JP6201928B2 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP6201928B2
JP6201928B2 JP2014158765A JP2014158765A JP6201928B2 JP 6201928 B2 JP6201928 B2 JP 6201928B2 JP 2014158765 A JP2014158765 A JP 2014158765A JP 2014158765 A JP2014158765 A JP 2014158765A JP 6201928 B2 JP6201928 B2 JP 6201928B2
Authority
JP
Japan
Prior art keywords
collision
vehicle
host vehicle
control
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014158765A
Other languages
Japanese (ja)
Other versions
JP2016034814A (en
Inventor
勤 持田
勤 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014158765A priority Critical patent/JP6201928B2/en
Priority to PCT/JP2015/071570 priority patent/WO2016021469A1/en
Publication of JP2016034814A publication Critical patent/JP2016034814A/en
Application granted granted Critical
Publication of JP6201928B2 publication Critical patent/JP6201928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/14Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to accident or emergency, e.g. deceleration, tilt of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/58Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0006Lateral collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0027Post collision measures, e.g. notifying emergency services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/024Collision mitigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W2030/082Vehicle operation after collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、側面で衝突が発生した車両の衝突後の車両挙動制御に係る車両制御装置に関する。   The present invention relates to a vehicle control device related to vehicle behavior control after a collision of a vehicle in which a collision has occurred on a side surface.

従来、車両の衝突時には、エアバッグの展開等の従来の乗員被害軽減技術によって、乗員の被害の軽減を図っている。しかしながら、その乗員の被害の軽減効果については、まだまだ改善の余地がある。例えば、下記の特許文献1及び2には、側面衝突された車両の車両挙動制御について開示されている。特許文献1の技術では、自車両と障害物(他車両)のそれぞれの速度と進行方向とに基づいて、自車両に対する障害物の側面衝突(側突)の予測位置と予測時刻とを求め、側突後の自車両の車体加速度が所定値以下になるまでの間、自車両における反側突側で、かつ、側突の予測位置から伸びる側突荷重入力方向線から遠い方の車輪の制動力を他の3つの車輪の制動力に比して高くなるよう制御する。これにより、この技術が適用された車両においては、障害物の衝突後、その制動力が高くなった車輪を中心にして回転運動が起こる。この特許文献1の技術では、このような制御によって自車両の車体に加わる障害物からの衝突荷重を軽減し、自車両の乗員の被害の軽減を図る。特許文献2の技術では、自車両に対する他車両の衝突部位と衝突角度を推定し、そのそれぞれの推定値に基づいて、他車両が自車両を突き抜けたと仮定した場合における突抜部位を推定する。そして、この技術では、その衝突部位と突抜部位の推定値に基づいて、衝突後のブレーキ制御を行う。尚、下記の特許文献3には、自車両の後方からの衝突が予測された場合、衝突によって自車両が前進したときに、自車両の周辺の状況に基づいて危険を回避する回避方向に自車両が進行するよう操舵角を制御する、という技術が開示されている。   Conventionally, in the event of a vehicle collision, conventional occupant damage mitigation techniques such as airbag deployment have been used to reduce occupant damage. However, there is still room for improvement in reducing the passenger damage. For example, Patent Documents 1 and 2 below disclose vehicle behavior control of a vehicle that has undergone a side collision. In the technique of Patent Document 1, the predicted position and predicted time of the side collision (side collision) of the obstacle with respect to the own vehicle are obtained based on the speed and the traveling direction of the own vehicle and the obstacle (other vehicle), Until the vehicle acceleration of the host vehicle after the side impact falls below a predetermined value, the wheel on the opposite side of the host vehicle and the wheel farther from the side impact load input direction line extending from the predicted side impact position is controlled. The power is controlled to be higher than the braking force of the other three wheels. As a result, in a vehicle to which this technology is applied, after an obstacle collides, a rotational motion occurs around the wheel whose braking force is increased. With the technique of this patent document 1, the collision load from the obstacle added to the vehicle body of the own vehicle by such control is reduced, and the damage of the passenger of the own vehicle is reduced. In the technique of Patent Document 2, the collision part and the collision angle of the other vehicle with respect to the own vehicle are estimated, and the punching part when the other vehicle has passed through the own vehicle is estimated based on the respective estimated values. In this technique, the brake control after the collision is performed based on the estimated values of the collision part and the punching part. In Patent Document 3 below, when a collision from the rear of the host vehicle is predicted, when the host vehicle moves forward due to the collision, the vehicle automatically moves in an avoidance direction to avoid danger based on the situation around the host vehicle. A technique of controlling a steering angle so that a vehicle travels is disclosed.

特開2005−254945号公報JP 2005-254945 A 特開2009−208560号公報JP 2009-208560 A 特開2007−190977号公報JP 2007-190977 A

ところで、側面に衝突された自車両の乗員の被害の大きさは、その衝突位置によって異なる。しかしながら、特許文献1の技術では、自車両の側面で衝突が起きた場合、その衝突位置に拘わらず、一様に自車両を回転させる。このため、乗員の被害の小さい場所で衝突が発生した場合には、自車両を回転させることによって、却って自車両の二次衝突を誘発してしまう可能性がある。   By the way, the magnitude of damage to the occupant of the own vehicle that has collided with the side surface differs depending on the collision position. However, in the technique of Patent Document 1, when a collision occurs on the side surface of the host vehicle, the host vehicle is uniformly rotated regardless of the collision position. For this reason, when a collision occurs in a place where the damage to the occupant is small, there is a possibility that a secondary collision of the own vehicle may be induced by rotating the own vehicle.

そこで、本発明は、側面に衝突された車両の乗員の被害を軽減しつつ、その車両の二次衝突の発生を抑えることが可能な車両制御装置を提供することを、その目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle control device capable of reducing the occurrence of a secondary collision of a vehicle while reducing the damage to a vehicle occupant colliding with a side surface.

上記目的を達成する為、本発明は、自車両の周辺を監視し、該周辺の監視対象物体を検出する周辺監視装置と、前記監視対象物体と自車両との衝突を検知する衝突検知装置と、自車両の挙動を制御する車両挙動制御装置と、前記監視対象物体と自車両との衝突が検知された場合、衝突後の自車両の車両挙動制御を実施する制御部と、を備え、前記制御部は、自車両の側面への前記監視対象物体の衝突を検知し、その衝突位置が自車両の側面の内で相対的に自車両の乗員の被害が小さい被害軽減部位とは異なる場所の場合、前記衝突後の自車両の車両挙動制御として、衝突時における前記監視対象物体からの衝突エネルギを逃がす方向に自車両を回転させる回転促進制御を実施し、前記衝突位置が自車両の側面の内の前記被害軽減部位の場合、前記衝突後の自車両の車両挙動制御として、前記回転促進制御を禁止することを特徴としている。   In order to achieve the above object, the present invention relates to a periphery monitoring device that monitors the periphery of a host vehicle and detects a surrounding monitoring target object, and a collision detection device that detects a collision between the monitoring target object and the host vehicle. A vehicle behavior control device that controls the behavior of the host vehicle, and a control unit that controls the vehicle behavior of the host vehicle after the collision when a collision between the monitored object and the host vehicle is detected, and The control unit detects a collision of the object to be monitored with the side surface of the host vehicle, and the position of the collision is different from a damage reducing part within the side surface of the host vehicle where damage to the passenger of the host vehicle is relatively small. In this case, as the vehicle behavior control of the host vehicle after the collision, rotation promotion control for rotating the host vehicle in a direction to release the collision energy from the monitoring target object at the time of the collision is performed. In the case of the damage reduction part in Serial as the vehicle behavior control of the vehicle after the collision, is characterized by prohibiting the rotation acceleration control.

ここで、前記制御部は、過剰な自車両の回転が起こらない低い車速域のときに前記回転促進制御を実施することが望ましい。   Here, it is desirable that the control unit performs the rotation promotion control in a low vehicle speed range where excessive rotation of the host vehicle does not occur.

また、前記制御部は、前記衝突位置が自車両の側面の内の前記被害軽減部位以外の場所で、かつ、その衝突荷重の入力方向が自車両の進行方向に対して直交している場合又は自車両の進行方向に対して自車両の進行を妨げる斜め方向になっている場合、衝突時の自車両に車両制動力による減速度が作用しているのであれば、前記衝突後の自車両の車両挙動制御として、衝突後、所定時間の間だけ自車両の減速度を抑制してから車両制動力を増加させることが望ましい。   Further, the control unit, when the collision position is a place other than the damage mitigation site in the side surface of the host vehicle, and the input direction of the collision load is orthogonal to the traveling direction of the host vehicle or If the vehicle is in an oblique direction that obstructs the vehicle's traveling direction relative to the traveling direction of the vehicle, if deceleration by the vehicle braking force is acting on the vehicle during the collision, As the vehicle behavior control, it is desirable to increase the vehicle braking force after suppressing the deceleration of the host vehicle for a predetermined time after the collision.

また、前記制御部は、前記衝突位置が自車両の側面の内の前記被害軽減部位以外の場所で、かつ、その衝突荷重の入力方向が自車両の進行方向に対して自車両の進行を促進させる斜め方向になっている場合、前記衝突後の自車両の車両挙動制御として、衝突後直ぐに車両制動力を増加させることが望ましい。   Further, the control unit promotes the progress of the own vehicle with respect to the traveling direction of the own vehicle when the collision position is a place other than the damage reducing portion in the side surface of the own vehicle and the input direction of the collision load is When the vehicle is in an oblique direction, it is desirable to increase the vehicle braking force immediately after the collision as the vehicle behavior control of the host vehicle after the collision.

また、前記制御部は、前記監視対象物体と自車両とが自車両の側面で衝突する可能性がある場合、自車両に対する前記監視対象物体の衝突位置と衝突荷重の入力方向とを衝突前に推定し、前記制御部は、前記監視対象物体と自車両の側面との衝突を検知したが、衝突後に自車両に対する前記監視対象物体の衝突位置と衝突荷重の入力方向を特定できなかった場合、衝突前に推定された前記衝突位置と前記衝突荷重の入力方向とに応じた前記衝突後の自車両の車両挙動制御を実施することが望ましい。   In addition, when there is a possibility that the monitoring target object and the host vehicle collide on the side surface of the host vehicle, the control unit sets the collision position of the monitoring target object with respect to the host vehicle and the input direction of the collision load before the collision. Estimating, the control unit has detected a collision between the monitoring target object and the side surface of the host vehicle, but when the collision position of the monitoring target object with respect to the host vehicle and the input direction of the collision load could not be specified after the collision, It is desirable to perform vehicle behavior control of the host vehicle after the collision according to the collision position estimated before the collision and the input direction of the collision load.

