JP6197530B2 - Fluidized bed dryer - Google Patents

Fluidized bed dryer Download PDF

Info

Publication number
JP6197530B2
JP6197530B2 JP2013198911A JP2013198911A JP6197530B2 JP 6197530 B2 JP6197530 B2 JP 6197530B2 JP 2013198911 A JP2013198911 A JP 2013198911A JP 2013198911 A JP2013198911 A JP 2013198911A JP 6197530 B2 JP6197530 B2 JP 6197530B2
Authority
JP
Japan
Prior art keywords
fluidized bed
bed drying
cross
water
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013198911A
Other languages
Japanese (ja)
Other versions
JP2015064149A (en
Inventor
志宏 劉
志宏 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013198911A priority Critical patent/JP6197530B2/en
Publication of JP2015064149A publication Critical patent/JP2015064149A/en
Application granted granted Critical
Publication of JP6197530B2 publication Critical patent/JP6197530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

本発明は、含水物質を流動させながら乾燥させる流動層乾燥装置に関する。   The present invention relates to a fluidized bed drying apparatus that dries a water-containing substance while flowing it.

近年、天然ガスの代替物として、石炭やバイオマス、タイヤチップ等のガス化原料をガス化して合成ガスを生成する技術が開発されている。このようにして生成された合成ガスは、発電システムや、水素の製造、合成燃料(合成石油)の製造、化学肥料(尿素)等の化学製品の製造等に利用されている。合成ガスの原料となるガス化原料のうち、特に石炭は、可採年数が150年程度と、石油の可採年数の3倍以上であり、また、石油と比較して埋蔵地が偏在していないため、長期に亘り安定供給が可能な天然資源として期待されている。   In recent years, as an alternative to natural gas, a technique has been developed in which gasification raw materials such as coal, biomass, and tire chips are gasified to generate synthesis gas. Synthetic gas generated in this way is used for power generation systems, hydrogen production, synthetic fuel (synthetic petroleum) production, chemical fertilizer (urea) and other chemical products. Among the gasification raw materials used as the raw material for synthesis gas, coal, in particular, has a recoverable period of about 150 years, more than three times the recoverable period of oil, and reserves are unevenly distributed compared to oil. Therefore, it is expected as a natural resource that can be stably supplied over a long period of time.

石炭は、炭素含有量の低い順に、泥炭、亜炭、褐炭、亜瀝青炭、瀝青炭、半無煙炭、無煙炭に分類され、泥炭、亜炭、褐炭、亜瀝青炭(以下、含水石炭と称する)は、瀝青炭、半無煙炭、無煙炭(以下、無煙炭等と称する)と比較して水の含有率が高い。したがって、無煙炭等と比較して、含水石炭は、資源量が豊富であるものの単位重量あたりの発熱量が低くなるため、輸送コストに対する燃料としてのエネルギー効率が低い。   Coal is classified into peat, lignite, lignite, sub-bituminous coal, bituminous coal, semi-anthracite, and anthracite in order of increasing carbon content. Compared with anthracite and anthracite (hereinafter referred to as anthracite), the water content is high. Therefore, compared with anthracite and the like, hydrous coal has abundant resources, but its calorific value per unit weight is low, so its energy efficiency as a fuel for transportation costs is low.

例えば、含水石炭である褐炭は含水率が高く燃えにくいため、火力発電等に使用されていなかった。しかしながら褐炭は埋蔵地の分布が広く、安価であり、また乾燥させると燃えやすく単位重量当たりの発熱量が高いため、近年では褐炭を乾燥させることで火力発電等に使用されている。   For example, lignite, which is a hydrous coal, has not been used for thermal power generation because it has a high moisture content and is difficult to burn. However, lignite has a wide distribution of reserves, is inexpensive, and easily burns when dried, and has a high calorific value per unit weight, so in recent years it has been used for thermal power generation by drying lignite.

そこで、従来、褐炭等の含水物質を乾燥させるため、含水物質を流動させながら乾燥させる流動層乾燥装置が用いられている。また、流動層乾燥装置として、含水物質を収容する収容部と、収容部下部に位置し、上部に複数の開孔を有する通気可能な分散板である風箱とを含んで構成される流動層乾燥炉を備えた流動層乾燥装置が知られている(例えば、特許文献1)。この流動層乾燥装置では、風箱から収容部内に分散板の開孔を介して加熱蒸気等の流動化ガスを供給することで、乾燥炉に収容された含水物質を流動させながら乾燥させる。   Therefore, conventionally, in order to dry a hydrated material such as lignite, a fluidized bed drying apparatus that dries while hydrating the hydrated material is used. Further, as a fluidized bed drying apparatus, a fluidized bed comprising a housing part that contains a water-containing substance, and a wind box that is a breathable dispersion plate that is located in the lower part of the housing part and has a plurality of openings in the upper part. A fluidized bed drying apparatus provided with a drying furnace is known (for example, Patent Document 1). In this fluidized bed drying apparatus, fluidized gas such as heated steam is supplied from the wind box into the accommodating portion through the holes of the dispersion plate, so that the water-containing substance accommodated in the drying furnace is dried while flowing.

