JP6197353B2 - Carbon nanotube dispersion - Google Patents

Carbon nanotube dispersion Download PDF

Info

Publication number
JP6197353B2
JP6197353B2 JP2013098029A JP2013098029A JP6197353B2 JP 6197353 B2 JP6197353 B2 JP 6197353B2 JP 2013098029 A JP2013098029 A JP 2013098029A JP 2013098029 A JP2013098029 A JP 2013098029A JP 6197353 B2 JP6197353 B2 JP 6197353B2
Authority
JP
Japan
Prior art keywords
methylstyrene
dispersion
carbon nanotube
aromatic vinyl
vinyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013098029A
Other languages
Japanese (ja)
Other versions
JP2014218393A (en
Inventor
真宏 重田
真宏 重田
ホアン・テ・バン
貢 上島
貢 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2013098029A priority Critical patent/JP6197353B2/en
Publication of JP2014218393A publication Critical patent/JP2014218393A/en
Application granted granted Critical
Publication of JP6197353B2 publication Critical patent/JP6197353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)

Description

本発明は分散性に優れたカーボンナノチューブの分散液、複合材料に関する。   The present invention relates to a dispersion of carbon nanotubes and a composite material excellent in dispersibility.

従来から分散剤を用いて、分散安定性に優れたカーボンナノチューブの分散液を得る方法が、多数検討されている。例えば、タウロコール酸、シクロデキストリン、サポニンなどの自然発生の洗浄剤を分散剤とする方法(特許文献1)や、水中で、ドデシル硫酸ナトリウムなどの合成界面活性剤を分散剤とする方法(特許文献2の実施例、特許文献3の段落0004)が知られている。しかしながら、分散安定性を確保するために、大量の界面活性剤を使用する必要のある場合があり、分散液の用途によっては、界面活性剤による悪影響の生じる場合があった。
また、ドデシル硫酸ナトリウムなどのアニオン性界面活性剤の代わりに、非イオン性界面活性剤を用いることで、アミド系極性有機溶媒にカーボンナノチューブを分散させることが知られている(特許文献4)。
Conventionally, many methods for obtaining a dispersion of carbon nanotubes having excellent dispersion stability using a dispersant have been studied. For example, a method using a naturally occurring detergent such as taurocholic acid, cyclodextrin, saponin as a dispersant (Patent Document 1), or a method using a synthetic surfactant such as sodium dodecyl sulfate in water as a dispersant (Patent Document 1) 2 example, paragraph 0004 of patent document 3) is known. However, in order to ensure dispersion stability, it may be necessary to use a large amount of surfactant, and depending on the use of the dispersion, the surfactant may have an adverse effect.
Further, it is known that carbon nanotubes are dispersed in an amide polar organic solvent by using a nonionic surfactant instead of an anionic surfactant such as sodium dodecyl sulfate (Patent Document 4).

特表2004−534714号公報JP-T-2004-534714 特開2002−264097号公報JP 2002-264097 A 特開2007−320828号公報JP 2007-320828 A 特開2005−075661号公報Japanese Patent Laid-Open No. 2005-077561

本発明は、溶媒中でのカーボンナノチューブの凝集を抑え、高い分散安定性を示すカーボンナノチューブ分散液を提供することを目的とする。   An object of the present invention is to provide a carbon nanotube dispersion liquid that suppresses aggregation of carbon nanotubes in a solvent and exhibits high dispersion stability.

