyte electricity-storage element, and non-aqueous electrolyte electricity-storage element
JPWO2006129756A1 (en) Nonaqueous electrolyte secondary battery electrode, nonaqueous electrolyte secondary battery, and automobile, electric tool or stationary device equipped with the same
JP5446612B2 (en) Lithium ion secondary battery
JP2011060520A (en) Lithium ion secondary battery and its manufacturing method
JP2007109631A (en) Electrode for battery
WO2015033666A1 (en) Secondary battery charging method and charging device
JP6187601B2 (en) Method for producing lithium ion secondary battery
JP6206259B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product
CN111095615A (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
JP6805682B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2012138217A (en) Battery manufacturing method
JP2006216305A (en) Secondary battery
JP6984202B2 (en) A control device and a control method for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery system having the control device, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
US9312542B2 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for manufacturing the same
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP6209844B2 (en) Nonaqueous battery electrode and manufacturing method thereof
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
WO2015033659A1 (en) Secondary battery charging method and charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6805682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151