特開2011−214816号公報JP 2011-214816 A

しかしながら、通常、褐炭等の含水物質は、粉砕処理後、分級せずに乾燥される。粉砕処理により形成された粒子は大きさが一定ではなく、粒径分布が広い。このため、流動化ガスの空塔速度が低いと、粒径や密度が小さく相対的に重い粒子(以下、「重粒子」と称する。)は流動せず、乾燥炉下部に沈んでしまう。また、流動化ガスの空塔速度が高いと、重粒子は流動し乾燥されるが、粒径や密度が小さく相対的に軽い粒子(以下、「軽粒子」と称する。)は乾燥炉上部に浮き、飛散する。このため、飛散した軽粒子の多くが乾燥しきれない状態となってしまう。   However, water-containing substances such as lignite are usually dried without being classified after pulverization. Particles formed by pulverization are not uniform in size and have a wide particle size distribution. For this reason, when the superficial velocity of the fluidized gas is low, particles having a small particle size and density and relatively heavy (hereinafter referred to as “heavy particles”) do not flow but sink to the lower part of the drying furnace. Also, when the superficial velocity of the fluidizing gas is high, heavy particles flow and are dried, but relatively light particles having a small particle size and density (hereinafter referred to as “light particles”) are placed in the upper part of the drying furnace. Float and scatter. For this reason, many of the scattered light particles cannot be completely dried.

さらに、含水物質が乾燥されることで蒸気が生じるので、流動化ガスの空塔速度は乾燥炉の上方に向かうにしたがって高くなる。したがって、乾燥炉の上部に浮いた軽粒子はより飛散しやすくなってしまう。   Furthermore, since steam is generated by drying the hydrated material, the superficial velocity of the fluidized gas becomes higher toward the upper side of the drying furnace. Therefore, the light particles floating on the upper part of the drying furnace are more likely to be scattered.

粒径分布を狭めるため、例えば流動層乾燥装置の前段に分級装置を設け、分級装置により含水物質を予め分級し、分級した含水物質ごとに流動層乾燥装置で乾燥させることが考えられる。しかし、流動層乾燥装置に新たに専用の分級装置を設けるとコストがかかってしまうという課題があった。   In order to narrow the particle size distribution, for example, it is conceivable that a classifier is provided in the preceding stage of the fluidized bed drying apparatus, and the hydrated substances are classified in advance by the classifier, and each classified hydrated substance is dried by the fluidized bed drying apparatus. However, when a dedicated classifier is newly provided in the fluidized bed drying apparatus, there is a problem that costs are increased.

そこで、本発明はこのような課題に鑑み、乾燥炉の形状を工夫することで、粒径分布が広い含水物質を適切に流動および乾燥させることができる流動層乾燥装置を提供することを目的としている。   Then, in view of such a subject, this invention aims at providing the fluidized bed drying apparatus which can flow and dry the water-containing substance with a wide particle size distribution appropriately by devising the shape of a drying furnace. Yes.

本発明の流動層乾燥装置は、上部の横断面の面積が下記数式(1)を満たし、下部の横断面の面積が下記数式(2)を満たし、上方に推移するに連れ横断面の面積が漸増する収容部を備え、収容部内に含水物質を収容し、流動化ガスにより含水物質を流動させることで流動層を形成するとともに含水物質を乾燥させる流動層乾燥炉と、流動層乾燥炉の底部から流動化ガスを供給する風箱と、流動層乾燥炉に含水物質を導入する導入部と、流動層乾燥炉から含水物質を導出する導出部と、を備え、流動層乾燥炉の底部において、導入部側の底部が、導出部側の底部より鉛直下方に位置し、導入部側の底部側から導出部側の底部側へ傾斜していることを特徴とする。

Figure 0006197530
・・・数式(1)
Figure 0006197530
・・・数式(2)
ただし、
Q:流動化ガスの体積流量(m/s)
Qg:乾燥により生成された蒸気の体積流量(m/s)
Au:収容部の上部の横断面の面積(m
Al:収容部の下部の横断面の面積(m
Ut:含水物質のうち、相対的に軽い粒子における予め定められた粒子終末速度(m/s)
Umf:含水物質のうち、相対的に重い粒子における予め定められた最小流動化速度(m/s)
In the fluidized bed drying apparatus of the present invention, the area of the upper cross section satisfies the following formula (1), the area of the lower cross section satisfies the following formula (2), and the area of the cross section increases as it moves upward. A fluidized bed drying furnace that includes a gradually increasing storage portion, stores a hydrated substance in the storage part, and forms a fluidized bed by flowing the hydrated substance with a fluidizing gas and dries the hydrated substance, and a bottom of the fluidized bed drying furnace An air box for supplying a fluidized gas from a fluidized bed drying furnace, an introduction part for introducing a hydrated substance into the fluidized bed drying furnace, and a lead-out part for deriving the hydrated substance from the fluidized bed drying furnace. the bottom of the inlet portion side, deriving side bottom than located vertically below the characterized that you have inclined from the bottom side of the inlet side to the bottom side of the lead-out portion side.
Figure 0006197530
... Formula (1)
Figure 0006197530
... Formula (2)
However,
Q: Volume flow rate of fluidized gas (m 3 / s)
Qg: Volume flow rate of vapor generated by drying (m 3 / s)
Au: Area of the cross section of the upper part of the accommodating part (m 2 )
Al: Area of the cross section at the bottom of the accommodating part (m 2 )
Ut: Predetermined particle end velocity (m / s) of relatively light particles among water-containing materials
Umf: predetermined minimum fluidization speed (m / s) of relatively heavy particles among water-containing materials