また、前記制御部は、前記監視対象物体と自車両とが自車両の側面で衝突する可能性がある場合、自車両に対する前記監視対象物体の衝突位置と衝突荷重の入力方向とを衝突前に推定し、該推定された衝突位置と衝突荷重の入力方向に基づいて前記衝突後の自車両の車両挙動制御の制御形態を衝突前に推定し、前記制御部は、該推定した車両挙動制御を衝突時に応答性良く実施できるように、該車両挙動制御の事前準備を衝突前に実施することが望ましい。   In addition, when there is a possibility that the monitoring target object and the host vehicle collide on the side surface of the host vehicle, the control unit sets the collision position of the monitoring target object with respect to the host vehicle and the input direction of the collision load before the collision. And estimating a control mode of vehicle behavior control of the host vehicle after the collision based on the estimated collision position and the input direction of the collision load before the collision, and the control unit performs the estimated vehicle behavior control. It is desirable to prepare the vehicle behavior control before the collision so that the vehicle behavior control can be performed with good responsiveness at the time of the collision.

また、前記回転促進制御における自車両の目標ヨーモーメントは、前記監視対象物体の車速と質量又は重量に応じた当該監視対象物体からの衝突エネルギに基づいて設定することが望ましい。   The target yaw moment of the host vehicle in the rotation promotion control is preferably set based on the collision energy from the monitoring target object according to the vehicle speed and the mass or weight of the monitoring target object.

本発明に係る車両制御装置は、被害軽減部位以外の場所での衝突を検知した場合に回転促進制御を実施することによって、監視対象物体からの衝突荷重(衝突エネルギ)が減少するので、自車両の乗員に作用する衝突荷重に応じた力も小さくなり、その乗員の被害を軽減することができる。更に、この車両制御装置は、回転促進制御によって、衝突したその場(例えば走行中の車線上)に自車両が留まりやすくなるので、衝突直後に運転者が自車両を安全に操作できない状況下であっても、他の障害物との二次衝突を回避しやすく、自車両の乗員の被害を軽減することができる。また、この車両制御装置は、被害軽減部位での衝突を検知した場合に回転促進制御を禁止することによって、二次衝突の発生を抑えることができ、自車両の乗員の被害の軽減が可能になる。   The vehicle control device according to the present invention reduces the collision load (collision energy) from the monitored object by performing the rotation promotion control when a collision at a place other than the damage reduction part is detected. The force corresponding to the collision load acting on the occupant is also reduced, and damage to the occupant can be reduced. Furthermore, this vehicle control device makes it easier for the host vehicle to stay on the spot where the vehicle has collided (for example, on a running lane) due to the rotation promotion control, so that the driver cannot operate the host vehicle safely immediately after the collision. Even if it exists, it is easy to avoid the secondary collision with another obstacle, and the damage of the passenger | crew of the own vehicle can be reduced. In addition, this vehicle control device can suppress the occurrence of secondary collisions by prohibiting rotation promotion control when a collision at a damage mitigation site is detected, thereby reducing the damage to the passengers of the vehicle. Become.

図1は、実施例及び変形例の車両制御装置について説明するブロック図である。FIG. 1 is a block diagram illustrating a vehicle control device according to an embodiment and a modified example. 図2は、被害軽減部位以外の場所への衝突と衝突後の車両挙動制御について説明する図である。FIG. 2 is a diagram for explaining a collision with a place other than the damage reduction part and a vehicle behavior control after the collision. 図3は、被害軽減部位への衝突の一例について説明する図である。FIG. 3 is a diagram for explaining an example of a collision with a damage reducing portion. 図4は、被害軽減部位への衝突の他の例について説明する図である。FIG. 4 is a diagram for explaining another example of the collision with the damage reducing portion. 図5は、被害軽減部位への衝突の一例であり、衝突後の車両挙動制御を実施しなかったときについて説明する図である。FIG. 5 is an example of a collision with a damage mitigating part, and is a diagram illustrating a case where vehicle behavior control after the collision is not performed. 図6は、被害軽減部位への衝突の一例と衝突後の車両挙動制御について説明する図である。FIG. 6 is a diagram for explaining an example of a collision to a damage reducing portion and vehicle behavior control after the collision. 図7は、被害軽減部位への衝突の他の例と衝突後の車両挙動制御について説明する図である。FIG. 7 is a diagram for explaining another example of the collision with the damage reducing portion and the vehicle behavior control after the collision. 図8は、実施例の演算処理について説明するフローチャートである。FIG. 8 is a flowchart illustrating the arithmetic processing according to the embodiment. 図9は、変形例の演算処理について説明するフローチャートである。FIG. 9 is a flowchart for explaining a calculation process of the modification.

以下に、本発明に係る車両制御装置の実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。   Embodiments of a vehicle control device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.

[実施例]
本発明に係る車両制御装置の実施例を図1から図8に基づいて説明する。
[Example]
An embodiment of a vehicle control device according to the present invention will be described with reference to FIGS.

本実施例の車両制御装置は、後述する様々な演算処理を行う制御部が設けられている電子制御装置(ECU)1と、運動情報検出装置10と、周辺監視装置20と、衝突検知装置30と、車両挙動制御装置40と、を備える。   The vehicle control apparatus according to the present embodiment includes an electronic control unit (ECU) 1, a motion information detection device 10, a periphery monitoring device 20, and a collision detection device 30 provided with a control unit that performs various arithmetic processes described later. And a vehicle behavior control device 40.

運動情報検出装置10は、自車両の運動情報を検出する装置である。自車両の運動情報とは、例えば、車速、前後加速度、横加速度、ヨーレート等の自車両の運動状態を表している情報のことである。このため、運動情報検出装置10としては、自車両の車速を検出する車速検出装置(車速センサ、車輪速センサ等)と、自車両の前後加速度を検出する前後加速度検出装置(前後加速度センサ)と、自車両の横加速度を検出する横加速度検出装置(横加速度センサ)と、自車両のヨーレートを検出するヨーレート検出装置(ヨーレートセンサ)と、が少なくとも用意されている。この運動情報検出装置10の検出信号は、ECU1に送信される。   The motion information detection device 10 is a device that detects motion information of the host vehicle. The movement information of the own vehicle is information representing the movement state of the own vehicle, such as vehicle speed, longitudinal acceleration, lateral acceleration, yaw rate, and the like. For this reason, as the motion information detection device 10, a vehicle speed detection device (vehicle speed sensor, wheel speed sensor, etc.) that detects the vehicle speed of the host vehicle, and a longitudinal acceleration detection device (longitudinal acceleration sensor) that detects the longitudinal acceleration of the host vehicle, At least a lateral acceleration detection device (lateral acceleration sensor) for detecting the lateral acceleration of the host vehicle and a yaw rate detection device (yaw rate sensor) for detecting the yaw rate of the host vehicle are prepared. A detection signal of the exercise information detection device 10 is transmitted to the ECU 1.

周辺監視装置20は、自車両の周辺を監視し、その周辺の監視対象物体を検出する装置である。本実施例の周辺監視装置20は、少なくとも自車両の側面との間の距離が縮まる物体(障害物)を監視対象とする。この周辺監視装置20としては、例えば、レーザ装置とソナー装置と撮像装置の内の少なくとも1つを利用することができる。この周辺監視装置20の検出信号は、ECU1に送信される。そのECU1には、レーザ装置の動作を制御するレーザ光制御部と、ソナー装置の動作を制御する超音波制御部と、撮像装置の動作を制御する撮像制御部と、を制御部として設けている。これらの制御部は、周辺監視装置20の制御を行う周辺監視制御部として動作するものであり、その演算処理を周辺監視の技術分野における周知の方法で実施する。   The periphery monitoring device 20 is a device that monitors the periphery of the host vehicle and detects an object to be monitored in the vicinity. The periphery monitoring device 20 according to the present embodiment targets at least an object (obstacle) whose distance from the side surface of the host vehicle is reduced. As the periphery monitoring device 20, for example, at least one of a laser device, a sonar device, and an imaging device can be used. The detection signal of the periphery monitoring device 20 is transmitted to the ECU 1. The ECU 1 is provided with a laser light control unit that controls the operation of the laser device, an ultrasonic control unit that controls the operation of the sonar device, and an imaging control unit that controls the operation of the imaging device as control units. . These control units operate as a perimeter monitoring control unit that controls the perimeter monitoring device 20, and perform arithmetic processing thereof by a well-known method in the technical field of perimeter monitoring.

車両制御装置においては、その監視対象物体と自車両との間の相対情報を検出する。相対情報とは、自車両に対する監視対象物体の相対位置、自車両に対する監視対象物体の相対速度等である。この相対情報は、自車両の運動情報と監視対象物体の位置情報と監視対象物体の運動情報とに基づいて、この技術分野における周知の方法で算出される。ECU1には、制御部として、この相対情報を算出する相対情報算出部を設けている。ここで、監視対象物体の運動情報とは、監視対象物体の運動状態を表している情報のことであり、少なくとも監視対象物体の車速情報と加速度情報と進行方向情報のことをいう。監視対象物体の位置情報と運動情報は、周辺監視装置20の検出信号に基づいて、この技術分野における周知の方法で算出する。ECU1には、制御部として、この監視対象物体の位置情報と運動情報を算出する監視情報算出部を設けている。   The vehicle control device detects relative information between the monitored object and the host vehicle. The relative information is a relative position of the monitoring target object with respect to the own vehicle, a relative speed of the monitoring target object with respect to the own vehicle, and the like. The relative information is calculated by a well-known method in this technical field based on the motion information of the host vehicle, the position information of the monitoring target object, and the motion information of the monitoring target object. The ECU 1 includes a relative information calculation unit that calculates this relative information as a control unit. Here, the motion information of the monitoring target object is information representing the motion state of the monitoring target object, and means at least vehicle speed information, acceleration information, and traveling direction information of the monitoring target object. The position information and motion information of the monitoring target object are calculated by a well-known method in this technical field based on the detection signal of the periphery monitoring device 20. The ECU 1 is provided with a monitoring information calculation unit that calculates position information and motion information of the monitoring target object as a control unit.

衝突検知装置30は、その監視対象物体と自車両との衝突を検知するための装置である。この衝突検知装置30には、エアバッグセンサ等を用いる。エアバッグセンサとは、車室内の多種多様な位置に配置されているエアバッグ(図示略)の展開の要否を判定するための衝突検知用のセンサである。このエアバッグセンサは、エアバッグの配置に応じて車体の各所に設けられている。エアバッグセンサとしては、圧力センサ(例えばドアの内張内における内部空間の圧力変化を検出するもの)、前後加速度検出装置(前後加速度センサ)、横加速度検出装置(横加速度センサ)等が利用される。衝突検知装置30の検出信号は、ECU1に送信される。そのECU1には、制御部として、この衝突検知装置30の検出信号に基づいて衝突の有無を判定する衝突判定部を設けている。   The collision detection device 30 is a device for detecting a collision between the monitoring target object and the host vehicle. For this collision detection device 30, an airbag sensor or the like is used. The airbag sensor is a collision detection sensor for determining whether or not an airbag (not shown) disposed at various positions in the passenger compartment needs to be deployed. The airbag sensor is provided at various locations on the vehicle body according to the arrangement of the airbag. As the air bag sensor, a pressure sensor (for example, one that detects a change in pressure in the interior space of the door lining), a longitudinal acceleration detection device (longitudinal acceleration sensor), a lateral acceleration detection device (lateral acceleration sensor), or the like is used. The The detection signal of the collision detection device 30 is transmitted to the ECU 1. The ECU 1 includes a collision determination unit that determines whether or not there is a collision based on a detection signal from the collision detection device 30 as a control unit.

