JP6205473B1 - Column-to-beam joint and its design method - Google Patents
Column-to-beam joint and its design method Download PDFInfo
- Publication number
- JP6205473B1 JP6205473B1 JP2016221764A JP2016221764A JP6205473B1 JP 6205473 B1 JP6205473 B1 JP 6205473B1 JP 2016221764 A JP2016221764 A JP 2016221764A JP 2016221764 A JP2016221764 A JP 2016221764A JP 6205473 B1 JP6205473 B1 JP 6205473B1
- Authority
- JP
- Japan
- Prior art keywords
- joint
- column
- tension
- steel material
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 133
- 239000010959 steel Substances 0.000 claims abstract description 133
- 239000000463 material Substances 0.000 claims abstract description 73
- 239000011178 precast concrete Substances 0.000 claims abstract description 26
- 238000000926 separation method Methods 0.000 claims abstract description 19
- 239000011440 grout Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000006378 damage Effects 0.000 abstract description 2
- 239000004567 concrete Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- 239000013013 elastic material Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011513 prestressed concrete Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
Landscapes
- Joining Of Building Structures In Genera (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Reinforcement Elements For Buildings (AREA)
Abstract
【課題】大地震による正負の繰り返し水平荷重を吸収し、破壊を防止したプレキャストコンクリート柱梁の接合部を提供する。【解決手段】プレキャストコンクリート製柱3と梁4の接合部であって、柱3には梁4を載せるアゴ35が設けてあり、アゴ35の上に梁4の梁端が設置されると共に柱3と梁4の梁端の間には構造目地部6が形成してあり、柱梁接合部に設けたシース5sに接合鋼材5が挿入され、柱梁接合部を貫通させて対向する梁の端部または柱面に設けた定着具5cまでアンボンド状態で配置してあると共に定着体30aに緊張定着して柱3と梁4が圧着接合で一体化してあり、構造目地部6においては、中地震時までは目地離間を許容せず、大地震時には目地離間を許容すると共にアンボンド状態の接合鋼材5の伸びによって水平力を吸収し、接合鋼材5に作用する張力が緊張定着力以上に増加しないように設定した接合鋼材5の緊張定着力の合力が導入してある柱3と梁4の接合部である。【選択図】図1An object of the present invention is to provide a joint of a precast concrete column beam that absorbs positive and negative horizontal loads caused by a large earthquake and prevents destruction. A connecting portion between a precast concrete column 3 and a beam 4, the column 3 is provided with an jaw 35 on which the beam 4 is placed, and the beam end of the beam 4 is installed on the jaw 35 and the column. A structural joint 6 is formed between the beam ends of the beam 3 and the beam 4, and a joining steel material 5 is inserted into a sheath 5s provided at the column beam junction, and the beam of the beam facing the column beam junction is penetrated. The fixing tool 5c provided at the end or the column surface is disposed in an unbonded state, and is tension-fixed to the fixing body 30a so that the column 3 and the beam 4 are integrated by pressure bonding. The joint separation is not allowed until the time of the earthquake, the joint separation is allowed in the event of a large earthquake, and the horizontal force is absorbed by the elongation of the unbonded joint steel material 5 so that the tension acting on the joint steel material 5 does not increase more than the tension fixing force. The resultant force of the tension fixing force of the joining steel material 5 set as follows Is a junction of the pillar 3 and the beam 4 are introduced. [Selection] Figure 1
Description
本発明は、プレキャストコンクリート製柱と梁の接合部及び接合部の設計方法に関する。 The present invention relates to a joint between a precast concrete column and a beam and a design method for the joint.
耐震性能を高めたプレキャストコンクリート製柱と梁の接合方法及び設計方法としては本発明者が開発したPC圧着関節工法があり、下記の特許文献にある種々の工法及び設計方法を提案してきた。 As a method for joining and designing a precast concrete column and beam having improved seismic performance, there is a PC crimp joint method developed by the present inventor, and various construction methods and design methods in the following patent documents have been proposed.
この種の従来技術として特許文献1(特許第3452554号公報)に開示された技術は、プレキャストコンクリート部材にPC鋼材用シースが埋設されたものであって、該PC鋼材用シースの接合部近傍を弾性変形可能であると共にコンクリートと付着しないアンボンド状態となる弾性材(合成樹脂)で形成し、PC鋼材用シースの残りの部分をコンクリートと付着するメタルとしてボンド状態とすることによって、柱と梁の接合部におけるPC鋼材用シースの接合部近傍を弾性変形可能とし、大地震による正負の繰り返し水平荷重を弾性変形によって吸収して柱梁の接合部における破壊を防ぐものである。
また、特許文献2(特許第3527718号公報)には、特許文献1に示す接合構造において、PC鋼材の緊張力をPC鋼材の降伏強度の30〜60%の有効緊張力で緊張することによってPC鋼材が降伏するのを抑えることが提案されている。(段落0010〜0011参照)
さらに、特許文献3(特許第5612231号公報)において、地震等による大きな水平力が作用したときに柱梁の圧着目地近傍において所要の長さ範囲内で、梁部材内のPC鋼材とグラウトとの付着が切れてアンボンド状態となるようにし、PC鋼材に作用する張力を増加させることなくPC鋼材の伸び量のみを増やして地震エネルギーを吸収する方法が提案されている。
The technology disclosed in Patent Document 1 (Patent No. 3425554) as this type of prior art is that a PC steel sheath is embedded in a precast concrete member, and the vicinity of the joint portion of the PC steel sheath is formed. It is made of an elastic material (synthetic resin) that can be elastically deformed and does not adhere to concrete, and the remaining part of the PC steel sheath is bonded to the concrete as a metal to be bonded. The vicinity of the joint portion of the PC steel sheath at the joint portion can be elastically deformed, and positive and negative horizontal loads caused by a large earthquake are absorbed by the elastic deformation to prevent breakage at the joint portion of the column beam.
Moreover, in patent document 2 (patent 3527718), in the joining structure shown in patent document 1, PC tension | tensile_strength is tension | tensile_strengthened by 30 to 60% of the effective tension force of the yield strength of PC steel material, PC. It has been proposed to suppress the yielding of steel. (See paragraphs 0010-0011)
Further, in Patent Document 3 (Patent No. 5612231), when a large horizontal force due to an earthquake or the like is applied, within the required length range in the vicinity of the joint of the column beam, the PC steel material in the beam member and the grout There has been proposed a method of absorbing seismic energy by increasing the amount of elongation of the PC steel material without increasing the tension acting on the PC steel material so that the adhesion is broken and an unbonded state is achieved.