本発明によれば、乾燥炉の形状を工夫することで、粒径分布が広い含水物質を適切に流動および乾燥させることができる。   According to the present invention, by devising the shape of the drying furnace, it is possible to appropriately flow and dry a water-containing substance having a wide particle size distribution.

本実施形態にかかる流動層乾燥装置を説明するための図である。It is a figure for demonstrating the fluidized bed drying apparatus concerning this embodiment. 従来の流動層乾燥装置と本実施形態の流動層乾燥装置とを比較するための比較図である。It is a comparison figure for comparing the conventional fluidized-bed drying apparatus and the fluidized-bed drying apparatus of this embodiment. 変形例にかかる流動層乾燥装置を説明するための図である。It is a figure for demonstrating the fluidized bed drying apparatus concerning a modification.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、本実施形態にかかる流動層乾燥装置100を説明するための図である。流動層乾燥装置100は流動層乾燥炉110と風箱120とを含んで構成される。図1中、固体の流れを黒矢印で示し、気体の流れを白抜き矢印で示す。   FIG. 1 is a diagram for explaining a fluidized bed drying apparatus 100 according to the present embodiment. The fluidized bed drying apparatus 100 includes a fluidized bed drying furnace 110 and an air box 120. In FIG. 1, the solid flow is indicated by black arrows, and the gas flow is indicated by white arrows.

流動層乾燥炉110は、収容部112と、導入部114と、導出部116とを含んで構成される。収容部112は、褐炭等の含水物質を収容する容器であり、収容部112の横断面(水平断面)の面積は、収容部112上方に推移するに連れて漸増する漏斗形状(円錐形状)である。収容部112の形状については後述する。含水物質は、収容部112の上部112a側に設けられた導入部114から導入され、収容部112内を流動することで流動層を形成するとともに乾燥され、導出部116(116a、116b、116c)から導出される。導出部116b、116cには、バルブ116dが設けられ、バルブ116dを閉じることで含水物質を収容部112に貯留し、バルブ116dを開くことで収容部112から導出部116b、116cを介して含水物質が導出される。また、バルブ116dの開閉度合を変えることで導出部116b、116cから含水物質が導出される速度を制御することができる。   The fluidized bed drying furnace 110 includes an accommodating part 112, an introducing part 114, and a leading part 116. The accommodating part 112 is a container for accommodating a hydrated substance such as lignite, and the area of the transverse section (horizontal cross section) of the accommodating part 112 is a funnel shape (conical shape) that gradually increases as it moves above the accommodating part 112. is there. The shape of the accommodating portion 112 will be described later. The water-containing substance is introduced from the introduction part 114 provided on the upper part 112a side of the accommodating part 112, and flows through the accommodating part 112 to form a fluidized bed and is dried, and the outlet part 116 (116a, 116b, 116c). Is derived from The derivation units 116b and 116c are provided with a valve 116d. The hydrated substance is stored in the storage unit 112 by closing the valve 116d, and the hydrated substance is opened from the storage unit 112 through the derivation units 116b and 116c by opening the valve 116d. Is derived. Further, the speed at which the water-containing substance is derived from the deriving units 116b and 116c can be controlled by changing the degree of opening and closing of the valve 116d.

風箱120は、収容部112の下方に設けられている。風箱120の上部は、収容部112内部と連通し通気可能である分散板122で形成される。風箱120は分散板122の開孔を介して蒸気(流動化ガス)を収容部112内部に流入させる。流動化ガスは収容部112内で含水物質を流動させて、流動層を形成するとともに含水物質を乾燥させる。なお、分散板122は、例えば、導入される含水物質の粒径よりも小さい径の開孔が複数設けられた板や、開孔が設けられたノズルを設けた板が使用される。   The wind box 120 is provided below the housing portion 112. The upper part of the air box 120 is formed of a dispersion plate 122 that communicates with the inside of the housing portion 112 and can be ventilated. The wind box 120 allows the vapor (fluidized gas) to flow into the accommodating portion 112 through the openings of the dispersion plate 122. The fluidizing gas causes the water-containing substance to flow in the housing portion 112 to form a fluidized bed and dry the water-containing substance. As the dispersion plate 122, for example, a plate provided with a plurality of apertures having a diameter smaller than the particle size of the water-containing substance to be introduced, or a plate provided with a nozzle provided with the apertures is used.

