JP6765735B1 - Steel structure having a 3-axis compression beam-beam joint and its construction method - Google Patents

Steel structure having a 3-axis compression beam-beam joint and its construction method Download PDF

Info

Publication number
JP6765735B1
JP6765735B1 JP2019212768A JP2019212768A JP6765735B1 JP 6765735 B1 JP6765735 B1 JP 6765735B1 JP 2019212768 A JP2019212768 A JP 2019212768A JP 2019212768 A JP2019212768 A JP 2019212768A JP 6765735 B1 JP6765735 B1 JP 6765735B1
Authority
JP
Japan
Prior art keywords
column
joint
steel
block
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212768A
Other languages
Japanese (ja)
Other versions
JP2021085163A (en
Inventor
亮平 黒沢
亮平 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2019212768A priority Critical patent/JP6765735B1/en
Application granted granted Critical
Publication of JP6765735B1 publication Critical patent/JP6765735B1/en
Publication of JP2021085163A publication Critical patent/JP2021085163A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】鉄骨造ラーメン構造の柱梁接合部及び周囲部材との溶接接合部が常に圧縮状態に維持され、柱梁接合部及び周囲部材の溶接接合部が地震力によって破損しないようにすることができる鉄骨造ラーメン構造を提供する。【解決手段】複数層階で形成される鉄骨造ラーメン構造であって、柱梁接合部から平面2方向に延びる所定長さの梁端部材2と上下2方向に延びる所定長さの柱端部材1がそれぞれ設けられ、梁端部材2と柱端部材1にそれぞれ柱梁接合部を貫通するPC緊張材が配置されて緊張定着されてプレストレスが付与されて3軸圧縮状態とした柱梁接合ブロックが形成されており、この柱梁接合ブロックに柱部材1Bと梁部材2Bとが接合されてラーメン骨組としてあることを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造。【選択図】図4PROBLEM TO BE SOLVED: To prevent a beam-column joint and a welded joint with a peripheral member from being damaged by seismic force by always maintaining a compressed state at the beam-column joint and a welded joint with a peripheral member. We provide a steel-framed rigid frame structure that can be used. SOLUTION: This is a steel-framed ramen structure formed by a plurality of layers, and a beam end member 2 having a predetermined length extending in two plane directions and a column end member having a predetermined length extending in two vertical directions from a beam-column joint. 1 is provided, and a PC tension material penetrating the beam-column joint is arranged on the beam end member 2 and the column-end member 1, respectively, and tension is fixed to apply prestress to the beam-column joint in a three-axis compressed state. A steel-framed ramen structure having a triaxial compression beam-beam joint, wherein a block is formed, and the column member 1B and the beam member 2B are joined to the beam-column joint block to form a ramen frame. [Selection diagram] Fig. 4

Description

本発明は、鉄骨造(S造)のラーメン構造の柱梁接合部(パネルゾーン)を3軸圧縮状態にし、巨大地震の襲来によっても柱梁接合部が破壊されないものである。 In the present invention, the beam-column joint (panel zone) of the rigid frame structure of the steel frame structure (S structure) is put into a three-axis compressed state, and the beam-column joint is not destroyed even by the attack of a huge earthquake.

鉄骨造(S造)のラーメン構造の柱梁接合部において、梁部材と柱部材との接合は、一般的には溶接で行われており、接合部の溶接接合構造について多くの手法が提案されている。
特許文献1(特開2002−138573号公報)に開示された接合構造は、最も一般的な鉄骨造柱梁の溶接接合構造であって、図10に示すように、柱に上下方向に一定間隔を隔てて溶接された上下のダイアフラムにH形鋼製の梁部材が接合された構造であって、上ダイアフラムより下ダイアフラムの柱からの突出長さを大きくしてあり、下ダイアフラムに梁の下フランジが載置されて下ダイアフラムとボルトナットで固定され、上フランジは上ダイアフラムに溶接接合された接合構造である。
特許文献2(特開2015−172268号公報)に記載された柱梁接合部は、H型鋼梁部材の設計基準強度よりも柱に設けた接合部材である通しダイアフラムの設計基準強度を建造物の健全性を維持可能な範囲で強度の低い圧延鋼材製とすることによって建築コストを低減するものである。
特許文献3(特許第5521105号号公報)に記載された柱梁接合部は、PC柱と鉄骨梁とを併用した柱梁接合部の接合方法であって、PC鋼材を用いて柱と梁を圧着接合するものである。
更に、関連技術として、鉄骨造(S造)は耐火性能がRC造に比較して劣り、また、座屈しやすく、地震による揺れが大きく、長周期の地震動が作用すると揺れが長時間継続するという弱点を解決しなければならない課題を有しており、鉄骨柱に基礎から最上層階まで通して緊張材を配置して緊張定着して鉄骨柱にプレストレスを付与し、地震力が解放された後に付与してあるプレストレスによる復元力によって鉄骨柱を速やかに元の位置に復帰させて鉄骨造の建造物全体の制震性能を著しく向上させることが特許文献4(特許第5301745号公報)に開示されている。
In a column-beam joint of a steel-framed (S-structure) rigid frame structure, the beam member and the column member are generally joined by welding, and many methods have been proposed for the welded joint structure of the joint. ing.
The joint structure disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2002-138573) is the most common welded joint structure of a steel-framed beam and beam, and as shown in FIG. 10, the columns are spaced vertically at regular intervals. The structure is such that H-shaped steel beam members are joined to the upper and lower diaphragms welded apart from each other, and the protrusion length from the pillar of the lower diaphragm is larger than that of the upper diaphragm, and the lower diaphragm is under the beam. The flange is placed and fixed with the lower diaphragm and bolts and nuts, and the upper flange is a joint structure welded to the upper diaphragm.
The beam-column joint described in Patent Document 2 (Japanese Unexamined Patent Publication No. 2015-172268) has a design standard strength of a through diaphragm, which is a joint member provided on a column, rather than a design standard strength of an H-shaped steel beam member. The construction cost is reduced by using rolled steel with low strength within the range where soundness can be maintained.
The column-beam joint described in Patent Document 3 (Patent No. 5521105) is a method of joining a column-beam joint using a PC column and a steel beam in combination, and the column and the beam are joined by using a PC steel material. It is a crimp joint.
Furthermore, as a related technology, the fire resistance performance of the steel structure (S structure) is inferior to that of the RC structure, and it is easy to buckle, the shaking due to the earthquake is large, and the shaking continues for a long time when a long-period seismic motion acts. There is a problem that weak points must be solved, and tension material is placed on the steel column from the foundation to the top floor to fix the tension and apply prestress to the steel column, and the seismic force is released. According to Patent Document 4 (Japanese Patent No. 5301745), it is stated in Patent Document 4 (Japanese Patent No. 5301745) that the steel column is quickly returned to its original position by the restoring force due to the prestress given later, and the seismic control performance of the entire steel structure is remarkably improved. It is disclosed.