しかしながら、前記特許文献1では、接合部近傍をアンボンド状態とした弾性材のシースのみの変形だけでは大地震による正負の繰り返し水平荷重を吸収するには十分とはいえず、水平荷重の吸収効果は限定的であり、水平荷重を吸収しきれない場合がある。そして、シース内部に配設されたPC鋼材が端部近傍の弾性材及びメタルシースとはグラウトによってボンド状態となっており、シースの弾性材の変形によってPC鋼材も伸びてエネルギーを吸収するが、PC鋼材に作用する張力も増加していくのでPC鋼材が降伏する恐れがある。 However, in Patent Document 1, it is not sufficient to absorb positive and negative horizontal loads caused by a large earthquake only by deformation of the elastic material sheath in which the vicinity of the joint is unbonded. It is limited and may not be able to absorb the horizontal load. And, the PC steel material disposed inside the sheath is in a bonded state by the grout with the elastic material near the end and the metal sheath, and the PC steel material also stretches and absorbs energy due to the deformation of the elastic material of the sheath, Since the tension acting on the PC steel also increases, the PC steel may possibly yield.
この課題を解決するものとして特許文献2が提案された。しかしながらこの改良技術は、有効緊張力をPC鋼材が降伏しないように降伏強度まで余裕を持たせた低い緊張力とするものであり、また、PC鋼材の接合部近傍のみがコンクリートとはアンボンド状態であるので、十分な伸び量を得ることができず、地震エネルギーの吸収量が不足する場合が生じる。PC鋼材の弾性変形量が十分でないと地震荷重を吸収しきれず建造物が破壊に至ることになり、地震力を吸収して接合部の破壊を防止するという目的を達成することができない。
そこで、特許文献3に記載の技術が提案された。しかし、この方法は予め最大付着力の大きさを所定値で付着が切れるようにグラウトの強度とPC鋼材の周長(断面形状と本数に依存する)を適切に調整して設計することが要求され、設計手順(設計工数)が増加するので手間がかかると共に設計コストの増加に繋がる。
本発明は、以上の従来技術の課題を解決するものであって、簡易な設計手法によって水平力を吸収し、従来と同等の効果が得られる柱と梁の接合部及びその設計方法を提供するものである。
Patent Document 2 has been proposed to solve this problem. However, this improved technology makes the effective tension low enough to give the yield strength to prevent the PC steel from yielding, and only the vicinity of the joint of the PC steel is unbonded with the concrete. As a result, a sufficient amount of elongation cannot be obtained, and the amount of seismic energy absorbed may be insufficient. If the amount of elastic deformation of the PC steel material is not sufficient, the seismic load cannot be absorbed and the building will be destroyed, and the purpose of absorbing the seismic force and preventing the joint from being destroyed cannot be achieved.
Therefore, the technique described in Patent Document 3 has been proposed. However, this method requires that the strength of the grout and the circumference of the PC steel material (depending on the cross-sectional shape and number) be appropriately adjusted and designed so that the maximum adhesion force can be broken at a predetermined value. As a result, the number of design steps (design man-hours) increases, which takes time and leads to an increase in design cost.
The present invention solves the above-described problems of the prior art, and provides a column-to-beam joint that absorbs horizontal force by a simple design method and that can obtain the same effect as the conventional one, and a design method thereof. Is.
プレキャストコンクリート製柱と梁とからなる建造物の接合部であって、柱には梁を載せるアゴが設けてあり、アゴの上に梁端が設置されると共に柱と梁端の間には構造目地部が形成してあり、柱梁接合部に設けた複数段のシースに接合鋼材が挿入してあって柱梁接合部を貫通させて対向する梁の端部、または、柱面に設けた定着具までアンボンド状態で配置してあると共に定着具に緊張定着して柱と梁が圧着接合で一体化してあり、構造目地部においては、中地震時までは目地離間を許容せず、大地震時には目地離間を許容すると共にアンボンド状態の接合鋼材の伸びによって地震等による水平力エネルギーを吸収し、接合鋼材に作用する張力が緊張定着力以上には実質的に増加することないように設定した接合鋼材の緊張定着力の合力が導入してある柱と梁の接合部である。
そして、接合鋼材の緊張定着力の合力は以下の式(1)、(2)で求めたいずれの値より小さな値に設定した柱と梁の接合部である。
なお、各符号は以下の意味を有する。
P:接合鋼材の緊張定着力の合力(P1+P2)。
M(+):大地震時に接合部の構造目地部に作用する正のモーメント。
M(−):大地震時に接合部の構造目地部に作用する負のモーメント。
dp1:合力Pの作用位置から梁の上端までの距離。
dp2:合力Pの作用位置から梁の下端までの距離。
This is a joint of a precast concrete column and beam, and the column has a jaw on which the beam is placed, and the beam end is installed on the jaw and a structure is formed between the column and the beam end. A joint is formed, and a steel member is inserted into a plurality of sheaths provided at the beam-column joint, and is provided at the end of the beam facing the column-beam joint or at the column surface. The fixing tool is placed in an unbonded state, the tension is fixed to the fixing tool, and the columns and beams are integrated by pressure bonding. In the joint area of the structure, the joint is not allowed to be separated until the middle earthquake, and a large earthquake A joint that is set so that the joint force is sometimes allowed to be separated and the unbonded joint steel material absorbs horizontal force energy due to earthquakes, etc., so that the tension acting on the joint steel material does not substantially increase beyond the tension fixing force. The resultant tension of steel material It is the junction of the columns and beams you have input.
And the resultant force of the tension fixing force of the joining steel material is a joint between the column and the beam set to a value smaller than any value obtained by the following formulas (1) and (2).
In addition, each code | symbol has the following meaning.
P: the resultant tension fixing force (P 1 + P 2 ) of the joining steel material.
M (+): Positive moment acting on the joint of the joint at the time of a large earthquake.
M (-): Negative moment acting on the joint of the joint at the time of a large earthquake.
dp 1 : Distance from the position where the resultant force P is applied to the upper end of the beam.
dp 2 : Distance from the position where the resultant force P is applied to the lower end of the beam.
更に、プレキャストコンクリート製柱と梁とからなる建造物であって、柱には梁を載せるアゴが設けてあり、アゴの上に梁端が設置されると共に柱と梁端の間には構造目地部が形成してあり、柱梁接合部に設けた複数段のシースに接合鋼材が挿入してあって柱梁接合部を貫通させて対向する梁の端部または柱面に設けた定着具までアンボンド状態で配置してあると共に定着具に緊張定着して柱と梁が圧着接合で一体化してある構造目地部においては、中地震時までは目地離間を許容せず、大地震時には目地離間を許容すると共にアンボンド状態の接合鋼材の伸びによって地震等による水平力を吸収し、接合鋼材に作用する張力が緊張定着力以上には実質的に増加することないように接合鋼材の緊張定着力の合力を設定する柱と梁の接合部の設計方法であり、目地離間許容条件としては接合鋼材の緊張定着力の合力は以下の式(1)、(2)で求めたいずれの値より小さな値とする柱と梁の接合部の設計方法である。
Furthermore, the building is composed of a precast concrete column and a beam, and the column is provided with an jaw for placing the beam, the beam end is installed on the jaw, and a structural joint is formed between the column and the beam end. Up to the fixing tool provided on the end of the beam or on the column surface where the joining steel material is inserted into the multi-stage sheath provided in the beam-to-column joint and penetrates the beam-to-column joint. In joints where the structure is unbonded and tension is fixed to the fixture, and the columns and beams are integrated by pressure bonding, joint separation is not allowed until the middle earthquake, and joint separation is not allowed during large earthquakes. The combined force of the tension fixing force of the bonded steel so as to absorb the horizontal force due to the earthquake etc. by the elongation of the bonded steel material in an unbonded state and to allow the tension acting on the bonded steel material to increase substantially beyond the tension fixing force. Column / beam joint setting This is a method for designing the joint between the column and the beam so that the resultant joint tension separation force is smaller than any of the values obtained by the following formulas (1) and (2). is there.
