JP6204612B2 - Pre-heated electric actuator - Google Patents

Pre-heated electric actuator Download PDF

Info

Publication number
JP6204612B2
JP6204612B2 JP2016560893A JP2016560893A JP6204612B2 JP 6204612 B2 JP6204612 B2 JP 6204612B2 JP 2016560893 A JP2016560893 A JP 2016560893A JP 2016560893 A JP2016560893 A JP 2016560893A JP 6204612 B2 JP6204612 B2 JP 6204612B2
Authority
JP
Japan
Prior art keywords
contactor coil
battery
coil
main contactor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016560893A
Other languages
Japanese (ja)
Other versions
JP2017513200A (en
Inventor
シェートリヒ、トーマス
ベルクマン、スヴェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2017513200A publication Critical patent/JP2017513200A/en
Application granted granted Critical
Publication of JP6204612B2 publication Critical patent/JP6204612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H45/00Details of relays
    • H01H45/12Ventilating; Cooling; Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/12Ventilating; Cooling; Heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Relay Circuits (AREA)
  • Secondary Cells (AREA)

Description

本発明は、例えばハイブリッド自動車又は電気自動車等の、バッテリ分離ユニットを備えたバッテリシステムを有する車両の電気回路網、特に電気系統を駆動する方法に関する。バッテリ分離ユニットによって、電気貯蔵器が、バッテリ正極及び/又はバッテリ負極で、電気系統から分離されうる。   The present invention relates to an electric network of a vehicle having a battery system with a battery separation unit, such as a hybrid vehicle or an electric vehicle, in particular, a method for driving an electric system. With the battery separation unit, the electrical reservoir can be separated from the electrical system at the battery positive and / or battery negative.

例えば風力発電所のような定置型の適用において、及び、緊急電源のために使用される機構において、及び、例えばハイブリッド電気自動車(HEV:Hybrid−Electric−Vehichle)又は電気自動車(EV:Electric Vehicle)のような移動型の適用において、現在では、リチウムイオンバッテリシステムが大抵使用されている。このようなバッテリシステムでは、利用可能なエネルギー含量、充電・放電効率、メモリ効果の不在、信頼性、及び、特に寿命に対する要求が非常に高い。   In stationary applications, such as wind power plants, and in mechanisms used for emergency power supplies, and for example, Hybrid-Electric-Vehicle (HEV) or Electric Vehicle (EV) Currently, lithium ion battery systems are mostly used in mobile applications such as: Such battery systems have very high demands on available energy content, charge / discharge efficiency, absence of memory effects, reliability, and in particular lifetime.

ハイブリッド電気自動車又は電気自動車の電動機に電力供給するために十分な大きさの総電圧に対する要求を満たすために、ハイブリッド電気自動車又は電気自動車の高電圧メインバッテリでは、およそ100個以上の個々のバッテリセルが、電気的に直列に接続され、又は部分的に並列にも接続される。その際には、600ボルトまでのバッテリ電圧が生じうる。   Approximately 100 or more individual battery cells in a hybrid electric vehicle or high voltage main battery of an electric vehicle to meet the demand for a total voltage large enough to power a hybrid electric vehicle or electric vehicle motor Are electrically connected in series or partially in parallel. In that case, battery voltages up to 600 volts can occur.

この電圧は、人間にとって許容可能な接触電圧よりも明らかに高い。健康な成人の場合、50ボルトの交流電圧又は120ボルトの直流電圧による接触電圧から、生命が脅かされる状況にあると考えられる。子供や家畜の場合は、接触電圧は、最大で、25ボルトの交流電圧又は60ボルトの直流電圧である。   This voltage is clearly higher than the acceptable contact voltage for humans. A healthy adult is considered to be in a life-threatening situation from a contact voltage of 50 volts AC voltage or 120 volts DC voltage. In the case of children and livestock, the maximum contact voltage is 25 volts AC voltage or 60 volts DC voltage.

車両電気系統が停止され車両が停止している際に電流を消費しないために、さらに、電気エネルギー貯蔵器の外部又は内部での故障の際に状況によっては深刻な更なる損害の発生を回避するために、及び、事故の後に救助員が危険に曝されないために、生命にかかわるような高いバッテリ電圧が、バッテリ極から直流電気的に分離されることが配慮される。このような安全な駆動のために、高電圧バッテリシステムでは通常バッテリ分離ユニットが設けられ、このバッテリ分離ユニットは、高電圧バッテリシステムの駆動時に作動されておりバッテリを車両及び消費機器と接続する自身の接触器又はリレーの停止によって、電気系統から高電圧バッテリを分離する。バッテリ分離ユニットは今日の従来技術に対応して通常では、過負荷が掛かった際に電流遮断装置として機能するヒューズを備えている。通常、バッテリ分離ユニットは、バッテリ接続線に組み込まれた主接触器を備える。さらに、バッテリ分離ユニットは、充電抵抗器に対して通常は直列の事前充電接触器を含む事前充電回路と、電流センサと、を備える。電流センサは、通常では、ホール式(Hall)電流センサ、及び、シャント式(Shunt)電流センサである。   In addition to avoiding current consumption when the vehicle electrical system is shut down and the vehicle is stopped, in addition to avoiding serious further damage in some situations in the event of an external or internal failure of the electrical energy storage In view of this, and because the rescuer is not exposed to danger after the accident, it is considered that a life-threatening high battery voltage is galvanically separated from the battery pole. For such safe driving, a high-voltage battery system is usually provided with a battery separation unit, which is activated when the high-voltage battery system is driven, and connects itself to the vehicle and consumer devices. The high voltage battery is isolated from the electrical system by stopping the contactor or relay. The battery separation unit usually includes a fuse that functions as a current interrupting device when overloaded in response to today's prior art. Usually, the battery separation unit includes a main contactor incorporated in the battery connection line. Furthermore, the battery isolation unit comprises a precharging circuit including a precharging contactor, usually in series with the charging resistor, and a current sensor. The current sensor is normally a Hall current sensor and a shunt current sensor.

主接触器は、大抵は、性能が良くて大きな比較的高価な電気機械スイッチである。このスイッチに対する要請は、当該スイッチが、数千アンペアの短絡電流を確実に遮断できる状態になければならないということである。主接触器のコイルは、特に温度が非常に低い際に、即ち温度が−30℃以下の際には、非常に低インピーダンスな状態にある。この場合には、典型的な電子的ドライバ段は全く伝達し得ないであろう非常に大きな作動電流が流れる可能性がある。このような作動電流は、電子的最終段の破壊を引き起こすであろう。上記ドライバ段は、低温条件のためにより手間を掛けて設計せざるを得ないであろうが、コストが明らかにより高くなる。   The main contactor is usually a large and relatively expensive electromechanical switch with good performance. The requirement for this switch is that it must be in a state that can reliably cut off a short circuit current of several thousand amperes. The coils of the main contactor are in a very low impedance state, especially when the temperature is very low, i.e. when the temperature is below -30C. In this case, very large operating currents may flow that a typical electronic driver stage would not be able to communicate at all. Such an operating current will cause destruction of the electronic final stage. The driver stage would have to be designed with more effort due to the low temperature conditions, but the cost is clearly higher.

米国特許出願公開第2008/0218928号明細書は、電磁スイッチのコイル制御装置に関する。コイル制御装置は、アナログ回路の主構成要素を、消費が少ないパルス幅変調制御装置を備えたデジタル回路の主構成要素により置換する。これにより、アナログ構成要素の数が減り、エネルギー消費が下がり、定電圧が生成される。この定電圧がコイルに印加され、即ち、同時にコイル逆電流が流れ、これにより、エラー及び損傷の発生が減り、さらに、回路への大規模な損傷が防止されうる。   U.S. Patent Application Publication No. 2008/0218928 relates to a coil control device for an electromagnetic switch. The coil control device replaces the main component of the analog circuit with the main component of the digital circuit including the pulse width modulation control device with low consumption. This reduces the number of analog components, reduces energy consumption, and generates a constant voltage. This constant voltage is applied to the coil, i.e., the coil reverse current flows at the same time, which reduces the occurrence of errors and damage, and can prevent extensive damage to the circuit.