特開2002−138573号公報JP-A-2002-138573 特開2015−172268号公報Japanese Unexamined Patent Publication No. 2015-172268 特許第5521105号号公報Japanese Patent No. 5521105 特許第5301745号号公報Japanese Patent No. 5301745

地震時に地震力によって柱梁接合部まわりの柱部材及び梁部材断面に大きな繰り返し曲げ応力(フェイス曲げモーメント)が生じ、特許文献1、2に開示されている単純な溶接接合部やボルト接合部及び溶接とボルトの複合接合部が破壊に至ることが報告されている。
このような破壊を抑制する一手法として特許文献3(特許第5521105号号公報)には、図10に示すように、PC柱と鉄骨梁とをPC圧着接合する柱梁接合部が示されているが、柱梁接合部にPC鋼材を貫通させてPC柱と鉄骨梁とを緊張定着して一体化する際には、緊張力が導入されていない中間鉄骨梁部材が引張られるため柱梁接合部における緊張力の導入が阻害されることになり、有効な柱梁の接合力を導入することが困難となるという問題がある。
During an earthquake, a large repetitive bending stress (face bending moment) is generated in the column member around the beam-column joint and the cross section of the beam member due to the seismic force, and the simple welded joint and bolt joint disclosed in Patent Documents 1 and 2 and the bolt joint and It has been reported that composite joints of welds and bolts break.
As a method for suppressing such destruction, Patent Document 3 (Japanese Patent No. 5521105) shows a beam-column joint portion for PC-bonding a PC column and a steel beam as shown in FIG. However, when the PC steel material is penetrated through the column-beam joint to tension-fix and integrate the PC column and the steel beam, the intermediate steel beam member to which the tension force is not introduced is pulled, so the column-beam joint is performed. There is a problem that the introduction of the tension force in the part is hindered and it becomes difficult to introduce the effective joining force of the beam and column.

また、柱部材と柱梁接合部を接合するには、PC圧着接合することが考えられるが、しかし、特許文献4(特許第5301745号公報)に示されるような鉄骨柱に基礎から上層まで通しで緊張材を配置して緊張定着することは、柱に作用している軸力に追加して更に柱部材全長に一様なプレストレスを導入することになり、柱に作用する軸力は下層階ほど大きなものとなり、各層によって異なるものとなる。
特に、高層や超高層建物の場合は、最上層と最下層の柱軸力の差が極めて大きなものとなり、最下層の柱はオーバープレストレスの状態となることがあるので好ましくない。
そのため、各層の柱梁接合部にプレストレスを導入する場合、軸力方向については、プレストレスを調整して軸力とプレストレスを合計した圧縮力が許容応力を超えないようにすることが必要であるが、各層のプレストレスを個々の柱に作用する軸力を考慮して異なる値に調整することは現状の技術レベルでは実施困難である。
Further, in order to join the column member and the column-beam joint, it is conceivable to perform PC crimp joint, but the steel column as shown in Patent Document 4 (Patent No. 5301745) is passed from the foundation to the upper layer. Placing the tension material in the column and fixing the tension means that in addition to the axial force acting on the column, a uniform prestress is introduced over the entire length of the column member, and the axial force acting on the column is the lower layer. The floors are larger, and each layer is different.
In particular, in the case of a high-rise building or a skyscraper, the difference in column axial force between the uppermost layer and the lowest layer becomes extremely large, and the column at the lowest layer may be in an overprestressed state, which is not preferable.
Therefore, when introducing prestress to the beam-column joint of each layer, it is necessary to adjust the prestress so that the total compressive force of the axial force and prestress does not exceed the allowable stress in the axial force direction. However, it is difficult to adjust the prestress of each layer to a different value in consideration of the axial force acting on each column at the current technical level.

以上のことを踏まえて、本発明は、鉄骨造の柱梁接合部とそれに接続される柱、梁等の周囲部材との溶接接合部が常に圧縮状態に維持され、溶接接合部が地震力によって破損に至らないようにするものであり、そのため、鉄骨造ラーメン構造の梁と柱部材に、少なくとも梁部材にプレストレスを導入することによって力学的に好ましくない応力が柱梁接合部に生じないようにすることを課題とするものである。 Based on the above, in the present invention, the welded joint between the steel-framed column-beam joint and the peripheral members such as columns and beams connected to it is always maintained in a compressed state, and the welded joint is subjected to seismic force. This is to prevent damage, and therefore, by introducing prestress into the beam and column member of the steel frame structure, at least to the beam member, mechanically unfavorable stress is not generated at the beam-column joint. The task is to make it.