本発明によれば、平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20であるカーボンナノチューブ、芳香族ビニル化合物由来の構造単位を30モル%以上有する芳香族ビニル化合物系重合体、及び溶媒を含むカーボンナノチューブ分散液が提供される。前記芳香族ビニル化合物系重合体はスチレン誘導体の単独重合体又はスチレン誘導体とメタクリル酸誘導体の共重合体であるのが好ましい。前記溶媒は含窒素極性溶媒であるのが好ましい。
また、本発明によれば上記分散液を用いて製造される成型体が提供される。
According to the present invention, a carbon nanotube having an average diameter (Av) and a diameter distribution (3σ) of 0.60> 3σ / Av> 0.20, an aromatic having 30 mol% or more of a structural unit derived from an aromatic vinyl compound. A carbon nanotube dispersion containing an aromatic vinyl compound polymer and a solvent is provided. The aromatic vinyl compound polymer is preferably a homopolymer of a styrene derivative or a copolymer of a styrene derivative and a methacrylic acid derivative. The solvent is preferably a nitrogen-containing polar solvent.
Moreover, according to this invention, the molded object manufactured using the said dispersion liquid is provided.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明に用いるカーボンナノチューブは、公知の単層又は多層のカーボンナノチューブを用いることができる。本発明では、いずれのカーボンナノチューブもナノカーボン材料として使用可能であるが、なかでも、平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たすカーボンナノチューブは、そのファンデルワールス力の影響などにより、分散媒への分散安定性が得にくいものであるが、上記式(1)で表される界面活性剤を用いると、少ない量でも高い分散安定性が得られる。
本発明において特に好ましいカーボンナノチューブは、平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たすものである。ここでいう平均直径(Av)、直径分布(3σ)は、それぞれ透過型電子顕微鏡でカーボンナノチューブ100本の直径を測定した際の平均値、並びに標準偏差(σ)に3を乗じたものである。なお、本明細書における標準偏差は、標本標準偏差である。
平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たすカーボンナノチューブを用いることにより、カーボンナノチューブが少量であっても、優れた導電性を示す組成物を得ることができる。得られる組成物の特性の観点から、0.60>3σ/Av>0.25がより好ましく、0.60>3σ/Av>0.50がさらに好ましい。
3σ/Avは、カーボンナノチューブの直径分布を表し、この値が大きいほど直径分布が広いことを意味する。本発明において直径分布は正規分布を取るものが好ましい。ここで言う直径分布は、透過型電子顕微鏡を用いて観察できる、無作為に選択された100本のカーボンナノチューブの直径を測定し、その結果を用いて、横軸に直径、縦軸に頻度を取り、得られたデータをプロットし、ガウシアンで近似することで得られるものとする。異なる製法で得られたカーボンナノチューブなどを複数種類組み合わせることでも3σ/Avの値を大きくすることはできるが、その場合正規分布の直径分布を得ることは難しい。即ち、本発明においては、単独のカーボンナノチューブ又は単独のカーボンナノチューブに、その直径分布に影響しない量の他のカーボンナノチューブを配合したものを用いるのが好ましい。
0.60>3σ/Av>0.20を満たすカーボンナノチューブであれば特に制限なく使用することができるが、日本国特許第4621896号公報、及び日本国特許第4811712号公報に記載されている、スーパーグロース法により得られるカーボンナノチューブ(以下、「SGCNT」ということがある)が好ましい。SGCNTは、ラマン分光法においてRadial Breathing Mode(RBM)のピークを有するカーボンナノチューブである。なお、三層以上の多層のカーボンナノチューブのラマンスペクトルには、RBMが存在しない。
Hereinafter, the present invention will be specifically described based on embodiments.
As the carbon nanotube used in the present invention, a known single-walled or multi-walled carbon nanotube can be used. In the present invention, any carbon nanotube can be used as a nanocarbon material. Among them, a carbon nanotube satisfying an average diameter (Av) and a diameter distribution (3σ) of 0.60> 3σ / Av> 0.20. Is difficult to obtain dispersion stability in a dispersion medium due to the influence of its van der Waals force. However, when a surfactant represented by the above formula (1) is used, high dispersion stability can be obtained even in a small amount. Is obtained.
Particularly preferred carbon nanotubes in the present invention have an average diameter (Av) and a diameter distribution (3σ) satisfying 0.60> 3σ / Av> 0.20. Here, the average diameter (Av) and the diameter distribution (3σ) are obtained by multiplying the average value when the diameter of 100 carbon nanotubes is measured with a transmission electron microscope and the standard deviation (σ) by 3. . In addition, the standard deviation in this specification is a sample standard deviation.
A composition exhibiting excellent conductivity even when the amount of carbon nanotubes is small by using carbon nanotubes having an average diameter (Av) and a diameter distribution (3σ) satisfying 0.60> 3σ / Av> 0.20. Can be obtained. From the viewpoint of the characteristics of the obtained composition, 0.60> 3σ / Av> 0.25 is more preferable, and 0.60> 3σ / Av> 0.50 is more preferable.
3σ / Av represents the diameter distribution of the carbon nanotube, and the larger the value, the wider the diameter distribution. In the present invention, the diameter distribution is preferably a normal distribution. The diameter distribution here refers to the diameter of 100 randomly selected carbon nanotubes that can be observed using a transmission electron microscope, and the results are used to calculate the diameter on the horizontal axis and the frequency on the vertical axis. And plotting the obtained data and approximating with Gaussian. The value of 3σ / Av can also be increased by combining a plurality of types of carbon nanotubes obtained by different production methods, but in this case, it is difficult to obtain a normal distribution of diameters. That is, in the present invention, it is preferable to use a single carbon nanotube or a single carbon nanotube mixed with another carbon nanotube in an amount that does not affect the diameter distribution.
Carbon nanotubes satisfying 0.60> 3σ / Av> 0.20 can be used without particular limitation, but are described in Japanese Patent No. 4621896 and Japanese Patent No. 4811712. Carbon nanotubes obtained by the super growth method (hereinafter sometimes referred to as “SGCNT”) are preferred. SGCNT is a carbon nanotube having a peak of Radial Breathing Mode (RBM) in Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.