米国特許出願公開第2013/0009464号明細書は、バッテリパックスイッチを制御するためのシステム及び方法に関する。スイッチのコイルは、大電力ユニットを介して制御される。   US 2013/0009464 relates to a system and method for controlling a battery pack switch. The coil of the switch is controlled via a high power unit.

車両の、即ち例えばハイブリッド自動車又は電気自動車の電気回路網、特に電気系統を駆動する方法であって、上記車両は、バッテリ分離ユニットを備えたバッテリシステムを有する、上記方法が提案される。バッテリ分離ユニットによって、電気エネルギー貯蔵器が、バッテリ正極でもバッテリ負極でも、電気系統から分離可能であり、又は、双方のバッテリ極で同時に電気系統から分離可能である。本発明に基づき提案される方法に従って、少なくとも1つの電気機械スイッチを操作するコイルが、電気エネルギー貯蔵器を介して予熱される。少なくとも1つの電気機械スイッチとは、本文脈では、バッテリ正極のための主接触器スイッチ、事前充電接触器スイッチ、及び、バッテリ負極のための主接触器スイッチである。   A method is proposed for driving an electric circuit of a vehicle, for example a hybrid vehicle or an electric vehicle, in particular an electric system, wherein the vehicle comprises a battery system with a battery separation unit. With the battery separation unit, the electrical energy store can be separated from the electrical system, whether the battery is positive or negative, or can be separated from the electrical system at both battery poles simultaneously. In accordance with the method proposed according to the invention, the coil operating the at least one electromechanical switch is preheated via an electrical energy store. At least one electromechanical switch in this context is a main contactor switch for the battery positive, a precharge contactor switch, and a main contactor switch for the battery negative.

コイルへの予熱は、パルス幅変調−信号制御の場合には、吸引パルス幅の一部分、好適に吸引パルス幅の10%〜30%を用いたコイルの作動によって行われる。即ち、低いデューティ比が選択される。直流電流信号が使用される場合には、1つの電気機械スイッチを操作するコイルへの予熱は、温度に依存して選択された加熱勾配により、周囲温度に従って行われる。   In the case of pulse width modulation-signal control, the coil is preheated by operating the coil using a portion of the suction pulse width, preferably 10% to 30% of the suction pulse width. That is, a low duty ratio is selected. If a direct current signal is used, the preheating of the coils operating one electromechanical switch is performed according to the ambient temperature, with a heating gradient selected depending on the temperature.

本発明に基づき提案される解決策によって、非常に温度が低い際に電気系統が作動される際に、少なくとも1つの電気機械スイッチを操作するコイルへの可能な限り迅速な予熱が実現されうる。コイルへの予熱は、接触器とも称される少なくとも1つの電気機械スイッチを辛うじて閉鎖させない電流を用いて行われる。これに対して、少なくとも1つの電気機械スイッチを閉鎖すべき場合には、本発明に基づき提案される方法に従って予熱されたコイルが、少なくとも1つの電気機械スイッチを如何なる場合にも確実に閉鎖させる電流によって作動される。   With the solution proposed according to the invention, preheating as quickly as possible to the coil operating the at least one electromechanical switch can be realized when the electrical system is activated when the temperature is very low. The coil is preheated with an electric current that does not barely close at least one electromechanical switch, also called a contactor. In contrast, if at least one electromechanical switch is to be closed, the coil preheated according to the method proposed according to the invention ensures that the at least one electromechanical switch is closed in any case. Operated by.

パルス幅変調−信号制御が利用される場合には、例えば温度が−30℃以下の際には、ドライブ段に対して性能に応じて辛うじて過負荷を掛けない吸引パルス幅が設定され、即ち例えば、吸引パルス幅の10%が設定される。吸引パルス幅とは、閉鎖すべき場合に少なくとも1つの電気機械スイッチのコイルを作動するパルス幅として理解される。上記一部分の例を挙げると10%の吸引パルス幅では、上記の温度でコイル抵抗が小さい際には電流が非常に高く上がりうるため、この場合のパルス幅変調の枠組みにおけるデューティ比は、対応して1:9である。   When pulse width modulation-signal control is used, for example, when the temperature is −30 ° C. or lower, the suction pulse width is set so as not to overload the drive stage according to the performance. 10% of the suction pulse width is set. The suction pulse width is understood as the pulse width that activates the coil of at least one electromechanical switch when it is to be closed. As an example of the above part, at a suction pulse width of 10%, the current can rise very high when the coil resistance is small at the above temperature, so the duty ratio in the framework of pulse width modulation in this case corresponds. 1: 9.

本発明に基づき提案される方法では、デューティ比は、少なくとも1つの電気機械スイッチを操作するコイルがより高い温度に達した場合には上げられうる。コイル温度がより高くデューティ比が上げられている際には、同じ予熱電流がコイルに供給されうる。この場合に流れる電流は、より大きなコイル抵抗によって制限されている。しかしながら、一方では最終段が無傷の状態にあり、即ち最終段が予熱電流を確実に伝達でき、他方では少なくとも1つの電気機械スイッチが辛うじて閉鎖されていない範囲内で常に予熱される。   In the method proposed according to the invention, the duty ratio can be increased if the coil operating the at least one electromechanical switch reaches a higher temperature. When the coil temperature is higher and the duty ratio is increased, the same preheating current can be supplied to the coil. The current flowing in this case is limited by a larger coil resistance. However, on the one hand, the last stage is intact, i.e. the last stage can reliably transmit the preheating current, and on the other hand it is always preheated within a range where at least one electromechanical switch is barely closed.

バッテリパック又はバッテリモジュールの内部温度Tについての情報は、メインバッテリパックの場合、バッテリ管理システムによって又はバッテリモジュールコントローラによって分かる。電気機械スイッチを操作する前のコイルのコイル温度は、以下の関係、即ち、

=T+ΔT
但し、
ΔT:コイルでの温度上昇、
:バッテリパックの内部温度、
から得られる。
Information about the internal temperature T I of the battery pack or battery module, when the main battery pack, seen by or battery module controllers by the battery management system. The coil temperature of the coil before operating the electromechanical switch has the following relationship:

T S = T I + ΔT
However,
ΔT: temperature rise in the coil,
T I : Internal temperature of the battery pack,
Obtained from.

上記の関係によれば、コイル予熱制御は、コイル温度Tを設定し、迅速な予熱のために、少なくとも1つの電気機械スイッチが閉鎖しないように選択された最大可能な予熱電力を設定することが可能である。 According to the above relationship, the coil preheating control sets the coil temperature T S, for rapid preheating, setting the maximum preheat electric power at least one electromechanical switch is selected so as not to close Is possible.

現在の最終段IC(集積回路)の場合、当該最終段ICにより放出される電流、及び、その温度が分かる。これにより、このような集積回路は、自身の電力損失を自動的に、未だ許容される値へと制御し、当該値に制限し、吸引デューティ比の可能な限り近傍に近付けることが可能である。デューティ比が上記吸引デューティ比を下回る場合には、一方ではコイルが最大限に予熱されて予熱時間が最小化され、他方では少なくとも1つの電気機械スイッチが辛うじて閉鎖しないことが保証される。   In the case of the current final stage IC (integrated circuit), the current discharged by the final stage IC and its temperature are known. This allows such an integrated circuit to automatically control its power loss to a value that is still acceptable, limit it to that value, and bring it as close as possible to the suction duty ratio. . If the duty ratio is below the suction duty ratio, on the one hand, the coil is preheated to the maximum and the preheating time is minimized, and on the other hand, it is ensured that at least one electromechanical switch does not barely close.