鉄骨造ラーメン構造であって、柱梁接合部から平面2方向に延びる所定長さの梁端部材と上下2方向に延びる所定長さの柱端部材がそれぞれ設けられ、梁端部材と柱端部材にそれぞれ柱梁接合部を貫通するPC緊張材が配置されて緊張定着されてプレストレスが付与されて3軸圧縮状態とした柱梁接合ブロックが形成されており、この柱梁接合ブロックに柱部材と梁部材とが接合されてラーメン骨組としてあることを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造である。
また、鉄骨造ラーメン構造であって、柱梁接合部から平面2方向に延びる所定長さの梁端部材と上下2方向に延びる所定長さの柱端部材がそれぞれ設けられ、梁端部材のみに柱梁接合部を貫通するPC緊張材が配置されて緊張定着されてプレストレスが付与された柱梁接合ブロックが形成されており、この柱梁接合ブロックに柱部材と梁部材とが接合されてなるラーメン骨組に上下方向には垂直荷重によって柱梁接合部が3軸圧縮状態としてあることを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造である。
また、複数層階で形成される鉄骨造ラーメン構造であって、柱方向において、柱梁接合部から上下2方向に延びる所定長さの柱端部材を形成し、梁方向において、平面2方向に所定の長さに梁端部材を柱端部材の柱梁接合部位置に接合して一体化し、それぞれに柱梁接合部を貫通してPC緊張材を配置して緊張定着してプレストレスを導入して、3軸圧縮状態になる柱梁接合ブロックを形成して柱部材の頭部に設置して溶接接合で一体化し、柱梁接合ブロックの梁端部材に梁部材を溶接接合で一体化して当該層の鉄骨造ラーメン骨組を形成することによって最下層を形成し、以上の工程を繰り返して上方層の鉄骨造ラーメン骨組を構築していくことを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造の構築方法である。
It is a steel-framed ramen structure, and a beam end member having a predetermined length extending in two plane directions and a beam end member having a predetermined length extending in two vertical directions are provided from the beam end joint, respectively, and the beam end member and the column end member are provided. A PC tension material penetrating the beam-column joint is arranged in each of the beams, and a beam-column joint block is formed in which tension is fixed and prestress is applied to bring the beam into a three-axis compressed state. It is a steel-framed ramen structure having a triaxial compression beam-beam joint, characterized in that the beam member is joined to form a ramen frame.
Further, in the steel-framed ramen structure, a beam end member having a predetermined length extending in two plane directions and a column end member having a predetermined length extending in two vertical directions are provided from the beam-column joint, respectively, and only the beam-end member is provided. A PC tension material penetrating the beam-column joint is arranged to fix the tension to form a beam-column joint block to which prestress is applied, and the column member and the beam member are joined to the beam-column joint block. It is a steel-framed ramen structure having a three-axis compressed beam-beam joint, which is characterized in that the beam-column joint is in a three-axis compressed state due to a vertical load in the vertical direction.
Further, it is a steel-framed ramen structure formed by a plurality of layers, and a beam end member having a predetermined length extending in two directions from the beam-column joint in the beam direction is formed in the beam direction in two plane directions. The beam end member is joined to the beam end member at the beam end joint position to be integrated to a predetermined length, and a PC tension material is placed through the beam end joint to introduce tension fixing and prestress. Then, a beam-column joint block that is in a three-axis compressed state is formed, installed on the head of the column member and integrated by welding, and the beam member is integrated by welding to the beam end member of the beam-column joining block. It has a 3-axis compression beam-beam joint characterized in that the lowermost layer is formed by forming the steel-framed ramen frame of the layer, and the steel-framed ramen frame of the upper layer is constructed by repeating the above steps. This is a method of constructing a steel-framed ramen structure.

本発明によれば、以下に記載の効果が得られる。
(1)予めプレストレスが導入された柱梁接合部を含む柱梁接合ブロックを使用して柱と梁部材とを接合することによって、柱梁接合ブロックに接合された柱、梁部材に緊張定着の影響が全く及ばないようにすることができる。
(2)柱梁接合部に柱端部材と梁端部材には溶接部が存在するが、溶接部が常に圧縮状態であるので地震時に繰り返し地震力を受けても溶接部が破損に至るのを回避することができる。
(3)柱梁接合部から所定長の柱端部材と梁端部材を設けることより、応力の大きな範囲を避けて応力の小さい断面において接合してあるので溶接やボルト接合部に余裕をもたせることができるので安全率の高いものとすることができる。
(4)柱梁接合ブロックの限定された範囲内にプレストレスを導入するものであるので、各層の柱に作用する軸力を考慮して柱梁接合部に導入するプレストレス力を調整することが可能である。つまり、柱の軸力によって、各層階に設置する柱梁接合ブロックに異なるプレストレスを導入して容易に対応することができる。
According to the present invention, the effects described below can be obtained.
(1) By joining a column and a beam member using a beam-column joint block including a beam-column joint to which prestress has been introduced in advance, tension is fixed to the column and beam member joined to the beam-column joint block. Can be completely unaffected by.
(2) There are welded parts in the column end member and the beam end member at the beam-column joint, but since the welded part is always in a compressed state, the welded part will be damaged even if it is repeatedly subjected to seismic force during an earthquake. It can be avoided.
(3) By providing a column end member and a beam end member of a predetermined length from the column-beam joint, the joint is joined in a cross section with low stress while avoiding a large range of stress, so that there is a margin in welding and bolt joints. Therefore, it is possible to have a high safety factor.
(4) Since prestress is introduced within the limited range of the beam-column joint block, the prestress force to be introduced into the beam-column joint should be adjusted in consideration of the axial force acting on the columns of each layer. Is possible. That is, different prestresses can be easily introduced into the beam-column joint blocks installed on each layer floor depending on the axial force of the columns.

閉鎖型断面鉄骨部材を柱部材とした圧縮柱梁接合部の実施例1の(1)平面図、(2)A−A断面図、(3)B−B断面図及び(4)C−C断面図。(1) Plan view, (2) AA cross section, (3) BB cross section and (4) CC of Example 1 of a compression beam-column joint using a closed cross-section steel member as a column member. Sectional view. 閉鎖型断面鉄骨部材を柱部材とした圧縮柱梁接合部の実施例2の(1)平面図、(2)A−A断面図、(3)B−B断面図及び(4)C−C断面図。(1) Plan view, (2) AA cross section, (3) BB cross section and (4) CC of Example 2 of a compression beam-column joint using a closed cross-section steel member as a column member. Sectional view. H型鋼を柱部材とした圧縮柱梁接合部の実施例3の(1)平面図、(2)A−A断面図、(3)B−B断面図及び(4)C−C断面図。(1) plan view, (2) AA cross-sectional view, (3) BB cross-sectional view, and (4) CC cross-sectional view of Example 3 of a compression beam-column joint portion using H-shaped steel as a column member. 閉鎖型断面鉄骨部材を柱部材とした柱梁接合ブロックを用いて構築された3軸圧縮柱梁接合部を有する鉄骨造骨組の(1)平面図及び(2)側面図。(1) Plan view and (2) side view of a steel frame having a 3-axis compression beam-column joint constructed by using a beam-column joint block having a closed cross-section steel member as a column member. 閉鎖型断面鉄骨部材を柱部材とした柱梁接合ブロックを用いて構築された3軸圧縮柱梁接合部を有する鉄骨造骨組の施工手順説明図。Explanatory drawing of construction procedure of a steel frame having a 3-axis compression beam-column joint constructed by using a beam-column joint block having a closed cross-section steel member as a column member. H形鋼を柱部材とした柱梁接合ブロックを用いて構築された3軸圧縮柱梁接合部を有する鉄骨造骨組の平面図。A plan view of a steel frame having a 3-axis compression beam-column joint constructed by using a beam-column joint block using H-shaped steel as a column member. H形鋼を柱部材とした柱梁接合ブロックを用いて構築された3軸圧縮柱接合部を有する鉄骨造骨組の側面図。A side view of a steel frame having a 3-axis compression column joint constructed by using a beam-column joint block using H-shaped steel as a column member. H形鋼を柱部材とした柱梁接合ブロックを用いて構築された3軸圧縮柱接合部を有する鉄骨造骨組の施工手順説明図。Explanatory drawing of construction procedure of a steel frame having a triaxial compression column joint constructed by using a beam-column joint block using H-shaped steel as a column member. 柱梁接合部の従来技術Conventional technology for beam-column joints 柱梁接合部の従来技術Conventional technology for beam-column joints