本発明において、芳香族ビニル化合物由来の構造単位を30モル%以上有する芳香族ビニル化合物系重合体は分散剤として機能するものである。分散剤として十分に機能するためには、芳香族ビニル化合物系重合体中の芳香族ビニル化合物由来の構造単位は、下限が30モル%以上、好ましくは40モル%以上であり、上限は好ましくは100モル%である。
芳香族ビニル化合物系重合体の重量平均分子量は、通常1,000〜1,000,000、好ましくは3,000〜500,000、より好ましくは4,000〜100,000である。重量平均分子量が小さすぎると、十分な分散性が得られず、逆に重量平均分子量が大きすぎると、分散媒に溶解せず良質な分散液を得ることが困難になる。
このような芳香族ビニル化合物由来の構造単位としては、スチレン、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、ヒドロキシメチルスチレン、N,N−ジメチルアミノエチルスチレン、N,N−ジエチルアミノエチルスチレン、N,N−ジプロピルアミノエチルスチレン、N,N−ジオクチルアミノエチルスチレン等のスチレン誘導体;ビニルナフタレン、ビニルピレン、ビニルベンゾピレン、ビニルアントラセン、ビニルインデン、ビニルフルオレン等のビニル多芳香環化合物;が挙げられるが、汎用性の観点から、これら芳香族ビニル化合物由来の構造単位としては、スチレン誘導体が好ましい。
このような芳香族ビニル化合物由来の構造単位を有する芳香族ビニル化合物系重合体としては、ポリスチレン;スチレン誘導体と、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステルなどのアクリル酸誘導体とのブロック共重合体またはランダム共重合体;スチレン誘導体と、ブタジエンやイソプレンなどの共役ジエンとのブロック共重合体およびランダム共重合体、さらにそれらの水素添加物などが例示される。これらは情報に従って製造することができる。また、これらの芳香族ビニル化合物系重合体は、分散体の用途に応じて任意の官能基を有することができる。分散性の観点から、これらの芳香族ビニル化合物系重合体の中でもスチレン誘導体の単独重合体、スチレン誘導体とメタクリル酸誘導体との共重合体が特に好ましい
芳香族ビニル化合物系重合体の配合量は、カーボンナノチューブの重量に対して2倍以上、好ましくは3倍以上であることが好ましい。芳香族ビニル化合物系重合体の配合量が多すぎると、分散液中に析出する恐れがあり、逆に少なすぎると分散液の分散性が十分に得られない恐れがあり、いずれも好ましくない。また、ポリマー濃度が高すぎると、溶液粘度が上昇し、分散処理の障害になる問題もある。
In the present invention, an aromatic vinyl compound polymer having a structural unit derived from an aromatic vinyl compound of 30 mol% or more functions as a dispersant. In order to function sufficiently as a dispersant, the lower limit of the structural unit derived from the aromatic vinyl compound in the aromatic vinyl compound polymer is 30 mol% or more, preferably 40 mol% or more, and the upper limit is preferably 100 mol%.
The weight average molecular weight of the aromatic vinyl compound polymer is usually 1,000 to 1,000,000, preferably 3,000 to 500,000, more preferably 4,000 to 100,000. If the weight average molecular weight is too small, sufficient dispersibility cannot be obtained. Conversely, if the weight average molecular weight is too large, it is difficult to obtain a good quality dispersion without dissolving in the dispersion medium.
As structural units derived from such aromatic vinyl compounds, styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, monofluorostyrene, hydroxymethylstyrene, N, N-dimethylaminoethylstyrene, N, N-diethylaminoethylstyrene, N Styrene derivatives such as N, N-dipropylaminoethylstyrene and N, N-dioctylaminoethylstyrene; vinyl polyaromatic compounds such as vinylnaphthalene, vinylpyrene, vinylbenzopyrene, vinylanthracene, vinylindene and vinylfluorene; , From the viewpoint of use of, as the structural units derived from these aromatic vinyl compounds, styrene derivatives are preferred.
Examples of the aromatic vinyl compound polymer having a structural unit derived from such an aromatic vinyl compound include polystyrene; a block of a styrene derivative and an acrylic acid derivative such as acrylic acid, methacrylic acid, acrylic acid ester, and methacrylic acid ester. Examples thereof include block copolymers and random copolymers of styrene derivatives and conjugated dienes such as butadiene and isoprene, and hydrogenated products thereof. These can be manufactured according to the information. Further, these aromatic vinyl compound-based polymers can have any functional group depending on the use of the dispersion. From the viewpoint of dispersibility, among these aromatic vinyl compound-based polymers, homopolymers of styrene derivatives and copolymers of styrene derivatives and methacrylic acid derivatives are particularly preferable. It is preferable that it is 2 times or more, preferably 3 times or more with respect to the weight of the carbon nanotube. If the amount of the aromatic vinyl compound-based polymer is too large, it may be precipitated in the dispersion, whereas if it is too small, the dispersibility of the dispersion may not be sufficiently obtained. Further, when the polymer concentration is too high, there is a problem that the viscosity of the solution is increased and the dispersion treatment becomes an obstacle.

本発明に用いる分散媒は、含窒素極性溶媒であれば特に制限されないが、芳香族ビニル化合物系重合体の分散剤としての効果を有利に得ることから、N−メチルピロリドン、ジメチルホルムアミド又はジメチルアセトアミドが好ましい。分散媒中の芳香族ビニル化合物系重合体の濃度は、1mg/mL〜20mg/mLの範囲が好ましい。   The dispersion medium used in the present invention is not particularly limited as long as it is a nitrogen-containing polar solvent, but N-methylpyrrolidone, dimethylformamide or dimethylacetamide can be advantageously obtained as an effect as a dispersant for an aromatic vinyl compound polymer. Is preferred. The concentration of the aromatic vinyl compound polymer in the dispersion medium is preferably in the range of 1 mg / mL to 20 mg / mL.

カーボンナノチューブの分散液を得る方法に、格別な制限はなく、分散媒である含窒素極性溶媒にカーボンナノチューブと芳香族ビニル化合物系重合体を添加し、常法に従って分散処理をすればよい。分散媒に添加するカーボンナノチューブと芳香族ビニル化合物系重合体の順番に格別な制限はなく、いずれかを先に添加しても、同時に添加しても良い。分散処理は、攪拌子を用いて分散液を直接攪拌する方法や、キャビテーション効果が得られる分散方法が挙げられる。キャビテーション効果が得られる分散は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じた衝撃波を利用した分散方法であり、当該分散方法を用いることにより、カーボンナノチューブの特性を損なうことなく水中に分散することが可能となる。キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、ジェットミルによる分散処理及び高剪断撹拌による分散処理が挙げられる。分散処理は、一つの方法のみを採用してもよいし、複数の分散処理方法を組み合わせてもよい。分散処理に用いる装置は、従来公知のものを使用すればよい。   There is no particular limitation on the method for obtaining the carbon nanotube dispersion, and the carbon nanotube and the aromatic vinyl compound polymer may be added to a nitrogen-containing polar solvent as a dispersion medium, followed by a dispersion treatment according to a conventional method. There is no particular restriction on the order of the carbon nanotubes and the aromatic vinyl compound polymer added to the dispersion medium, either of which may be added first or simultaneously. Examples of the dispersion treatment include a method of directly stirring the dispersion using a stirrer, and a dispersion method capable of obtaining a cavitation effect. Dispersion that provides a cavitation effect is a dispersion method that uses shock waves generated by bursting of vacuum bubbles generated in water when high energy is applied to the liquid. By using the dispersion method, carbon nanotubes are obtained. It becomes possible to disperse in water without impairing the characteristics of the. Specific examples of the dispersion treatment that provides a cavitation effect include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. Only one method may be employed for the distributed processing, or a plurality of distributed processing methods may be combined. A conventionally known apparatus may be used as the apparatus used for the distributed processing.