更に、ECU1には、制御部として、監視対象物体と自車両との衝突が検知された場合に、自車両における監視対象物体との衝突形態(衝突位置及び衝突荷重の入力方向)を算出する衝突形態算出部を設けている。衝突荷重の入力方向とは、自車両に対する監視対象物体の衝突角度に相当する。例えば、衝突検知装置30としての圧力センサが車体の部位毎に複数配置されている場合、衝突形態算出部は、自車両における監視対象物体との衝突位置を特定することができる。本実施例の衝突検知装置30(特に圧力センサ)は、少なくとも自車両の側面に沿って所定の間隔で複数箇所に配置し、衝突箇所が少なくとも後述する第1領域であるのか第2領域であるのかを識別できるようにする。自車両がサイドエアバッグやカーテンエアバッグを備えている場合には、このエアバッグの展開用のエアバッグセンサ(圧力センサ)を衝突検知装置30として利用すればよい。また、衝突形態算出部は、多数の圧力センサが用意されていなかったとしても、例えば、衝突検知装置30の検出信号とヨーレート検出装置(ヨーレートセンサ)とに基づいて、自車両の側面における監視対象物体との衝突位置を特定することができる。更に、衝突形態算出部は、例えば、監視対象物体と自車両との間の相対情報、及び、自車両の運動情報に基づいて、衝突荷重の入力方向を算出することができる。   Furthermore, the ECU 1 calculates a collision mode (collision position and input direction of the collision load) with the monitoring target object in the host vehicle when a collision between the monitoring target object and the host vehicle is detected as a control unit. A form calculation unit is provided. The input direction of the collision load corresponds to the collision angle of the monitoring target object with respect to the host vehicle. For example, when a plurality of pressure sensors as the collision detection device 30 are arranged for each part of the vehicle body, the collision mode calculation unit can specify the collision position with the monitoring target object in the host vehicle. The collision detection device 30 (especially the pressure sensor) of the present embodiment is arranged at a plurality of locations at predetermined intervals along at least the side surface of the host vehicle, and the collision location is at least a first region or a second region described later. So that it can be identified. When the host vehicle includes a side airbag or a curtain airbag, an airbag sensor (pressure sensor) for deploying the airbag may be used as the collision detection device 30. Moreover, even if a large number of pressure sensors are not prepared, the collision mode calculation unit is monitored on the side surface of the host vehicle based on the detection signal of the collision detection device 30 and the yaw rate detection device (yaw rate sensor), for example. The collision position with the object can be specified. Furthermore, the collision mode calculation unit can calculate the input direction of the collision load based on, for example, relative information between the monitoring target object and the host vehicle and movement information of the host vehicle.

車両挙動制御装置40は、自車両の挙動を制御するための装置である。ECU1には、制御部として、この車両挙動制御装置40を制御することで自車両の挙動を制御する車両挙動制御部を設けている。この車両挙動制御装置40としては、各車輪の制動力制御によって自車両の挙動を変化させることが可能な制動装置、転舵輪の転舵角制御によって自車両の挙動を変化させることが可能な転舵装置等が考えられる。制動装置は、それぞれの車輪の制動力を個別に調整することのできるものである。ECU1には、制御部として、この制動装置のアクチュエータの制御によって制御対象の車輪の制動力を調整する制動制御部を設けている。また、このECU1には、制御部として、転舵装置のアクチュエータの制御によって転舵輪の転舵角を調整する転舵制御部を設けている。その制動制御部や転舵制御部は、自車両の挙動を制御する場合、車両挙動制御部として動作する。また、ここでは、車両挙動制御装置40として、動力源(エンジン)を利用してもよい。この場合、ECU1には、制御部として、動力源の出力制御部を設ける。その出力制御部は、それぞれの駆動輪の駆動力を個別に制御することによって、自車両の挙動を変化させる。   The vehicle behavior control device 40 is a device for controlling the behavior of the host vehicle. The ECU 1 is provided with a vehicle behavior control unit that controls the behavior of the host vehicle by controlling the vehicle behavior control device 40 as a control unit. The vehicle behavior control device 40 includes a braking device that can change the behavior of the host vehicle by controlling the braking force of each wheel, and a vehicle that can change the behavior of the host vehicle by controlling the turning angle of the steered wheels. A rudder device etc. can be considered. The braking device is capable of individually adjusting the braking force of each wheel. The ECU 1 is provided with a braking control unit that adjusts the braking force of the wheel to be controlled by controlling the actuator of the braking device as a control unit. In addition, the ECU 1 is provided with a steering control unit that adjusts the turning angle of the steered wheels by controlling the actuator of the steering device as a control unit. The braking control unit and the steering control unit operate as a vehicle behavior control unit when controlling the behavior of the host vehicle. Here, a power source (engine) may be used as the vehicle behavior control device 40. In this case, the ECU 1 is provided with a power source output control unit as a control unit. The output control unit changes the behavior of the host vehicle by individually controlling the driving force of each driving wheel.

ECU1には、制御部として、監視対象物体と自車両とが衝突する可能性があるのか否かを判定する衝突可能性判定部を設ける。その判定は、自車両の運動情報と監視対象物体の位置情報と監視対象物体の運動情報とに基づいて行う。衝突可能性判定部は、少なくとも監視対象物体と自車両とが自車両の側面で衝突する可能性があるのか否かを判定する。   The ECU 1 is provided with a collision possibility determination unit that determines whether or not there is a possibility of collision between the monitoring target object and the host vehicle as a control unit. The determination is made based on the movement information of the own vehicle, the position information of the monitoring target object, and the movement information of the monitoring target object. The collision possibility determination unit determines whether there is a possibility that at least the monitoring target object and the own vehicle collide on the side surface of the own vehicle.

この車両制御装置においては、監視対象物体と自車両との衝突が検知された場合に、衝突後の自車両の車両挙動制御を実施する。ここでは、自車両の側面で衝突が発生したときの衝突後における自車両の車両挙動制御について説明する。   In this vehicle control device, when a collision between the monitoring target object and the host vehicle is detected, vehicle behavior control of the host vehicle after the collision is performed. Here, the vehicle behavior control of the host vehicle after the collision when the collision occurs on the side surface of the host vehicle will be described.

この車両制御装置においては、自車両の側面における監視対象物体との衝突形態(衝突位置及び衝突荷重の入力方向)に応じて、衝突後の自車両の車両挙動制御についての制御形態を変える。ECU1には、制御部として、衝突後における自車両の車両挙動制御の制御形態について選択する挙動制御形態選択部を設ける。その挙動制御形態選択部は、衝突形態に応じた車両挙動制御を選択する。   In this vehicle control device, the control mode for controlling the vehicle behavior of the host vehicle after the collision is changed according to the mode of collision with the monitoring target object on the side surface of the host vehicle (the collision position and the input direction of the collision load). The ECU 1 is provided with a behavior control mode selection unit that selects a control mode of vehicle behavior control of the host vehicle after a collision as a control unit. The behavior control form selection unit selects vehicle behavior control according to the collision form.

ここで、側面衝突が発生した自車両の乗員の被害を軽減するためには、監視対象物体から自車両に入力される衝突エネルギを逃がせばよい。その衝突エネルギは、自車両を衝突荷重の入力方向に動かし、積極的に自車両の姿勢を変化(回転)させることによって逃がすことができる。しかしながら、側面衝突後に自車両の姿勢を変化(回転)させた場合には、その姿勢変化の程度や衝突形態如何で、別の障害物等の物体との二次衝突を引き起こしてしまう可能性がある。そして、その側面衝突に続いて二度目の衝突が起きた場合、自車両においては、最初の側面衝突で既に従来の乗員被害軽減制御(エアバッグの展開、シートベルトのプリテンショナによるベルトの弛み巻き取り等)が動作済みになっている可能性が高いので、乗員の被害の軽減効果が小さくなっている可能性がある。   Here, in order to reduce the damage of the occupant of the own vehicle in which the side collision has occurred, the collision energy input to the own vehicle from the monitored object may be released. The collision energy can be released by moving the own vehicle in the input direction of the collision load and actively changing (rotating) the posture of the own vehicle. However, if the attitude of the host vehicle is changed (rotated) after a side collision, there is a possibility of causing a secondary collision with another obstacle or other object depending on the degree of the attitude change or the collision mode. is there. If a second collision occurs after the side collision, the vehicle will already have a conventional occupant damage reduction control (air bag deployment, belt slack winding with a seat belt pretensioner) in the first side collision. , Etc.) are likely to be already in operation, so there is a possibility that the effect of reducing the damage to the passengers is reduced.

例えば、自車両の側面においては、側面衝突における自車両の乗員の被害の大きさを相対的に見て、乗員の被害が小さい場所(以下、「被害軽減部位」という。)と、乗員の被害が被害軽減部位よりも大きい場所と、が存在する。その被害軽減部位とは、自車両の側面の内のキャビン(車室)の領域とキャビンよりも前方の領域である。そして、自車両の乗員の被害が被害軽減部位よりも大きい場所(以下、「被害軽減部位以外の場所」という。)とは、自車両の側面の内のキャビンよりも後方の領域である。   For example, on the side of the host vehicle, the relative damage of the passenger of the host vehicle in the side collision is relatively small (hereinafter referred to as “damage mitigation site”) and the passenger damage. There is a place where is larger than the damage reduction part. The damage reduction part is an area of the cabin (cabinet) in the side surface of the host vehicle and an area ahead of the cabin. And the place where the damage of the passenger of the own vehicle is greater than the damage reduction part (hereinafter referred to as “a place other than the damage reduction part”) is an area behind the cabin on the side surface of the own vehicle.

衝突位置が自車両の側面における被害軽減部位以外の場所の場合には、衝突位置が被害軽減部位の場合よりも自車両の乗員の被害が大きいので、確実に発生するとは言い切れない二次衝突を懸念するよりも、先ずは免れることのできない最初の側面衝突による自車両の乗員の被害の軽減を優先させることが望ましい。つまり、この場合には、積極的に自車両の姿勢を変化(回転)させることによって、監視対象物体からの衝突エネルギを逃がし、強固なキャビンや従来の乗員被害軽減制御と共に自車両の乗員の被害を軽減させることが望ましい。   If the collision location is a location other than the damage mitigation site on the side of the vehicle, the damage to the vehicle occupant is greater than that of the damage mitigation site. It is desirable to give priority to reducing the damage to the passengers of the vehicle due to the first side collision that cannot be avoided. In other words, in this case, by actively changing (rotating) the posture of the host vehicle, the collision energy from the object to be monitored is released, and along with the strong cabin and conventional occupant damage mitigation control, It is desirable to reduce this.