本発明の効果を以下に示す。
(1)梁端の構造目地部において、中地震時(稀に起きる地震)までは目地が離間することなく、柱と梁が剛接合状態に維持され、柱と梁は共に弾性範囲にある。大地震時(極く稀に起きる地震)には、目地離間を許容してアンボンド状態に複数段で配置された接合鋼材の伸びで地震エネルギーを吸収し、接合鋼材に作用する張力が緊張定着力(緊張導入力)以上には殆んど増えることなく、目地が弾性状態で離間し梁部材が回転変形することによって梁の応力負担を軽減するので柱と梁を無損傷状態に保つことが可能となる。地震後、PC鋼材の弾性復元力により、離間した目地が閉じ、柱梁構造物全体が元の位置に復元し、残留変形が残ることがない。
(2)接合鋼材をアンボンド状態に配置すると共に、目地離間許容条件を満たすように接合鋼材の緊張定着力(緊張導入力)の合力を定めてあるので、所定の地震力が作用した時に、構造目地部(柱梁PC圧着接合部)では、目地を弾性離間させることができ、柱梁無損傷型構造物を提供することが実現できる。
(3)接合鋼材はアンボンドPC鋼より線を用いてアンボンド状態に配置することによって、接合鋼材の全長による伸びの量で地震エネルギーを吸収するので、充分な伸び量を確保することができる。
(4)接合鋼材として防請塗膜を有するPC鋼より線を用い、接合鋼材とシースとの間にグラウトを充填せずにアンボンド状態としてあるので地震エネルギーを吸収するための接合鋼材の伸び量が充分に得られると共に、通常必要とされているグラウト充填の施工手間を省略でき、コストを軽減することができる。
(5)接合鋼材を1スパン以上に連続して複数のパネルゾーン(柱梁接合部)に貫通して配置することによって、定着具の数量を削減することができると共に緊張工事を行う箇所を減らすことができ、施工手間及びコストを軽減することができる。
The effect of this invention is shown below.
(1) In the structural joints at the beam ends, the joints are maintained in a rigid connection state without separation of the joints until the middle earthquake (rarely occurring earthquake), and both the pillars and the beams are in the elastic range. In the event of a large earthquake (an extremely rare earthquake), joint energy is absorbed by the elongation of bonded steel arranged in multiple stages in an unbonded state, allowing for separation of joints, and the tension acting on the bonded steel is tension fixing force. (Tension introduction force) With almost no increase over the above, the joints are elastically separated and the beam member is rotated and deformed to reduce the stress burden on the beam, so it is possible to keep the column and beam intact. It becomes. After the earthquake, due to the elastic restoring force of the PC steel material, the separated joints are closed, the entire column beam structure is restored to the original position, and no residual deformation remains.
(2) Since the joint steel is arranged in an unbonded state and the resultant force of the tension fixing force (tension introduction force) of the joint steel is determined so as to satisfy the joint separation allowance condition, the structure is obtained when a predetermined seismic force is applied. In the joint portion (column beam PC crimp joint), the joint can be elastically separated, and it is possible to provide a column beam undamaged structure.
(3) Since the joining steel material absorbs the seismic energy by the amount of elongation due to the total length of the joining steel material by arranging the joining steel material in an unbonded state using the unbonded PC steel wire, a sufficient amount of elongation can be ensured.
(4) PC steel stranded wire with a protective coating is used as the joining steel material, and it is in an unbonded state without filling the grout between the joining steel material and the sheath. Can be obtained sufficiently, and it is possible to omit the grout filling work that is usually required, thereby reducing the cost.
(5) By arranging the joining steel material through a plurality of panel zones (column beam joints) continuously for one span or more, the number of fixing tools can be reduced and the number of places where tension work is performed is reduced. It is possible to reduce construction labor and cost.
図1に示すプレキャストコンクリート製柱と梁とからなるラーメン構造の建造物1に基づいて本発明の柱梁接合部について説明する。
建造物1は、基礎2上に設置されたプレキャストコンクリート製柱3と梁4とからなるラーメン構造であり、柱3の内部には複数のPC緊張材のPC鋼棒30がシース(図示省略)内に挿入されて上下方向に配設されており、柱3に配設されるPC鋼棒30の最下端部には定着体30aが設けてあって基礎2のフーチング22内部に固定してある。PC鋼棒30は、カプラー30bで上部に配置したPC鋼棒30と連結してあって上方に延びている。
The column beam connection portion of the present invention will be described based on a building 1 having a rigid frame structure composed of precast concrete columns and beams shown in FIG.
The building 1 has a ramen structure composed of precast concrete columns 3 and beams 4 installed on a foundation 2, and a plurality of PC steel rods 30 of PC tendons are sheathed inside the columns 3 (not shown). The fixing member 30a is provided at the lowermost end portion of the PC steel rod 30 provided in the column 3 and is fixed inside the footing 22 of the foundation 2. . The PC steel rod 30 is connected to the PC steel rod 30 disposed at the upper portion by a coupler 30b and extends upward.
基礎2は、基礎杭21、その上部にはフーチング22が設けてあり、フーチング22は、基礎梁23で連結されて一体化されている。
フーチング22の上部に建込まれたプレキャストコンクリート製柱3は基礎2から1層1節として建込まれており、緊張定着用の各PC鋼棒30は、各節の上部で支圧板とナットなどからなる定着体30aで柱3の内部で固定されて柱の立設状態が維持されている。
なお、図面においては、本発明の本質部分を強調するため、本発明の要部以外の梁4の断面内の一次ケーブル51、52と柱3内部のPC鋼棒30を点線で示しており、シースとPC鋼より線等は図示せず省略してある。
The foundation 2 has a foundation pile 21 and a footing 22 provided on the foundation pile 21, and the footing 22 is connected and integrated by a foundation beam 23.