本発明の分散液には、その使用目的に応じて各種添加剤を配合することができる。添加剤としては、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料等を挙げることができる。   Various additives can be blended in the dispersion of the present invention depending on the purpose of use. Additives include antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers, release agents Agents, deodorants, fragrances and the like.

本発明の分散液は、塗工膜の製造、プラスチック成型体の製造など、各種用途に使用することができる。またこのとき、ポリマーラテックスやポリマー溶液、各種添加剤を併用することもできる。   The dispersion of the present invention can be used for various applications such as the production of a coating film and the production of a plastic molded body. At this time, a polymer latex, a polymer solution, and various additives can be used in combination.

製造例1(カーボンナノチューブの合成)
特許4621896号公報に記載に従って、スーパーグロース法によってSGCNTを得た。
具体的には次の条件において、カーボンナノチューブを成長させた。
炭素化合物:エチレン;供給速度50sccm
雰囲気(ガス)(Pa):ヘリウム、水素混合ガス;供給速度1000sccm
圧力1大気圧
水蒸気添加量(ppm):300ppm
反応温度(℃):750℃
反応時間(分):10分
金属触媒(存在量):鉄薄膜;厚さ1nm
基板:シリコンウェハー
得られたSGCNTは、BET比表面積1,050m/g、ラマン分光光度計での測定において、単層CNTに特長的な100〜300cm−1の低波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、透過型電子顕微鏡を用い、無作為に100本のSGCNT−1の直径を測定した結果、平均直径(Av)が3.3nm、直径分布(3σ)が1.9、(3σ/Av)が0.58であった。
Production Example 1 (Synthesis of carbon nanotube)
SGCNTs were obtained by the super-growth method as described in Japanese Patent No. 4621896.
Specifically, carbon nanotubes were grown under the following conditions.
Carbon compound: ethylene; supply rate 50 sccm
Atmosphere (gas) (Pa): Helium, hydrogen mixed gas; supply rate 1000 sccm
Pressure 1 atmospheric pressure water vapor addition amount (ppm): 300 ppm
Reaction temperature (° C): 750 ° C
Reaction time (min): 10 minutes Metal catalyst (abundance): Iron thin film; thickness 1 nm
Substrate: Silicon wafer The obtained SGCNT has a BET specific surface area of 1,050 m 2 / g and a radial breathing mode (100 to 300 cm −1) in a low-frequency region (100 to 300 cm −1) , which is characteristic of a single-walled CNT. RBM) spectrum was observed. Moreover, as a result of measuring the diameter of 100 SGCNT-1 at random using a transmission electron microscope, average diameter (Av) is 3.3 nm, diameter distribution (3σ) is 1.9, (3σ / Av) Was 0.58.