そこで、挙動制御形態選択部は、自車両の側面への監視対象物体の衝突が検知され、その衝突位置が自車両の側面の内で相対的に自車両の乗員の被害が大きい場所(被害軽減部位とは異なる場所)の場合、衝突後の自車両の車両挙動制御として、衝突時における監視対象物体からの衝突エネルギを逃がす方向に自車両を回転させる回転促進制御の実施を選択する。つまり、車両挙動制御部(制動制御部、転舵制御部)は、監視対象物体が自車両の側面に近づいてきて(図2の上図)、監視対象物体と自車両の側面における被害軽減部位以外の場所との衝突が検知された場合、衝突後の自車両の車両挙動制御として、そのような回転促進制御を実施する(図2の下図)。図2は、前進走行中の自車両C1の左側面における後部(自車両の左側面におけるキャビンよりも後方部分)に監視対象物体(他車両C2)が衝突してきたときを表した一例である。本図の例示では、監視対象物体からの衝突荷重の入力方向が自車両C1の進行方向に対して直交している。但し、このような被害軽減部位以外の場所での側面衝突が検知された場合には、その衝突荷重の入力方向に拘わらず回転促進制御を実施することが望ましい。その回転促進制御は、前進走行中だけなく、停車中に実施してもよい。   Therefore, the behavior control form selection unit detects a collision of the object to be monitored with the side surface of the host vehicle, and the position of the collision is relatively large within the side surface of the host vehicle. In the case of a location different from the part), as the vehicle behavior control of the host vehicle after the collision, execution of rotation promotion control for rotating the host vehicle in a direction to release the collision energy from the monitoring target object at the time of the collision is selected. That is, the vehicle behavior control unit (braking control unit, steering control unit) causes the monitoring target object to approach the side surface of the host vehicle (upper diagram in FIG. 2), and the damage reduction part on the monitoring target object and the side surface of the host vehicle. When a collision with a place other than the above is detected, such rotation promotion control is performed as the vehicle behavior control of the host vehicle after the collision (the lower diagram in FIG. 2). FIG. 2 is an example showing when the monitoring target object (another vehicle C2) has collided with the rear part of the left side surface of the host vehicle C1 traveling forward (the rear part of the cabin on the left side surface of the host vehicle). In the illustration of this figure, the input direction of the collision load from the monitoring target object is orthogonal to the traveling direction of the host vehicle C1. However, when a side collision is detected in a place other than such a damage mitigating part, it is desirable to perform rotation promotion control regardless of the input direction of the collision load. The rotation promotion control may be performed not only during forward travel but also when the vehicle is stopped.

この回転促進制御の実施によって、自車両においては、被害軽減部位以外の場所に入力される監視対象物体からの衝突荷重(衝突エネルギ)が減少するので、自車両の乗員に作用する衝突荷重に応じた力も小さくなる。このため、この車両制御装置は、乗員の被害を軽減することができる。特に、自車両では、従来の乗員被害軽減制御が併用されているので、乗員の被害の軽減効果が高くなる。また、この被害軽減部位以外の場所での回転促進制御は、被害軽減部位で回転促進制御を実施するよりも、衝突したその場(走行中の車線上)に自車両が留まりやすくなるので、衝突直後に運転者が自車両を安全に操作できない状況下であっても、他の障害物との二次衝突を回避しやすい。よって、この車両制御装置は、最初の衝突で従来の乗員被害軽減制御が実施された後であっても、乗員の被害を軽減することができる。また、この回転促進制御は、被害軽減部位以外の場所の変形量を抑えることができる。   By implementing this rotation promotion control, the collision load (collision energy) from the monitored object that is input to a location other than the damage mitigation site is reduced in the host vehicle. The force is also reduced. For this reason, this vehicle control apparatus can reduce a passenger | crew's damage. In particular, in the own vehicle, the conventional occupant damage reduction control is used in combination, so that the occupant damage reduction effect is enhanced. In addition, the rotation acceleration control at a place other than the damage mitigation site makes it easier for the host vehicle to stay in the place of the collision (on the lane where the vehicle is traveling) than when the rotation acceleration control is performed at the damage mitigation site. Even if the driver cannot operate the host vehicle safely immediately afterward, it is easy to avoid secondary collisions with other obstacles. Therefore, this vehicle control device can reduce the damage to the occupant even after the conventional occupant damage reduction control is performed in the first collision. In addition, this rotation promotion control can suppress the amount of deformation in a place other than the damage reducing portion.

ここで、この回転促進制御は、自車両における前進方向の運動エネルギを回転方向の運動エネルギに変換する。故に、この回転促進制御を高速走行時に実施した場合には、自車両が回転しすぎてしまい、乗員の被害の軽減効果が小さくなってしまう可能性がある。このため、回転促進制御は、そのような過剰な自車両の回転が起こらない低い車速域のときに実施することが望ましい。過剰な自車両の回転とは、車両挙動制御装置40の動作でも自車両の挙動を安定化させにくい所定回転量(例えば、一回転以上)の回転のことである。回転促進制御は、このように自車両の車速で実施の要否を分けることによって、乗員の被害を軽減しつつ、自車両の挙動の安定化をも図ることができる。   Here, this rotation promotion control converts kinetic energy in the forward direction in the host vehicle into kinetic energy in the rotational direction. Therefore, if this rotation promotion control is performed during high-speed traveling, the host vehicle may rotate too much, and the effect of reducing the damage to passengers may be reduced. For this reason, it is desirable to implement the rotation promotion control in a low vehicle speed range where such excessive rotation of the host vehicle does not occur. Excessive rotation of the host vehicle refers to rotation of a predetermined rotation amount (for example, one rotation or more) that is difficult to stabilize the behavior of the host vehicle even when the vehicle behavior control device 40 operates. In this way, the rotation acceleration control can be performed according to the speed of the host vehicle, thereby reducing the damage to the passenger and stabilizing the behavior of the host vehicle.

具体的に、回転促進制御は、衝突直前の自車両の姿勢を基準位置とし、衝突位置を有する側の側面における前輪と後輪の内、衝突位置の近くの車輪が遠くの車輪よりも衝突荷重の入力方向に位置するよう自車両を回転運動させることによって、衝突エネルギを逃がす。自車両の側面における被害軽減部位以外の場所での衝突においては、その側面における後輪が衝突位置に対して近い車輪となり、何れか一方の前輪が衝突位置に対して遠い車輪となる。衝突位置に対して遠い車輪は、衝突荷重の入力方向に応じて決まる。   Specifically, the rotation promotion control uses the attitude of the host vehicle immediately before the collision as a reference position, and among the front and rear wheels on the side having the collision position, the wheel near the collision position has a larger collision load than the far wheel. The collision energy is released by rotating the host vehicle so as to be positioned in the input direction. In a collision at a location other than the damage reduction portion on the side surface of the host vehicle, the rear wheel on the side surface is a wheel that is close to the collision position, and one of the front wheels is a wheel that is far from the collision position. The wheel far from the collision position is determined according to the input direction of the collision load.

この回転促進制御は、各車輪の制動力制御と転舵輪の転舵角制御の内の少なくとも一方を行うことによって実施する。この回転促進制御においては、自車両に発生させる目標ヨーモーメントを設定することが望ましい。その目標ヨーモーメントとは、衝突エネルギを逃がしつつ過剰な自車両の回転を抑制することのできるヨーモーメントである。この目標ヨーモーメントは、監視対象物体からの衝突エネルギに基づいて決めればよい。その衝突エネルギは、前述した監視対象物体の運動情報(車速)と監視対象物体の質量又は重量に基づいて推定すればよい。その質量又は重量は、例えば、周辺監視装置(撮像装置)20の画像情報に基づいて監視対象物体の種別(例えば、乗用車や貨物車等の種別)を推定し、その推定結果に該当する値をECU1の記憶装置等から読み込めばよい。また、この質量又は重量は、例えば、監視対象物体との車車間通信や車路車間通信等で取得してもよい。また、衝突エネルギを推定する際には、衝突荷重の入力方向も考慮に入れることが望ましい。   This rotation promotion control is performed by performing at least one of the braking force control of each wheel and the turning angle control of the steered wheel. In this rotation promotion control, it is desirable to set a target yaw moment to be generated in the host vehicle. The target yaw moment is a yaw moment that can suppress excessive rotation of the host vehicle while releasing collision energy. The target yaw moment may be determined based on the collision energy from the monitoring target object. The collision energy may be estimated based on the motion information (vehicle speed) of the monitoring target object and the mass or weight of the monitoring target object. For example, the mass or the weight is estimated based on the image information of the periphery monitoring device (imaging device) 20 based on the type of the object to be monitored (for example, the type of passenger car, freight vehicle, etc.), and a value corresponding to the estimation result is obtained. What is necessary is just to read from the memory | storage device etc. of ECU1. Further, this mass or weight may be acquired by, for example, vehicle-to-vehicle communication or vehicle-to-vehicle communication with the monitoring target object. Further, it is desirable to take into account the input direction of the collision load when estimating the collision energy.

自車両の車両挙動制御部(制動制御部)は、プリクラッシュブレーキ制御(衝突前の制動力制御)の実施の有無に拘わらず、衝突を検知したときに、各車輪に制動力を出力して(衝突後の制動力制御)、自車両を停止させる。制動制御部(車両挙動制御部)は、そのような衝突前後の制動力制御が実施されない場合、衝突された側面における前輪のみに制動力を発生させ、他の3つの車輪に制動力を発生させないことによって、その前輪を中心にした自車両の回転運動を発生させる。また、制動制御部(車両挙動制御部)は、衝突前又は衝突後の制動力制御が実施される場合、衝突された側面における前輪の制動力を他の3つの車輪の制動力よりも大きくすることによって、その前輪を中心にした自車両の回転運動を発生させてもよい。その際には、例えば、他の3つの車輪の制動力を衝突前の制動力制御の指令値に維持しつつ前輪の制動力を他の3つの車輪の制動力より増加させてもよく、前輪の制動力を衝突後の制動力制御の指令値に維持しつつ他の3つの車輪の制動力を前輪の制動力より減少させてもよい。図2の例示では、左前輪を中心にして自車両C1が回転する。   The vehicle behavior control unit (braking control unit) of the host vehicle outputs braking force to each wheel when a collision is detected regardless of whether or not pre-crash brake control (braking force control before collision) is performed. (Brake force control after collision), the host vehicle is stopped. When such a braking force control before and after the collision is not performed, the braking control unit (vehicle behavior control unit) generates a braking force only on the front wheel on the collided side surface and does not generate a braking force on the other three wheels. As a result, a rotational movement of the host vehicle around the front wheel is generated. In addition, when the braking force control before or after the collision is performed, the braking control unit (vehicle behavior control unit) makes the braking force of the front wheels on the collided side surface larger than the braking force of the other three wheels. By doing so, you may generate | occur | produce the rotational motion of the own vehicle centering on the front wheel. In that case, for example, the braking force of the front wheels may be increased from the braking force of the other three wheels while maintaining the braking force of the other three wheels at the command value of the braking force control before the collision. The braking force of the other three wheels may be made smaller than the braking force of the front wheels while maintaining the braking force of 10 at the command value of the braking force control after the collision. In the illustration of FIG. 2, the host vehicle C1 rotates around the left front wheel.

転舵制御部(車両挙動制御部)は、自車両を回転させて衝突エネルギを逃がした後、他の3つの車輪の制動力を増加させて、自車両を停止させる。   The steering control unit (vehicle behavior control unit) rotates the host vehicle to release collision energy, and then increases the braking force of the other three wheels to stop the host vehicle.