これに対して、パルス幅変調による本発明に係る方法によりその作動コイルが予熱された電気機械スイッチが、確実に閉鎖することが望まれる場合には、これに対応して吸引パルス幅が選択される。吸引パルス幅又はデューティ比は、コイル温度ごとに少なくとも1つの電気機械スイッチの確実で迅速な閉鎖が保証されるように、設定される。   On the other hand, when it is desired that the electromechanical switch whose operating coil has been preheated by the method according to the present invention by pulse width modulation is closed reliably, the suction pulse width is selected accordingly. The The suction pulse width or duty ratio is set to ensure a reliable and rapid closure of at least one electromechanical switch for each coil temperature.

パルス幅変調される信号制御の代わりに、直流電流による予熱を介しても、これに対応した電流制御においてコイルを加熱することが可能である。本発明に基づき提案される方法の本代替例によれば、電流制御が行われ、その際に、例えばバッテリパック内部温度T=−30℃で予熱が開始された際には、該当する少なくとも1つの電気機械スイッチのコイルがゆっくりと加熱される。これに対して、コイルの加熱が進むにつれて直流電流が増大する。このように電流が最初はゆっくりと増大することは、アクティブな(aktiv)制御駆動時の最終段の電力損失が大きいほど、負荷抵抗が小さくなることから生じる。従って少なくとも1つの電気機械スイッチのコイルが温まる時間があるように、予熱電流がゆっくりと上げられる。例えば数秒の予熱時間の後に、コイルが温まった場合には、予熱のために使用された電流が最大非吸引電流値に上げられ、即ち、当該値に対して予熱電流が固定される。予熱開始に関して、バッテリパック又はバッテリモジュールの内部温度Tが高いほど、最大非吸引値まで予熱電流はより険しい勾配で増大しうるが、その際に、少なくとも1つの電気機械スイッチが閉鎖することはない。これに対して、電気機械スイッチの閉鎖が必要な場合には、吸引電流が、例えばImaxに設定され、このImaxでは、少なくとも1つの電気機械スイッチの確実な閉鎖が保証される。 The coil can be heated in the current control corresponding to the preheating by the direct current instead of the signal control subjected to the pulse width modulation. According to this alternative of the method proposed in accordance with the present invention, current control is performed, for example when preheating is started at the battery pack internal temperature T I = −30 ° C. The coil of one electromechanical switch is heated slowly. On the other hand, the direct current increases as the coil is heated. The slow increase of the current at the beginning is caused by the fact that the load resistance decreases as the final stage power loss during active control drive increases. Thus, the preheating current is slowly increased so that there is time for the coil of at least one electromechanical switch to warm up. For example, if the coil warms up after a preheating time of a few seconds, the current used for preheating is raised to the maximum non-attraction current value, i.e. the preheating current is fixed to that value. Respect preheating start, as the internal temperature T I of the battery pack or battery module is high, the maximum preheating current to the non-suction values may increase with steeper gradient, in this case, that at least one electromechanical switch is closed Absent. On the contrary, if the closing of the electromechanical switch is required, drawing currents, for example, it is set to I max, in the I max, reliable closure of at least one electromechanical switch is guaranteed.

本発明に基づき提案される解決策によって、電気機械スイッチが閉鎖された際に、即ち接触器の接点が閉鎖された際に、パルス幅変調による作動の場合にも、直流電流による作動の場合にも、初期励磁値よりも低い保持励磁値を確実に未だ下回らない範囲内でコイル励磁を止めるという可能性が生まれる。これにより、コイルの電力損失を削減し、コイルの温度を許容値に制限して当該許容値に保つという可能性が生まれる。本発明に基づき提案される解決策によって、ハイブリッド自動車又は電気自動車のドライブトレインにおけるメインバッテリのバッテリ分離ユニットの枠組みにおけるパワー接触器(パワーコンタクタ)、即ち電気機械スイッチのコイル温度が、可能な限り迅速に上げられ、最終段ICにより統制可能な電力損失限界値が遵守される方法が提案される。パルス幅変調方法によっても、直流電流による予熱によっても、寒さが厳しく外気温度が低い際に、少なくとも1つの電気機械スイッチを辛うじて閉鎖させない電気エネルギーによる、少なくとも1つの電気機械スイッチを操作するコイルへの可能な限り迅速な予熱が実現されうる。これに対して、少なくとも1つの電気機械スイッチが閉鎖すべき場合には、以前に予熱されたコイルが、少なくとも1つの電気機械スイッチの接点を確実に閉鎖させる増大した電流によって作動される。これにより、最終段ICでの最終段の設計を最適化し、コストを節約するという可能性が生まれる。   According to the solution proposed in accordance with the invention, when the electromechanical switch is closed, i.e. when the contact of the contactor is closed, both in the case of operation by pulse width modulation and in the case of operation by direct current. However, there is a possibility that the coil excitation is stopped within a range in which the holding excitation value lower than the initial excitation value is not surely fallen below. This creates the possibility of reducing coil power loss and limiting the coil temperature to an acceptable value and keeping it at that acceptable value. With the solution proposed in accordance with the present invention, the coil temperature of the power contactor, ie electromechanical switch, in the framework of the battery separation unit of the main battery in the drive train of a hybrid or electric vehicle is as fast as possible. A method is proposed in which the power loss limit value that can be controlled by the final stage IC is observed. Either by the pulse width modulation method or by preheating with direct current, to the coil operating the at least one electromechanical switch with electric energy that does not barely close the at least one electromechanical switch when the cold is severe and the outside temperature is low Preheating as fast as possible can be achieved. In contrast, if at least one electromechanical switch is to be closed, the previously preheated coil is actuated by an increased current that reliably closes the contacts of the at least one electromechanical switch. This creates the possibility of optimizing the final stage design in the final stage IC and saving costs.

バッテリ分離ユニットを備えた電気的エネルギー貯蔵器の基本図を示す。1 shows a basic view of an electrical energy store with a battery separation unit. FIG. パルス幅変調による作動が行われる接触器コイル予熱信号の基本図を示す。Fig. 2 shows a basic diagram of a contactor coil preheating signal which is operated by pulse width modulation. 直流電流信号及び電流制御による接触器コイルへの予熱の基本図を示す。The basic figure of the preheating to the contactor coil by a direct current signal and current control is shown. 比較器を備えた制御回路の概略図を示す。1 shows a schematic diagram of a control circuit with a comparator. 電気機械スイッチを操作するための第1の回路構成を示す。1 shows a first circuit configuration for operating an electromechanical switch. ハイ側(High−Side)最終段及びロー側(Low‐Side)最終段を備えた回路構成を示す。A circuit configuration including a high-side final stage and a low-side final stage is shown.

図1は、バッテリ分離ユニットを備えた電気的エネルギー貯蔵器の基本図である。   FIG. 1 is a basic diagram of an electrical energy store equipped with a battery separation unit.

図1に示されるバッテリ分離ユニット10は、高電圧バッテリ12と接続されている。この高電圧バッテリ12は、複数のバッテリセル14が電気的に相互接続されたバッテリパック又はバッテリモジュールを含む。図1に係る高電圧バッテリ12は、サービスソケット16をさらに備える。   A battery separation unit 10 shown in FIG. 1 is connected to a high voltage battery 12. The high voltage battery 12 includes a battery pack or a battery module in which a plurality of battery cells 14 are electrically interconnected. The high voltage battery 12 according to FIG. 1 further includes a service socket 16.