<実施例1>
ジメチルアセトアミド(DMAc)にポリスチレン(スチレン単独重合体;和光純薬、Mw:73000、Mw/Mn:3.8)を濃度10mg/mLとなるように溶解させて、ポリスチレン溶液を得た。製造例1で得られたSGCNTを1mg、ポリスチレン溶液を密栓した5mLをサンプル瓶中で撹拌し、さらに超音波照射機(BRANSON社製、製品名「ブランソニック(登録商標) 5510」)を用いて60分間超音波照射を行った。超音波照射後の溶液には視認できる粒子は存在しなかった。得られた溶液を、遠心分離器(日立工機社製、製品名「CS−100GXII」)を用いて遠心分離(10000×G、1時間)した後、分光光度計(日本分光社製、英品名「V7200」)で吸収スペクトルを測定した。光路長1mm、波長1000nmでの吸光度は0.91であった。
<実施例2>
溶媒をジメチルホルムアミド(DMF)に変えた以外、実施例1と同様にしてSGCNT分散溶液を調製し、評価した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.84であった。
<実施例3>
溶媒にDMAc、ポリマーにポリスチレン(スチレン単独重合体;アジレントテクノロジー社製、Mw:700000)を用いた以外、実施例1と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.86であった。
<実施例4>
ポリマーにポリスチレン(スチレン単独重合体;アジレントテクノロジー社製、Mw:5000)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.86であった。
<実施例5>
ポリマーにポリスチレン(スチレン単独重合体;アジレントテクノロジー社製、Mw:200000)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.83であった。
<実施例6>
ポリマーにスチレン−メタクリル酸メチル ランダム共重合体(Polymer Standard Service社製、Mw:50700、スチレン/メタクリル酸メチル=80/20(重量比)、芳香族ビニル化合物由来の構造単位80モル%)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.89であった。
<実施例7>
ポリマーにスチレン−メタクリル酸メチル ランダム共重合体(Polymer Standard Service社製、Mw:87700、スチレン/メタクリル酸メチル=51/49(重量比)、芳香族ビニル化合物由来の構造単位50モル%)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.82であった。
<実施例8>
ポリマーにスチレン−メタクリル酸メチル ブロック共重合体(Polymer Standard Service社製、Mw:50000、ポリスチレンブロックのMw:22000、ポリメタクリル酸メチルブロックの:Mw:28000、芳香族ビニル化合物由来の構造単位43モル%)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.84であった。
<実施例9>
ポリマーにスチレン−メタクリル酸メチル ブロック共重合体(Polymer Standard Service社製、Mw:184000、ポリスチレンブロックのMw:89000、ポリメタクリル酸メチルブロックのMw:95000、芳香族ビニル化合物由来の構造単位47モル%)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。その結果、視認できる粒子が存在しない溶液が得られ、吸収スペクトルの吸光度は0.87であった。
<Example 1>
Polystyrene (styrene homopolymer; Wako Pure Chemical, Mw: 73000, Mw / Mn: 3.8) was dissolved in dimethylacetamide (DMAc) to a concentration of 10 mg / mL to obtain a polystyrene solution. 1 mg of SGCNT obtained in Production Example 1 and 5 mL of a sealed polystyrene solution were stirred in a sample bottle, and further using an ultrasonic irradiator (BRANSON, product name “Bransonic (registered trademark) 5510”). Ultrasonic irradiation was performed for 60 minutes. No visible particles were present in the solution after ultrasonic irradiation. The obtained solution was centrifuged (10000 × G, 1 hour) using a centrifuge (product name “CS-100GXII” manufactured by Hitachi Koki Co., Ltd.), and then a spectrophotometer (manufactured by JASCO Corporation, UK). The absorption spectrum was measured with the product name “V7200”). The absorbance at an optical path length of 1 mm and a wavelength of 1000 nm was 0.91.
<Example 2>
An SGCNT dispersion solution was prepared and evaluated in the same manner as in Example 1 except that the solvent was changed to dimethylformamide (DMF). As a result, a solution having no visible particles was obtained, and the absorbance of the absorption spectrum was 0.84.
<Example 3>
An SGCNT dispersion was prepared in the same procedure as in Example 1, except that DMAc was used as the solvent and polystyrene (styrene homopolymer; manufactured by Agilent Technologies, Mw: 70,000) was used as the polymer. As a result, a solution having no visible particles was obtained, and the absorbance of the absorption spectrum was 0.86.
<Example 4>
An SGCNT dispersion was prepared in the same procedure as in Example 3, except that polystyrene (styrene homopolymer; manufactured by Agilent Technologies, Mw: 5000) was used as the polymer. As a result, a solution having no visible particles was obtained, and the absorbance of the absorption spectrum was 0.86.
<Example 5>
An SGCNT dispersion was prepared in the same procedure as in Example 3, except that polystyrene (styrene homopolymer; manufactured by Agilent Technologies, Mw: 200000) was used as the polymer. As a result, a solution without visible particles was obtained, and the absorbance of the absorption spectrum was 0.83.
<Example 6>
Styrene-methyl methacrylate random copolymer (manufactured by Polymer Standard Service, Mw: 50700, styrene / methyl methacrylate = 80/20 (weight ratio), aromatic vinyl compound-derived structural unit 80 mol%) is used as the polymer. A SGCNT dispersion was prepared in the same procedure as in Example 3, except that As a result, a solution without visible particles was obtained, and the absorbance of the absorption spectrum was 0.89.
<Example 7>
Styrene-methyl methacrylate random copolymer (Polymer Standard Service, Mw: 87700, styrene / methyl methacrylate = 51/49 (weight ratio), aromatic vinyl compound-derived structural unit 50 mol%) is used as the polymer. A SGCNT dispersion was prepared in the same procedure as in Example 3, except that As a result, a solution without visible particles was obtained, and the absorbance of the absorption spectrum was 0.82.
<Example 8>
Styrene-methyl methacrylate block copolymer (manufactured by Polymer Standard Service, Mw: 50000, polystyrene block Mw: 22000, polymethyl methacrylate block: Mw: 28000, aromatic vinyl compound-derived structural unit 43 mol) %) Was used in the same procedure as in Example 3 to prepare an SGCNT dispersion. As a result, a solution having no visible particles was obtained, and the absorbance of the absorption spectrum was 0.84.
<Example 9>
Styrene-methyl methacrylate block copolymer (manufactured by Polymer Standard Service, Mw: 184000, polystyrene block Mw: 89000, polymethyl methacrylate block Mw: 95000, aromatic vinyl compound-derived structural unit 47 mol%) SGCNT dispersion was prepared in the same procedure as in Example 3 except that was used. As a result, a solution having no visible particles was obtained, and the absorbance of the absorption spectrum was 0.87.