粒径や密度が異なる含水物質の粒子は、それぞれ流動特性が異なっている。このため、含水物質は、収容部112内で流動することにより、粒子の粒径や密度の差に応じて含水物質の粒子が自然に分級(偏析)される。したがって、例えば、粒径や密度が相対的に大きく重い粒子(以下、「重粒子」と称する。)が収容部112の下部112b側に、粒径や密度が相対的に小さく軽い粒子(以下、「軽粒子」と称する。)が収容部112の上部112a側に、粒径や密度が粒径分布の中間に位置する粒子(以下、「中粒子」と称する。)は重粒子と軽粒子の中間に位置することとなる。   The hydrous particles having different particle sizes and densities have different flow characteristics. For this reason, the water-containing substance flows in the accommodating portion 112, so that the particles of the water-containing substance are naturally classified (segregated) according to the difference in particle diameter and density. Therefore, for example, relatively large and heavy particles (hereinafter referred to as “heavy particles”) having a relatively small particle size and density on the lower portion 112b side of the housing portion 112 (hereinafter referred to as “particles having a relatively small particle size and density”). Particles (hereinafter referred to as “medium particles”) whose particle size and density are located in the middle of the particle size distribution on the upper portion 112a side of the accommodating portion 112 are heavy particles and light particles. It will be located in the middle.

かかる流動特性に応じて、収容部112の上部112a側に設けられた導出部116aからは軽粒子が導出され、収容部112の下部112b側に設けられた導出部116cからは重粒子が導出され、導出部116aと導出部116cとの間に設けられた導出部116bからは中粒子が導出される。このため、目的に応じた粒径および密度の粒子を分離することができる。   In accordance with the flow characteristics, light particles are led out from the lead-out part 116a provided on the upper part 112a side of the storage part 112, and heavy particles are led out from the lead-out part 116c provided on the lower part 112b side of the storage part 112. Middle particles are derived from a derivation unit 116b provided between the derivation unit 116a and the derivation unit 116c. For this reason, the particle | grains of the particle size and density according to the objective can be isolate | separated.

褐炭等の粒径分布が広い含水物質を乾燥させる場合、流動化ガスの空塔速度(断面積に対する蒸気の流量)が低いと重粒子は流動し難くなって沈んでしまい、流動化ガスの空塔速度が高いと、軽粒子は収容部112の上部112aに浮き、飛散するため、乾燥しきれない状態となってしまう。   When drying a hydrous material with a wide particle size distribution, such as brown coal, if the superficial velocity of the fluidizing gas (the flow rate of steam relative to the cross-sectional area) is low, the heavy particles become difficult to flow and sink, and the fluidizing gas empty When the tower speed is high, the light particles float on the upper portion 112a of the accommodating portion 112 and scatter, so that it cannot be completely dried.

また、従来の流動層乾燥装置では、収容部において、収容部の上部の空塔速度の方が収容部の下部の空塔速度より高くなり、収容部の上部の軽粒子は、より飛散しやすくなってしまう。ここで、従来の流動層乾燥装置における収容部内部の空塔速度と、本実施形態の流動層乾燥装置100における収容部112内部の空塔速度について説明する。   Further, in the conventional fluidized bed drying apparatus, in the storage unit, the superficial velocity at the top of the storage unit is higher than the superficial velocity at the bottom of the storage unit, and the light particles at the top of the storage unit are more easily scattered. turn into. Here, the superficial velocity inside the accommodating portion in the conventional fluidized bed drying apparatus and the superficial velocity inside the accommodating portion 112 in the fluidized bed drying apparatus 100 of the present embodiment will be described.

図2は、従来の流動層乾燥装置10と本実施形態の流動層乾燥装置100とを比較するための比較図である。図2(a)は、従来の流動層乾燥装置10を示す概略図であり、図2(b)は本実施形態の流動層乾燥装置100を示す概略図である。図中、流動化ガスの流れを白抜き矢印で、乾燥により生じた蒸気の流れを黒矢印で示す。図2(a)に示すように、従来の流動層乾燥装置10は、収容部13を含む流動層乾燥炉11と、風箱12とを含んで構成される。   FIG. 2 is a comparison diagram for comparing the conventional fluidized bed drying apparatus 10 and the fluidized bed drying apparatus 100 of the present embodiment. FIG. 2A is a schematic diagram showing a conventional fluidized bed drying apparatus 10, and FIG. 2B is a schematic diagram showing a fluidized bed drying apparatus 100 of the present embodiment. In the figure, the flow of fluidized gas is indicated by white arrows, and the flow of vapor generated by drying is indicated by black arrows. As shown in FIG. 2A, the conventional fluidized bed drying apparatus 10 is configured to include a fluidized bed drying furnace 11 including an accommodating portion 13 and an air box 12.