符号10が付されたバッテリ分離ユニット10は、バッテリ正極18と、バッテリ負極32と、を備える。バッテリ分離ユニット10は、第1のバッテリ接続線42内に、バッテリ正極18のための主接触器20を含む。主接触器20は、電気機械スイッチ24を備え、この電気機械スイッチ24は、バッテリ正極18の主接触器スイッチとも称され、主接触器コイル22を介して操作される。主接触器20に対して並列に事前充電接触器26が接続されており、この事前充電接触器26に対して直列に充電抵抗器27が存在する。事前充電接触器26は、別体の事前充電接触器コイル28を有し、この事前充電接触器コイル28によって、事前充電接触器スイッチ25が操作される。事前充電接触器26は、主接触器20に対して並列に存在する。第1のバッテリ接続線42には、電流遮断ユニット30が存在する。この電流遮断ユニット30は、通常ではヒューズとして実現され、過負荷が掛かった際、即ち、許容し得ない大きな電流の際には溶解する。   The battery separation unit 10 denoted by reference numeral 10 includes a battery positive electrode 18 and a battery negative electrode 32. The battery separation unit 10 includes a main contactor 20 for the battery positive electrode 18 in the first battery connection line 42. The main contactor 20 includes an electromechanical switch 24, which is also referred to as a main contactor switch of the battery positive electrode 18, and is operated via the main contactor coil 22. A precharge contactor 26 is connected in parallel to the main contactor 20, and a charge resistor 27 exists in series with the precharge contactor 26. The precharge contactor 26 has a separate precharge contactor coil 28, and the precharge contactor coil 28 operates the precharge contactor switch 25. The precharge contactor 26 exists in parallel with the main contactor 20. The current interruption unit 30 exists in the first battery connection line 42. This current interrupting unit 30 is normally implemented as a fuse and melts when overloaded, i.e., an unacceptably large current.

バッテリ負極32から、第2のバッテリ接続線44が延びている。このバッテリ接続線44には、バッテリ負極32のための主接触器34が収容されている。その電気機械スイッチ、即ち、バッテリ負極32のためのその主接触器スイッチ37は、主接触器コイル36によって操作される。第2のバッテリ接続線44には、バッテリ負極32のための主接触器34に対して直列に2つの電流センサ38、40が配置されている。これらは、冗長性の理由から、ホール式電流センサ38と、当該ホール式センサ38に対して直列のシャント式電流センサ40である。   A second battery connection line 44 extends from the battery negative electrode 32. A main contactor 34 for the battery negative electrode 32 is accommodated in the battery connection line 44. The electromechanical switch, that is, the main contactor switch 37 for the battery negative electrode 32 is operated by the main contactor coil 36. In the second battery connection line 44, two current sensors 38 and 40 are arranged in series with respect to the main contactor 34 for the battery negative electrode 32. These are a hall current sensor 38 and a shunt current sensor 40 in series with the hall sensor 38 for reasons of redundancy.

主接触器20又は34が存在する2つのバッテリ接続線42、44は、バッテリ分離ユニット10を通って高電圧パッテリ12へと延びている。主接触器20、34及び事前充電接触器26が、電気機械スイッチとなる。   The two battery connection lines 42, 44 where the main contactor 20 or 34 is present extend through the battery isolation unit 10 to the high voltage battery 12. The main contactors 20, 34 and the precharge contactor 26 are electromechanical switches.

図2から、パルス幅変調による作動による、接触器を操作するコイルへの予熱の基本図が分かる。   FIG. 2 shows a basic diagram of preheating of the coil operating the contactor by operation with pulse width modulation.

図2には、電圧が時間にわたって示されている。吸引電圧Uが、符号50により確認される。符号52で表される吸引パルス幅が、ここでは例えば−30℃の外気温度について選ばれているが、ドライバ段で対応して設定される。一部分54は、本実施例では、総吸引パルス幅52の10%の部分に相当する。図2に係る部分54は、10%〜30%の間で選択されうる。外気温度が−30℃でコイル抵抗が低い際には電流が非常に大きく増大する可能性があるため、パルス幅変調による作動の際のデューティ比は非常に低く選択される。図1に示されたコイル22、28、36の温度が上昇した際には、主接触器20、34及び事前充電接触器26を操作するコイル22、28、36に同じ予熱電力を供給するために、デューティ比が対応して上げられる。最大で流れられる電流が、より高いコイル抵抗によって制限される。 In FIG. 2, the voltage is shown over time. Suction voltage U A is confirmed by the reference numeral 50. The suction pulse width represented by reference numeral 52 is selected here for an outside air temperature of, for example, −30 ° C., but is set correspondingly in the driver stage. The portion 54 corresponds to a portion of 10% of the total suction pulse width 52 in this embodiment. The portion 54 according to FIG. 2 can be selected between 10% and 30%. When the outside air temperature is −30 ° C. and the coil resistance is low, the current may increase greatly, so the duty ratio during operation by pulse width modulation is selected to be very low. When the temperature of the coils 22, 28, 36 shown in FIG. 1 rises, the same preheating power is supplied to the coils 22, 28, 36 that operate the main contactors 20, 34 and the precharge contactor 26. Further, the duty ratio is increased correspondingly. The maximum current that can flow is limited by the higher coil resistance.

図1に示された高電圧バッテリ12のバッテリパックの内部温度についての情報から、以下の関係によってコイル温度Tが得られる。

=T+ΔT

:バッテリパック内部温度
ΔT:保持電流によるコイルの温度上昇
From the high voltage information about the internal temperature of the battery pack of the battery 12 shown in FIG. 1, the coil temperature T S is obtained by the following relationship.

T S = T I + ΔT

T I : Battery pack internal temperature ΔT: Coil temperature rise due to holding current

温度差ΔTは、各主接触器コイル22、36及び事前充電接触器コイル28各々で加熱された電力に基づいて獲得され、この電力は、制御マイクロコントローラには、設定されたデューティ比から分かっている。コイル予熱制御部はコイル温度Tを設定し、従って、電気機械スイッチの接点が、即ちバッテリ正極18のための主接触器スイッチ24及びバッテリ負極32のための主接触器スイッチ37及び事前充電接触器スイッチ25が、辛うじて閉鎖しない急速予熱のための最大可能予熱電力が設定されうる。 The temperature difference ΔT is obtained based on the power heated in each main contactor coil 22, 36 and precharge contactor coil 28, which is known to the control microcontroller from the set duty ratio. Yes. Coil preheating control unit sets the coil temperature T S, therefore, the contacts of the electromechanical switch, i.e. the main contactor switch 37 and pre-charging contacts for the main contactor switch 24 and a battery negative electrode 32 for a battery cathode 18 The maximum possible preheating power can be set for rapid preheating in which the heater switch 25 does not barely close.

最近の最終段ICでは、当該最終段ICが放出する電流と温度とが、マイクロコントローラには分かっている。この情報が存在することによって、このような集積回路は、自身の電力損失を自動的に制御し、制限し、可能な限り吸引デューティ比へと近付け、即ち、電気機械スイッチの接点が、即ちバッテリ正極18のための主接触器スイッチ24及びバッテリ負極32のための主接触器スイッチ37及び事前充電接触器スイッチ25が閉鎖されるデューティ比へと近付けることが可能である。これに対して、この対応する電気機械スイッチを、予熱された主接触器コイル22、予熱された主接触器コイル36、及び/又は、予熱された事前充電接触器コイル28により閉鎖すべき場合には、最終段ICで、これに対応して吸引パルス幅52が設定される。この吸引パルス幅52の大きさは、電気機械スイッチ、即ちバッテリ正極18のための主接触器スイッチ24及びバッテリ負極32のための主接触器スイッチ37及び事前充電接触器スイッチ25を操作する主接触器コイル22及び主接触器コイル36及び事前充電接触器コイル28の各温度について、バッテリ正極18のための主接触器スイッチ24及び/又はバッテリ負極32のための主接触器スイッチ34及び/又は事前充電接触器スイッチ25の安全で迅速な閉鎖が保証されるように、設定される。   In recent final stage ICs, the microcontroller knows the current and temperature emitted by the final stage IC. Due to the presence of this information, such an integrated circuit automatically controls and limits its power loss as close as possible to the suction duty ratio, i.e. the contact of the electromechanical switch, i.e. the battery. It is possible to approach the duty ratio at which the main contactor switch 24 for the positive electrode 18 and the main contactor switch 37 for the battery negative electrode 32 and the precharge contactor switch 25 are closed. In contrast, if this corresponding electromechanical switch is to be closed by the preheated main contactor coil 22, the preheated main contactor coil 36 and / or the preheated precharged contactor coil 28. Is the last stage IC, and the suction pulse width 52 is set correspondingly. The magnitude of this suction pulse width 52 is the main contact that operates the electromechanical switches, namely the main contactor switch 24 for the battery positive electrode 18 and the main contactor switch 37 for the battery negative electrode 32 and the precharge contactor switch 25. For each temperature of the contactor coil 22 and main contactor coil 36 and precharge contactor coil 28, the main contactor switch 24 for the battery positive 18 and / or the main contactor switch 34 for the battery negative 32 and / or pre- It is set to ensure a safe and quick closing of the charging contactor switch 25.