<比較例1>
ポリマーにポリスチレン(スチレン単独重合体;アジレントテクノロジー社製、Mw:3000)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。超音波照射後に多数の凝集物が見られ、遠心分離で凝集物を除いた後の吸収スペクトルの吸光度は0.12であった。
<比較例2>
ポリマーにポリスチレン(スチレン単独重合体;アジレントテクノロジー社製、Mw:1000000)を用いた以外、実施例3と同様の手順でSGCNT分散液を調製した。超音波照射後に多数の凝集物が見られ、遠心分離で凝集物を除いた後の吸収スペクトルの吸光度は0.09であった。
<比較例3>
ポリマーにスチレン−メタクリル酸メチル ランダム共重合体(Polymer Standard Service社製、Mw:103000、芳香族ビニル化合物由来の構造単位19モル%)を用いた以外、実施例7と同様の手順でSGCNT分散液を調製した。超音波照射後に多数の凝集物が見られ、遠心分離で凝集物を除いた後の吸収スペクトルの吸光度は0.10であった。
<比較例4>
カーボンナノチューブにHiPco(Nanointegris社製、SuperPure grade、BET比表面積700m/g、平均直径(Av)が1.1nm、直径分布(3σ)が0.2、(3σ/Av)が0.18)を用いた以外、実施例1と同様の手順でCNT分散液を調製した。超音波照射後に多数の凝集物が見られ、遠心分離で凝集物を除いた後の吸収スペクトルの吸光度は0.18であった。
<比較例5>
カーボンナノチューブに多層カーボンナノチューブ(Nanostructured & Amorphous Materials Inc.社製、Lot.1232、BET比表面積57m/g、平均直径(Av)が51.1nm、直径分布(3σ)が9.8、(3σ/Av)が0.19)を用いた以外、実施例1と同様の手順でCNT分散液を調製した。超音波照射後に多数の凝集物が見られ、遠心分離で凝集物を除いた後の吸収スペクトルの吸光度は0.17であった。
<Comparative Example 1>
An SGCNT dispersion was prepared in the same procedure as in Example 3, except that polystyrene (styrene homopolymer; manufactured by Agilent Technologies, Mw: 3000) was used as the polymer. Numerous aggregates were observed after ultrasonic irradiation, and the absorbance of the absorption spectrum after removing the aggregates by centrifugation was 0.12.
<Comparative example 2>
An SGCNT dispersion was prepared in the same procedure as in Example 3 except that polystyrene (styrene homopolymer; manufactured by Agilent Technologies, Mw: 1000000) was used as the polymer. Numerous aggregates were observed after ultrasonic irradiation, and the absorbance of the absorption spectrum after removing the aggregates by centrifugation was 0.09.
<Comparative Example 3>
SGCNT dispersion liquid in the same procedure as in Example 7 except that a styrene-methyl methacrylate random copolymer (Polymer Standard Service, Mw: 103000, aromatic vinyl compound-derived structural unit 19 mol%) was used as the polymer. Was prepared. Numerous aggregates were observed after ultrasonic irradiation, and the absorbance of the absorption spectrum after removing the aggregates by centrifugation was 0.10.
<Comparative example 4>
HiPco (manufactured by Nanointegris, SuperPure grade, BET specific surface area 700 m 2 / g, average diameter (Av) 1.1 nm, diameter distribution (3σ) 0.2, (3σ / Av) 0.18) A CNT dispersion was prepared in the same procedure as in Example 1 except that was used. Numerous aggregates were observed after ultrasonic irradiation, and the absorbance of the absorption spectrum after removing the aggregates by centrifugation was 0.18.
<Comparative Example 5>
Multi-walled carbon nanotubes (manufactured by Nanostructured & Amorphous Materials Inc., Lot. 1232, BET specific surface area 57 m 2 / g, average diameter (Av) 51.1 nm, diameter distribution (3σ) 9.8, (3σ A CNT dispersion was prepared in the same procedure as in Example 1, except that / Av) was 0.19). Numerous aggregates were observed after ultrasonic irradiation, and the absorbance of the absorption spectrum after removing the aggregates by centrifugation was 0.17.

<実施例10>
1cm×4cmサイズのガラス板上に、実施例1で作成したCNT分散液を150μl滴下し、ホットプレート上で8時間加熱し、成膜を行った。作成した塗工膜の表面抵抗値(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)GP MCP−T600」)を用いて測定した。また、塗工膜中のCNTの分散状態を、光学顕微鏡(ハイロックス社製、製品名「KH−1300」)を用いて観察評価した。表面抵抗値は742Ω/□であり、顕微鏡像中に視認できる凝集物は見られず、均一な塗工膜が得られていた。
<実施例11>
成膜用の分散液に実施例2で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は783Ω/□であり、顕微鏡像中に視認できる凝集物は見られず、均一な塗工膜が得られていた。
<実施例12>
成膜用の分散液に実施例3で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は819Ω/□であり、顕微鏡像中に視認できる凝集物は見られず、均一な塗工膜が得られていた。
<実施例13>
成膜用の分散液に実施例7で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は942Ω/□であり、顕微鏡像中に視認できる凝集物は見られず、均一な塗工膜が得られていた。
<実施例14>
成膜用の分散液に実施例9で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は863Ω/□であり、顕微鏡像中に視認できる凝集物は見られず、均一な塗工膜が得られていた。
<Example 10>
150 μl of the CNT dispersion prepared in Example 1 was dropped on a 1 cm × 4 cm glass plate and heated on a hot plate for 8 hours to form a film. It measured using the surface resistance value (The Mitsubishi Chemical Analytech Co., Ltd. make, product name "Loresta (trademark) GP MCP-T600") of the produced coating film. Moreover, the dispersion state of CNT in the coating film was observed and evaluated using an optical microscope (product name “KH-1300” manufactured by Hilox). The surface resistance value was 742Ω / □, and no agglomerates that were visible in the microscopic image were observed, and a uniform coating film was obtained.
<Example 11>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion liquid prepared in Example 2 was used as the dispersion liquid for film formation. As a result, the surface resistance value was 783 Ω / □, and no agglomerates that were visible in the microscopic image were observed, and a uniform coating film was obtained.
<Example 12>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion liquid prepared in Example 3 was used as the dispersion liquid for film formation. As a result, the surface resistance value was 819 Ω / □, and no agglomerates that were visible in the microscopic image were found, and a uniform coating film was obtained.
<Example 13>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion liquid prepared in Example 7 was used as the dispersion liquid for film formation. As a result, the surface resistance value was 942Ω / □, and no agglomerates that were visible in the microscopic image were observed, and a uniform coating film was obtained.
<Example 14>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion liquid prepared in Example 9 was used as the dispersion liquid for film formation. As a result, the surface resistance value was 863 Ω / □, and no agglomerates that were visible in the microscopic image were observed, and a uniform coating film was obtained.