更に、転舵制御部(車両挙動制御部)は、衝突された側面側に向けて転舵輪を転舵させることによって、衝突エネルギを逃がす方向に自車両を回転させる。図2の例示では、左旋回方向に転舵輪を転舵させる。   Further, the steering control unit (vehicle behavior control unit) rotates the host vehicle in a direction in which collision energy is released by turning the steered wheels toward the collided side surface. In the illustration of FIG. 2, the steered wheels are steered in the left turn direction.

その回転促進制御は、自車両の側面における被害軽減部位で衝突が発生したときにも実施は可能である。しかしながら、衝突位置が被害軽減部位の場合には、積極的に自車両の姿勢を変化(回転)させなくても、自車両の乗員の被害が小さい。このため、この場合には、回転促進制御を実施するよりも、回転促進制御に伴う二次衝突の発生を回避する方が、自車両の乗員の被害の軽減効果を高めることができる。従って、この場合には、強固なキャビンや従来の乗員被害軽減制御によって自車両の乗員の被害を軽減させると共に、積極的に自車両の姿勢を変化(回転)させずに自車両の乗員の被害の拡大を回避することが望ましい。   The rotation promotion control can be performed even when a collision occurs at a damage reducing portion on the side surface of the host vehicle. However, in the case where the collision position is a damage mitigating part, even if the posture of the own vehicle is not actively changed (rotated), damage to the passengers of the own vehicle is small. For this reason, in this case, the effect of reducing the damage to the occupant of the host vehicle can be enhanced by avoiding the occurrence of the secondary collision accompanying the rotation promotion control, rather than performing the rotation promotion control. Therefore, in this case, damage to the occupant of the own vehicle is reduced by a strong cabin and conventional occupant damage reduction control, and the occupant's occupant's damage is not actively changed (rotated). It is desirable to avoid the expansion of.

そこで、挙動制御形態選択部は、自車両の側面への監視対象物体の衝突が検知され、その衝突位置が自車両の側面の内で相対的に自車両の乗員の被害が小さい場所(被害軽減部位)の場合、衝突後の自車両の車両挙動制御として、回転促進制御の実施を禁止する。つまり、車両挙動制御部(制動制御部、転舵制御部)は、監視対象物体が自車両の側面に近づいてきて(図3)、監視対象物体と自車両の側面における被害軽減部位との衝突が検知された場合(図4−図7)、衝突後の自車両の車両挙動制御として、回転促進制御を禁止する。この場合には、回転促進制御の禁止によって、二次衝突の発生を抑えることができ、自車両の乗員の被害の軽減が可能になる。   Therefore, the behavior control form selection unit detects a collision of an object to be monitored with the side surface of the own vehicle, and the position of the collision is relatively small within the side surface of the own vehicle. In the case of (part), the rotation promotion control is prohibited as the vehicle behavior control of the host vehicle after the collision. In other words, the vehicle behavior control unit (braking control unit, steering control unit) causes the monitoring target object to approach the side surface of the host vehicle (FIG. 3), and the collision between the monitoring target object and the damage reduction part on the side surface of the host vehicle. Is detected (FIGS. 4 to 7), the rotation promotion control is prohibited as the vehicle behavior control of the host vehicle after the collision. In this case, by prohibiting the rotation promotion control, it is possible to suppress the occurrence of secondary collision, and it is possible to reduce the damage to the passengers of the host vehicle.

以下に、その回転促進制御を禁止した後の衝突後の自車両の挙動制御について説明する。   The behavior control of the host vehicle after the collision after prohibiting the rotation promotion control will be described below.

被害軽減部位への側面衝突に関しては、衝突荷重の入力方向が自車両の進行方向に対して直交している場合又は自車両の進行方向に対して自車両の進行を妨げる斜め方向になっている場合と、衝突荷重の入力方向が自車両の進行方向に対して自車両の進行を促進させる斜め方向になっている場合と、を例に挙げて説明する。衝突荷重の入力方向が自車両の進行方向に対して自車両の進行を妨げる斜め方向の場合とは、例えば、対向車線の監視対象物体(他車両)が自車両の車線に食み出してきて、自車両の側面に衝突した場合等のことである。衝突荷重の入力方向が自車両の進行方向に対して自車両の進行を促進させる斜め方向の場合とは、例えば、高速道路の合流地点のように、本線にいる自車両の斜め後方から合流車線の監視対象物体(他車両)が衝突してきた場合等のことである。   Regarding the side collision to the damage reduction part, when the input direction of the collision load is orthogonal to the traveling direction of the own vehicle, or the oblique direction prevents the traveling of the own vehicle with respect to the traveling direction of the own vehicle. The case and the case where the input direction of the collision load is an oblique direction that promotes the traveling of the host vehicle with respect to the traveling direction of the host vehicle will be described as examples. When the input direction of the collision load is an oblique direction that obstructs the traveling of the host vehicle with respect to the traveling direction of the host vehicle, for example, the object to be monitored (another vehicle) in the oncoming lane protrudes into the lane of the host vehicle. This is the case when it collides with the side of the host vehicle. The case where the input direction of the collision load is an oblique direction that promotes the traveling of the host vehicle relative to the traveling direction of the host vehicle is, for example, a merging lane from diagonally behind the host vehicle on the main line, such as a junction point of a highway. This is a case where the object to be monitored (another vehicle) collides.

最初に、衝突荷重の入力方向が自車両C1の進行方向に対して直交している場合(図3)又は自車両C1の進行方向に対して自車両C1の進行を妨げる斜め方向になっている場合(図4)について説明する。   First, when the input direction of the collision load is orthogonal to the traveling direction of the host vehicle C1 (FIG. 3), the direction of the host vehicle C1 is an oblique direction that prevents the traveling of the host vehicle C1. The case (FIG. 4) will be described.

これらの場合には、監視対象物体からの衝突エネルギの殆どを自車両C1が引き受けてしまうので(図5)、その衝突と共に自車両の乗員に作用する力が大きなものとなる。このため、車両挙動制御部は、監視対象物体と自車両の側面における被害軽減部位との衝突を検知し、その衝突荷重の入力方向が自車両の進行方向に対して直交している場合又は自車両の進行方向に対して自車両の進行を妨げる斜め方向になっている場合、次のように衝突後の自車両の車両挙動制御を実施する。   In these cases, most of the collision energy from the object to be monitored is received by the host vehicle C1 (FIG. 5), so that the force acting on the occupant of the host vehicle becomes large along with the collision. For this reason, the vehicle behavior control unit detects a collision between the monitoring target object and the damage mitigation site on the side surface of the host vehicle, and when the input direction of the collision load is orthogonal to the traveling direction of the host vehicle or When the vehicle is in an oblique direction that prevents the vehicle from traveling with respect to the vehicle traveling direction, the vehicle behavior control of the vehicle after the collision is performed as follows.

例えば、車両挙動制御部は、その場合、衝突時の自車両に車両制動力による減速度が作用しているのであれば、衝突後の自車両の車両挙動制御として、回転促進制御を禁止すると共に、衝突後、所定時間の間だけ自車両の減速度を抑制してから車両制動力を増加させる。その減速度の抑制は、自車両の車両制動力を減少させる又は当該車両制動力を0にすることによって行う。つまり、そのような衝突が発生したときには、図6に示すように、例えば衝突前の制動力制御で発生させていた車両制動力を衝突後直ぐに最大で0まで減少させ、衝突後の僅かな時間(所定時間)の間だけ自車両C1の減速度を抑制することで、衝突エネルギを少しでも自車両C1の前進方向に逃がし、自車両C1の乗員に作用する力を減少させる。所定時間は、衝突エネルギの逃がし量に応じて決めればよい。この所定時間は、衝突エネルギを多く逃がしたければ、その分だけ長くなる。車両挙動制御部は、その一瞬の減速度の抑制の後、直ぐに衝突後の制動力制御を実施し、車両制動力の増加により減速度を増加させて、自車両C1を停止させる。尚、図5及び図6では、衝突荷重の入力方向が自車両C1の進行方向に対して直交している場合を例示している。   For example, in this case, the vehicle behavior control unit prohibits the rotation promotion control as the vehicle behavior control of the own vehicle after the collision if the deceleration by the vehicle braking force is acting on the own vehicle at the time of the collision. After the collision, the vehicle braking force is increased after suppressing the deceleration of the host vehicle for a predetermined time. The deceleration is suppressed by reducing the vehicle braking force of the host vehicle or setting the vehicle braking force to zero. That is, when such a collision occurs, as shown in FIG. 6, for example, the vehicle braking force generated by the braking force control before the collision is reduced to 0 at the maximum immediately after the collision, and a short time after the collision. By suppressing the deceleration of the host vehicle C1 only during (predetermined time), the collision energy is released in the forward direction of the host vehicle C1 even a little, and the force acting on the occupant of the host vehicle C1 is reduced. The predetermined time may be determined according to the amount of collision energy released. This predetermined time becomes longer if it is desired to release a lot of collision energy. The vehicle behavior control unit immediately executes the braking force control after the collision after suppressing the instantaneous deceleration, increases the deceleration by increasing the vehicle braking force, and stops the host vehicle C1. 5 and 6 illustrate a case where the input direction of the collision load is orthogonal to the traveling direction of the host vehicle C1.

また、車両挙動制御部は、監視対象物体と自車両の側面における被害軽減部位との衝突を検知し、その衝突荷重の入力方向が自車両の進行方向に対して直交している場合又は自車両の進行方向に対して自車両の進行を妨げる斜め方向になっている場合、衝突時の自車両に車両制動力による減速度が作用していないのであれば、衝突後の自車両の車両挙動制御として、回転促進制御を禁止すると共に、衝突後、所定時間の間だけ自車両を加速させてから車両制動力を増加させてもよい。衝突時の自車両に車両制動力による減速度が作用していないときとは、例えば、惰性走行による減速度が自車両に作用しているとき、自車両が定速走行しているとき、自車両が加速走行しているとき、自車両が停止しているとき等である。つまり、そのような衝突が発生したときには、衝突後の僅かな時間(所定時間)の間だけを加速させることで、衝突エネルギを少しでも自車両の前進方向に逃がし、自車両の乗員に作用する力を減少させる。この場合でも、所定時間は、衝突エネルギの逃がし量に応じて決めればよく、衝突エネルギを多く逃がしたければ、その分だけ長くなる。車両挙動制御部は、その一瞬の加速走行の後、直ぐに衝突後の制動力制御を実施し、車両制動力の増加により減速度を増加させて、自車両を停止させる。   In addition, the vehicle behavior control unit detects a collision between the monitoring target object and a damage reducing portion on the side surface of the own vehicle, and when the input direction of the collision load is orthogonal to the traveling direction of the own vehicle or the own vehicle The vehicle behavior control of the host vehicle after the collision is performed if the vehicle braking force is not decelerated by the vehicle braking force when the vehicle is in an oblique direction that prevents the host vehicle from traveling. In addition to prohibiting the rotation promotion control, the vehicle braking force may be increased after the host vehicle is accelerated for a predetermined time after the collision. When the vehicle braking force is not decelerated by the vehicle braking force at the time of the collision, for example, when the vehicle is decelerating by inertia traveling, when the vehicle is traveling at a constant speed, For example, when the vehicle is accelerating, or when the host vehicle is stopped. In other words, when such a collision occurs, acceleration is performed only for a short time (predetermined time) after the collision, so that the collision energy is released even in the forward direction of the own vehicle and acts on the occupant of the own vehicle. Reduce power. Even in this case, the predetermined time may be determined according to the amount of collision energy released, and if the collision energy is to be released more, the predetermined time becomes longer. The vehicle behavior control unit immediately executes the braking force control after the collision after the momentary acceleration traveling, and increases the deceleration by increasing the vehicle braking force to stop the host vehicle.