電気機械スイッチが操作された後には、吸引電流を保持電流に下げることが可能であり、その際に、保持電流は、対応する保持デューティ比を介して設定される。保持デューティ比は、図2では符号53が付されている。   After the electromechanical switch is operated, the suction current can be lowered to the holding current, and the holding current is set via the corresponding holding duty ratio. The holding duty ratio is denoted by reference numeral 53 in FIG.

図3との関連で、直流電流信号を用いた主接触器コイル及び事前充電接触器コイルへの予熱について詳細に述べる。   In the context of FIG. 3, the preheating of the main contactor coil and the precharge contactor coil using a direct current signal will be described in detail.

直流電流信号により制御される予熱の場合、例を挙げると、バッテリパック温度T=−30℃で予熱が開始された際には、コイルの加熱が進むにつれて、直流電流がゆっくりと増大する。電流がゆっくりと増大することは、アクティブな(aktiv)制御駆動時に最終段の電力損失が大きいほど、印加される負荷抵抗が小さいことから生じる。このような理由から、主接触器コイル22、36及び事前充電接触器コイル28が温まる時間があるように、予熱電流Iがゆっくりと上げられる。例えば1分後に、主接触器コイル22、36及び事前充電接触器コイル28が温まった際には、予熱電流Iは、最大非吸引電流値58に上げられうる。その際に、最大非吸引電流値58は、図3に符号56で示される吸引電流Iよりも小さい。図3によれば、この電流は、最大非吸引電流値58について、例えば3アンペアに固定される。例えば予熱開始時のT=0℃とT30℃とでは、電気エネルギー貯蔵器の内部温度Tが高いほど、例えばI=3アンペアの最大非吸引電流値58に上がるまで、電流はより険しい勾配で上昇する。本例では、吸引電流Iは4アンペアである。吸引電流についての様々な加熱勾配62、64、66が、図3では、バッテリパンク内部温度T=25℃、T=0℃、T=−30℃について見て取れる。符号60によって予熱時間が示されている。高電圧バッテリ12の様々な温度Tに従って、様々な加熱勾配62、64、66についてそれぞれ異なる予熱時間68、70、72が得られる。様々な予熱時間68、70、72は、図3のグラフでは、t、t、及びtで示される。 In the case of preheating controlled by a direct current signal, for example, when preheating is started at the battery pack temperature T I = −30 ° C., the direct current increases slowly as the heating of the coil proceeds. The slow increase in current results from the smaller load resistance applied as the final stage power loss is greater during active control drive. For this reason, the preheating current I is slowly increased so that there is time for the main contactor coils 22, 36 and precharge contactor coil 28 to warm. For example, after 1 minute, when the main contactor coils 22, 36 and the precharge contactor coil 28 have warmed up, the preheating current I can be raised to a maximum non-attraction current value 58. At that time, the maximum non-attraction current value 58 is smaller than the attracting current I A, indicated at 56 in FIG. 3. According to FIG. 3, this current is fixed at, for example, 3 amps for the maximum non-attraction current value 58. For example = preheating starting T I = 0 ° C. and T I - and a 30 ° C., as the internal temperature T I of the electrical energy storage device is high, for example up to go up to a maximum non-attraction current value 58 of I = 3 amps, the current Rises with a steeper slope. In this example, the suction current I A is 4 amperes. Various heating gradients 62, 64, 66 for the suction current can be seen in FIG. 3 for battery puncture internal temperatures T I = 25 ° C., T I = 0 ° C., T I = −30 ° C. Reference numeral 60 indicates the preheating time. Different preheating times 68, 70, 72 are obtained for different heating gradients 62, 64, 66 according to different temperatures T I of the high voltage battery 12. Various preheating time 68, 70, 72, in the graph of FIG. 3, represented by t 1, t 2, and t 3.

本発明に基づき提案される解決策によって、電気機械スイッチ、即ち、バッテリ正極18のための主接触器スイッチ24、バッテリ負極32のための主接触器スイッチ37、及び/又は、事前充電接触器スイッチ24を操作するコイルへの予熱が提示され、この予熱は、パルス幅変調による作動を介しても、直流電流制御を介しても具現されうる。主接触器コイル22、36及び事前充電接触器コイル28を予熱するための双方の制御方法において、電気自動車又はハイブリッド自動車のドライブトレインにおけるメインバッテリの主接触器コイル22、36及び事前充電接触器コイル28の温度が、特に温度が非常に低い際に可能な限り迅速に上昇し、その際に、使用されるラダー回路(Stufenschaltkreis)の電力損失限界値が遵守されることが実現されうる。   According to the solution proposed in accordance with the invention, an electromechanical switch, i.e. main contactor switch 24 for battery positive electrode 18, main contactor switch 37 for battery negative electrode 32, and / or precharge contactor switch. Preheating is presented to the coil operating 24, and this preheating can be implemented either through operation by pulse width modulation or through direct current control. In both control methods for preheating the main contactor coils 22, 36 and the precharge contactor coil 28, the main contactor coils 22, 36 and the precharge contactor coil of the main battery in the drive train of an electric vehicle or a hybrid vehicle It can be realized that the temperature of 28 rises as quickly as possible, especially when the temperature is very low, in which case the power loss limit value of the ladder circuit used is being followed.

図4から、バッテリ制御装置による電気機械スイッチの切り替え制御部の概略的な構成が見て取れる。   From FIG. 4, a schematic configuration of the switching control unit of the electromechanical switch by the battery control device can be seen.

図4に概略的に記載されるバッテリ制御装置80は、高電圧バッテリ12で未処理のタスクを調整する。高電圧バッテリ12は、直列回路82において相互接続された複数の個別バッテリセル14を含む。バッテリ制御装置80のタスクは、バッテリセル電圧及びバッテリセル温度の検出、SOC(State of Charge、充電状態)及びSOH(State of Health、劣化状態)の計算、及び、例えば絶縁測定等の安全機能の実現にある。さらに、バッテリ制御装置80は、ハイブリッド自動車(HEV)であれ、プラグイン(Plug−In)ハイブリッド自動車(PHEV)であれ、電気自動車(EV)であれ、車両へのインタフェースを提供する。さらに、バッテリ制御装置80は、バッテリ正極18のための主接触器スイッチ24と、バッテリ負極32のための主接触器スイッチ37と、の形態による既に図1で示された電気機械スイッチを制御する。高電圧バッテリ12が安全な状態にあり、車両が高電圧バッテリ12の接続を要求する場合には、図4に示される中間回路84が高電圧バッテリ12の電圧と同じ電圧レベルに置かれた後で、双方の主接触器20又は34が接続される。   The battery controller 80 schematically described in FIG. 4 coordinates unprocessed tasks with the high voltage battery 12. High voltage battery 12 includes a plurality of individual battery cells 14 interconnected in series circuit 82. The task of the battery controller 80 is to detect battery cell voltage and battery cell temperature, calculate SOC (State of Charge) and SOH (State of Health), and safety functions such as insulation measurement. In realization. Further, the battery control device 80 provides an interface to the vehicle, whether it is a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), or an electric vehicle (EV). Furthermore, the battery control device 80 controls the electromechanical switch already shown in FIG. 1 in the form of a main contactor switch 24 for the battery positive electrode 18 and a main contactor switch 37 for the battery negative electrode 32. . If the high voltage battery 12 is in a safe state and the vehicle requires connection of the high voltage battery 12, after the intermediate circuit 84 shown in FIG. 4 is placed at the same voltage level as the voltage of the high voltage battery 12 Thus, both main contactors 20 or 34 are connected.