図2(a)に示すように、従来の流動層乾燥装置10の収容部13では、収容部13の上部13aの断面積と、収容部13の下部13bの断面積とが等しい。収容部13には、風箱12から流動化ガスが流入し、流動化ガスは、収容部13の上部13a(鉛直上方)へ向かって移動しながら、含水物質を流動させるとともに乾燥させる。その結果、含水物質に含まれていた水分が蒸発することで、収容部13内部で新たに蒸気が生じる。かかる流動化ガスおよび蒸気は収容部13の上部13aへ向かって移動する。このため、収容部13では、上部13aに向かうにしたがって、同一断面積を通過するガス(流動化ガスおよび蒸気)の流量が増加し、収容部13の上部13aにおける空塔速度の方が収容部13の下部13bにおける空塔速度より高くなる。   As shown in FIG. 2 (a), in the accommodating part 13 of the conventional fluidized bed drying apparatus 10, the cross-sectional area of the upper part 13 a of the accommodating part 13 and the sectional area of the lower part 13 b of the accommodating part 13 are equal. The fluidizing gas flows into the housing part 13 from the wind box 12, and the fluidizing gas moves the water-containing substance and dries while moving toward the upper part 13 a (vertically upward) of the housing part 13. As a result, the water contained in the water-containing substance evaporates, so that steam is newly generated inside the housing portion 13. Such fluidized gas and steam move toward the upper portion 13 a of the accommodating portion 13. For this reason, in the accommodating part 13, the flow rate of the gas (fluidized gas and steam) passing through the same cross-sectional area increases toward the upper part 13a, and the superficial velocity in the upper part 13a of the accommodating part 13 is higher. 13 becomes higher than the superficial velocity in the lower part 13b.

そこで、本実施形態では、図2(b)に示すように、収容部112の上部112aの断面積が、収容部112の下部112bの断面積と比較して大きい漏斗形状(円錐形状)の収容部112とする。すると、収容部112の上部112aの同一断面積を通過するガスの流量が増加しても、収容部112の上部112aにおける断面積の方が収容部112の下部112bの断面積より大きいため、流量の増加分が断面積の増加分で相殺され、ガスの空塔速度が高くなることを抑制できる。また、収容部112の下部112bの断面積は、収容部112の上部112aの断面積と比較して小さい。このため、収容部112の下部112bにおける流動化ガスの空塔速度を高くすることができ、重粒子が流動せず沈むことが抑制できる。   Therefore, in the present embodiment, as shown in FIG. 2B, the funnel-shaped (conical shape) housing in which the cross-sectional area of the upper portion 112 a of the housing portion 112 is larger than the cross-sectional area of the lower portion 112 b of the housing portion 112. Part 112 is assumed. Then, even if the flow rate of the gas passing through the same cross-sectional area of the upper portion 112a of the housing portion 112 increases, the cross-sectional area of the upper portion 112a of the housing portion 112 is larger than the cross-sectional area of the lower portion 112b of the housing portion 112. It is possible to suppress the increase in gas from being increased by the increase in the cross-sectional area, and to increase the gas superficial velocity. Further, the cross-sectional area of the lower portion 112 b of the housing portion 112 is smaller than the cross-sectional area of the upper portion 112 a of the housing portion 112. For this reason, the superficial velocity of the fluidization gas in the lower part 112b of the accommodating part 112 can be made high, and it can suppress that a heavy particle sinks without flowing.

収容部112の上部112aには軽粒子が位置することとなるため、収容部112の上部112aでのガスの空塔速度(収容部112の上部112aの断面積に対する流動化ガスおよび乾燥により生じた蒸気の流量)は、軽粒子が流動するが飛散しない空塔速度(軽粒子の粒子終末速度)より低いことが好ましい。したがって、収容部112の上部112aの断面積は、軽粒子が流動するが飛散しない下記の数式(1)により求められる。

Figure 0006197530
・・・数式(1)
ここで、Qは流動化ガスの体積流量(m/s)、Qgは乾燥により生成された蒸気の体積流量(m/s)、Auは収容部112の上部112aの横断面の面積(m)、Utは軽粒子における予め定められた粒子終末速度(m/s)を示す。 Since light particles are located in the upper part 112a of the accommodating part 112, the superficial velocity of the gas in the upper part 112a of the accommodating part 112 (generated by fluidized gas and drying with respect to the cross-sectional area of the upper part 112a of the accommodating part 112) The vapor flow rate is preferably lower than the superficial velocity at which light particles flow but do not scatter (particle end velocity of light particles). Therefore, the cross-sectional area of the upper part 112a of the accommodating part 112 is calculated | required by following Numerical formula (1) in which a light particle flows, but does not scatter.
Figure 0006197530
... Formula (1)
Here, Q is the volumetric flow rate of fluidized gas (m 3 / s), Qg is the volumetric flow rate of vapor generated by drying (m 3 / s), and Au is the area of the cross section of the upper portion 112a of the accommodating portion 112 ( m 2 ), Ut represents a predetermined particle end velocity (m / s) in light particles.