具体的に、監視対象物体と自車両の側面における被害軽減部位との衝突を検知し、その衝突荷重の入力方向が自車両の進行方向に対して直交している場合又は自車両の進行方向に対して自車両の進行を妨げる斜め方向になっている場合、車両挙動制御部は、車両制動力を出力させているのか否かを判定する。その車両制動力は、主に衝突前の制動力制御(プリクラッシュブレーキ制御)によるものであるが、運転者の制動操作によるものについても該当する。車両制動力が出力されている場合、制動制御部(車両挙動制御部)は、衝突後、所定時間の間だけ各車輪の制動力を減少させることによって、自車両の減速度を一瞬減少させる。そして、制動制御部(車両挙動制御部)は、その所定時間の経過後、各車輪の制動力を増加させ、衝突後の制動力制御を実施することによって、車両制動力を増加させて、自車両を停止させる。これに対して、車両制動力が出力されていない場合、出力制御部(車両挙動制御部)は、衝突後、所定時間の間だけ動力源の出力を制御して、自車両を一瞬加速させる。そして、制動制御部(車両挙動制御部)は、その所定時間の経過後、車両制動力が出力されていた場合と同じように、衝突後の制動力制御を実施して、自車両を停止させる。   Specifically, when a collision between a monitoring target object and a damage mitigation site on the side of the host vehicle is detected and the input direction of the collision load is orthogonal to the traveling direction of the host vehicle, or in the traveling direction of the host vehicle On the other hand, when the vehicle is in an oblique direction that prevents the vehicle from traveling, the vehicle behavior control unit determines whether or not the vehicle braking force is being output. The vehicle braking force is mainly based on the braking force control (pre-crash brake control) before the collision, but the vehicle braking force is also applicable to the driver's braking operation. When the vehicle braking force is output, the braking control unit (vehicle behavior control unit) decreases the deceleration of the own vehicle for a moment by decreasing the braking force of each wheel for a predetermined time after the collision. Then, the brake control unit (vehicle behavior control unit) increases the vehicle braking force by increasing the braking force of each wheel after the predetermined time has elapsed, and performing the braking force control after the collision. Stop the vehicle. On the other hand, when the vehicle braking force is not output, the output control unit (vehicle behavior control unit) controls the output of the power source for a predetermined time after the collision to accelerate the host vehicle for a moment. Then, the braking control unit (vehicle behavior control unit) performs the braking force control after the collision and stops the host vehicle in the same manner as when the vehicle braking force is output after the predetermined time has elapsed. .

このような衝突後の車両挙動制御を実施することで、車両制御装置は、自車両の乗員に作用する衝突荷重に応じた力を減少させることができるので、乗員の被害を軽減することができる。その乗員の被害の軽減効果は、従来の乗員被害軽減制御の併用によって高いものとなっている。また、この車両制御装置は、自車両を回転させずに、一瞬だけ自らの進行方向に逃がすので、衝突直後に運転者が自車両を安全に操作できない状況下であっても、他の障害物との二次衝突を回避しやすい。よって、この車両制御装置は、最初の衝突で従来の乗員被害軽減制御が実施された後であっても、乗員の被害を軽減することができる。また、この車両制御装置は、自車両を回転させずに、一瞬だけ自らの進行方向に逃がしてから止まるので、乗員の被害を軽減しつつ、自車両の挙動の安定化をも図ることができる。   By performing the vehicle behavior control after the collision, the vehicle control device can reduce the force corresponding to the collision load acting on the occupant of the host vehicle, and thus can reduce the damage to the occupant. . The occupant damage reduction effect is enhanced by the combined use of conventional occupant damage reduction control. In addition, since this vehicle control device escapes in the traveling direction for a moment without rotating the host vehicle, even if the driver cannot safely operate the host vehicle immediately after the collision, other obstacles It is easy to avoid secondary collisions. Therefore, this vehicle control device can reduce the damage to the occupant even after the conventional occupant damage reduction control is performed in the first collision. In addition, the vehicle control device stops the vehicle after it has escaped in the direction of travel for a moment without rotating the vehicle, so that the behavior of the vehicle can be stabilized while reducing damage to passengers. .

次に、衝突荷重の入力方向が自車両C1の進行方向に対して自車両C1の進行を促進させる斜め方向になっている場合(図7)について説明する。   Next, a description will be given of a case where the input direction of the collision load is an oblique direction that promotes the traveling of the host vehicle C1 with respect to the traveling direction of the host vehicle C1 (FIG. 7).

この場合には、衝突荷重を自車両の進行方向と自車両の車幅方向の分力として考えることができる。このため、監視対象物体からの衝突エネルギは、自車両を自らの車幅方向に押し動かす力を発生させるだけでなく、自車両を自らの進行方向に押し動かす力も発生させる。よって、自車両は、衝突後の制動力制御を実施しても、衝突エネルギによる進行方向への力によって停止までの距離と時間が長くなるので、二次衝突を引き起こしてしまう可能性がある。そこで、制動制御部(車両挙動制御部)は、監視対象物体と自車両の側面における被害軽減部位との衝突を検知し、その衝突荷重の入力方向が自車両の進行方向に対して自車両の進行を促進させる斜め方向になっている場合、自車両を回転させずに、衝突後の自車両の車両挙動制御として、衝突後直ぐに車両制動力を増加させる。   In this case, the collision load can be considered as a component force in the traveling direction of the host vehicle and the vehicle width direction of the host vehicle. For this reason, the collision energy from the object to be monitored not only generates a force that pushes the host vehicle in the direction of the vehicle width but also generates a force that pushes the host vehicle in the direction of travel. Therefore, even if the host vehicle performs the braking force control after the collision, the distance and time until the vehicle stops due to the force in the traveling direction due to the collision energy may cause a secondary collision. Therefore, the braking control unit (vehicle behavior control unit) detects a collision between the monitoring target object and a damage mitigation site on the side surface of the host vehicle, and the input direction of the collision load is relative to the traveling direction of the host vehicle. When the vehicle is in an oblique direction for promoting the progress, the vehicle braking force is increased immediately after the collision as the vehicle behavior control of the own vehicle after the collision without rotating the own vehicle.

具体的に、制動制御部(車両挙動制御部)は、衝突後、自車両を回転させることなく直ぐに衝突後の制動力制御を実施し、車両制動力を増加させることによって、衝突エネルギによる自車両の移動量を減らし、自車両の進行を抑えつつ停止させる。このため、車両制御装置は、衝突直後に運転者が自車両を安全に操作できない状況下であっても、他の障害物との二次衝突を回避しやすい。よって、この車両制御装置は、最初の衝突で従来の乗員被害軽減制御が実施された後であっても、乗員の被害を軽減することができる。また、この車両制御装置は、自車両を回転させずに車両制動力を増加させるので、乗員の被害を軽減しつつ、自車両の挙動の安定化をも図ることができる。   Specifically, the braking control unit (vehicle behavior control unit) performs the braking force control immediately after the collision without rotating the host vehicle after the collision, and increases the vehicle braking force to thereby increase the vehicle braking force. The travel amount of the vehicle is reduced, and the vehicle is stopped while suppressing the progress of the vehicle. For this reason, the vehicle control device can easily avoid a secondary collision with another obstacle even in a situation where the driver cannot safely operate the host vehicle immediately after the collision. Therefore, this vehicle control device can reduce the damage to the occupant even after the conventional occupant damage reduction control is performed in the first collision. In addition, since the vehicle control device increases the vehicle braking force without rotating the host vehicle, the behavior of the host vehicle can be stabilized while reducing damage to the passenger.

図8は、本実施例の車両制御装置の演算処理動作について説明するフローチャートである。   FIG. 8 is a flowchart for explaining the arithmetic processing operation of the vehicle control device of this embodiment.

自車両においては、周辺監視制御部が周辺監視装置20による自車両の周辺の監視を続けている。その監視によって監視対象物体が検知された場合(ステップST1)、衝突可能性判定部は、自車両の運動情報と監視対象物体の位置情報と監視対象物体の運動情報とに基づいて、監視対象物体と自車両とが衝突する可能性があるのか否かを判定する(ステップST2)。   In the host vehicle, the periphery monitoring control unit continues to monitor the periphery of the host vehicle by the periphery monitoring device 20. When the monitoring target object is detected by the monitoring (step ST1), the collision possibility determination unit determines the monitoring target object based on the motion information of the host vehicle, the position information of the monitoring target object, and the motion information of the monitoring target object. It is determined whether or not there is a possibility of collision with the host vehicle (step ST2).

衝突の可能性があると判定した場合、衝突判定部は、その監視対象物体との衝突を検知したのか否かを判定する(ステップST3)。   When it is determined that there is a possibility of a collision, the collision determination unit determines whether or not a collision with the monitoring target object has been detected (step ST3).

尚、周辺監視制御部は、ステップST2で衝突の可能性がないと判定した場合、又は、ステップST3で衝突が検知されていない場合、ステップST1で監視対象物体が検知されるまで、自車両の周辺の監視を続ける。   If the periphery monitoring control unit determines that there is no possibility of a collision in step ST2, or if no collision is detected in step ST3, the periphery monitoring control unit continues until the monitoring target object is detected in step ST1. Continue to monitor the surrounding area.

監視対象物体との衝突を検知した場合、衝突形態算出部は、自車両における監視対象物体との衝突形態(衝突位置及び衝突荷重の入力方向)を算出する(ステップST4)。そして、車両挙動制御部は、先に説明したように、その衝突形態に応じた車両挙動制御を実施する(ステップST5)。   When the collision with the monitoring target object is detected, the collision mode calculation unit calculates the collision mode (the collision position and the input direction of the collision load) with the monitoring target object in the host vehicle (step ST4). And a vehicle behavior control part implements the vehicle behavior control according to the collision form as demonstrated previously (step ST5).

従って、本実施例の車両制御装置は、衝突形態に拘わらず、側面で衝突した自車両の乗員の被害を軽減しつつ、二次衝突の発生を抑えることができる。   Therefore, the vehicle control device according to the present embodiment can suppress the occurrence of secondary collisions while reducing damage to the passengers of the host vehicle that collided on the side surface regardless of the collision mode.

[変形例]
前述した実施例の車両制御装置は、衝突後に衝突形態を算出することによって、その衝突形態に応じた衝突後の車両挙動制御を実施することができる。しかしながら、衝突が発生した場合には、衝突形態の算出に必要な情報を得るためのセンサ等に不具合が生じ、衝突形態を特定できなくなってしまう可能性がある。
[Modification]
The vehicle control apparatus according to the above-described embodiment can perform vehicle behavior control after a collision according to the collision mode by calculating the collision mode after the collision. However, when a collision occurs, there is a possibility that a sensor or the like for obtaining information necessary for calculation of the collision form will be defective, and the collision form cannot be specified.