The precast concrete column 3 built at the top of the footing 22 is built from the foundation 2 as one layer and one section, and each PC steel rod 30 for fixing the tension is a support plate and nut at the top of each section. The fixing body 30a is fixed inside the pillar 3 and the standing state of the pillar is maintained.
In the drawing, in order to emphasize the essential part of the present invention, the primary cables 51 and 52 in the cross section of the beam 4 other than the main part of the present invention and the PC steel rod 30 inside the column 3 are shown by dotted lines, The sheath and PC steel strand are not shown and are omitted.
2節目の柱3は、1節目の柱3の上に建込みしてあり、1節目の柱3内に配設されたPC鋼棒30はカプラー30bで2節目のPC鋼棒30と連結され、1節目と同じように2節目の柱3の上部に定着具30aで同様に柱3内に固定してあり、順次、上層階に向かって同様にPC鋼棒30が連結されることによって柱3が最上階まで立設される。
柱3内に緊張定着されたPC鋼棒30とそれを収容するシースとの間の空間にはグラウトが充填されてボンドタイプとしてある。グラウトは、PC鋼棒30の腐食を防ぐ防錆作用も有するものである。
The second node column 3 is built on the first node column 3, and the PC steel rod 30 disposed in the first node column 3 is connected to the second node PC steel rod 30 by a coupler 30b. Similarly to the first node, the fixing member 30a is similarly fixed to the upper part of the second column 3 in the column 3, and the PC steel rod 30 is sequentially connected to the upper floor in the same manner. 3 stands up to the top floor.
The space between the PC steel rod 30 that is tension-fixed in the column 3 and the sheath that accommodates it is filled with grout to form a bond type. The grout also has a rust preventive action that prevents corrosion of the PC steel rod 30.
柱3には梁4を載せるアゴ35が予め柱3と一体的に形成して設けてあり、柱梁接合部(パネルゾーン)としてある。柱梁接合部には、水平方向に接合鋼材5a、5bが上下二段に配置されており、緊張定着することによって柱梁を圧着接合するものである。この接合鋼材5a,5bを挿入するためのシース5sが設けてあり、梁4の端部から所定距離おいた位置の梁の上縁、及び柱面に接合鋼材5(5a、5b)を定着するための定着具5cが設けてある。
梁4は、プレキャストコンクリート製であり、一次ケーブルとしてプレテンショニング方式のPC鋼材51とポステンテンショニング方式のPC鋼より線52が梁4に配設されてプレストレスが導入されている。プレテンショニング方式は梁部材を製造する際に、ポストテンショニング方式は柱梁を組み立てた後にプレストレスが導入される。
The pillar 3 is provided with an jaw 35 on which the beam 4 is placed so as to be integrated with the pillar 3 in advance, and serves as a column-beam joint (panel zone). Joined steel materials 5a and 5b are arranged in two upper and lower stages in the horizontal direction in the beam-to-column joining portion, and the beam is joined by pressure bonding by fixing the tension. A sheath 5s for inserting the joining steel materials 5a and 5b is provided, and the joining steel materials 5 (5a and 5b) are fixed to the upper edge of the beam at a predetermined distance from the end of the beam 4 and the column surface. A fixing tool 5c is provided.
The beam 4 is made of precast concrete, and a pre-stressing PC steel material 51 and a post-tensioning PC steel wire 52 are arranged as a primary cable on the beam 4 and prestress is introduced. In the pretensioning method, when a beam member is manufactured, prestressing is introduced after the column beam is assembled in the posttensioning method.
柱梁の接合部においては、梁4の端部が柱3のアゴ35に載せてあり、梁4の端面と柱面の間には所要の隙間が設けてあって、この隙間にはモルタル等が充填されて構造目地部6が形成されており、シース5sに接合鋼材5、例えば、PC鋼より線5a、5bを挿通してセットする。PC鋼より線5a、5bを定着具5cに緊張定着して柱3と梁4を圧着接合して一体化してある。PC鋼より線5a、5bの緊張は、目地モルタルが硬化した後に行う。
プレキャストコンクリート製梁4の上端にはトップコンクリートを打設して梁4と一体化されたスラブ7が形成してある。なお、トップコンクリートの鉄筋は、柱3とは連結しないのが原則である。
In the joint part of the column beam, the end of the beam 4 is placed on the jaw 35 of the column 3, and a necessary gap is provided between the end surface of the beam 4 and the column surface. Is formed, and a joining steel material 5 such as PC steel wires 5a and 5b are inserted into the sheath 5s and set. The strands 5a and 5b of PC steel are tension-fixed to the fixing tool 5c, and the column 3 and the beam 4 are joined by pressure bonding. The tension of the PC steel strands 5a and 5b is performed after the joint mortar has hardened.
A slab 7 integrated with the beam 4 is formed by placing top concrete on the upper end of the precast concrete beam 4. In principle, the top concrete rebar is not connected to the pillar 3.
図2に示す実施例2の建造物1においては、接合鋼材であるPC鋼より線5a、5bを1スパン以上に渡って連続して配設したものであり、複数(図示では2つ)のパネルゾーン(柱梁接合部)を貫通させて配置した例である。柱梁接合部近傍である図2の左側の柱近傍において、接合鋼材のPC鋼より線5aは上段に配置され、その下にPC鋼より線5bが配設されている。下段の接合鋼材のPC鋼より線5bは梁4の上縁に設けた定着具5cに向かって斜め上方に向けて配設され、上段の接合鋼材であるPC鋼より線5aは、梁4の中央部では下縁に配設されて1次ケーブル51、52に平行となり、図の右側の柱梁接合部に向かって斜めに配設され、柱3の近傍では上段に配設されて柱3を貫通し、隣のスパンの梁4の上縁の定着具5cに定着され、緊張力が導入されて柱3と梁4を圧着接合する。 In the building 1 of Example 2 shown in FIG. 2, PC steel strands 5a and 5b are continuously disposed over one span or more, and a plurality (two in the drawing) are provided. This is an example in which a panel zone (column beam joint) is disposed through. In the vicinity of the column on the left side in FIG. 2, which is in the vicinity of the beam-to-column joint, the PC steel strand 5a of the joining steel material is disposed in the upper stage, and the PC steel strand 5b is disposed below it. The PC steel strand 5b of the lower joint steel material is disposed obliquely upward toward the fixing tool 5c provided at the upper edge of the beam 4, and the PC steel strand 5a, which is the upper joint steel material, In the central part, it is arranged at the lower edge and is parallel to the primary cables 51, 52, and is arranged obliquely toward the column beam joint on the right side of the figure. And is fixed to the fixing tool 5c on the upper edge of the beam 4 of the adjacent span, and a tension force is introduced to join the column 3 and the beam 4 by pressure bonding.