また、収容部112の下部112bには重粒子が位置することとなるため、収容部112の下部112bでのガスの空塔速度(収容部112の下部112bの断面積に対する流動化ガスの流量)は、重粒子が流動可能となる空塔速度(重粒子の最小流動化速度)より高いことが好ましい。したがって、収容部112の下部112bの断面積は、重粒子が流動可能となる下記の数式(2)により求められる。

Figure 0006197530
・・・数式(2)
ここで、Qは流動化ガスの体積流量(m/s)、Alは収容部112の下部112bの横断面の面積(m)、Umf:重粒子の最小流動化速度(m/s)を示す。 In addition, since heavy particles are located in the lower portion 112b of the accommodating portion 112, the superficial velocity of the gas in the lower portion 112b of the accommodating portion 112 (flow rate of fluidized gas with respect to the cross-sectional area of the lower portion 112b of the accommodating portion 112). Is preferably higher than the superficial velocity at which heavy particles can flow (the minimum fluidization speed of heavy particles). Therefore, the cross-sectional area of the lower part 112b of the accommodating part 112 is calculated | required by following Numerical formula (2) from which a heavy particle can flow.
Figure 0006197530
... Formula (2)
Here, Q is the volumetric flow rate (m 3 / s) of the fluidizing gas, Al is the cross-sectional area (m 2 ) of the lower part 112b of the accommodating part 112, Umf: the minimum fluidization speed of heavy particles (m / s) Indicates.

以上の構成により、本実施形態の流動層乾燥装置100は、収容部112の上部112aで軽粒子が飛散することを抑制し、また収容部112の下部112bで重粒子が流動せず沈むことを抑制することができるため、別途の分級装置を設けることなく、粒径分布が広い褐炭等の含水物質を適切に流動および乾燥させることが可能となる。   With the above configuration, the fluidized bed drying apparatus 100 according to the present embodiment suppresses light particles from scattering at the upper portion 112a of the accommodating portion 112, and prevents heavy particles from sinking without flowing at the lower portion 112b of the accommodating portion 112. Therefore, it is possible to appropriately flow and dry water-containing substances such as lignite having a wide particle size distribution without providing a separate classification device.

ところで、重粒子は軽粒子と比較して含水量が多いため、乾燥に時間がかかる場合がある。そこで、本実施形態では、収容部112の底部118(分散板122)に傾斜を設けることで、重粒子の滞留時間を長くする。   By the way, since heavy particles have a higher water content than light particles, drying may take time. Therefore, in the present embodiment, the residence time of the heavy particles is lengthened by providing an inclination in the bottom portion 118 (dispersion plate 122) of the accommodating portion 112.

収容部112の底部118は、図1に示すように、導入部114側が導出部116側より鉛直下方に位置し、導入部114側から導出部116側へ傾斜している。底部118が傾斜することで、重粒子が導入部114側から導出部116側へ移動する際、重力に反する方向の力成分が必要となるので、底部118が水平である場合と比較して、導出部116から導出されにくくなり、重粒子の滞留時間が長くなる。
As for the bottom part 118 of the accommodating part 112, as shown in FIG. 1, the introducing | transducing part 114 side is located vertically downward from the derivation | leading-out part 116 side, and is inclined from the introducing | transducing part 114 side to the derivation | leading-out part 116 side. When the bottom portion 118 is inclined, a force component in a direction opposite to gravity is required when the heavy particles move from the introduction portion 114 side to the lead-out portion 116 side, so that compared to the case where the bottom portion 118 is horizontal, It becomes difficult to lead out from the lead-out part 116, and the residence time of heavy particles becomes long.

以上の構成により、収容部112の下部112bにおいて、流動化ガスの空塔速度を高くするとともに、重粒子の滞留時間を長くすることが可能となり、重粒子が乾燥しきれない状態で導出されることが抑制できる。   With the above configuration, the superficial velocity of the fluidized gas can be increased and the residence time of the heavy particles can be increased in the lower portion 112b of the accommodating portion 112, and the heavy particles are derived in a state where they cannot be completely dried. Can be suppressed.

なお、重粒子の滞留時間を短くする場合は、収容部112の底部118において、導入部114側が導出部116側より鉛直上方に位置し、導入部114側から導出部116側へ傾斜させる。   In order to shorten the residence time of the heavy particles, in the bottom portion 118 of the housing portion 112, the introduction portion 114 side is positioned vertically above the derivation portion 116 side, and is inclined from the introduction portion 114 side to the derivation portion 116 side.

図3は、変形例にかかる流動層乾燥装置100を説明するための図である。図3(a)は、変形例1にかかる流動層乾燥装置100を説明するための図であり、図3(b)は、変形例2にかかる流動層乾燥装置100を説明するための図である。   FIG. 3 is a diagram for explaining a fluidized bed drying apparatus 100 according to a modification. FIG. 3A is a diagram for explaining the fluidized bed drying apparatus 100 according to the first modification, and FIG. 3B is a diagram for explaining the fluidized bed drying apparatus 100 according to the second modification. is there.