図1に本発明の柱梁接合ブロック1Aの実施例の一例を示すものであって、柱梁接合部において、ラーメン構造の外柱として梁が柱に対して3方向に接続されるケースを示している。
図1(1)は、鉄骨構造の柱梁接合部の平面図であり、(2)は正面図、(3)はB−B断面図、(4)はC−C断面図である。
本明細書においては、柱端部材1と梁の軸方向にプレストレスが導入された梁端部材2、2が一体化されたものを柱梁接合ブロック1Aと称することにする。
本発明において、柱は、柱端部材と柱部材とで形成され、梁は、少なくとも梁端部材と梁部材とで形成されるものである。梁については、必要に応じて梁端部材と梁部材の間に梁端ジョイント部材を介在させ、梁端ジョイント部材を有する梁部材と梁端部材を形成するものとしてもよい。鉄骨造ラーメン構造は、これらの柱と梁で形成されるものとする。
図1(1)、(2)に示されるように、柱梁接合ブロック1Aは、柱が接続される柱端部材1と柱端部材1に所定長さの梁端部材2が柱端部材1を基準にして平面3方向に溶接固定されている。柱端部材1は、閉鎖型断面鉄骨部材であり、図示の例では角型鋼管を使用している。図1(2)に示すように、柱端部材1の上下両端部には角型鋼管の開口を塞ぐエンドプレート10が溶接固定されている。
梁端部材2も同様に閉鎖型断面鉄骨部材の角形鋼管であり、その端部にはPC緊張材3を定着するエンドプレート20が固定してあり、エンドプレート20には梁を接続するための梁端ジョイント部材21が溶接固定されている。梁端部材2の高さは、溶接するために梁端ジョイント部材21の高さと同じにするか、若干大きくするのが好ましい。梁端ジョイント部材21の端部には梁部材2Bを接合するためのボルト穴22が複数形成してある。ただし、これに限ることなく、溶接接合とすることもできる。また、ボルト接合と溶接接合を併用した接合構造とすることもできる。
柱端部材1と梁端部材2が交わる部分を本明細書においては柱梁接合部(パネルゾーン)という。
FIG. 1 shows an example of an embodiment of the beam-column joining block 1A of the present invention, and shows a case where a beam is connected to a column in three directions as an outer column of a rigid frame structure at the beam-column joint. ing.
1 (1) is a plan view of a beam-column joint of a steel frame structure, (2) is a front view, (3) is a BB sectional view, and (4) is a CC sectional view.
In the present specification, a beam end member 1 and a beam end member 2 and 2 in which prestress is introduced in the axial direction of the beam are integrated to be referred to as a column beam joint block 1A.
In the present invention, a column is formed of a column end member and a column member, and a beam is formed of at least a beam end member and a beam member. As for the beam, if necessary, a beam end joint member may be interposed between the beam end member and the beam member to form the beam member having the beam end joint member and the beam end member. The steel rigid frame structure shall be formed of these columns and beams.
As shown in FIGS. 1 (1) and 1 (2), in the column-beam joining block 1A, the column end member 1 to which the columns are connected and the beam end member 2 having a predetermined length to the column end member 1 are the column end members 1. It is welded and fixed in three plane directions with reference to. The column end member 1 is a closed cross-section steel frame member, and in the illustrated example, a square steel pipe is used. As shown in FIG. 1 (2), end plates 10 for closing the openings of the square steel pipe are welded and fixed to the upper and lower ends of the column end member 1.
Similarly, the beam end member 2 is a square steel pipe having a closed cross-section steel frame member, and an end plate 20 for fixing the PC tensioning material 3 is fixed to the end portion thereof, and the end plate 20 is used to connect the beam. The beam end joint member 21 is welded and fixed. The height of the beam end member 2 is preferably the same as or slightly larger than the height of the beam end joint member 21 for welding. A plurality of bolt holes 22 for joining the beam member 2B are formed at the end of the beam end joint member 21. However, the present invention is not limited to this, and a welded joint may be used. In addition, a joint structure in which bolt joints and welded joints are used in combination can be used.
The portion where the column end member 1 and the beam end member 2 intersect is referred to as a column-beam joint (panel zone) in the present specification.

柱端部材1は、柱梁接合部(パネルゾーン)から所定長さまで上下方向(柱軸方向)に延びており、両端にそれぞれエンドプレート10が溶接されており、その合計長さを柱端部材1の長さLとする。要するに、柱端部材1の長さは、柱梁接合部と上下両端のエンドプレート10を含めた合計長さである。 The column end member 1 extends from the column-beam joint (panel zone) to a predetermined length in the vertical direction (column axis direction), and end plates 10 are welded to both ends, and the total length thereof is calculated as the column end member. Let the length L be 1. In short, the length of the column end member 1 is the total length including the column-beam joint and the end plates 10 at both the upper and lower ends.

角型鋼管からなる柱端部材1に平面2方向(梁軸方向)に角型鋼管からなる梁端部材2を溶接して一体化し、柱端部材1及び梁端部材それぞれの部材にPC緊張材3を配置してエンドプレート20に定着具を配置して、緊張定着してプレストレスを導入して柱梁接合ブロック1Aを梁軸方向に2軸圧縮状態するものである。
PC緊張材3については、図示のPC鋼棒としてもよく、複数のPC鋼より線からなるPCケーブルとしてもよい。
なお、図1の例は、例えば、高層または超高層建物の下層階に組み込んだ状態においては柱端部材1には垂直荷重によって大きな軸力が発生して作用することによって柱梁接合部が3軸圧縮状態となるので柱軸方向にプレストレスは不要となり、従ってプレストレスを導入するためのPC緊張材3の配設は省略することが可能とする一例である。
A beam end member 2 made of a square steel pipe is welded and integrated with a column end member 1 made of a square steel pipe in two plane directions (beam axial direction), and a PC tensioning material is attached to each of the column end member 1 and the beam end member. 3 is arranged, a fixing tool is arranged on the end plate 20, tension is fixed, and prestress is introduced to bring the column-beam joint block 1A into a biaxially compressed state in the beam axial direction.
The PC tensioning material 3 may be a PC steel rod shown in the figure, or may be a PC cable composed of a plurality of PC steel strands.
In the example of FIG. 1, for example, in a state of being incorporated in the lower floor of a high-rise building or a super high-rise building, a large axial force is generated and acts on the column end member 1 due to a vertical load, so that the column-beam joint portion is 3 Since the shaft is in the compressed state, prestress is not required in the column axial direction. Therefore, the arrangement of the PC tensioning material 3 for introducing the prestress can be omitted.