さらに図4から、中間回路84が少なくとも1つのコンデンサ86を備えることが分かる。ハイ側(High−Side)最終段又はロー側(Low−Side)最終段の設計は、通常では、2つの主接触器20又は34を操作するために必要な最大所要吸引電流を考慮して行われる。主接触器コイル22又は36のコイル抵抗は低温時には最低値になるため、ハイ側最終段又はロー側最終段は、この低温時の最大吸引電流に対して大きさが決定される。−40℃の低温時の吸引電流の増大は、室温時に対して40%までである。この場合には必要な吸引電流を伝達できずより小さく設計されうる最終段を使用しうるために、主接触器コイル22又は36が、先に図1〜図3との関連で記載したように予熱される。このことは、先に記載したパルス幅変調方法の枠組みにおいて、又は、温度に依存し選択された加熱勾配62、64、66による、周囲温度に依存した主接触器コイル22、36への予熱によっても行われうる(図3参照)。主接触器コイル22、36は、先に記載した加熱制御を介して所定の抵抗値に置かれる。このために必要な加熱要素は、別体で、主接触器20又は34に組み込まれてもよく、又は、主接触器コイル22又は36自体が加熱要素として利用されてもよい。定められた加熱段階を終了し、双方の主接触器20又は34の吸引段階を開始するために、特に、制御部が、主接触器コイル22又は36の、温度に依存する抵抗値を監視する。加熱段階の間は、主接触器コイル22又は36は、定電流源88(図5参照)が提供する定電流によって電力供給される。定電流源88が伝達する電流値は、双方の接触器20又は34の吸引電流の値を下回るように選択される。 It can further be seen from FIG. 4 that the intermediate circuit 84 comprises at least one capacitor 86. The design of the high-side (Low-Side) final stage or the low-side (Low-Side) final stage is usually performed in consideration of the maximum required suction current required to operate the two main contactors 20 or 34. Is called. Since the coil resistance of the main contactor coil 22 or 36 has a minimum value at a low temperature, the magnitude of the high-side final stage or the low-side final stage is determined with respect to the maximum suction current at the low temperature. The increase in attraction current at a low temperature of −40 ° C. is up to 40% with respect to the room temperature. In this case, the main contactor coil 22 or 36 may be used as previously described in connection with FIGS. 1 to 3 in order to be able to use a final stage that cannot carry the required suction current and can be designed to be smaller. Preheated. This means that in the framework of the pulse width modulation method described above, or by heating ramp 62, 64, 66, which are selected depending on the temperature, pre-heating to the main contactor coil 22 and 36 dependent on the ambient temperature (See FIG. 3). The main contactor coils 22, 36 are placed at a predetermined resistance value through the heating control described above. The heating elements necessary for this may be separate and incorporated into the main contactor 20 or 34, or the main contactor coil 22 or 36 itself may be utilized as the heating element. In order to end the defined heating phase and start the suction phase of both main contactors 20 or 34, in particular, the control unit monitors the temperature-dependent resistance value of the main contactor coil 22 or 36. . During the heating phase, the main contactor coil 22 or 36 is powered by a constant current provided by a constant current source 88 (see FIG. 5). The current value transmitted by the constant current source 88 is selected to be lower than the value of the suction current of both contactors 20 or 34.

図5から、主接触器コイル22が定電流源88を介して予熱される回路が分かる。スイッチ90が、その際に閉鎖されている。定電流源88により伝達される電流は、バッテリ正極18のための主接触器20が確実に接続されないように、即ち、定電流源88により伝達される電流が主接触器20の吸引電流56を下回るように、選択される。コイル抵抗により生じる電力損失によって、主接触器コイル22が加熱される。主接触器コイル22の温度が上がるにつれて、主接触器コイル22のコイル抵抗が上がる。主接触器コイル22で、温度に依存する電圧I・RSpule(コイル)が測定可能である。比較器92によって、主接触器コイル22で降下した上記電圧が、基準電圧94と比較される。閾値を越える際には、比較器92の出力口のみならずトリガ98の入力口と接続された結合ユニット96を介して、スイッチ90が開放される。結合ユニット96(ゲート)を介して、スイッチ90の開放時又は閉鎖時のトリガ信号が互いに結合される。加熱過程のための準備時間を獲得するために、加熱段階は既に、例えば運転席ドアの開放又は車両の開錠のような外部のトリガ事象によって開始されうる。ヒステリシス機能を有する比較器92が、結合ユニット96を介して、ロー(LOw)レベルの印加によって加熱プロセスを終了する。ローレベルとは、特に、反転された出力信号である。双方の主接触器20又は34のための吸引段階が、この瞬間に開始されうる。 From FIG. 5, it can be seen that the main contactor coil 22 is preheated via a constant current source 88. The switch 90 is then closed. The current transmitted by the constant current source 88 prevents the main contactor 20 for the battery positive electrode 18 from being securely connected, that is, the current transmitted by the constant current source 88 causes the suction current 56 of the main contactor 20 to be reduced. Selected to be below. The main contactor coil 22 is heated by the power loss caused by the coil resistance. As the temperature of the main contactor coil 22 increases, the coil resistance of the main contactor coil 22 increases. With the main contactor coil 22, a temperature dependent voltage I 1 · R Spool (coil) can be measured. The voltage dropped by the main contactor coil 22 is compared with the reference voltage 94 by the comparator 92. When the threshold value is exceeded, the switch 90 is opened via the coupling unit 96 connected not only to the output port of the comparator 92 but also to the input port of the trigger 98. Via the coupling unit 96 (gate), trigger signals when the switch 90 is opened or closed are coupled to each other. In order to obtain the preparation time for the heating process, the heating phase can already be initiated by an external triggering event, for example opening the driver's door or unlocking the vehicle. A comparator 92 having a hysteresis function terminates the heating process by applying a low (LOw) level via the coupling unit 96. Low level is in particular an inverted output signal. The suction phase for both main contactors 20 or 34 can be started at this moment.

図6には、ハイ(High)側スイッチ100とロー(Low)側スイッチ102とが組み合わさった回路が示されている。   FIG. 6 shows a circuit in which a high-side switch 100 and a low-side switch 102 are combined.

図6は、ロー側スイッチ102が活動化されてスイッチ90が閉鎖されることで、主接触器コイル22が予熱されうることを示している。この予熱が、コイル電圧の対応する測定により終了されている場合には、スイッチ90は再び開放され、ハイ(High)側最終段は、ハイ(High)側スイッチ100を介在して、供給電圧+Uを介して、主接触器コイル22を操作するための吸引電流を伝達する。符号104及び106によって、ハイ側スイッチ100又はロー側スイッチ102の信号タップが示される。 FIG. 6 shows that the main contactor coil 22 can be preheated by activating the low side switch 102 and closing the switch 90. If this preheating has been terminated by a corresponding measurement of the coil voltage, the switch 90 is opened again, and the high-side final stage is interposed between the supply voltage + U via the high-side switch 100. Via B , an attraction current for operating the main contactor coil 22 is transmitted. Reference numerals 104 and 106 indicate signal taps of the high-side switch 100 or the low-side switch 102.