実施例2は、接合鋼材5(5a、5b)の配設レイアウトが実施例1とは異なるが、それ以外の構成は、実施例1と同じである。
接合鋼材5a、5bが複数のパネルゾーンに渡って連続配置してあり、定着具5cの個数を節約できると共に接合鋼材5a、5bの緊張定着箇所を減らすことができるので緊張定着作業に要する時間の短縮ができ、コストを削減することができる。更に、スパン中央の梁断面において、接合鋼材5a、5bが梁断面の下側にプレストレスを与えることになり、接合鋼材5aによって導入されるプレストレスの分を一次ケーブル51、52によるプレストレス導入量を減らすことができるので、一次ケーブルの数量及び緊張力を減少させることができる。
Example 2 differs from Example 1 in the arrangement layout of the joining steel materials 5 (5a, 5b), but the other configuration is the same as Example 1.
The joining steel materials 5a and 5b are continuously arranged over a plurality of panel zones, so that the number of fixing tools 5c can be saved and the number of fixing and fixing portions of the joining steel materials 5a and 5b can be reduced. It can be shortened and the cost can be reduced. Further, in the cross section of the beam at the center of the span, the joining steel materials 5a and 5b give prestress to the lower side of the beam section, and the prestress is introduced by the primary cables 51 and 52 by the prestress introduced by the joining steel material 5a. Since the amount can be reduced, the quantity and tension of the primary cable can be reduced.
柱3は、好ましくはプレキャストコンクリート製であって、建造物1を所謂プレキャストプレストレストコンクリート造とするのが好ましいが、この形態に限定されるものではなく、柱3を場所打ちプレストレストコンクリート造としてもよい。また、プレキャスト鉄筋コンクリート造、若しくは現場打ち鉄筋コンクリート造としてもよく、要するにプレキャストコンクリート製梁4を架設する前にコンクリート製柱3を構築しておくことが肝要である。
以上、本発明の基本構成を実施例に基づいて説明したが、基本構成以外の部分、例えば、基礎、柱、梁やトップコンクリート内の配筋等の詳細は省略してあり、図面に表していない。なお、トップコンクリート内の鉄筋は、柱3と連結しないのが原則である。
The column 3 is preferably made of precast concrete, and the building 1 is preferably a so-called precast prestressed concrete structure, but is not limited to this form, and the column 3 may be a cast-in-place prestressed concrete structure. . Further, it may be a precast reinforced concrete structure or a cast-in-place reinforced concrete structure. In short, it is important to construct the concrete pillar 3 before laying the precast concrete beam 4.
Although the basic configuration of the present invention has been described based on the embodiments, details other than the basic configuration, for example, details of foundations, columns, beams, bar arrangement in the top concrete, etc. are omitted and shown in the drawings. Absent. In principle, the reinforcing bars in the top concrete are not connected to the pillar 3.
図3(1)は、図1の柱梁接合部の梁4の端部の(A−A)断面を示し、梁4はプレキャストコンクリート製部分とトップコンクリートからなるスラブ7とが合成され一体化された合成梁であるので梁せいはスラブ7の天端までとなる。
一次ケーブルとしてプレテンショニング方式のPC鋼材51とポステンショニング方式のPC鋼より線52とが梁4の断面に配置されており、二次ケーブルとしてPC鋼より線の接合鋼材5a、5bが柱3及び梁4に設けてあるシース5sに挿入されて上下二段に配設され、後述の設計手順によって求めた緊張定着力(緊張導入力)の合力で緊張定着されている。
接合鋼材5a、5bは、図3(2)に一例を示すPE(ポリエチレン)被覆5e付きの7本よりPC鋼より線であるアンボンドPC鋼より線を使用している。一般的に、このアンボンドPC鋼より線を所要本数束ねたケーブルを接合鋼材5として使用する。この場合は、複数のアンボンドPC鋼より線で構成された接合鋼材5a、5bとシース5sとの間の空間にグラウトを充填してもしなくてもどちらでもよい。
FIG. 3 (1) shows an (A-A) cross section of the end of the beam 4 of the beam-column joint of FIG. 1, and the beam 4 is composed of a precast concrete part and a slab 7 made of top concrete combined. Because the composite beam is made, the beam reaches the top of the slab 7.
PC steel 51 of pretensioning method and PC steel strand 52 of post-tensioning method are arranged in the cross section of the beam 4 as the primary cable, and the connecting steel materials 5a and 5b of the PC steel strand as the secondary cable are the columns 3 and It is inserted into a sheath 5s provided on the beam 4 and is arranged in two upper and lower stages, and is tension-fixed by the resultant tension fixing force (tension introduction force) obtained by a design procedure described later.
As the joining steel materials 5a and 5b, unbonded PC steel strands are used, which are 7 strands of PC steel from the PE (polyethylene) coating 5e shown in FIG. 3 (2). In general, a cable in which a required number of stranded wires of unbonded PC steel are bundled is used as the joining steel material 5. In this case, it does not matter whether or not the grout is filled in the space between the joining steel materials 5a and 5b and the sheath 5s constituted by a plurality of unbonded PC steel strands.
図4(1)、(2)に示す特許第2691113号公報または特許第164772号公報に開示されたエポキシ樹脂防錆塗膜5mを形成した塗装PC鋼より線5dを使用し、図4(3)に示すように複数の塗装PC鋼より線5dを束ねて形成したケーブルを接合鋼材5(5a、5b)とすることも可能である。この場合は、シース5sと接合鋼材5(5a、5b)との間にグラウトを充填しないことでアンボンド状態にすることができる。 4 (3) using a coated PC steel wire 5d formed with an epoxy resin rust-preventive coating 5m disclosed in Japanese Patent No. 2691113 or Japanese Patent No. 164772 shown in FIGS. It is also possible to use a cable formed by bundling a plurality of coated PC steel wires 5d as shown in FIG. In this case, an unbonded state can be obtained by not filling grout between the sheath 5s and the joining steel material 5 (5a, 5b).
柱梁接合部の間に設けた構造目地部6の目地離間(目開き)を地震荷重の大小に応じて制御することによる作用・効果を図5に基づいて説明する。
大地震(極く稀に起きる地震)時に構造目地部6が目地離間しない場合は、地震による曲げモーメントを受けたプレキャスト製コンクリート梁4は、図5(1)に示すように、引張側の曲げ変形が大きなものとなり、コンクリートにひび割れ等が発生し、更には梁内の鋼材が降伏に至って塑性変形し、梁4が回復不能な大きな損傷を受けることになる。
しかし、作用する地震力の大小に応じて構造目地部(柱梁PC圧着接合部)の目地離間を制御することによって、プレキャストコンクリート製コンクリート梁の破損を防止することができる。
Actions and effects obtained by controlling the joint spacing (opening) of the structural joints 6 provided between the beam-column joints according to the magnitude of the seismic load will be described with reference to FIG.