PC緊張材3による緊張力の導入によって鉄骨部材に局部座屈が生ずるのを防止するために、PC緊張材3を緊張する前に、補剛材として閉鎖型断面鉄骨部材の部材断面内にコンクリートまたは無収縮モルタルからなる充填材4を充填することが安価で好ましい。充填材4を使用しない場合は、補剛材としてスチフナー(図示しない)を設けるなどの補強を施す場合もある。
また、梁端部材2の先端のエンドプレート20に梁端ジョイント部材21を溶接固定し、柱梁接合ブロック1Aと梁端ジョイント部材21を介して梁部材2Bとを連結して一体化接合することが好ましいが、梁端ジョイント部材20を使用することなく梁部材2Bを直接梁端部材2のエンドプレート20に溶接して柱梁接合ブロック1Aと接合することも可能である。
In order to prevent local buckling of the steel frame member due to the introduction of the tension force by the PC tensioning material 3, concrete is used as a stiffener in the member cross section of the closed cross-section steel frame member before the PC tensioning material 3 is strained. Alternatively, it is inexpensive and preferable to fill the filler 4 made of non-shrink mortar. When the filler 4 is not used, reinforcement such as providing a stiffener (not shown) may be provided as a stiffener.
Further, the beam end joint member 21 is welded and fixed to the end plate 20 at the tip of the beam end member 2, and the beam member 2B is connected and integrally joined via the beam end joint block 1A and the beam end joint member 21. However, it is also possible to directly weld the beam member 2B to the end plate 20 of the beam end member 2 and join it to the beam-column joining block 1A without using the beam end joint member 20.

図2に示す実施例2は、基本的には図1に示す実施例1と同様なものであるが、軸力を負担する柱梁接合ブロック1Aの柱端部材1にも梁端部材2と同様にPC緊張材3を配設してプレストレスを導入するようにしたものである。図2(2)に示されるように柱端部材1にPC緊張材3が配設されて軸力方向にも緊張力が導入されている点が実施例1とは、異なるものであり、その他は実施例1とかわるところはなく、この実施例2の柱梁接合ブロック1Aが適用されるのは、柱梁接合部において軸力による圧縮力が不足する場合である。
この場合では、柱端部材1の上下両端部には溶接固定されているエンドプレート10は、角型鋼管の開口を塞ぐためのものでなく、PC緊張材3の定着具を取付するための定着プレートになる。
建築物の階層によって柱梁接合部に垂直荷重によって異なる軸力が発生して作用しているので、本願発明によれば、補充的に追加するプレストレス量を各階層によって異なるものとすることができる。下層階において、軸力が大きい場合には、プレストレスは不要となり、実施例1の状態となる。
Example 2 shown in FIG. 2 is basically the same as that of Example 1 shown in FIG. 1, but the column end member 1 of the column-beam joining block 1A that bears the axial force also has the beam end member 2. Similarly, the PC tensioning material 3 is arranged to introduce prestress. As shown in FIG. 2 (2), the PC tension material 3 is arranged on the column end member 1 and the tension force is introduced in the axial force direction, which is different from the first embodiment. Is not different from the first embodiment, and the beam-column joint block 1A of the second embodiment is applied when the compressive force due to the axial force is insufficient at the beam-column joint.
In this case, the end plates 10 welded and fixed to the upper and lower ends of the column end member 1 are not for closing the opening of the square steel pipe, but for fixing the fixing tool of the PC tensioning material 3. Become a plate.
Since different axial forces are generated and act on the beam-column joints depending on the floor of the building due to the vertical load, according to the present invention, the amount of prestress to be supplementarily added may be different for each floor. it can. When the axial force is large on the lower floor, prestress is not required and the state of Example 1 is obtained.

建築物の平面においては、その用途によって、梁間方向と桁行方向のスパン割が異なることがあり、このような場合において、鉄骨造の建築物として構築する場合には、柱部材にH形鋼を使用し、H形鋼断面の強軸方向を梁間方向に、弱軸方向を桁行方向に配置して曲げ応力に対応することが多いので、以下に柱部材として、H形鋼を使用した実施例3を説明する。 On the plane of a building, the span division in the beam-to-beam direction and the girder direction may differ depending on the application. In such a case, when constructing as a steel-framed building, H-shaped steel is used for the column members. In many cases, the strong axis direction of the H-shaped steel cross section is arranged in the beam-to-beam direction and the weak axis direction is arranged in the girder direction to deal with bending stress. Therefore, an example in which the H-shaped steel is used as a column member below. 3 will be described.

図3に示すように、柱端部材1は、H形鋼からなる柱部材と同じサイズのH形鋼のフランジ間に側面プレート1Dを溶接して閉鎖断面を形成してあり、柱梁接合部の上下方向(柱軸方向)にそれぞれ所定長さを有し、柱端部材1の両端にはそれぞれエンドプレート10が溶接してある。また、柱端部材1を構成するH形鋼を柱端部材1の先端(エンドプレート10)から更に所要の長さを延長させてあり、柱部材1Bとの接合に利用する柱端ジョイント部11としてある。従って、柱梁接合ブロック1Aの上下方向(柱軸方向)に用いたH形鋼の全長は、柱端部材1の長さと柱端部材1と柱部材1Bとをジョイント接合するために必要な長さの柱端ジョイント部11の長さとの合計長さとなる。
図示の実施例では、接合手段として高力ボルト接合を採用してあるのでボルト挿入用の孔22が複数設けてある。
なお、柱端ジョイント部11の接合手段はボルト接合に限るものでなく、溶接または溶接と高力ボルト接合を併用したものでもよく、また、従来慣用のH形鋼柱の接合手段から適宜選択したものでもよい。
As shown in FIG. 3, the column end member 1 is formed by welding a side plate 1D between flanges of H-shaped steel having the same size as the column member made of H-shaped steel to form a closed cross section. Each has a predetermined length in the vertical direction (column axis direction), and end plates 10 are welded to both ends of the column end member 1. Further, the H-shaped steel constituting the column end member 1 is further extended from the tip (end plate 10) of the column end member 1 by a required length, and the column end joint portion 11 used for joining with the column end member 1B. There is. Therefore, the total length of the H-shaped steel used in the vertical direction (column axial direction) of the column-beam joining block 1A is the length of the column end member 1 and the length required for joint joining the column end member 1 and the column member 1B. It is the total length with the length of the column end joint portion 11.
In the illustrated embodiment, since high-strength bolt joining is adopted as the joining means, a plurality of holes 22 for inserting bolts are provided.
The joining means of the column end joint portion 11 is not limited to bolt joining, and may be a combination of welding or welding and high-strength bolt joining, and is appropriately selected from the conventional H-shaped steel column joining means. It may be a thing.