図6で示される定電流源88は、当該定電流源88が主接触器コイル22又は36のための予熱電流の他に、主接触器コイル22又は36の保持電流も伝達できるように、構成されうる。従って、定電流源88は、吸引電流56による吸引段階の終了後に、保持電流の提供にも対処する。その際に、スイッチ24、25、37のうちの1つを保持するために必要な保持電流は、吸引電流よりも小さい。ヒステリシス機能を有する比較器92、及び、結合ユニット96は、マイクロコントローラ、AD変換器、又は、比較可能なアナログ/デジタル回路によっても実現されうる。   The constant current source 88 shown in FIG. 6 is configured such that the constant current source 88 can transmit the holding current of the main contactor coil 22 or 36 in addition to the preheating current for the main contactor coil 22 or 36. Can be done. Thus, the constant current source 88 also addresses the provision of a holding current after the end of the attraction phase with the attraction current 56. At that time, the holding current required to hold one of the switches 24, 25, 37 is smaller than the attraction current. The comparator 92 having a hysteresis function and the combining unit 96 can also be realized by a microcontroller, an AD converter, or a comparable analog / digital circuit.

本発明は、本明細書に記載される実施例、及び、当該実施例で強調される観点には限定されない。むしろ、特許請求項の範囲により示される範囲によって、当業者の業の枠組みに入る複数の変形例が可能である。
The invention is not limited to the examples described herein and the aspects emphasized in the examples. Rather, the scope indicated by the scope of the claims allows for multiple variations that fall within the framework of the work of those skilled in the art.

Claims (13)

車両の電気系統を駆動する方法であって、前記車両は、バッテリ分離ユニット(10)を備えたバッテリシステムを有し、前記バッテリ分離ユニット(10)によって、高電圧バッテリ(12)が、バッテリ正極(18)及び/又はバッテリ負極(32)から分離可能であり、又は、双方のバッテリ極(18、32)で前記電気系統から分離可能であり、
前記方法は、以下の処理工程、即ち、
a)少なくとも1つの電気機械スイッチ(20、34)を操作する主接触器コイル及び/又は事前充電接触器コイル(22、28、36)が予熱され、
b)パルス幅変調−信号制御の場合には、吸引パルス幅(52)の一部分(54)が設定され、前記吸引パルス幅(52)の前記一部分(54)を用いた前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)の作動によって前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)への予熱が行われ、
又は、
c)直流電流信号による作動の場合には、温度に依存して選択された加熱勾配(62、64、66)による、周囲温度に依存した前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)への予熱が行われる、
方法。
A method for driving an electric system of a vehicle, wherein the vehicle includes a battery system including a battery separation unit (10), and the battery separation unit (10) causes a high voltage battery (12) to be connected to a battery positive electrode. (18) and / or can be separated from the battery negative electrode (32), or can be separated from the electrical system at both battery electrodes (18, 32),
The method comprises the following processing steps:
a) the main contactor coil and / or precharge contactor coil (22, 28, 36) operating at least one electromechanical switch (20, 34) is preheated;
b) In the case of pulse width modulation-signal control, a portion (54) of the suction pulse width (52) is set, the main contactor coil using the portion (54) of the suction pulse width (52) and And / or activation of the precharge contactor coil (22, 28, 36) preheats the main contactor coil and / or the precharge contactor coil (22, 28, 36);
Or
c) In the case of operation with a direct current signal, the main contactor coil and / or the precharging contactor depending on the ambient temperature, with a heating gradient (62, 64, 66) selected depending on the temperature Preheating of the coils (22, 28, 36) is performed.
Method.
前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)の温度Tは、以下の関係、即ち、

=T+ΔT
但し、
:前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)の温度、
:前記高電圧バッテリ(12)の内部温度、
ΔT:予熱電流による温度上昇、

に従って決定されることを特徴とする、請求項1に記載の方法。
The temperature T S of the main contactor coil and / or the precharge contactor coil (22, 28, 36) has the following relationship:

T S = T I + ΔT
However,
T S : the temperature of the main contactor coil and / or the precharge contactor coil (22, 28, 36),
T I : Internal temperature of the high voltage battery (12),
ΔT: temperature rise due to preheating current,

The method according to claim 1, wherein the method is determined according to:
最終段ICの電力損失は、最大許容電力損失に制限され、デューティ比は、前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)が前記電気機械スイッチ(20、34)を閉鎖する際の、前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)の吸引デューティ比を下回ることを特徴とする、請求項1〜2のいずれか1項に記載の方法。   The power loss of the final stage IC is limited to the maximum allowable power loss, and the duty ratio is such that the main contactor coil and / or the precharge contactor coil (22, 28, 36) is the electromechanical switch (20, 34. The suction duty ratio of the main contactor coil and / or the precharge contactor coil (22, 28, 36) when closing 34) is less than the suction duty ratio of any of claims 1-2 2. The method according to item 1. 処理工程c)に従って、予熱開始以降は、コイル加熱が進むにつれて増大する直流電流Iが流れることを特徴とする、請求項1又2に記載の方法。   3. A method according to claim 1 or 2, characterized in that, according to process step c), after the start of preheating, a direct current I which increases as coil heating proceeds flows. 前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)への前記加熱に従って、前記直流電流Iは、最大非吸引電流値(58)まで上昇し、前記直流電流Iは、前記最大非吸引電流値(58)に制限されたまま保たれることを特徴とする、請求項4に記載の方法。   In accordance with the heating to the main contactor coil and / or the precharge contactor coil (22, 28, 36), the direct current I rises to a maximum non-attraction current value (58) and the direct current I Is kept limited to said maximum non-attraction current value (58). 前記高電圧バッテリ(12)の内部温度Tに従って、前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)のための前記加熱勾配(62、64、66)が設定されることを特徴とする、請求項1〜5のいずれか1項に記載の方法。 According to the internal temperature T I of the high-voltage battery (12), said heating gradient for the main contactor coil and / or the precharge contactor coil (22, 28, 36) (62, 64, 66) is The method according to claim 1, wherein the method is set. 前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)の電力損失が削減され、前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)の温度は、制限されたまま保たれることを特徴とする、請求項1〜6のいずれか1項に記載の方法。 The main contactor coil and / or power loss of the precharge contactor coil (22, 28, 36) is reduced, the main contactor coil and / or the precharge contactor coil (22, 28, The method according to any one of claims 1 to 6, characterized in that the temperature of 36) is kept restricted. 前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)を加熱するための予熱電流、及び、保持電流は、定電流源(88)によって提供されることを特徴とする、請求項1〜7のいずれか1項に記載の方法。   A preheating current and a holding current for heating the main contactor coil and / or the precharge contactor coil (22, 28, 36) are provided by a constant current source (88). The method according to any one of claims 1 to 7. 前記主接触器コイル及び/又は前記事前充電接触器コイル(22、28、36)で降下した電圧が、比較器(92)で基準電圧(94)と比較され、前記比較器(92)の前記比較の結果に従って、定電流源(88)を作動又は停止させるためのスイッチ(90)が操作されることを特徴とする、請求項1〜8のいずれか1項に記載の方法。 The voltage dropped in the main contactor coil and / or the precharge contactor coil (22, 28, 36) is compared with a reference voltage (94) in a comparator (92), and the comparator (92) 9. A method according to any one of the preceding claims, characterized in that a switch (90) for activating or deactivating a constant current source (88) is operated according to the result of the comparison. ハイブリッド自動車又は電気自動車の電気回路網を駆動する、請求項1〜9のいずれか1項に記載の方法。   The method according to any one of claims 1 to 9, wherein an electric circuit network of a hybrid vehicle or an electric vehicle is driven. b)パルス幅変調−信号制御の場合には、前記吸引パルス幅(52)の10%〜30%が設定される、請求項1〜10のいずれか1項に記載の方法。 The method according to claim 1, wherein in the case of b) pulse width modulation—signal control, 10% to 30% of the suction pulse width (52) is set. ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)、又は電気自動車(EV)の高電圧バッテリ(12)を駆動するための、請求項1〜11のいずれか1項に記載の方法。   12. A method according to any one of the preceding claims, for driving a high voltage battery (12) of a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV) or an electric vehicle (EV). ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)、又は電気自動車(EV)のメインバッテリを駆動するための、請求項12に記載の方法。   The method according to claim 12, for driving a main battery of a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV) or an electric vehicle (EV).
JP2016560893A 2014-09-23 2015-08-05 Pre-heated electric actuator Active JP6204612B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014219211.0 2014-09-23
DE102014219211.0A DE102014219211A1 (en) 2014-09-23 2014-09-23 Electric actuator with preheating
PCT/EP2015/068072 WO2016045856A1 (en) 2014-09-23 2015-08-05 Electric actuator with pre-heating