If the structural joint 6 does not move apart during a large earthquake (an extremely rare earthquake), the precast concrete beam 4 subjected to the bending moment due to the earthquake is bent on the tension side as shown in FIG. The deformation becomes large, cracks and the like occur in the concrete, and further, the steel material in the beam reaches yielding and plastically deforms, and the beam 4 is damaged irreparably.
However, the precast concrete concrete beam can be prevented from being damaged by controlling the joint separation of the structural joint (column beam PC crimp joint) according to the magnitude of the acting seismic force.
すなわち、大地震時にはアンボンド状態で配設してある接合鋼材5a、5bが地震エネルギー吸収に必要な量だけ十分に伸びることができるようにして地震エネルギーを吸収するものであって、そのためには図5(2)に示すように構造目地部6の目地離間を許容することが必要である。アンボンド状態で配設した接合鋼材5a、5bの伸び量を大地震のエネルギーを吸収するに十分大きなものとすることによってプレキャストコンクリート製梁4の引張側に生ずる曲げ変形を抑制し、梁4に生ずる応力を大幅に軽減して梁4の損傷を防止すると共に、地震後には接合鋼材5a、5bに導入された緊張力によって開いた構造目地を元の状態に戻すものである。
なお、実際の目地離間は、僅かに開く程度で十分な効果が得られるものであるが、視覚的に本発明の効果の理解を容易にするために図5においては実際の目地離間よりも大きな離間が生じているように誇張して描いてある。
That is, in the event of a large earthquake, the joining steel materials 5a and 5b arranged in an unbonded state can sufficiently extend the amount necessary for absorbing the seismic energy and absorb the seismic energy. As shown in 5 (2), it is necessary to allow joint separation of the structural joint 6. Bending deformation that occurs on the tension side of the precast concrete beam 4 is suppressed and the beam 4 is generated by making the elongation amount of the joining steel materials 5a and 5b arranged in an unbonded state large enough to absorb the energy of a large earthquake. The stress is greatly reduced to prevent the beam 4 from being damaged, and after the earthquake, the structural joint opened by the tension introduced into the joining steel materials 5a and 5b is returned to the original state.
The actual joint separation is sufficient to obtain a sufficient effect when it is slightly opened. However, in order to facilitate the understanding of the effect of the present invention visually, it is larger than the actual joint separation in FIG. It is drawn exaggerated as if there is a separation.
図6は、柱梁接合部の拡大図であり、この図に基づいて、大地震時には構造目地部6の目地離間(目開き)を許容して柱梁の接合部の損傷を防止し、地震後には目開きを閉じて元に戻すようにするための接合鋼材5(5a、5b)に導入すべき緊張定着力(緊張導入力)の合力を求める手順を以下に説明する。
柱梁の接合部に配設された接合鋼材5(5a、5b)は、少なくともアゴ35の上下2段に配設し、各段に2本配設することにする。P1は上段接合鋼材5aの緊張定着力(緊張導入力)の合計を示し、P2は下段接合鋼材5bの緊張定着力(緊張導入力)の合計を示す。
なお、建造物の規模、荷重や梁のスパン等の条件によっては、接合鋼材5の配設を3段以上の複数段配置としてもよい。
FIG. 6 is an enlarged view of the beam-column joint. Based on this figure, in the event of a large earthquake, the joint of the structure joint 6 is allowed to be separated (opening) to prevent damage to the beam-column joint. A procedure for obtaining the resultant force of the tension fixing force (tension introduction force) to be introduced into the bonded steel material 5 (5a, 5b) for closing the mesh opening and returning it to the original will be described below.
The joining steel materials 5 (5a, 5b) disposed at the joint portions of the column beams are disposed at least in two upper and lower stages of the jaw 35, and two are disposed in each stage. P 1 represents the sum of the tension fixing force of the upper bonding steel 5a (strain introduced force), P 2 represents the sum of the tension fixing force of the lower joining steel 5b (strain introduced force).
Note that, depending on conditions such as the scale of the building, the load, the span of the beam, etc., the bonding steel material 5 may be arranged in a plurality of stages of three or more stages.
梁せいは、梁4の下端から上端までの高さであるが、プレキャストコンクリート製梁4の上にトップコンクリートを打設して床版7とプレキャストコンクリート製梁4の合成梁とした場合の梁せいは、図6(2)に示すように、トップコンクリート(床版7)の厚さ(t)とプレキャストコンクリート製梁4の高さ(h)を合計したものであり、梁せい(H)はh+tとなる。トップコンクリートを打設せず、床版7とプレキャストコンクリート製梁4が合成されていない場合は、プレキャストコンクリート製梁4の梁の高さhが梁せいとなる。 The beam is the height from the lower end to the upper end of the beam 4, but the beam when the top concrete is placed on the precast concrete beam 4 to form a composite beam of the floor slab 7 and the precast concrete beam 4. As shown in FIG. 6 (2), the cause is the sum of the thickness (t) of the top concrete (floor slab 7) and the height (h) of the precast concrete beam 4 and the beam is shown as (H). Becomes h + t. When the top concrete is not placed and the floor slab 7 and the precast concrete beam 4 are not synthesized, the beam height h of the precast concrete beam 4 is the beam.
構造目地部6の断面において、大地震時に構造目地部6に作用する正、負の曲げモーメントをそれぞれM(+)、M(−)とし、柱梁接合用の接合鋼材5a、5bの緊張定着力(緊張導入力)P1、P2の合力をPとし、合力Pの作用する位置から梁の上端までの距離をdp1、梁の下端までの距離をdp2とすると、目地離間許容条件として合力Pは、下記式(1)、(2)によって求めた小さな値より小さな値を接合鋼材5(5a、5b)に付与する緊張力の合力Pとして採用する。 In the cross section of the structural joint 6, the positive and negative bending moments acting on the structural joint 6 in the event of a large earthquake are M (+) and M (−), respectively. When the resultant force P 1 and P 2 is P, the distance from the position where the resultant force P acts to the upper end of the beam is dp 1 , and the distance to the lower end of the beam is dp 2 As the resultant force P, a value smaller than the small value obtained by the following formulas (1) and (2) is adopted as the resultant force P of the tension force applied to the bonded steel material 5 (5a, 5b).
実施設計においては、式(1)、(2)で求めた値より小な値を採用して安全側の値とする。実際に建造物に作用する地震力の大きさは、地震の発生場所、震源の震度および震源からの距離及び現場の地盤状況によってまちまちであり、作用する地震力は想定通りの大きさにならないため、安全側で目地離間を制御するように、前記の式(1)、(2)に基づいて求めた値Pより小さな値とするのが好ましい。 In the practical design, a value smaller than the values obtained by the equations (1) and (2) is adopted as the safe value. The magnitude of the seismic force actually acting on the building varies depending on the location of the earthquake, the seismic intensity of the epicenter, the distance from the seismic source, and the ground conditions at the site. In order to control the joint separation on the safety side, it is preferable to set the value smaller than the value P obtained based on the above formulas (1) and (2).