(変形例1)
図3(a)に示すように、収容部112内には伝熱管112cが設けられている。伝熱管112cには、不図示の供給源より蒸気が供給され、蒸気の熱により伝熱管112cと収容部112内の含水物質との間で熱交換を行い、含水物質の乾燥を促進することができる。したがって、伝熱管112cを備える構成により、変形例にかかる流動層乾燥装置100では、含水物質の乾燥をさらに促進することが可能となる。
(Modification 1)
As shown in FIG. 3A, a heat transfer tube 112 c is provided in the housing portion 112. Steam is supplied to the heat transfer tube 112c from a supply source (not shown), and heat exchange is performed between the heat transfer tube 112c and the water-containing material in the housing portion 112 by the heat of the steam, thereby promoting drying of the water-containing material. it can. Therefore, with the configuration including the heat transfer tube 112c, the fluidized bed drying apparatus 100 according to the modification can further promote the drying of the hydrous material.

(変形例2)
図3(b)に示すように、変形例2において、流動層乾燥装置100の収容部200の側壁は階段状となっている。かかる構成においても、収容部200の上部112aの断面積は収容部112の下部112bの断面積と比較して大きいため、粒径分布が広い含水物質を適切に流動および乾燥させることができる。
(Modification 2)
As shown in FIG.3 (b), in the modification 2, the side wall of the accommodating part 200 of the fluidized bed drying apparatus 100 is stepped. Even in such a configuration, since the cross-sectional area of the upper part 112a of the accommodating part 200 is larger than the cross-sectional area of the lower part 112b of the accommodating part 112, it is possible to appropriately flow and dry a hydrous substance having a wide particle size distribution.

本実施形態では、収容部200の上部112aの断面積が収容部200の下部112bの断面積と比較して大きい収容部200を用いて、粒径分布が広い含水物質を適切に流動および乾燥させることを目的としている。このため、収容部200の側壁の形状に拘わらず実施することができる。   In the present embodiment, the water containing substance having a wide particle size distribution is appropriately fluidized and dried using the housing part 200 in which the cross-sectional area of the upper part 112a of the housing part 200 is larger than the cross-sectional area of the lower part 112b of the housing part 200. The purpose is that. For this reason, it can implement irrespective of the shape of the side wall of the accommodating part 200. FIG.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、本実施形態では、収容部112、200を漏斗形状としたが、例えば、上部の断面積が下部の断面積よりも大きい多角形の角錐形状としてもよい。いずれにしても、上部の断面積が下部の断面積よりも大きい形状であればよい。   For example, in the present embodiment, the housing portions 112 and 200 are funnel-shaped, but for example, a polygonal pyramid shape in which the upper cross-sectional area is larger than the lower cross-sectional area may be used. In any case, the upper cross-sectional area only needs to be larger than the lower cross-sectional area.

また、本実施形態では、含水物質として褐炭を用いて説明したが、亜瀝青炭等の含水石炭を用いることができる。   Moreover, although this embodiment demonstrated using lignite as a hydrated material, hydrated coal, such as subbituminous coal, can be used.

また、流動層乾燥装置100において、収容部112、200に3個の導出部116を設ける構成としたが、導出部116の数と位置はかかる構成に限られず、乾燥させる含水物質が偏析する態様に合わせて1または複数の導出部116を設ければよい。   Further, in the fluidized bed drying apparatus 100, the three lead-out portions 116 are provided in the accommodating portions 112 and 200. However, the number and positions of the lead-out portions 116 are not limited to such a configuration, and the water-containing substance to be dried segregates. One or more derivation units 116 may be provided in accordance with the above.

本発明は、含水物質を流動させながら乾燥させる流動層乾燥装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a fluidized bed drying apparatus that dries while water-containing substances are flowed.

100 流動層乾燥装置
110 流動層乾燥炉
112、200 収容部
112a 上部
112b 下部
114 導入部
116、116a、116b、116c 導出部
118 底部
120 風箱
DESCRIPTION OF SYMBOLS 100 Fluidized bed drying apparatus 110 Fluidized bed drying furnace 112, 200 Storage part 112a Upper part 112b Lower part 114 Introducing part 116, 116a, 116b, 116c Outlet part 118 Bottom part 120 Wind box

Claims (1)