梁端部材2は、実施例1と同じように梁端ジョイント部材20まで閉鎖断面としてあり、その先端には接合するため梁部材と同じH形鋼が梁端ジョイント部材20に溶接で一体化してある。
柱端部材1と梁端部材2内で形成される空間には実施例1と同様にコンクリート、または、無収縮モルタルが充填してあり、PC緊張材3が配設されて緊張定着してあり、柱梁接合部には3軸方向にプレストレスが導入されている。
The beam end member 2 has a closed cross section up to the beam end joint member 20 as in the first embodiment, and the same H-shaped steel as the beam member is welded to the beam end joint member 20 to be joined to the tip thereof. is there.
The space formed in the column end member 1 and the beam end member 2 is filled with concrete or non-shrink mortar as in the first embodiment, and the PC tension material 3 is arranged and tension-fixed. , Prestress is introduced in the column-beam joint in the three axial directions.

図4に本発明の柱梁接合ブロック1を用いて構築された3軸圧縮柱梁接合部を有する鉄骨造骨組の(1)平面図と(2)側面図の一部を示す。
平面図に代表的な中柱1a、外柱1bおよび隅柱1cと梁部材2Bの配置状態を示す。但し、小梁の配置の図示は省略してある。梁継手2aは、高力ボルト継手、または溶接継手のいずれかを採用する。
地震力による柱梁部材1に生じる曲げモーメントは、柱梁接合部の部材端部において(フェイス曲げモーメント)が最大となるが、中央断面に向かうに従って小さくなる。そこで、梁端部材2の所定長さ(柱梁接合部から突出した長さ)は、当該梁の内法寸法l(柱間の距離)の1/10〜1/4とすることによって曲げモーメントが小さい断面において溶接接合やボルト継手接合されることになり、巨大地震時においても接合部で破断することがなく、安全が担保される。
具体的には、平面においてX方向の内法寸法l、梁端部材2の長さaとし、Y方向の内法寸法l、梁端部材の長さaとすると、それらの関係は以下の範囲内とする。
FIG. 4 shows a part of (1) a plan view and (2) a side view of a steel frame having a triaxial compression beam-column joint constructed by using the beam-column joint block 1 of the present invention.
The plan view shows a typical arrangement state of the middle column 1a, the outer column 1b, the corner column 1c, and the beam member 2B. However, the illustration of the arrangement of the beam is omitted. As the beam joint 2a, either a high-strength bolt joint or a welded joint is adopted.
The bending moment generated in the beam member 1 due to the seismic force has the maximum (face bending moment) at the end of the beam-column joint, but decreases toward the central cross section. Therefore, the predetermined length of the beam end member 2 (the length protruding from the beam-column joint) is bent by setting it to 1/10 to 1/4 of the internal dimension l x (distance between columns) of the beam. Weld joints and bolt joints are joined in a cross section with a small moment, and safety is ensured without breaking at the joint even in the event of a large earthquake.
Specifically, inner dimension l x in the X direction in the plane, and a length of a x of the beam-member 2, Y direction inner dimension l y, when the length a y of the beam-member, their relationship Is within the following range.

図4(2)の側面図に当該平面の柱と梁とからなる骨組を示す。なお、この図面においては、スラブは図示を省略してある。
上下方向(柱軸方向)においても梁と同様とし、柱の内法寸法(梁間の距離h)は各層の高さが異なる場合は、以下の関係にする。なお、bnはn階における柱端部材1の長さであり、hはn階における階高である。)
The side view of FIG. 4 (2) shows a frame composed of columns and beams on the plane. In this drawing, the slab is not shown.
The same applies to the vertical direction (column axis direction), and the internal dimensions of the columns (distance between beams h n ) are as follows when the height of each layer is different. Incidentally, bn is the length of the column end member 1 in n floor, h n is the story height in n floors. )

次に本発明の柱梁接合部1の構築手順を図5の施工実施例に基づいて説明する。
構築手順は以下である。
(1)フーチング5と基礎梁6とからなる基礎から鉄骨造とする柱部材1Bを各柱の位置に立設する。
(2)予め製作した柱梁接合ブロック1Aを柱部材1Bの頭部に設置し、柱端部材1のエンドプレート10と柱部材1Bを溶接して接合する。
(3)梁部材2Bを柱梁接合ブロック1Aに取り付けられた梁端ジョイント部材21と高力ボルト継手で接合する。高力ボルトによる接合に代えて溶接接合としてもよく、また、ボルトと溶接を併用して接続してもよい。
(4)柱梁接合ブロック1Aの上に次の層の柱部材1Aを設置して溶接して接合する。
以後、(2)〜(4)の手順を繰り返すことによって上層階を構築していき、建築物を完成させる。
Next, the construction procedure of the beam-column joint 1 of the present invention will be described based on the construction example of FIG.
The construction procedure is as follows.
(1) A column member 1B made of a steel frame from a foundation composed of a footing 5 and a foundation beam 6 is erected at the position of each column.
(2) The column-beam joining block 1A manufactured in advance is installed on the head of the column member 1B, and the end plate 10 of the column end member 1 and the column member 1B are welded and joined.
(3) The beam member 2B is joined to the beam end joint member 21 attached to the column-beam joint block 1A with a high-strength bolt joint. Welding may be used instead of joining with high-strength bolts, or bolts and welding may be used in combination.
(4) The column member 1A of the next layer is installed on the column-beam joining block 1A and welded to join.
After that, the upper floors are constructed by repeating the steps (2) to (4) to complete the building.