そこで、本変形例の車両制御装置は、実施例の車両制御装置において、衝突前に予め衝突形態を推定しておくことで、衝突形態の特定を衝突後に行えない場合でも、推定した衝突形態に基づいて、この衝突形態に応じた衝突後の車両挙動制御を実施できるように構成する。   Therefore, the vehicle control device according to the present modified example uses the vehicle control device according to the embodiment to estimate the collision form in advance before the collision, so that even if the collision form cannot be specified after the collision, the estimated collision form is obtained. Based on this, the vehicle behavior control after the collision according to the collision mode can be performed.

本変形例のECU1には、制御部として、更に衝突形態推定部を設ける。   The ECU 1 of this modification further includes a collision mode estimation unit as a control unit.

衝突形態推定部とは、監視対象物体と自車両とが衝突する可能性がある場合に、自車両に対する監視対象物体の衝突位置と衝突方向(つまり衝突荷重の入力方向)とを衝突前に推定するものである。その推定は、自車両の運動情報と監視対象物体の位置情報と監視対象物体の運動情報とに基づいて行う。衝突形態推定部は、少なくとも監視対象物体と自車両とが自車両の側面で衝突する可能性がある場合に、自車両に対する監視対象物体の衝突形態(衝突位置及び衝突荷重の入力方向)を推定する。   The collision type estimation unit estimates the collision position and collision direction (that is, the input direction of the collision load) of the monitored object with respect to the own vehicle before the collision when there is a possibility that the monitored object and the own vehicle collide. To do. The estimation is performed based on the motion information of the host vehicle, the position information of the monitoring target object, and the motion information of the monitoring target object. The collision mode estimation unit estimates the collision mode (the collision position and the input direction of the collision load) of the monitoring target object with respect to the host vehicle when there is a possibility that the monitoring target object and the host vehicle collide at the side of the host vehicle. To do.

図9は、本変形例の車両制御装置の演算処理動作について説明するフローチャートである。   FIG. 9 is a flowchart for explaining the arithmetic processing operation of the vehicle control device of the present modification.

実施例と同じように、周辺監視制御部が監視対象物体を検知した場合(ステップST11)、衝突可能性判定部は、その監視対象物体と自車両とが衝突する可能性があるのか否かを判定する(ステップST12)。   As in the embodiment, when the periphery monitoring control unit detects a monitoring target object (step ST11), the collision possibility determination unit determines whether the monitoring target object and the host vehicle may collide. Determine (step ST12).

衝突の可能性があると判定した場合、衝突形態推定部は、自車両の運動情報と監視対象物体の位置情報と監視対象物体の運動情報とに基づいて、自車両に対する監視対象物体の衝突形態(衝突位置及び衝突荷重の入力方向)を衝突前に推定する(ステップST13)。   When it is determined that there is a possibility of collision, the collision mode estimation unit determines the collision type of the monitoring target object with respect to the own vehicle based on the movement information of the own vehicle, the position information of the monitoring target object, and the movement information of the monitoring target object. (The collision position and the input direction of the collision load) are estimated before the collision (step ST13).

衝突判定部は、その監視対象物体との衝突を検知したのか否かを判定する(ステップST14)。   The collision determination unit determines whether or not a collision with the monitoring target object has been detected (step ST14).

尚、周辺監視制御部は、ステップST12で衝突の可能性がないと判定した場合、又は、ステップST14で衝突が検知されていない場合、ステップST11で監視対象物体が検知されるまで、自車両の周辺の監視を続ける。   If the periphery monitoring control unit determines that there is no possibility of a collision in step ST12, or if no collision is detected in step ST14, the periphery monitoring control unit continues until the monitoring target object is detected in step ST11. Continue to monitor the surrounding area.

監視対象物体との衝突を検知した場合、車両挙動制御部は、衝突形態が検知されているのか否かを判定する(ステップST15)。ここで対象となる衝突形態とは、衝突後に衝突形態算出部が算出する衝突形態のことである。車両挙動制御部は、衝突後に衝突形態算出部が衝突形態を特定している場合、衝突形態が検知されているとの判定を行う。これに対して、車両挙動制御部は、衝突後に衝突形態算出部が衝突形態を特定できていない場合、衝突形態が検知されていないとの判定を行う。   When a collision with the monitoring target object is detected, the vehicle behavior control unit determines whether or not a collision mode is detected (step ST15). Here, the target collision form is a collision form calculated by the collision form calculation unit after the collision. The vehicle behavior control unit determines that the collision mode is detected when the collision mode calculation unit specifies the collision mode after the collision. On the other hand, the vehicle behavior control unit determines that the collision mode is not detected when the collision mode calculation unit cannot identify the collision mode after the collision.

車両挙動制御部は、衝突形態が検知されていると判定した場合、その検知した衝突形態に応じた車両挙動制御を実施する(ステップST16)。一方、車両挙動制御部は、衝突形態が検知されていないと判定した場合、衝突前に推定した衝突形態に応じた車両挙動制御を実施する(ステップST17)。   When it is determined that the collision mode is detected, the vehicle behavior control unit performs vehicle behavior control according to the detected collision mode (step ST16). On the other hand, when it is determined that the collision mode is not detected, the vehicle behavior control unit performs vehicle behavior control according to the collision mode estimated before the collision (step ST17).

従って、本変形例の車両制御装置は、衝突後に衝突形態を特定できたときに実施例と同様の効果を得ることができる。そして、この車両制御装置は、衝突時のセンサ故障等によって衝突形態が特定できなくなったとしても、衝突前に推定した衝突形態に基づいて車両挙動制御を実施することで、衝突後に衝突形態が特定できたときと同様の効果を得ることができる。   Therefore, the vehicle control apparatus of the present modification can obtain the same effect as the embodiment when the collision mode can be specified after the collision. And even if the collision mode cannot be specified due to a sensor failure or the like at the time of the collision, the vehicle control device performs the vehicle behavior control based on the collision mode estimated before the collision, thereby specifying the collision mode after the collision. The same effect as when it was made can be obtained.

尚、この車両制御装置は、衝突後に衝突形態を算出できた場合に、この算出した衝突形態と衝突前に推定した衝突形態とを比較して、その比較結果に基づき衝突形態を特定し、この特定した衝突形態に基づいて衝突後の車両挙動制御の制御形態を選択してもよい。   The vehicle control device compares the calculated collision form with the collision form estimated before the collision when the collision form can be calculated after the collision, and identifies the collision form based on the comparison result. You may select the control form of vehicle behavior control after a collision based on the identified collision form.

ここで、本変形例の車両制御装置は、更に、衝突前に衝突後の車両挙動制御の制御形態を推定しておいてもよい。例えば、挙動制御形態選択部は、推定された衝突形態に基づいて、その衝突形態に応じた衝突後における自車両の車両挙動制御の制御形態を推定する。その推定は、衝突後の自車両の運動状態の推定結果に基づいて行ってもよい。この場合、ECU1には、制御部として、衝突後の自車両の運動状態を衝突前に推定する運動状態推定部を設ける。運動状態推定部は、衝突形態推定部が推定した衝突形態に基づいて、衝突後の自車両の運動状態を推定する。   Here, the vehicle control device of the present modification may further estimate the control mode of the vehicle behavior control after the collision before the collision. For example, the behavior control form selection unit estimates the control form of the vehicle behavior control of the host vehicle after the collision according to the collision form based on the estimated collision form. The estimation may be performed based on the estimation result of the motion state of the host vehicle after the collision. In this case, the ECU 1 is provided with a motion state estimation unit that estimates the motion state of the host vehicle after the collision before the collision as a control unit. The motion state estimation unit estimates the motion state of the host vehicle after the collision based on the collision mode estimated by the collision mode estimation unit.

このように衝突後の車両挙動制御の制御形態を衝突前に推定しておくことで、この車両制御装置は、衝突後に衝突形態が特定できないなどの理由によって、衝突後に車両挙動制御の制御形態を選択できなかったとしても、予め推定した衝突後の車両挙動制御を実施することによって、自車両の乗員の被害を軽減することができる。   By estimating the control mode of the vehicle behavior control after the collision in this way before the collision, the vehicle control device can change the control mode of the vehicle behavior control after the collision because the crash mode cannot be specified after the collision. Even if it cannot be selected, damage to the passengers of the host vehicle can be reduced by performing vehicle behavior control after the collision estimated in advance.

衝突後の車両挙動制御の制御形態が衝突前に推定されている場合、車両挙動制御部は、その推定した車両挙動制御を衝突時に応答性良く実施できるように、この車両挙動制御の事前準備を衝突前に行ってもよい。その事前準備は、衝突の回避が不可能と判定された場合に実施すればよい。例えば、車両挙動制御部は、衝突後の車両挙動制御に制動力を用いる場合、その制御対象となる車輪に制動力を発生させていなければ、その車輪のブレーキ液圧について予圧制御(制動力が発生する直前までブレーキ液圧を増圧させておく制御)を行い、衝突後に制動力を応答性良く発生させるようにする。また、例えば、車両挙動制御部は、衝突後の車両挙動制御で制動力を増加させる場合、ブレーキ液圧の増圧に使う加圧ポンプの駆動電力を予め確保しておくことで、衝突後に制動力を応答性良く増加させるようにする。車両制御装置は、このように衝突前から衝突後の車両挙動制御の事前準備を行っておくことで、衝突後の車両挙動制御を応答性良く行うことができる。更に、この車両制御装置は、事前準備が行われているので、衝突後に車両挙動制御の制御形態を選択できなかったとしても、事前準備している車両挙動制御を実施することで、衝突後の車両挙動制御が実施されないという事態を回避することができる。また更に、この車両制御装置は、衝突後に行う車両挙動制御について衝突前後で繋がりを持たせることができるので、円滑な衝突後の車両挙動制御の実施が可能になる。   When the control mode of the vehicle behavior control after the collision is estimated before the collision, the vehicle behavior control unit prepares the vehicle behavior control in advance so that the estimated vehicle behavior control can be performed with good responsiveness at the time of the collision. It may be done before the collision. The advance preparation may be performed when it is determined that a collision cannot be avoided. For example, when a braking force is used for vehicle behavior control after a collision, the vehicle behavior control unit does not generate braking force on the wheel to be controlled, and preload control (braking force is applied to the brake fluid pressure of the wheel). The brake fluid pressure is increased until immediately before it is generated), and the braking force is generated with good responsiveness after the collision. Further, for example, when increasing the braking force in the vehicle behavior control after the collision, the vehicle behavior control unit secures the driving power of the pressurizing pump used for increasing the brake fluid pressure in advance, thereby controlling after the collision. Increase power with good responsiveness. Thus, the vehicle control device can perform the vehicle behavior control after the collision with high responsiveness by preparing in advance the vehicle behavior control after the collision before the collision. Furthermore, since this vehicle control device has been prepared in advance, even if the control mode of the vehicle behavior control cannot be selected after the collision, by performing the vehicle behavior control prepared in advance, A situation in which vehicle behavior control is not performed can be avoided. Furthermore, since this vehicle control device can provide a connection before and after the collision for the vehicle behavior control performed after the collision, the vehicle behavior control after the collision can be performed smoothly.