<比較例6>
成膜用の分散液に比較例1の方法で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は43423Ω/□であり、顕微鏡像中にCNTの凝集物とみられる黒点が多く見られた。
<比較例7>
成膜用の分散液に比較例2の方法で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は18463Ω/□であり、顕微鏡像中にCNTの凝集物とみられる黒点が多く見られた。
<比較例8>
成膜用の分散液に比較例5の方法で作成した分散液を用いた以外、実施例10と同様の成膜と評価を行った。その結果、表面抵抗値は27645Ω/□であり、顕微鏡像中にCNTの凝集物とみられる黒点が多く見られた
<Comparative Example 6>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion prepared by the method of Comparative Example 1 was used as the dispersion for film formation. As a result, the surface resistance value was 43423 Ω / □, and many black spots that were considered to be aggregates of CNTs were observed in the microscopic image.
<Comparative Example 7>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion liquid prepared by the method of Comparative Example 2 was used as the dispersion liquid for film formation. As a result, the surface resistance value was 18463 Ω / □, and many black spots that were considered to be aggregates of CNTs were observed in the microscopic image.
<Comparative Example 8>
Film formation and evaluation were performed in the same manner as in Example 10 except that the dispersion liquid prepared by the method of Comparative Example 5 was used as the dispersion liquid for film formation. As a result, the surface resistance value was 27645 Ω / □, and many black spots that were considered to be aggregates of CNTs were observed in the microscopic image .

これらの結果から、芳香族ビニル化合物成分を含むポリマーを用いて均一なカーボンナノチューブ溶液を効率よく得るためには、溶媒に窒素を含む溶媒を用いる、用いるポリマーの芳香族ビニル化合物含有量は30モル%を超える、カーボンナノチューブは特定の直径分布をみたす、の3条件をすべてそろえることが必要であるであることがわかる。また、これらの条件を満たした分散液は、低抵抗の塗工膜製造に有用である。   From these results, in order to efficiently obtain a uniform carbon nanotube solution using a polymer containing an aromatic vinyl compound component, a solvent containing nitrogen is used as a solvent, and the aromatic vinyl compound content of the polymer used is 30 mol. It can be seen that it is necessary to satisfy all of the three conditions that the carbon nanotube has a specific diameter distribution exceeding 50%. A dispersion satisfying these conditions is useful for producing a low-resistance coating film.

Claims (4)

平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20であるカーボンナノチューブと、
スチレン、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、ヒドロキシメチルスチレン、N,N−ジメチルアミノエチルスチレン、N,N−ジエチルアミノエチルスチレン、N,N−ジプロピルアミノエチルスチレン、N,N−ジオクチルアミノエチルスチレン、ビニルナフタレン、ビニルピレン、ビニルベンゾピレン、ビニルアントラセン、ビニルインデンおよびビニルフルオレンからなる群より選択される少なくとも1種の芳香族ビニル化合物由来の構造単位を30モル%以上有し、且つ、重量平均分子量が4,000〜700,000である芳香族ビニル化合物系重合体と、
含窒素極性溶媒と、
を含むカーボンナノチューブ分散液。
Carbon nanotubes having an average diameter (Av) and a diameter distribution (3σ) of 0.60> 3σ / Av>0.20;
Styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2 -Methylstyrene, monochlorostyrene, dichlorostyrene, monofluorostyrene, hydroxymethylstyrene, N, N-dimethylaminoethylstyrene, N, N-diethylaminoethylstyrene, N, N-dipropylaminoethylstyrene, N, N-dioctyl 30 mol% or more of structural units derived from at least one aromatic vinyl compound selected from the group consisting of aminoethylstyrene, vinylnaphthalene, vinylpyrene, vinylbenzopyrene, vinylanthracene, vinylindene and vinylfluorene, and weight average And an aromatic vinyl compound polymer molecular weight is 4,000~700,000,
A nitrogen-containing polar solvent;
A carbon nanotube dispersion containing
前記芳香族ビニル化合物系重合体が、スチレン、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、ヒドロキシメチルスチレン、N,N−ジメチルアミノエチルスチレン、N,N−ジエチルアミノエチルスチレン、N,N−ジプロピルアミノエチルスチレンおよびN,N−ジオクチルアミノエチルスチレンからなる群より選択される少なくとも1種のスチレン誘導体の単独重合体、又は、前記スチレン誘導体とメタクリル酸誘導体の共重合体である請求項1記載のカーボンナノチューブ分散液。 The aromatic vinyl compound polymer is styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t- Butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, monofluorostyrene, hydroxymethylstyrene, N, N-dimethylaminoethylstyrene, N, N-diethylaminoethylstyrene, N, N-di 2. A homopolymer of at least one styrene derivative selected from the group consisting of propylaminoethylstyrene and N, N-dioctylaminoethylstyrene, or a copolymer of the styrene derivative and a methacrylic acid derivative. Carbon nanotube dispersion liquid. 請求項1または2に記載のカーボンナノチューブ分散液を用いて成型体を製造する工程を含む、成型体の製造方法。 The manufacturing method of a molded object including the process of manufacturing a molded object using the carbon nanotube dispersion liquid of Claim 1 or 2 . 請求項1または2に記載のカーボンナノチューブ分散液を用いて塗工膜を成膜する工程を含む、塗工膜の製造方法。The manufacturing method of a coating film including the process of forming a coating film using the carbon nanotube dispersion liquid of Claim 1 or 2.
JP2013098029A 2013-05-08 2013-05-08 Carbon nanotube dispersion Active JP6197353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098029A JP6197353B2 (en) 2013-05-08 2013-05-08 Carbon nanotube dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098029A JP6197353B2 (en) 2013-05-08 2013-05-08 Carbon nanotube dispersion