上部の横断面の面積が下記数式(1)を満たし、下部の横断面の面積が下記数式(2)を満たし、上方に推移するに連れ横断面の面積が漸増する収容部を備え、該収容部内に含水物質を収容し、流動化ガスにより該含水物質を流動させることで流動層を形成するとともに、該含水物質を乾燥させる流動層乾燥炉と、
前記流動層乾燥炉の底部から前記流動化ガスを供給する風箱と、
前記流動層乾燥炉に前記含水物質を導入する導入部と、
前記流動層乾燥炉から前記含水物質を導出する導出部と、
を備え
前記流動層乾燥炉の底部において、前記導入部側の底部が、前記導出部側の底部より鉛直下方に位置し、該導入部側の底部側から該導出部側の底部側へ傾斜していることを特徴とする流動層乾燥装置。
Figure 0006197530
・・・数式(1)
Figure 0006197530
・・・数式(2)
ただし、
Q:流動化ガスの体積流量(m/s)
Qg:乾燥により生成された蒸気の体積流量(m/s)
Au:収容部の上部の横断面の面積(m
Al:収容部の下部の横断面の面積(m
Ut:含水物質のうち、相対的に軽い粒子における予め定められた粒子終末速度(m/s)
Umf:含水物質のうち、相対的に重い粒子における予め定められた最小流動化速度(m/s)
The upper cross-sectional area satisfies the following mathematical formula (1), the lower cross-sectional area satisfies the following mathematical formula (2), and includes an accommodating portion whose cross-sectional area gradually increases as it moves upward, A fluidized bed drying furnace for containing a hydrated substance in the section, forming a fluidized bed by flowing the hydrated substance with a fluidized gas, and drying the hydrated substance;
A wind box for supplying the fluidized gas from the bottom of the fluidized bed drying furnace;
An introduction part for introducing the water-containing substance into the fluidized bed drying furnace;
A deriving unit for deriving the water-containing substance from the fluidized bed drying furnace;
Equipped with a,
At the bottom of the fluidized bed drying furnace, the bottom of the inlet portion is positioned vertically below the bottom of the outlet portion side, it is inclined from the bottom side of the introduction portion side to the bottom side of the conductor exit side A fluidized bed drying apparatus.
Figure 0006197530
... Formula (1)
Figure 0006197530
... Formula (2)
However,
Q: Volume flow rate of fluidized gas (m 3 / s)
Qg: Volume flow rate of vapor generated by drying (m 3 / s)
Au: Area of the cross section of the upper part of the accommodating part (m 2 )
Al: Area of the cross section at the bottom of the accommodating part (m 2 )
Ut: Predetermined particle end velocity (m / s) of relatively light particles among water-containing materials
Umf: predetermined minimum fluidization speed (m / s) of relatively heavy particles among water-containing materials
JP2013198911A 2013-09-25 2013-09-25 Fluidized bed dryer Active JP6197530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198911A JP6197530B2 (en) 2013-09-25 2013-09-25 Fluidized bed dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198911A JP6197530B2 (en) 2013-09-25 2013-09-25 Fluidized bed dryer

Publications (2)

Publication Number Publication Date
JP2015064149A JP2015064149A (en) 2015-04-09
JP6197530B2 true JP6197530B2 (en) 2017-09-20

Family

ID=52832173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198911A Active JP6197530B2 (en) 2013-09-25 2013-09-25 Fluidized bed dryer

Country Status (1)

Country Link
JP (1) JP6197530B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850978U (en) * 1971-10-11 1973-07-03
JPS62183849A (en) * 1986-02-10 1987-08-12 Nittetsu Mining Co Ltd Peripheral wall jet stream type fluidized bed apparatus
JP4083409B2 (en) * 2001-10-22 2008-04-30 Jfeソルデック株式会社 Fluidized bed type activation furnace
KR101271275B1 (en) * 2006-02-14 2013-06-04 가부시끼가이샤 구레하 Continuous particulate high temperature gas treatment apparatus and method of treating
JP5058567B2 (en) * 2006-11-17 2012-10-24 新日本製鐵株式会社 Fluidized drying method and fluidized bed drying apparatus
JP2013167379A (en) * 2012-02-14 2013-08-29 Mitsubishi Heavy Ind Ltd Fluidized bed drying device and gasification complex power generation system using coal

Also Published As

Publication number Publication date
JP2015064149A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
Subramanian et al. Fluidized bed gasification of select granular biomaterials
BRPI0819705B1 (en) PROCESS AND DEVICE FOR TORREFACTION AND MILLING IN A FLUIDIZED LAYER OF A BIOMASS LOAD FOR A GASIFICATION OR A LATER COMBUSTION
KR101813225B1 (en) Apparatus and reactor comprising distribution plate for reducing flow rate of fluidized medium
Li et al. A comprehensive mass balance model of a 550 MWe ultra-supercritical CFB boiler with internal circulation
JP6160825B2 (en) Fluidized bed drying apparatus and method for drying low-grade coal
JP6197530B2 (en) Fluidized bed dryer
CN1900241B (en) Process for making combustable gas by external high temperature CO2 and biomass reducing reaction
JP6255842B2 (en) Fluidized bed dryer
JP2016080217A (en) Woody fuel dryer and woody fuel drying method using the same
CN104941905A (en) Experimental system and method for vibration grading, drying and quality improving of low-rank coal
Bhaskaran et al. Dual fluidized bed gasification of solid fuels
JP6520541B2 (en) Drying system
JP6304482B2 (en) Fluidized bed drying apparatus and method for drying low-grade coal
JP5574786B2 (en) Wet material dryer
JP5748559B2 (en) Fluidized bed dryer
JP5777402B2 (en) Fluidized bed dryer
JP2017129324A (en) Drying system
JP6617469B2 (en) drying furnace
US20150196885A1 (en) Methods and systems for coding synthesis gas
JP2019045098A (en) Drying system
JP2012241990A (en) Fluidized bed drying device
JP6520543B2 (en) Drying furnace and method of starting the drying furnace
ES2436844B1 (en) Procedure for the gasification of organic solid materials and reactor used
JP6880781B2 (en) Drying system
JP2011163628A (en) Method and device for drying wet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6197530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250