1 電子制御装置(ECU)
10 運動情報検出装置
20 周辺監視装置
30 衝突検知装置
40 車両挙動制御装置
1 Electronic control unit (ECU)
DESCRIPTION OF SYMBOLS 10 Motion information detection apparatus 20 Perimeter monitoring apparatus 30 Collision detection apparatus 40 Vehicle behavior control apparatus

Claims (7)

自車両の周辺を監視し、該周辺の監視対象物体を検出する周辺監視装置と、
前記監視対象物体と自車両との衝突を検知する衝突検知装置と、
自車両の挙動を制御する車両挙動制御装置と、
前記監視対象物体と自車両との衝突が検知された場合、衝突後の自車両の車両挙動制御を実施する制御部と、
を備え、
前記制御部は、自車両の側面への前記監視対象物体の衝突を検知し、その衝突位置が自車両の側面の内で相対的に自車両の乗員の被害が小さい被害軽減部位とは異なる場所の場合、前記衝突後の自車両の車両挙動制御として、衝突時における前記監視対象物体からの衝突エネルギを逃がす方向に自車両を回転させる回転促進制御を実施し、前記衝突位置が自車両の側面の内の前記被害軽減部位の場合、前記衝突後の自車両の車両挙動制御として、前記回転促進制御を禁止することを特徴とした車両制御装置。
A perimeter monitoring device that monitors the surroundings of the host vehicle and detects objects to be monitored in the vicinity;
A collision detection device for detecting a collision between the monitored object and the host vehicle;
A vehicle behavior control device for controlling the behavior of the host vehicle;
When a collision between the monitored object and the host vehicle is detected, a control unit that performs vehicle behavior control of the host vehicle after the collision;
With
The control unit detects a collision of the object to be monitored with the side surface of the host vehicle, and the position of the collision is different from a damage reducing portion within the side surface of the host vehicle where damage to the passenger of the host vehicle is relatively small In this case, as the vehicle behavior control of the host vehicle after the collision, rotation promotion control for rotating the host vehicle in a direction to release the collision energy from the monitoring target object at the time of the collision is performed, and the collision position is a side surface of the host vehicle. In the case of the damage mitigation part of the vehicle, the vehicle acceleration control is prohibited as the vehicle behavior control of the host vehicle after the collision.
前記制御部は、過剰な自車両の回転が起こらない低い車速域のときに前記回転促進制御を実施することを特徴とした請求項1に記載の車両制御装置。   The vehicle control device according to claim 1, wherein the control unit performs the rotation promotion control in a low vehicle speed range where excessive rotation of the host vehicle does not occur. 前記制御部は、前記衝突位置が自車両の側面の内の前記被害軽減部位以外の場所で、かつ、その衝突荷重の入力方向が自車両の進行方向に対して直交している場合又は自車両の進行方向に対して自車両の進行を妨げる斜め方向になっている場合、衝突時の自車両に車両制動力による減速度が作用しているのであれば、前記衝突後の自車両の車両挙動制御として、衝突後、所定時間の間だけ自車両の減速度を抑制してから車両制動力を増加させることを特徴とした請求項1又は2に記載の車両制御装置。   The control unit is configured such that the collision position is a place other than the damage mitigation site in the side surface of the host vehicle, and the input direction of the collision load is orthogonal to the traveling direction of the host vehicle or the host vehicle The vehicle behavior of the host vehicle after the collision is applied if a deceleration by the vehicle braking force is acting on the host vehicle at the time of the collision when the vehicle is in an oblique direction that prevents the host vehicle from traveling. The vehicle control device according to claim 1 or 2, wherein, as the control, the vehicle braking force is increased after suppressing the deceleration of the host vehicle for a predetermined time after the collision. 前記制御部は、前記衝突位置が自車両の側面の内の前記被害軽減部位以外の場所で、かつ、その衝突荷重の入力方向が自車両の進行方向に対して自車両の進行を促進させる斜め方向になっている場合、前記衝突後の自車両の車両挙動制御として、衝突後直ぐに車両制動力を増加させることを特徴とした請求項1,2又は3に記載の車両制御装置。   The control unit is configured such that the collision position is a place other than the damage mitigation part in the side surface of the host vehicle, and the input direction of the collision load is an oblique direction that promotes the progress of the host vehicle with respect to the traveling direction of the host vehicle. 4. The vehicle control device according to claim 1, wherein when the vehicle is in a direction, the vehicle braking force is increased immediately after the collision as the vehicle behavior control of the host vehicle after the collision. 前記制御部は、前記監視対象物体と自車両とが自車両の側面で衝突する可能性がある場合、自車両に対する前記監視対象物体の衝突位置と衝突荷重の入力方向とを衝突前に推定し、
前記制御部は、前記監視対象物体と自車両の側面との衝突を検知したが、衝突後に自車両に対する前記監視対象物体の衝突位置と衝突荷重の入力方向を特定できなかった場合、衝突前に推定された前記衝突位置と前記衝突荷重の入力方向とに応じた前記衝突後の自車両の車両挙動制御を実施することを特徴とした請求項1,2,3又は4に記載の車両制御装置。
When there is a possibility that the monitoring target object and the host vehicle collide on the side surface of the host vehicle, the control unit estimates the collision position of the monitoring target object and the input direction of the collision load with respect to the host vehicle before the collision. ,
The control unit detects a collision between the monitoring target object and a side surface of the host vehicle, but if the collision position of the monitoring target object with respect to the host vehicle and the input direction of the collision load cannot be specified after the collision, 5. The vehicle control device according to claim 1, wherein vehicle behavior control of the host vehicle after the collision is performed according to the estimated collision position and the input direction of the collision load. .
前記制御部は、前記監視対象物体と自車両とが自車両の側面で衝突する可能性がある場合、自車両に対する前記監視対象物体の衝突位置と衝突荷重の入力方向とを衝突前に推定し、該推定された衝突位置と衝突荷重の入力方向に基づいて前記衝突後の自車両の車両挙動制御の制御形態を衝突前に推定し、
前記制御部は、該推定した車両挙動制御を衝突時に応答性良く実施できるように、該車両挙動制御の事前準備を衝突前に実施することを特徴とした請求項1,2,3又は4に記載の車両制御装置。
When there is a possibility that the monitoring target object and the host vehicle collide on the side surface of the host vehicle, the control unit estimates the collision position of the monitoring target object and the input direction of the collision load with respect to the host vehicle before the collision. , Estimating the control mode of the vehicle behavior control of the host vehicle after the collision based on the estimated collision position and the input direction of the collision load, before the collision,
The said control part performs prior preparation of this vehicle behavior control before a collision so that it can implement this estimated vehicle behavior control with sufficient responsiveness at the time of a collision, The claim 1, 2, 3 or 4 characterized by the above-mentioned. The vehicle control device described.
前記回転促進制御における自車両の目標ヨーモーメントは、前記監視対象物体の車速と質量又は重量に応じた当該監視対象物体からの衝突エネルギに基づいて設定することを特徴とした請求項1から6の内の何れか1つに記載の車両制御装置。   The target yaw moment of the host vehicle in the rotation promotion control is set based on a collision energy from the monitoring target object according to a vehicle speed and a mass or weight of the monitoring target object. The vehicle control device according to any one of the above.
JP2014158765A 2014-08-04 2014-08-04 Vehicle control device Active JP6201928B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014158765A JP6201928B2 (en) 2014-08-04 2014-08-04 Vehicle control device
PCT/JP2015/071570 WO2016021469A1 (en) 2014-08-04 2015-07-23 Vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158765A JP6201928B2 (en) 2014-08-04 2014-08-04 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2016034814A JP2016034814A (en) 2016-03-17
JP6201928B2 true JP6201928B2 (en) 2017-09-27

Family

ID=53938386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158765A Active JP6201928B2 (en) 2014-08-04 2014-08-04 Vehicle control device

Country Status (2)

Country Link
JP (1) JP6201928B2 (en)
WO (1) WO2016021469A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735600B (en) * 2016-07-01 2021-08-11 美商美國禮來大藥廠 ANTI-N3pGlu AMYLOID BETA PEPTIDE ANTIBODIES AND USES THEREOF
CN110271550B (en) * 2019-06-26 2021-04-20 北京汽车股份有限公司 Vehicle braking method and system and vehicle
US11351987B2 (en) 2019-09-13 2022-06-07 Intel Corporation Proactive vehicle safety system
WO2024090444A1 (en) * 2022-10-24 2024-05-02 ソフトバンクグループ株式会社 Information processing device, vehicle, information processing method, and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247046A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Brake control system
JP2005254945A (en) * 2004-03-11 2005-09-22 Mazda Motor Corp Behavior control device for vehicle
JP2005254943A (en) * 2004-03-11 2005-09-22 Mazda Motor Corp Behavior control device for vehicle
JP2007190977A (en) 2006-01-17 2007-08-02 Toyota Motor Corp Vehicle control device
JP4952127B2 (en) * 2006-08-08 2012-06-13 トヨタ自動車株式会社 Vehicle control device, vehicle control system, and vehicle control method
DE102007059414A1 (en) * 2007-12-10 2009-06-18 Robert Bosch Gmbh Method and arrangement for controlling safety devices for a vehicle
JP4873186B2 (en) 2008-03-03 2012-02-08 トヨタ自動車株式会社 Collision mitigation device
JP4706984B2 (en) * 2009-02-25 2011-06-22 トヨタ自動車株式会社 Collision estimation apparatus and collision estimation method

Also Published As

Publication number Publication date
JP2016034814A (en) 2016-03-17
WO2016021469A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
JP4997778B2 (en) Crew protection device
EP3354525B1 (en) Arrangement and method for mitigating a forward collision between road vehicles
US9637096B2 (en) Vehicle control apparatus
US9180881B2 (en) Braking control system and method for vehicle
JP4174334B2 (en) Collision prevention support device for vehicle
JP6032220B2 (en) Vehicle control apparatus and vehicle control system
JP6201928B2 (en) Vehicle control device
JP2010030396A (en) Safety controller for vehicle
US20180072312A1 (en) Impact-absorbing apparatus and method for vehicle
JP2006298105A (en) Operation control device for occupant protection device
JP4501521B2 (en) Vehicle collision impact control device
EP1852323A1 (en) Rear end collision mitigation system for an automotive vehicle
JP2005082124A (en) Start control device of collision damage reducing device and sensor to be used for the same device
JP2016016743A (en) Vehicle control apparatus
US10112588B2 (en) Vehicle control apparatus
US10434906B2 (en) Method and system for controlling an actuator for a loading area adjustably mounted on a motor vehicle body
JP2008080845A (en) Travel controller for vehicle
JP2005254945A (en) Behavior control device for vehicle
JP2008174054A (en) Vehicular safety device
JP2008149933A (en) Braking control device in vehicle rear-end collision
JP2007230500A (en) Vehicular automatic braking controller
JP2007290560A (en) Operation control device of occupant crash protector
JP2015085798A (en) Automatic braking device
JP6166690B2 (en) Vehicle control device
JP7037901B2 (en) Vehicle occupant protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151