閉鎖断面型鉄骨材を柱部材とした施工工程を説明したが、実施例3のH形鋼柱部材の3軸圧縮柱梁接合ブロックを用いたS造ラーメン構造について図6、7に平面図と側面図の一部を示す。
平面図に代表的な中柱1a、外柱1bおよび隅柱1cと梁部材2Bの配置状態を示す。梁継手2aは、高力ボルト継手、または溶接継手のいずれかを採用する。
梁端部材2の所定長さは、閉鎖断面型鉄骨材を柱部材とした場合と同様であり、施工工程を図8に示す。基本的工程は前述の閉鎖断面型鉄骨材を柱部材としたものと同じであるが、柱端部材1にはエンドプレートが設けられておらず、柱端部材1と柱部材1Bがボルトで接合されようになっている。
施工手順は以下である。
(1)フーチング5と基礎梁6とからなる基礎からH型鋼からなる鉄骨柱部材1Bを各柱の位置に立設する。H型鋼からなる柱部材1Bの上端部にはボルト接合のためのボルト穴22が形成してある。
(2)予め製作した柱梁接合ブロック1Aを柱部材1Bの頭部に設置し、添接板をH形鋼からなる柱部材1Bと柱端部材1にまたがって設置し、高力ボルトで両者を接合する。
(3)梁部材2Bを柱梁接合ブロック1Aに取り付けられた梁端ジョイント部材21と高力ボルト継手で接合する。
(4)柱梁接合ブロック1Aの上に次の層の柱部材1Bを設置して溶接して接合する。
以後、(2)〜(4)の手順を繰り返すことによって上層階を構築していき、建築物を完成させる。
The construction process using a closed-section steel frame as a column member has been described. However, FIGS. 6 and 7 show a plan view of an S-structured rigid frame structure using a 3-axis compression beam-beam joint block of an H-shaped steel column member of Example 3. A part of the side view is shown.
The plan view shows a typical arrangement state of the middle column 1a, the outer column 1b, the corner column 1c, and the beam member 2B. As the beam joint 2a, either a high-strength bolt joint or a welded joint is adopted.
The predetermined length of the beam end member 2 is the same as when the closed cross-section type steel frame member is used as the column member, and the construction process is shown in FIG. The basic process is the same as that of the above-mentioned closed cross-section type steel frame member as a column member, but the column end member 1 is not provided with an end plate, and the column end member 1 and the column member 1B are joined by bolts. It is supposed to be done.
The construction procedure is as follows.
(1) A steel column member 1B made of H-shaped steel is erected at the position of each column from the foundation composed of the footing 5 and the foundation beam 6. A bolt hole 22 for bolt joining is formed at the upper end of the column member 1B made of H-shaped steel.
(2) A prefabricated column-beam joint block 1A is installed on the head of the column member 1B, and a splicing plate is installed across the column member 1B made of H-shaped steel and the column end member 1, and both are installed with high-strength bolts. To join.
(3) The beam member 2B is joined to the beam end joint member 21 attached to the column-beam joint block 1A with a high-strength bolt joint.
(4) The column member 1B of the next layer is installed on the column-beam joining block 1A and welded to join.
After that, the upper floors are constructed by repeating the steps (2) to (4) to complete the building.

1 柱端部材
1A 柱梁接合ブロック
1B 柱部材
1C PC柱
1D 側面プレート
1a 中柱
1b 外柱
1c 隅柱
10 エンドプレート(柱)
11 柱端ジョイント部材
2 梁端部材
2a 梁継手
2B 梁部材
20 エンドプレート(梁)
21 梁端ジョイント部材
22 ボルト穴
3 PC緊張材
4 充填材(無収縮モルタル)
5 フーチング
6 基礎梁

1 Column end member 1A Column beam joint block 1B Column member 1C PC column 1D Side plate 1a Middle column 1b Outer column 1c Corner column 10 End plate (column)
11 Column end joint member 2 Beam end member 2a Beam joint 2B Beam member
20 End plate (beam)
21 Beam end joint member 22 Bolt hole 3 PC tension material 4 Filler (non-shrink mortar)
5 Footing 6 Foundation beam

Claims (8)