Publications (2)

Publication Number Publication Date
JP2014218393A JP2014218393A (en) 2014-11-20
JP6197353B2 true JP6197353B2 (en) 2017-09-20

Family

ID=51937223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098029A Active JP6197353B2 (en) 2013-05-08 2013-05-08 Carbon nanotube dispersion

Country Status (1)

Country Link
JP (1) JP6197353B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511906B2 (en) * 2015-03-26 2019-05-15 日本ゼオン株式会社 Method of producing carbon film and carbon film
JP2016190772A (en) * 2015-03-31 2016-11-10 日本ゼオン株式会社 Carbon film, and method for producing the same
US11326063B2 (en) * 2015-12-17 2022-05-10 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
US10710881B2 (en) * 2015-12-17 2020-07-14 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
CN108367925B (en) * 2015-12-28 2021-10-01 日本瑞翁株式会社 Fibrous carbon nanostructure dispersion liquid
JP7184076B2 (en) * 2018-03-23 2022-12-06 日本ゼオン株式会社 Carbon nanotube dispersion, slurry for secondary battery electrode, method for producing slurry for secondary battery electrode, electrode for secondary battery, and secondary battery
JP7190694B2 (en) * 2018-12-06 2022-12-16 株式会社マルアイ Manufacturing method of conductive pattern for RFID
JP2022131886A (en) * 2021-02-26 2022-09-07 国立大学法人 奈良先端科学技術大学院大学 Carbon nanotube dispersion and method for producing the same
CN114388801B (en) * 2021-12-22 2024-04-30 诺瑞(深圳)新技术有限公司 Carbon nanotube conductive dispersion liquid and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730707B2 (en) * 2006-03-08 2011-07-20 株式会社豊田中央研究所 Catalyst for carbon nanotube synthesis and method for producing the same, catalyst dispersion, and method for producing carbon nanotube
EP2298699A4 (en) * 2008-07-16 2011-11-30 Hodogaya Chemical Co Ltd Mass of carbon fibers, process for producing same, and composite material containing these
WO2011004864A1 (en) * 2009-07-08 2011-01-13 日産化学工業株式会社 Carbon nanotube dispersant

Also Published As

Publication number Publication date
JP2014218393A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6197353B2 (en) Carbon nanotube dispersion
Ferreira et al. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites
Yang et al. Compatibilization of immiscible nylon 6/poly (vinylidene fluoride) blends using graphene oxides
US9162896B2 (en) Method for making polymer composites containing graphene sheets
Xie et al. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites
Chiu et al. Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties
Munirasu et al. Functionalization of carbon materials using the Diels‐Alder reaction
CN102781830B (en) Process for the preparation of nano-scaled graphene platelets with a high dispersibility in low-polarity polymeric matrixes and relative polymeric compositions
Ha et al. Composites of Single‐Walled Carbon Nanotubes and Styrene‐Isoprene Copolymer Latices
Khan et al. The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites
Yang et al. Synthesis and self‐assembly of polystyrene‐grafted multiwalled carbon nanotubes with a hairy‐rod nanostructure
Hegde et al. SWCNT induced crystallization in an amorphous all-aromatic poly (ether imide)
JPWO2020129872A1 (en) Carbon nanotube dispersion liquid and its manufacturing method
Parpaite et al. Incorporation of modified Stöber silica nanoparticles in polystyrene/polyamide-6 blends: Coalescence inhibition and modification of the thermal degradation via controlled dispersion at the interface
Petrie et al. Non-covalent/non-specific functionalization of multi-walled carbon nanotubes with a hyperbranched polyethylene and characterization of their dispersion in a polyolefin matrix
Liu et al. Polystyrene-grafted graphene with improved solubility in organic solvents and its compatibility with polymers
Garate et al. Surfactant-aided dispersion of polystyrene-functionalized carbon nanotubes in a nanostructured poly (styrene-b-isoprene-b-styrene) block copolymer
JPWO2005068556A1 (en) Carbon nanotube-dispersed polyimide composition
Akram et al. Review on polymer/carbon nanotube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: preparation, properties, and significance
JP2010173884A (en) Carbon nanotube dispersion, film using the same and method of producing the same
Poochai et al. Enhancing dispersion of carbon nanotube in polyacrylonitrile matrix using admicellar polymerization
Osazuwa et al. Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene–octene copolymer
Wang et al. Achieving high-performance poly (styrene-b-ethylene-ranbutylene-b-styrene) nanocomposites with tannic acid functionalized graphene oxide
JP2005075661A (en) Carbon nanotube dispersed solution and method of manufacturing the same
Rahmaoui et al. Contribution of the organo-montmorillonite/graphene pair to the rheological and mechanical properties of polyethylene matrix based nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250