Publications (2)

Publication Number Publication Date
JP2017513200A JP2017513200A (en) 2017-05-25
JP6204612B2 true JP6204612B2 (en) 2017-09-27

Family

ID=53785645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016560893A Active JP6204612B2 (en) 2014-09-23 2015-08-05 Pre-heated electric actuator

Country Status (6)

Country Link
US (1) US20170302091A1 (en)
JP (1) JP6204612B2 (en)
KR (1) KR101755210B1 (en)
CN (1) CN105658466B (en)
DE (1) DE102014219211A1 (en)
WO (1) WO2016045856A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666058B2 (en) * 2015-06-04 2020-05-26 Bloom Energy Corporation Intergrated fuel cell and energy storage systems and method of operating thereof
DE102015121264A1 (en) * 2015-12-07 2017-06-08 Epcos Ag Contactor and method for functional testing of a contactor
KR102642061B1 (en) * 2016-08-16 2024-02-28 엘지이노텍 주식회사 Apparatus for driving relay of electric vehicle
DE102016118051A1 (en) * 2016-09-23 2018-03-29 Eaton Electrical Ip Gmbh & Co. Kg motor starters
PE20201086A1 (en) 2018-03-22 2020-10-22 Tae Tech Inc SYSTEMS AND METHODS FOR POWER MANAGEMENT AND CONTROL
EP3582247B1 (en) * 2018-06-15 2022-02-23 Samsung SDI Co., Ltd. Relay
US11251699B2 (en) 2018-06-15 2022-02-15 Samsung Sdi Co., Ltd. Relay and battery system including the same
CN110588435A (en) * 2019-09-20 2019-12-20 宝能(广州)汽车研究院有限公司 High-voltage control system of electric automobile and high-voltage power-on control method thereof
CN112721639B (en) * 2019-10-28 2022-12-13 上海度普新能源科技有限公司 Relay control method and device
KR20210071601A (en) * 2019-12-06 2021-06-16 주식회사 엘지화학 Apparatus and method for current interrupyion using a disconnecting switch
FR3112250B1 (en) * 2020-07-06 2022-09-09 Alstom Transp Tech Power supply system for an electric vehicle and corresponding electric vehicle
MX2023003584A (en) * 2020-09-28 2023-06-20 Tae Tech Inc Pulsed charging and heating techniques for energy sources.
CN113852277B (en) * 2021-08-18 2023-11-07 中国北方车辆研究所 High-robustness DC/DC converter
CN113937848A (en) * 2021-09-27 2022-01-14 东集技术股份有限公司 Battery charging control device and battery charging control method
FR3129344B1 (en) * 2021-11-19 2023-12-15 Psa Automobiles Sa METHOD FOR MANAGING THERMAL RUNaway OF A BATTERY MODULE
DE102022107318B4 (en) 2022-03-29 2023-12-28 Webasto SE Method for operating a battery and a battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392058A1 (en) * 1989-04-13 1990-10-17 Siemens Aktiengesellschaft Circuit arrangement for drive of at least one electromagnetic relay
JP3362305B2 (en) * 1998-09-18 2003-01-07 三明電機株式会社 Method of preventing freezing of electromagnetic lock device
DE102005002381A1 (en) * 2005-01-18 2006-08-10 Beru Ag Method for operating a heating device for a motor vehicle
JP4752476B2 (en) * 2005-12-09 2011-08-17 日産自動車株式会社 Freezing release device and freezing release method for electromagnetic relay for vehicle
CN101039457A (en) * 2006-03-15 2007-09-19 华硕电脑股份有限公司 Method and apparatus for acquiring point-to-multipoint multimedia broadcast and multicast service information
KR100802910B1 (en) 2007-03-05 2008-02-13 엘에스산전 주식회사 Coil-driving apparatus of electronic magnetic contactor
FR2925158B1 (en) * 2007-12-12 2011-07-01 Ulis DEVICE FOR THE DETECTION OF ELECTROMAGNETIC RADIATION COMPRISING A RESISTIVE IMAGING BOLOMETER, SYSTEM COMPRISING A MATRIX OF SUCH DEVICES AND METHOD FOR READING AN IMAGING BOLOMETER OF SUCH A SYSTEM
US8080973B2 (en) * 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
WO2011119669A2 (en) 2010-03-23 2011-09-29 A123 Systems, Inc. System and method for controlling a battery pack output contactor
JP5226753B2 (en) * 2010-10-04 2013-07-03 レノボ・シンガポール・プライベート・リミテッド Charging system and charging method
DE102010062249A1 (en) * 2010-12-01 2012-06-21 Zf Friedrichshafen Ag Apparatus for use in an electric drive system and method of operating such
JP6081128B2 (en) * 2012-10-10 2017-02-15 三洋電機株式会社 Power supply device, vehicle including the same, and power storage device
DE102013015206B3 (en) * 2013-09-13 2014-07-24 Audi Ag Car with insulation monitoring for a high-voltage vehicle electrical system
US9673617B2 (en) * 2014-02-11 2017-06-06 Te Connectivity Corporation Pre-charge circuit for an electromechanical relay

Also Published As

Publication number Publication date
CN105658466B (en) 2017-09-12
JP2017513200A (en) 2017-05-25
WO2016045856A1 (en) 2016-03-31
CN105658466A (en) 2016-06-08
DE102014219211A1 (en) 2016-03-24
US20170302091A1 (en) 2017-10-19
KR20160070845A (en) 2016-06-20
KR101755210B1 (en) 2017-07-07

Similar Documents

Publication Publication Date Title
JP6204612B2 (en) Pre-heated electric actuator
JP6647912B2 (en) Vehicle power control method and system for jump start
KR102311510B1 (en) Battery pack
US9573474B2 (en) Capacitor precharging and capacitance/resistance measurement in electric vehicle drive system
JP5311670B2 (en) Semiconductor precharge module
US11396235B2 (en) Traction network and method for operating a traction network of an electrically-driven transportation vehicle in the event of a short circuit
KR101831818B1 (en) Contactor control system
US20130193920A1 (en) Apparatus and method of dual use resistor for battery disconnect
EP2189734A2 (en) Heater controller and method for operating a heater controller
JP2021036443A (en) Control system of switching dc-dc voltage converter to safe operation mode from boost operation mode
KR20180066244A (en) Control system to switch DC-DC voltage converter from buck mode to safe mode
CN106537713A (en) Apparatus to provide reverse polarity protection
CN111971870B (en) Auxiliary power supply control device for vehicle and auxiliary power supply device for vehicle
US20210194242A1 (en) Hazardous voltage pre-charging and discharging system and method
JP2017017642A (en) Drive device and converter unit
JP5764680B2 (en) Inrush current prevention device
CN109792203B (en) Control system for converting a DC-DC voltage converter from a buck mode of operation to a safe mode of operation
TWI678860B (en) Power control device and control method for power control device
CN111146769A (en) Power circuit protection device
EP3038226B1 (en) System and method for supplying electric power
WO2024105905A1 (en) Power feed control device
JP2023548835A (en) Arc-extinguishing precharge circuit
KR20110126154A (en) Solid state pre-charge module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170831

R150 Certificate of patent or registration of utility model

Ref document number: 6204612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250