複数層階で形成される鉄骨造ラーメン構造であって、柱梁接合部から平面2方向に延びる所定長さの梁端部材が柱梁接合部から上下2方向に延びる所定長さの柱端部材とそれぞれ溶接で接合一体化してあり、梁端部材と柱端部材にそれぞれ柱梁接合部を貫通するPC緊張材が配置されて緊張定着されてプレストレスが付与されて3軸圧縮状態とした柱梁接合ブロックが形成されており、この柱梁接合ブロックに柱部材と梁部材とが溶接又はボルト接合で一体化してあるラーメン骨組としてあり、
前記各層の柱端部材に作用する軸力とプレストレスを合計した圧縮力を部材の許容応力度を超えないように調整してプレストレスが付与してあることを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造。
It is a steel-framed ramen structure formed by multiple layers, and a beam end member of a predetermined length extending from a beam-column joint in two plane directions extends in two directions up and down from the beam-column joint. A pillar that is joined and integrated by welding, and a PC tension material that penetrates the beam-column joint is placed on each of the beam-end member and the column-end member, tension is fixed, and prestress is applied to bring the column into a three-axis compressed state. A beam joining block is formed, and the column member and the beam member are integrated into this beam-column joining block by welding or bolt joining as a ramen frame.
A triaxial compression beam characterized in that the compressive force, which is the sum of the axial force acting on the column end member of each layer and the prestress, is adjusted so as not to exceed the allowable stress degree of the member and the prestress is applied. Steel frame structure with joints.
複数層階で形成される鉄骨造ラーメン構造であって、柱梁接合部から平面2方向に延びる所定長さの梁端部材が柱梁接合部から上下2方向に延びる所定長さの柱端部材とそれぞれ溶接で接合一体化してあり、梁端部材のみに柱梁接合部を貫通するPC緊張材が配置されて緊張定着されてプレストレスが付与された柱梁接合ブロックが形成されており、この柱梁接合ブロックに柱部材と梁部材とが溶接又はボルト接合で接合一体化してあるラーメン骨組に上下方向には垂直荷重によって柱梁接合部が3軸圧縮状態としてあることを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造。 It is a steel-framed ramen structure formed by multiple layers, and a beam end member of a predetermined length extending from a beam-column joint in two plane directions extends from a beam-column joint in two directions up and down. A PC tension material penetrating the beam-column joint is placed only on the beam end member to form a beam-column joint block that is tension-fixed and prestressed. A three-axis structure characterized in that the beam-column joint is in a three-axis compressed state due to a vertical load in the vertical direction on a ramen frame in which a beam member and a beam member are joined and integrated in a beam-beam joint block by welding or bolt joining. Steel-framed ramen structure with compression beam-beam joints. 前記梁端部材の所定長さが、当該梁の内法寸法(柱間の距離)の1/10〜1/4であり、前記柱端部材の所定長さが、当該柱の内法寸法(梁間の距離)の1/6〜1/3であることを特徴とする請求項1または2に記載の3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造。 The predetermined length of the beam end member is 1/10 to 1/4 of the internal dimension (distance between columns) of the beam, and the predetermined length of the column end member is the internal dimension of the column (distance between columns). The steel-framed rigid frame structure having a triaxial compression beam-beam joint according to claim 1 or 2, wherein the distance between beams is 1/6 to 1/3. 前記柱梁接合ブロックの部材断面が閉鎖型断面であり、断面内に補剛材としてコンクリートまたはモルタルが充填硬化させてあることを特徴とする請求項1〜3のいずれかに記載の3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造。 The triaxial compression according to any one of claims 1 to 3, wherein the member cross section of the beam-column joint block is a closed cross section, and concrete or mortar is filled and hardened as a stiffener in the cross section. Steel rigid frame structure with beam-column joints. 複数層階で形成される鉄骨造ラーメン構造であって、柱方向において、柱梁接合部から上下2方向に延びる所定長さの柱端部材を形成し、梁方向において、平面2方向に所定の長さに梁端部材を柱端部材の柱梁接合部位置に溶接によって接合して一体化した後に、それぞれに柱梁接合部を貫通してPC緊張材を配置して緊張定着してプレストレスを導入して3軸圧縮状態とした柱梁接合ブロックを形成し、
この柱梁接合ブロックを柱部材の頭部に設置して溶接又はボルト接合によって接合一体化し、柱梁接合ブロックの梁端部材に溶接又はボルト接合によって梁部材を接合して一体化して当該層の鉄骨造ラーメン骨組を形成することによって最下層を形成し、以上の工程を繰り返して上方層の鉄骨造ラーメン骨組を構築していくことを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造の構築方法。
It is a steel-framed ramen structure formed by multiple layers, and forms column end members of a predetermined length extending in two directions from the beam-column joint in the column direction, and is predetermined in the two plane directions in the beam direction. After joining the beam end members to the length by welding at the column-beam joint positions of the column-end members and integrating them, PC tension members are placed through the beam-column joints to fix the tension and prestress. Was introduced to form a beam-column joint block in a three-axis compressed state.
This beam-column joining block is installed on the head of the column member and joined and integrated by welding or bolt joining, and the beam member is joined and integrated by welding or bolt joining to the beam end member of the beam-beam joining block. A steel frame rigid frame having a three-axis compression beam-beam joint, characterized in that the lowermost layer is formed by forming a steel frame structure and the above steps are repeated to build a steel frame structure in the upper layer. How to build the structure.
請求項5において、柱梁接合ブロックの梁端部材に予め梁端ジョイント部材を設けておき、梁部材を梁端ジョイント部材を介して柱梁接合ブロックと一体化接合することを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造の構築方法。 The three axes according to claim 5, wherein a beam end joint member is provided in advance on the beam end member of the column-beam joint block, and the beam member is integrally joined to the column-beam joint block via the beam end joint member. A method for constructing a steel-framed ramen structure having a compression beam-beam joint. 請求項5において、柱梁接合ブロックの柱端部材に予め柱端ジョイント部材を設けておき、柱部材を柱端ジョイント部材を介して柱梁接合ブロックと一体化接合することを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造の構築方法。 The three axes according to claim 5, wherein a column end joint member is provided in advance on the column end member of the column beam joint block, and the column member is integrally joined with the column beam joint block via the column end joint member. A method for constructing a steel-framed ramen structure having a compression beam-column joint. 請求項5〜7のいずれかにおいて、前記柱梁接合ブロックの部材断面が閉鎖型断面であり、断面内に補剛材としてコンクリートまたはモルタルを充填硬化させてあることを特徴とする3軸圧縮柱梁接合部を有する鉄骨造ラーメン構造の構築方法。 The triaxial compression column according to any one of claims 5 to 7, wherein the member cross section of the beam-column joint block is a closed cross section, and concrete or mortar is filled and hardened as a stiffener in the cross section. A method for constructing a steel frame rigid frame structure having a beam joint.
JP2019212768A 2019-11-25 2019-11-25 Steel structure having a 3-axis compression beam-beam joint and its construction method Active JP6765735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212768A JP6765735B1 (en) 2019-11-25 2019-11-25 Steel structure having a 3-axis compression beam-beam joint and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212768A JP6765735B1 (en) 2019-11-25 2019-11-25 Steel structure having a 3-axis compression beam-beam joint and its construction method

Publications (2)

Publication Number Publication Date
JP6765735B1 true JP6765735B1 (en) 2020-10-07
JP2021085163A JP2021085163A (en) 2021-06-03

Family

ID=72706629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212768A Active JP6765735B1 (en) 2019-11-25 2019-11-25 Steel structure having a 3-axis compression beam-beam joint and its construction method

Country Status (1)

Country Link
JP (1) JP6765735B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015592B1 (en) * 2021-04-15 2022-02-03 株式会社Jts Pillar-beam structure of building, building, and construction method of building
JP7061822B1 (en) 2021-12-28 2022-05-02 株式会社Jts Building materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015592B1 (en) * 2021-04-15 2022-02-03 株式会社Jts Pillar-beam structure of building, building, and construction method of building
JP7061822B1 (en) 2021-12-28 2022-05-02 株式会社Jts Building materials

Also Published As

Publication number Publication date
JP2021085163A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
Wu et al. Seismic behavior of bolted beam-to-column connections for concrete filled steel tube
JP6765735B1 (en) Steel structure having a 3-axis compression beam-beam joint and its construction method
JP2018071305A (en) Method for joining concrete column and steel beam
WO1998036134A1 (en) Joint for steel structure, and combining structure using the same joints for steel structure
JP5408595B1 (en) PC seismic joint structure and PC seismic joint method for columns and beams using steel pins
JP4095534B2 (en) Joint structure of column and beam in ramen structure and its construction method
JP6644324B1 (en) Prestressing method for 3-axis compression beam-column joint
JP6749673B1 (en) Joint structure of concrete columns and steel beams
JP2003227236A (en) Permanent and emergent aseismatic reinforcement method for column with wall
JP6747734B1 (en) Prestress introduction method for PC-made 3-axis compression beam-column joints
JP2011202420A (en) Structure and method for joining shaft member and rc member
JPH10292486A (en) Through diaphragm body and connecting structure for steel structure using it
JP6373613B2 (en) Seismic reinforcement structure with compression braces
JP6683336B1 (en) Building structure and method of forming building structure
Bournas et al. Seismic performance of mechanical connections in the SAFECAST precast building
JP5411375B1 (en) Buildings using seismic control columns
US11352790B2 (en) Method of introducing prestress to beam-column joint of PC structure in triaxial compression
JP4379732B2 (en) Seismic reinforcement method for buildings
JP4045502B2 (en) Structure
JPH11131591A (en) Joint for steel structure and junction structure using the same
JP6293207B2 (en) Installation structure of studs in existing building
JP2019100040A (en) Base-isolated building and construction method for base-isolated structure
JP3519331B2 (en) Joint structure between bundle columns and beams of seismic retrofit unit
JP3023709B2 (en) Frame structure
JP6224420B2 (en) Connection structure between CFT column and concrete bottom slab

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6765735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150