接合鋼材5を複数段に配置する場合は、接合鋼材5の緊張定着力(緊張導入力)は各段それぞれ異なるものとしてもよく、各段の接合鋼材であるPCケーブルの本数と各ケーブルの緊張導入力の設定値によって調整することができる。
本発明では、接合鋼材5をアンボンド状態に配置するものであり、接合鋼材5の緊張定着力(緊張導入力)は、使用するPC鋼材の降伏荷重の50%〜80%の範囲内で設定するのが好ましい。
以上のように、本発明によれば発明の効果の欄に記載した効果が得られるものである。
When joining steel materials 5 are arranged in a plurality of stages, the tension fixing force (tension introduction force) of the joining steel materials 5 may be different for each stage, and the number of PC cables that are joining steel materials for each stage and the tension of each cable. It can be adjusted according to the set value of the introduction force.
In the present invention, the joining steel material 5 is arranged in an unbonded state, and the tension fixing force (tension introduction force) of the joining steel material 5 is set within a range of 50% to 80% of the yield load of the PC steel material to be used. Is preferred.
As described above, according to the present invention, the effects described in the column of the effects of the invention can be obtained.
1 建造物
2 基礎
21 基礎杭
22 フーチング
23 基礎梁
3 柱
30 緊張材(PC鋼棒)
30a 定着体
30b カプラー
35 アゴ
4 梁(プレキャストコンクリート製梁)
5 接合鋼材
5a 上段接合鋼材
5b 下段接合鋼材
5c 定着具(接合鋼材)
5d 塗装PC鋼より線
5e ポリエチレン被覆シース
5m 防錆塗膜
5s シース
51 プレテンショニング緊張材
52 ポストテンショニング緊張材
6 構造目地部(モルタル充填)
7 床版
P 接合鋼材の合計導入緊張力(P1+P2)
P1 上段接合鋼材の導入緊張力
P2 下段接合鋼材の導入緊張力
1 Building 2 Foundation 21 Foundation Pile 22 Footing 23 Foundation Beam 3 Column 30 Tensile Material (PC Steel Bar)
30a Fixing body 30b Coupler
35 jaws 4 beams (precast concrete beams)
5 Bonded steel 5a Upper bonded steel 5b Lower bonded steel 5c Fixing tool (bonded steel)
5d Painted PC steel strand 5e Polyethylene-coated sheath 5m Anti-rust coating 5s Sheath 51 Pre-tensioning tension material 52 Post-tensioning tension material 6 Structure joint (mortar filling)
7 Floor slab P Total introduction tension of bonded steel (P 1 + P 2 )
Introducing tension of introducing tension P 2 lower bonding steel P 1 upper joining steel
Claims (5)
構造目地部においては、中地震時までは目地離間を許容せず、大地震時には目地離間を許容すると共に接合鋼材の伸びによって地震エネルギーを吸収し、接合鋼材に作用する張力が緊張定着力以上には実質的に増加することないように接合鋼材の緊張定着力の合力が以下の式(1)、(2)で求めたいずれの値より小さな値に設定してある柱と梁の接合部。
なお、各符号は以下の意味を有する。
P:接合鋼材の緊張導入力の合力(P1+P2)。
M(+):大地震時に接合部の構造目地部に作用する正のモーメント。
M(−):大地震時に接合部の構造目地部に作用する負のモーメント。
dp1:合力Pの作用位置から梁の上端までの距離。
dp2:合力Pの作用位置から梁の下端までの距離。 It is a joint part of a building consisting of precast concrete column beams, and the column has a jaw on which the beam is placed, the beam end is installed on the jaw, and the structural joint is between the column and the beam end Up to the fixing tool provided on the end of the beam or on the column surface where the joining steel material is inserted into the multi-stage sheath provided in the beam-to-column joint and penetrates the beam-to-column joint. It is placed in an unbonded state and fixed in tension, and the pillar and beam are integrated by pressure bonding.
In the joint area of the structure, the joint separation is not allowed until the middle earthquake, but the joint separation is allowed in the event of a large earthquake and the seismic energy is absorbed by the elongation of the joint steel, and the tension acting on the joint steel exceeds the tension fixing force. Is a joint between a column and a beam in which the resultant force of the tension fixing force of the joining steel material is set to a value smaller than any of the values obtained by the following formulas (1) and (2) so as not to increase substantially.
In addition, each code | symbol has the following meaning.
P: resultant force (P 1 + P 2 ) of the tension introducing force of the joining steel material.
M (+): Positive moment acting on the joint of the joint at the time of a large earthquake.
M (-): Negative moment acting on the joint of the joint at the time of a large earthquake.
dp 1 : Distance from the position where the resultant force P is applied to the upper end of the beam.
dp 2 : Distance from the position where the resultant force P is applied to the lower end of the beam.
構造目地部においては、中地震時までは目地離間を許容せず、大地震時には目地離間を許容すると共に接合鋼材の伸びによって地震エネルギーを吸収し、接合鋼材に作用する張力が緊張定着力以上には実質的に増加することないように接合鋼材の緊張定着力の合力は以下の式(1)、(2)で求めたいずれの値より小さな値とする柱と梁の接合部の設計方法。
なお、各符号は以下の意味を有する。
P:接合鋼材の緊張導入力の合力(P1+P2)。
M(+):大地震時に接合部の構造目地部に作用する正のモーメント。
M(−):大地震時に接合部の構造目地部に作用する負のモーメント。
dp1:合力Pの作用位置から梁の上端までの距離。
dp2:合力Pの作用位置から梁の下端までの距離。 A method for designing a joint of a building composed of precast concrete column beams, wherein the column has a jaw on which the beam is placed, the beam end is installed on the jaw, and between the column and the beam end Has a joint joint, and a steel joint is inserted into a multi-stage sheath provided at the beam-column joint, and is provided at the end or column surface of the beam facing the beam-beam joint. The fixing tool is placed in an unbonded state, the tension is fixed, and the pillar and beam are integrated by pressure bonding,
In the joint area of the structure, the joint separation is not allowed until the middle earthquake, but the joint separation is allowed in the event of a large earthquake and the seismic energy is absorbed by the elongation of the joint steel, and the tension acting on the joint steel exceeds the tension fixing force. Is a method for designing a column-beam joint so that the resultant force of the tension fixing force of the joining steel material is smaller than any of the values obtained by the following formulas (1) and (2).
In addition, each code | symbol has the following meaning.
P: resultant force (P 1 + P 2 ) of the tension introducing force of the joining steel material.
M (+): Positive moment acting on the joint of the joint at the time of a large earthquake.
M (-): Negative moment acting on the joint of the joint at the time of a large earthquake.
dp 1 : Distance from the position where the resultant force P is applied to the upper end of the beam.
dp 2 : Distance from the position where the resultant force P is applied to the lower end of the beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016221764A JP6205473B1 (en) | 2016-11-14 | 2016-11-14 | Column-to-beam joint and its design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016221764A JP6205473B1 (en) | 2016-11-14 | 2016-11-14 | Column-to-beam joint and its design method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6205473B1 true JP6205473B1 (en) | 2017-09-27 |
JP2018080469A JP2018080469A (en) | 2018-05-24 |
Family
ID=59969427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016221764A Active JP6205473B1 (en) | 2016-11-14 | 2016-11-14 | Column-to-beam joint and its design method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6205473B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108755951A (en) * | 2018-07-10 | 2018-11-06 | 大连理工大学 | Precast prestressed concrete frame energy-dissipating and shock-absorbing bean column node |
CN109610315A (en) * | 2018-12-26 | 2019-04-12 | 北京工业大学 | The dry joint connecting structure of prefabrication and assembly construction floorings and implementation method |
CN117071732A (en) * | 2023-10-11 | 2023-11-17 | 湖南大学 | Self-resetting high-ductility assembled frame structure |
CN118128200A (en) * | 2024-04-24 | 2024-06-04 | 中建五局第三建设有限公司 | Modularized stiff beam column node and application method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0447047A (en) * | 1990-06-14 | 1992-02-17 | Oriental Kensetsu Kk | Method for connecting precast column and precast girder |
JPH1046663A (en) * | 1996-08-05 | 1998-02-17 | Kurosawa Kensetsu Kk | Joint structure between post and beam |
JP2002004417A (en) * | 2000-06-19 | 2002-01-09 | Takenaka Komuten Co Ltd | Pc compression joint structure for precast concrete beam and column |
JP2004044204A (en) * | 2002-07-11 | 2004-02-12 | Shimizu Corp | Connection structure of column and beam |
JP2010196430A (en) * | 2009-02-27 | 2010-09-09 | Taisei Corp | Seismic-response controlled structure |
JP2010253363A (en) * | 2009-04-23 | 2010-11-11 | Kurosawa Construction Co Ltd | Method for forming rust-proof film on pc steel stranded wire and pc steel stranded wire |
JP5612231B1 (en) * | 2014-05-16 | 2014-10-22 | 黒沢建設株式会社 | Seismic design method using PC crimp joint method |
-
2016
- 2016-11-14 JP JP2016221764A patent/JP6205473B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0447047A (en) * | 1990-06-14 | 1992-02-17 | Oriental Kensetsu Kk | Method for connecting precast column and precast girder |
JPH1046663A (en) * | 1996-08-05 | 1998-02-17 | Kurosawa Kensetsu Kk | Joint structure between post and beam |
JP2002004417A (en) * | 2000-06-19 | 2002-01-09 | Takenaka Komuten Co Ltd | Pc compression joint structure for precast concrete beam and column |
JP2004044204A (en) * | 2002-07-11 | 2004-02-12 | Shimizu Corp | Connection structure of column and beam |
JP2010196430A (en) * | 2009-02-27 | 2010-09-09 | Taisei Corp | Seismic-response controlled structure |
JP2010253363A (en) * | 2009-04-23 | 2010-11-11 | Kurosawa Construction Co Ltd | Method for forming rust-proof film on pc steel stranded wire and pc steel stranded wire |
JP5612231B1 (en) * | 2014-05-16 | 2014-10-22 | 黒沢建設株式会社 | Seismic design method using PC crimp joint method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108755951A (en) * | 2018-07-10 | 2018-11-06 | 大连理工大学 | Precast prestressed concrete frame energy-dissipating and shock-absorbing bean column node |
CN108755951B (en) * | 2018-07-10 | 2023-10-13 | 大连理工大学 | Energy dissipation and shock absorption beam column joint of precast prestressed concrete frame |
CN109610315A (en) * | 2018-12-26 | 2019-04-12 | 北京工业大学 | The dry joint connecting structure of prefabrication and assembly construction floorings and implementation method |
CN117071732A (en) * | 2023-10-11 | 2023-11-17 | 湖南大学 | Self-resetting high-ductility assembled frame structure |
CN117071732B (en) * | 2023-10-11 | 2024-07-26 | 湖南大学 | Self-resetting high-ductility assembled frame structure |
CN118128200A (en) * | 2024-04-24 | 2024-06-04 | 中建五局第三建设有限公司 | Modularized stiff beam column node and application method thereof |
CN118128200B (en) * | 2024-04-24 | 2024-09-10 | 中建五局第三建设有限公司 | Modularized stiff beam column node and application method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2018080469A (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6171070B1 (en) | Method of joining concrete columns and steel beams | |
JP6205473B1 (en) | Column-to-beam joint and its design method | |
Devereux et al. | NMIT arts & media building-damage mitigation using post-tensioned timber walls | |
KR101136926B1 (en) | Composite beam by prestressed concrete filled tube | |
JP6747734B1 (en) | Prestress introduction method for PC-made 3-axis compression beam-column joints | |
Yang et al. | Repair of RC bridge columns with interlocking spirals and fractured longitudinal bars–An experimental study | |
JP5408595B1 (en) | PC seismic joint structure and PC seismic joint method for columns and beams using steel pins | |
Tazarv et al. | State-of-the-art review and design of grouted duct connections for precast bridge columns | |
JP4041828B2 (en) | Column and beam connection structure | |
JP4888915B2 (en) | Building structure using composite structural beams with beam ends made of PC | |
CN108678226A (en) | Prestressed steel pipe concrete frame profiled sheet shear wall and the practice built in one kind | |
JP2021017738A (en) | Reinforcement structure and reinforcement method of masonry construction structure | |
JP6765735B1 (en) | Steel structure having a 3-axis compression beam-beam joint and its construction method | |
JP7028728B2 (en) | Joint structure of foundation pile and foundation slab | |
JP2003227236A (en) | Permanent and emergent aseismatic reinforcement method for column with wall | |
Bournas et al. | Seismic performance of mechanical connections in the SAFECAST precast building | |
JP6340467B1 (en) | Ramen structure using sleeve wall and joining method thereof | |
CN103334596A (en) | Method of external prestressing and steel cover reinforced concrete pier column | |
JP5886996B1 (en) | Concrete lampway building with friction connection structure | |
JP2005307676A (en) | Connection structure of foundation pile head and upper foundation | |
JP2007120002A (en) | Pretension member | |
JP5411375B1 (en) | Buildings using seismic control columns | |
JP6224420B2 (en) | Connection structure between CFT column and concrete bottom slab | |
JP5301746B1 (en) | Buildings using steel columns with seismic prestressing | |
Yang et al. | Repair of earthquake-damaged bridge columns with interlocking spirals and fractured bars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6205473 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |