WO2011004864A1 - Carbon nanotube dispersant - Google Patents
Carbon nanotube dispersant Download PDFInfo
- Publication number
- WO2011004864A1 WO2011004864A1 PCT/JP2010/061621 JP2010061621W WO2011004864A1 WO 2011004864 A1 WO2011004864 A1 WO 2011004864A1 JP 2010061621 W JP2010061621 W JP 2010061621W WO 2011004864 A1 WO2011004864 A1 WO 2011004864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- functional group
- carbon nanotube
- meth
- cnt
- polymerization initiator
- Prior art date
Links
- JAPMJSVZDUYFKL-UHFFFAOYSA-N C1C2C1CCC2 Chemical compound C1C2C1CCC2 JAPMJSVZDUYFKL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
Definitions
- the present invention relates to a carbon nanotube dispersant. More specifically, the present invention relates to a carbon nanotube dispersant composed of a highly branched polymer containing an amino functional group or an imino functional group at the terminal, and a composition containing the dispersant and the carbon nanotube.
- Carbon nanotubes are considered as potential materials for nanotechnology, and their applicability in a wide range of fields has been studied.
- the applications include the use of a single CNT itself, such as a transistor or a probe for a microscope, and a large number of CNTs, such as an electron emission electrode, a fuel cell electrode, or a conductive composite in which CNTs are dispersed. It is roughly divided into the method of using as a bulk.
- distributing single by electrophoresis etc. is used.
- Non-Patent Document 1 a material that has been subjected to chemical modification by adding a functional group to CNTs to impart dispersibility (for example, see Non-Patent Document 1) has been reported.
- the CNTs are chemically modified, the ⁇ -conjugated system constituting the CNTs is easily broken, and there is a problem that the original characteristics of the CNTs such as high conductivity are impaired.
- Non-Patent Document 2 a method of dispersing CNTs with a polymer such as polyvinyl pyrrolidone which is a water-soluble polymer (for example, see Non-Patent Document 2) is also known.
- a polymer such as polyvinyl pyrrolidone which is a water-soluble polymer
- the polymer is a water-soluble polymer, its application range is limited.
- the hyperbranched polymer is a polymer having a branch in the skeleton, such as a star polymer, a dendrimer classified as a dendritic (dendritic) polymer, or a hyperbranched polymer.
- These hyperbranched polymers are unique in that they have a relatively sparse internal space and particle characteristics in that the conventional polymers generally have a string-like shape but actively introduce branches. It has a large number of ends that can be modified by introducing various functional groups, and has the possibility of highly dispersing CNTs compared to linear polymers by utilizing these characteristics. .
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a CNT dispersant capable of dispersing CNTs to their single size in a medium such as an organic solvent.
- the present inventors have found that a highly branched polymer having an amino functional group or an imino functional group introduced at its terminal has excellent CNT dispersibility, and this highly branched polymer.
- the present inventors have found that CNT (at least a part thereof) can be isolated and dispersed up to its single size when used as a CNT dispersant.
- the present invention provides, as a first aspect, a high molecular weight having an amino functional group or an imino functional group at the end and having a weight average molecular weight of 1,000 to 2,000,000 as measured by gel permeation chromatography in terms of polystyrene.
- the present invention relates to a carbon nanotube dispersant characterized by comprising a branched polymer.
- the hyperbranched polymer has a monomer A having two or more radical polymerizable double bonds in the molecule, and 5 to 200 mol% of amino functional group or imino functional group with respect to the monomer A.
- the present invention relates to the carbon nanotube dispersant according to the first aspect, which is a hyperbranched polymer obtained by polymerization in the presence of the polymerization initiator B it has.
- the present invention relates to the carbon nanotube dispersant according to the first aspect or the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
- the carbon according to the first aspect or the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a functional group represented by the formula [1].
- the present invention relates to a nanotube dispersant.
- R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1. , R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.
- the present invention relates to the carbon nanotube dispersant according to the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator represented by the formula [2].
- the hyperbranched polymer includes a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer C having at least one radical polymerizable double bond in the molecule.
- the carbon nanotube dispersant according to the first aspect which is a polymer.
- the present invention relates to the carbon nanotube dispersant according to the sixth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
- the carbon nanotube dispersant according to the sixth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a functional group represented by the formula [1]. .
- R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1. , R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.
- the present invention relates to the carbon nanotube dispersant according to the eighth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator represented by the formula [2].
- the present invention relates to the carbon nanotube dispersant according to any one of the first aspect to the ninth aspect, and a composition containing carbon nanotubes.
- An eleventh aspect relates to the composition according to the tenth aspect, wherein the carbon nanotube is at least one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
- the present invention relates to the composition according to the tenth aspect or the eleventh aspect, wherein the carbon nanotube dispersant adheres to or coordinates with the surface of the carbon nanotube to form a composite.
- the present invention relates to the composition according to any one of the tenth aspect to the twelfth aspect, further including an organic solvent.
- the present invention relates to the composition according to the thirteenth aspect, in which the carbon nanotube is dispersed in the organic solvent.
- the present invention relates to the composition according to the thirteenth aspect, in which the complex is dispersed in the organic solvent.
- the present invention relates to the composition according to any one of the tenth aspect to the fifteenth aspect, further including a thermosetting compound soluble in an organic solvent.
- the present invention relates to the composition according to the sixteenth aspect, in which the thermosetting compound is a polyfunctional epoxy compound.
- the present invention relates to a thin film obtained from the composition according to any one of the tenth aspect to the seventeenth aspect.
- a 19th viewpoint it is related with the cured film obtained by heat-processing to the thin film obtained from the composition as described in a 16th viewpoint or a 17th viewpoint.
- the present invention relates to the manufacturing method according to the twentieth aspect, wherein the mechanical treatment is ultrasonic treatment.
- a twenty-second aspect includes a step of preparing the mixture by adding the carbon nanotubes to a solution obtained by dissolving the carbon nanotube dispersant in the organic solvent, and a step of ultrasonicating the mixture. And the manufacturing method according to the twenty-first aspect.
- the dispersant of the present invention is composed of a highly branched polymer having an amino functional group or an imino functional group introduced at its terminal, has excellent dispersibility of carbon nanotubes, and at least a part of the carbon nanotubes has a single size (diameter 0.8 to 0.8). 100 nm) and can be stably dispersed (without aggregation) in an organic solvent in a so-called “isolated dissolution” state.
- isolated dissolution means that the carbon nanotubes are dispersed into the medium in such a way that the carbon nanotubes are not separated into a lump, bundle, or rope due to mutual cohesive force. Refers to the state.
- carbon nanotubes can be dispersed by a mechanical treatment such as ultrasonic treatment of a solution containing a dispersant, carbon nanotubes, and an organic solvent, eliminating the need for further heating and other processing steps and shortening the treatment time. can do. Therefore, by using the carbon nanotube dispersant of the present invention, it is possible to easily obtain a carbon nanotube-containing composition in which carbon nanotubes (at least a part thereof) are dispersed in an isolated dissolved state.
- the carbon nanotube-containing composition obtained by the present invention can be easily formed into a thin film by simply applying it to a substrate, and a highly conductive thin film can be obtained. And in the said composition, since it is easy to adjust the quantity of a carbon nanotube according to the use, it can use suitably for a wide use as various semiconductor materials, conductor materials, etc.
- FIG. 1 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 1 synthesized in Example 1.
- FIG. 2 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 1 synthesized in Example 1.
- FIG. 3 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 2 synthesized in Example 2.
- FIG. 4 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 2 synthesized in Example 2.
- FIG. FIG. 5 is a diagram showing the 1 H NMR spectrum of the hyperbranched polymer 3 synthesized in Example 3.
- 6 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 3 synthesized in Example 3.
- FIG. 7 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 4 synthesized in Example 4.
- FIG. 8 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 4 synthesized in Example 4.
- FIG. 9 is a diagram showing a 1 H NMR spectrum of hyperbranched polymer 5 synthesized in Reference Production Example 1.
- FIG. 10 is a diagram showing a 13 C NMR spectrum of hyperbranched polymer 5 synthesized in Reference Production Example 1.
- FIG. 11 is a diagram showing a chiral vector of a carbon nanotube.
- FIG. 12 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 6 synthesized in Example 15.
- 13 is a diagram showing a 13 C NMR spectrum of hyperbranched polymer 6 synthesized in Example 15.
- FIG. 14 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 7 synthesized in Example 16.
- FIG. FIG. 15 is a diagram showing a 13 C N
- the CNT dispersant according to the present invention comprises a highly branched polymer having an amino functional group or an imino functional group at its end, more specifically, a monomer A having two or more radical polymerizable double bonds in the molecule. It is obtained by polymerizing in the presence of a polymerization initiator B having an amino functional group or imino functional group in an amount of 5 mol% to 200 mol% with respect to A, and has a weight average molecular weight of 1,000 to 2, It consists of a hyperbranched polymer that is 1,000,000.
- This hyperbranched polymer has many basic functional groups (amino functional groups or imino functional groups) that are considered to have high affinity for CNTs and carboxyl groups present at CNT defects. Therefore, high dispersibility of CNT can be expected. Moreover, this hyperbranched polymer can perform various skeleton designs, introduction of functional groups, control of molecular weight and distribution, and further functionalization depending on the combination and conditions of the monomer A and the initiator B. Has characteristics. Moreover, by having a branched structure, it also has a high solubility that cannot be seen in a straight chain.
- the weight average molecular weight of the polymer is less than 1,000, the dispersibility of CNTs may be remarkably lowered or the dispersibility may not be exhibited. If it exceeds 2,000,000, a dispersion treatment is performed. There is a possibility that the handling in the case becomes extremely difficult.
- a highly branched polymer having a weight average molecular weight of 2,000 to 1,000,000 is more preferred.
- the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
- the monomer A having two or more radically polymerizable double bonds in the molecule preferably has one or both of a vinyl group and a (meth) acryl group, and particularly a divinyl compound or di ( A meth) acrylate compound is preferred.
- the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
- (meth) acrylic acid refers to acrylic acid and methacrylic acid.
- Examples of such a monomer A include organic compounds shown in the following (A1) to (A7).
- (A1) Vinyl hydrocarbon: (A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene etc.
- (A1-2) Alicyclic vinyl hydrocarbon; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene, etc.
- Allyl ester diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate, allyl (meth) acrylate, etc.
- (A4) Vinyl compound having a polyalkylene glycol chain: Polyethylene glycol (molecular weight 300) di (meth) acrylate, polypropylene glycol (molecular weight 500) di (meth) acrylate, and the like.
- aromatic vinyl hydrocarbon compounds of group (A1-3) vinyl esters, allyl esters, vinyl ethers, allyl ethers and vinyl ketones of group (A2), and (meth) acrylic of group (A3).
- Particularly preferred are divinylbenzene belonging to group (A1-3), diallyl phthalate belonging to group (A2), ethylene glycol di (meth) acrylate belonging to group (A3), 1,3-adamantane dimethanol di (meta).
- the polymerization initiator B having an amino functional group or an imino functional group includes an amino group and an amine or imine compound in which a hydrogen atom of ammonia is substituted with a monovalent or divalent hydrocarbon residue, as well as a heterocyclic ring.
- a polymerization initiator containing an amine examples thereof include primary to tertiary aliphatic amines such as cyclohexylamine, dimethylamine, triethylamine, phenethylamine, and dibenzylamine; primary to tertiary amines such as aniline, dimethylaminopyridine, diphenylamine, and triphenylamine.
- Tertiary aromatic amines Tertiary aromatic amines; imines such as methanimine, propane-2-imine, N-methylethanimine; pyrroline, pyrrolidine, pyrazoline, pyrazolidine, imidazoline, imidazolidine, dihydropyridine, tetrahydropyridine, piperidine, dihydropyrimidine, tetrahydropyrimidine, hexa
- the polymerization initiator B having an amino functional group or imino functional group is preferably a polymerization initiator having a heterocyclic amine structure, or a polymerization initiator having a functional group represented by the following formula [1], particularly An azo polymerization initiator can be mentioned.
- R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1 , Any two or more of R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.
- Examples of the functional group represented by the above formula [1] include groups represented by the following formulas [A] to [M], but are not limited thereto.
- Examples of the azo polymerization initiator composed of a compound having a functional group represented by the above formulas [A] to [M] include a polymerization initiator represented by the following formula [2].
- R 1 , R 2 and R 3 represent those defined in the formula [1]
- R 4 and R 5 each independently represent an alkyl group having 1 to 6 carbon atoms. .
- Examples of the azo polymerization initiator represented by the above formula [2] include compounds shown in the following (1) to (2); (1) Cyclic azoamidine compound: 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] -propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride and the like.
- Cyclic azoamidine compound 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl
- Azoamidine compound 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and the like.
- 2,2′-azobis [2- (2-imidazolin-2-yl) propane] or 2,2′-azobis (1-imino-1-containing a heterocyclic amine structure is included.
- Pyrrolidino-2-methylpropane) dihydrochloride is particularly preferred.
- the polymerization initiator B is used in an amount of 5 mol% to 200 mol%, preferably 15 mol% to 200 mol%, more preferably 15 mol% to 170 mol%, more preferably, relative to the monomer A. Used in an amount of 50 mol% to 100 mol%.
- the dispersant in the present invention uses a monomer C having at least one radical polymerizable double bond in the molecule in addition to the monomer A having two or more radical polymerizable double bonds in the molecule, It is obtained by polymerizing in the presence of the polymerization initiator B having the above-mentioned amino functional group or imino functional group in an amount of 5 mol% or more and 200 mol% or less with respect to the total mol of the monomer A and the monomer C. Dispersants composed of highly branched polymers are also targeted.
- the monomer C having at least one radical polymerizable double bond in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group.
- or (C3) is illustrated, for example.
- (C1-8) (meth) acrylamides (meth) acrylamide, diacetone (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-tris (hydroxymethyl) methyl ( (Meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-isobutyloxymethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- [3-dimethylaminopropyl] (meth) acrylamide, 3-((meta ) Acryloylamino) propyltrimethylammonium chloride, N-tert-butyl (meth) acrylamide, 4- (meth) acryloylmorpholine, N-phenyl (meth) acrylamide, 2-acrylamide glycolic acid, 2-acrylamido 2-methyl-1-propanesulfonic acid.
- (C2) (Meth) acrylonitriles (Meth) acrylonitrile, 2-chloroacrylonitrile, 1-cyanovinyl acetate.
- (C3-2) nitrogen-containing heterocyclic vinyl compound N-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole, 1-vinyl-2-pyrrolidone, N-vinylphthalimide, N-vinylcaprolactone.
- (C3-4) vinyl ethers 4-vinyloxymethylcyclohexylmethyl benzoate, ethyl vinyl ether, 2-chloroethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 4-vinyloxybutyl benzoate, isobutyl vinyl ether, tert-butyl vinyl ether, tert-pentyl Vinyl ether, cyclohexyl vinyl ether, 2-ethylhexyl vinyl ether, octadecyl vinyl ether, dodecyl vinyl ether, vinyloxytrimethylsilane, 1,4-butanediol vinyl ether, 1,4-cyclohexanedimethanol vinyl ether, ethylene glycol vinyl ether, ethylene glycol butyl vinyl ether, diethylene glycol vinyl ether, Ethyl 1 -Propenyl ether.
- Group (meth) acrylic acid esters preferred are the compounds described in groups (C1), (C2), (C3-1) and (C3-2), and particularly preferred are (C1-2).
- Group (meth) acrylic acid esters preferred are the compounds described in groups (C1), (C2), (C3-1) and (C3-2), and particularly preferred are (C1-2).
- Group (meth) acrylic acid esters (C1-4) group hydroxy (meth) acrylic acid esters, (C3-1) group styrenes and (C3-2) group nitrogen-containing heterocyclic vinyl compounds More preferred are methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, styrene, 2-vinylnaphthalene, N-vinylimidazole, 2-vinylpyridine, and 1-vinyl-2-pyrrolidone.
- the hyperbranched polymer used as the dispersant of the present invention has a weight average molecular weight (hereinafter abbreviated as Mw) measured in terms of polystyrene by gel permeation chromatography, preferably 1,000 to 2,000,000, more preferably 2. , 1,000 to 1,000,000.
- Mw weight average molecular weight measured in terms of polystyrene by gel permeation chromatography
- the hyperbranched polymer is obtained by polymerizing the monomer A or the monomer A and the monomer C in the presence of a predetermined amount of the polymerization initiator B.
- the polymerization method include known methods such as solution polymerization, dispersion polymerization, precipitation polymerization, and bulk polymerization. Among these, solution polymerization or precipitation polymerization is preferable. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
- organic solvents used here include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit, and cyclohexane Solvent: Halogen solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate An ester solvent such as ethyl cellosolve acetate or propylene glycol monomethyl ether acetate; an ether solvent such as diethyl ether, tetrahydrofuran or 1,4-diox
- aromatic hydrocarbon solvents preferred are aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents, amide solvents, aliphatic carboxylic acid solvents, and the like.
- aromatic hydrocarbon solvents halogen solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents, amide solvents, aliphatic carboxylic acid solvents, and the like.
- the content of the organic solvent in the entire polymerization reaction product is preferably 5 to 120 parts by weight, more preferably 10 to 110 parts by weight, with respect to 1 part by weight of the monomer A. Most preferably, it is 30 to 100 parts by mass.
- the polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
- the polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but from the viewpoint of polymerization efficiency and molecular weight control, it is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. It is 120 degrees C or less. More preferably, the temperature of the polymerization reaction is carried out at a temperature that is 20 ° C.
- a polymerization reaction can be performed by dropping a solution containing the polymerization initiator B and the organic solvent into the organic solvent maintained at a temperature 20 ° C. or more higher than the 10-hour half-life temperature of the polymerization initiator B. preferable. It is even more preferable to carry out the polymerization reaction at the reflux temperature of the organic solvent under a reaction pressure.
- the reaction time varies depending on the reaction temperature, the types and ratios of the monomer A (and monomer C) and the polymerization initiator B, the organic solvent species, etc., but cannot be defined unconditionally, but preferably 30 minutes or more and 720 minutes Hereinafter, it is more preferably 40 minutes or more and 540 minutes or less.
- solution polymerization in an organic solvent is preferably performed in the presence of a specific acid.
- a specific acid it is preferable to perform solution polymerization using acetic acid as an organic solvent.
- the amount of the specific acid is actually 100 mol% to 400 mol% with respect to the polymerization initiator B. It is desirable to carry out the polymerization in the presence of
- Inorganic acids hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, etc.
- Aromatic carboxylic acids benzoic acid, trimellitic acid, trimesic acid, pyromellitic acid, benzenepentacarboxylic acid, merit acid, anisic acid, toluic acid, propylbenzoic acid, propoxybenzoic acid, hydroxybenzoic acid, n-octylbenzoic acid N-octyloxybenzoic acid, hexylbenzoic acid, hexyloxybenzoic acid, heptylbenzoic acid, heptyloxybenzoic acid, ethylbenzoic acid, ethoxybenzoic acid, n-butylbenzoic acid, sec-butylbenzoic acid, tert-butylbenzoic acid Acid, butoxybenzoic acid, bromobenzoic acid, butoxybenzoic acid, bromobenzoic
- Aliphatic carboxylic acid acetic acid, trifluoroacetic acid, valeric acid, undecanoic acid, tridecanoic acid, tricosanoic acid, stearic acid, propionic acid, pentadecanoic acid, pentacosanoic acid, palmitic acid, nonanoic acid, nonadecanoic acid, nonacosanoic acid, octanoic acid, Octacosanoic acid, heptacosanoic acid, heneicosanoic acid, myristic acid, melicic acid, ligrinoceric acid, lauric acid, hexanoic acid, heptanoic acid, heptadecanoic acid, decanoic acid, serotic acid, butyric acid, behenic acid, arachidic acid, oleic acid, linolenic acid, Linoleic acid, erucic acid, elaidic acid, arachi
- Amino acids L-valine, L-tryptophan, L-serine, L-proline, L-phenylalanine, L-ornithine, L-leucine, L-isoleucine, L-histidine, L-glutamine, L-cysteine, L-asparagine, L-alanine, L-tyrosine, L-threonine, L-lysine, L-arginine, L-glycine and those whose nitrogen atoms are acetyl protected, butoxycarbonyl protected, carbobenzoxy protected, etc., or these D Body, racemic body, etc.
- the aromatic carboxylic acid group is preferable, and benzoic acid is most preferable.
- the polymerization When the polymerization is carried out in the presence of an acid, it is preferable to neutralize with a base after completion of the polymerization reaction.
- a base examples include alkali metal water such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide. An oxide etc. are mentioned.
- the obtained hyperbranched polymer is collected by an arbitrary method, and post-treatment such as washing is performed as necessary.
- Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
- the average particle size of the primary particles of the obtained hyperbranched polymer is preferably 1 nm to 100 nm, more preferably 5 nm to 50 nm.
- the CNT-containing composition (CNT composition) comprises the CNT dispersant (highly branched polymer) and CNT.
- CNTs are usually produced by arc discharge method, chemical vapor deposition method (hereinafter referred to as CVD method), laser ablation method, etc., and CNTs used here can be obtained by any method. Good.
- CVD method chemical vapor deposition method
- laser ablation method etc.
- CNTs used here can be obtained by any method. Good.
- SWCNT a single-walled CNT in which a single carbon film (graphene sheet) is wound in a cylindrical shape and a two-layered structure in which two graphene sheets are wound concentrically.
- CNT hereinafter referred to as DWCNT
- MWCNT multilayer CNT
- SWCNT, DWCNT, and MWCNT can be used alone or in combination.
- the electrical characteristics of CNTs vary from metallic to semiconducting depending on how the graphene sheet is wound (helicality, chirality).
- the CNT composition of the present invention may further contain an organic solvent capable of dissolving the dispersant (highly branched polymer).
- organic solvents include ether compounds such as tetrahydrofuran (THF), diethyl ether and dimethoxyethane (DME), halogenated hydrocarbons such as methylene chloride and chloroform, N, N′-dimethylformamide (DMF).
- Amide compounds such as N, N′-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP), ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methanol, ethanol, isopropanol, propanol Alcohols such as n-heptane, n-hexane and cyclohexane, and aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene. These organic solvents are used alone. Or it can be used as a mixture of two or more thereof.
- DMAc N, N′-dimethylacetamide
- NMP N-methyl-2-pyrrolidone
- ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
- methanol
- NMP, methanol, and isopropanol are preferable because the ratio of isolated dissolution of CNT can be improved.
- the method for preparing the CNT composition of the present invention is arbitrary.
- the dispersant When the dispersant is in a liquid state, the dispersant and CNT are mixed as appropriate, and when the dispersant is a solid, after melting it, It can be prepared by mixing with CNT.
- a composition may be prepared by mixing a dispersant, CNT, and an organic solvent in an arbitrary order. For example, these may be mixed together, or a dispersant may be used. CNTs may be added and mixed in a solution dissolved in an organic solvent. At this time, it is preferable to disperse a mixture composed of a dispersant, CNTs, and an organic solvent, and this treatment can further improve the ratio of isolated dispersion of CNTs.
- dispersion processing examples include wet processing using a ball mill, bead mill, jet mill, etc. as mechanical processing, and ultrasonic processing using a bath type or probe type sonicator. However, in consideration of processing efficiency, ultrasonic processing is performed. Is preferred.
- the time for the dispersion treatment is arbitrary, but is preferably about 5 minutes to 10 hours, more preferably about 10 minutes to 5 hours.
- the mixing ratio of the dispersant and the CNT in the CNT composition of the present invention can be about 1,000: 1 to 1: 100 by mass ratio.
- the concentration of the dispersant in the composition using the organic solvent is not particularly limited as long as it is a concentration capable of dispersing CNTs in the organic solvent, but in the present invention, 0.001 in the composition. It is preferable to set it as about thru
- the concentration of CNTs in the composition is arbitrary as long as at least a part of the CNTs is isolated and dispersed, but in the present invention, it is preferable to set the concentration to about 0.0001 to 20% by mass in the composition. More preferably, the content is about 0.001 to 10% by mass.
- the dispersant adheres to the surface of the CNT to form a composite.
- the CNT composition of the present invention may be mixed with a general-purpose synthetic resin that is soluble in the organic solvent and combined.
- general-purpose synthetic resins include polyolefin resins such as PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer); PS (polystyrene) , Polystyrene resins such as HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer); polycarbonate resin; Polyvinyl resin; Polyamide resin; (Meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate, polyethylene naphthalate, polybuty
- the CNT composition of the present invention may be mixed with a thermosetting compound that is soluble in the organic solvent and combined.
- a thermosetting compound that is soluble in the organic solvent and combined.
- the thermosetting compound include polyfunctional epoxy compounds.
- the meaning of the thermosetting compound in this specification includes not only a monomer compound (monomer) in a narrow sense but also a dimer, a trimer, an oligomer, and a reactive polymer.
- the polyfunctional epoxy compound is not particularly limited as long as it contains two or more epoxy groups in the molecule.
- bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type Epoxy resin, dimer acid glycidyl ester type epoxy resin, polyalkylene ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, naphthol type epoxy resin, naphthalene type
- An epoxy resin, an alicyclic epoxy resin, a heterocyclic ring-containing epoxy resin, a diglycidyl epoxy resin, a glycidylamine type epoxy resin, a halogenated bisphenol A type epoxy resin, and the like are preferably used. Mixed and used in.
- the CNT composition of this invention may contain the compound containing one epoxy group in a molecule
- the content of the polyfunctional epoxy compound in the CNT composition of the present invention is preferably 0.1 to 100 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the dispersant.
- the CNT composition (solution) of the present invention is applied on an appropriate substrate such as PET, glass, ITO, or the like by an appropriate method such as a casting method, a spin coating method, a bar coating method, a roll coating method, or a dip coating method.
- a thin film can be formed.
- the obtained thin film can be suitably used for an antistatic film utilizing the metallic properties of CNT, a conductive material such as a transparent electrode, or a photoelectric conversion element and an electroluminescent device utilizing semiconductor properties.
- Solvent CDCl 3 Internal standard: Tetramethylsilane (3) Dynamic light scattering photometer (particle size measurement) Equipment: FDLS-3000 manufactured by Otsuka Electronics Co., Ltd. (4) Hot plate (pre-bake, post-bake) Equipment: MH-180CS, MH-3CS, manufactured by AS ONE (5) Probe-type ultrasonic irradiation device (dispersion processing) Apparatus: UIP1000 manufactured by Hielscher Ultrasonics (6) Ultrasonic cleaner (dispersion processing) Equipment: FU-6H manufactured by Tokyo Glass Instrument Co., Ltd.
- Resistivity meter surface resistance measurement
- Equipment Loresta-GP, manufactured by Mitsubishi Chemical Corporation
- Probe In-line 4-probe probe ASP manufactured by Mitsubishi Chemical Corporation (distance between probes: 5 mm)
- Haze meter total light transmittance measurement
- Device NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd.
- Small high-speed cooling centrifuge centrifugation
- Equipment SRX-201, manufactured by Tommy Seiko Co., Ltd.
- Ultraviolet / visible / near infrared spectrophotometer Apparatus: UV-3600 manufactured by Shimadzu Corporation Measurement wavelength: 400-1650nm
- DVB Divinylbenzene (DVB-960, manufactured by Nippon Steel Chemical Co., Ltd.)
- B-1 2,2′-azobis [2- (2-imidazolin-2-yl) propane] (VA-061 manufactured by Wako Pure Chemical Industries, Ltd.)
- B-2 2,2′-azobis (1-imino-1-pyrrolidino-2-methyl-propane) dihydrochloride (VA-067 manufactured by Wako Pure Chemical Industries, Ltd.)
- MAIB Dimethyl 2,2′-azobisisobutyrate (MAIB manufactured by Otsuka Chemical Co., Ltd.)
- EPL Epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) -modified ⁇ -caprolactone (Epolyde GT401 manufactured by Daicel Chemical Industries, Ltd.)
- JER Epoxy resin (Japan Epoxy Resin Co., Ltd.
- CNT-1 Unrefined MWCNT (“C Tube 100” manufactured by CNT, outer diameter 10-30 nm)
- CNT-2 Fine MWCNT (Cheap Tubes “MWNTs> 95 wt% / outer diameter ⁇ 8 nm”)
- CNT-3 Unpurified SWCNT (HiPco manufactured by Carbon Nanotechnologies)
- CNT-4 Medium diameter MWCNT (Bayer's “Baytubes C 150 P” outer diameter 5-20 nm)
- CNT-5 Medium diameter MWCNT ("FloTube 9000" outer diameter 11 nm, manufactured by CNano Technology)
- CNT-6 Medium diameter MWCNT (“VGCF-X” outer diameter 15 nm, manufactured by Showa Denko KK)
- CNT-7 Large diameter MWCNT (Cheap Tubes “MWCNTs> 95 wt% / 20-40 nm” outer diameter 20-40 nm)
- CNT-8 Extremely large diameter MWCNT (Cheap Tube 100” manufactured by C
- Example 1 ⁇ Synthesis of hyperbranched polymer 1 using DVB and B-1> A 200 mL reaction flask was charged with 44 g of acetic acid, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature reached 100 ° C. Into another 100 mL reaction flask were charged 2.6 g (20 mmol) of DVB, 3.8 g of B-1 (15 mmol, 75 mol% with respect to DVB) and 44 g of acetic acid. The mixture was cooled to 0 ° C. in an ice bath. The contents were dropped into the acetic acid heated to 100 ° C.
- This polymer solution was added to 294 g of hexane to reprecipitate the polymer in a slurry state.
- This slurry was filtered under reduced pressure and vacuum dried to obtain 2.1 g of the desired product (highly branched polymer 1) as a white powder.
- the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIG. 1 and FIG.
- the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 34,000, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 3.9.
- Example 2 ⁇ Synthesis of hyperbranched polymer 2 using DVB and B-1> A 200 mL reaction flask was charged with 44 g of DMF, and nitrogen was allowed to flow for 5 minutes with stirring until the internal temperature reached 100 ° C. In a separate 100 mL reaction flask was charged 2.6 g (20 mmol) DVB, 3.8 g B-1 (15 mmol, 75 mol% with respect to DVB), 6.1 g (50 mmol) benzoic acid and 44 g DMF while stirring. Nitrogen was introduced for 5 minutes to replace nitrogen, and the mixture was cooled to 0 ° C. in an ice bath.
- the polymer was reprecipitated in a slurry state by slowly dropping 13.3 mL of 6N NaOH aqueous solution into the polymer solution and neutralizing. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 44 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 3.6 g of the desired product (highly branched polymer 2) as a white powder.
- the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 3 and 4. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 33,000, and dispersion degree: Mw / Mn was 15.8.
- Example 3 ⁇ Synthesis of hyperbranched polymer 3 using DVB and B-1> A 500 mL reaction flask was charged with 120 g of 1-propanol, nitrogen was introduced for 5 minutes with stirring, and the mixture was heated until 1-propanol was refluxed (standard boiling point 97 ° C.). In another 200 mL reaction flask, 2.6 g (20 mmol) of DVB, 3.1 g of B-1 (12 mmol, 62 mol% based on DVB), and 120 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
- This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state.
- This slurry was filtered under reduced pressure and vacuum-dried to obtain 2.5 g of the desired product (highly branched polymer 3) as a pale yellow powder.
- the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 5 and 6.
- the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 47,000, and dispersion degree: Mw / Mn was 13.9.
- Example 4 ⁇ Synthesis of hyperbranched polymer 4 using DVB and B-2> A 200 mL reaction flask was charged with 42 g of EG / DMF (mass ratio 1: 1), and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature reached 100 ° C. In a separate 100 mL reaction flask was charged 2.6 g (20 mmol) DVB, 3.5 g B-2 (10 mmol, 50 mol% with respect to DVB) and 42 g EG / DMF (mass ratio 1: 1) with stirring. Nitrogen was introduced for 5 minutes to replace nitrogen, and the mixture was cooled to 0 ° C. in an ice bath.
- Example 15 ⁇ Synthesis of hyperbranched polymer 6 using DVB and B-1> A 3 L reaction flask was charged with 180 g of 1-propanol, and nitrogen was allowed to flow for 5 minutes with stirring, followed by heating until 1-propanol was refluxed (standard boiling point 97 ° C.). In a separate 2 L reaction flask, 15.6 g (120 mmol) of DVB, 21.0 g of B-1 (84 mmol, 70 mol% with respect to DVB) and 720 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
- This slurry was filtered under reduced pressure and vacuum dried to obtain 22.1 g of the target product (highly branched polymer 6) as a white powder.
- the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 12 and 13.
- As the measurement solvent d 6 -DMSO to which a small amount of CDCl 3 was added was used. Moreover, although the molecular weight measurement by GPC of the target object was tried, it was not able to be measured on the said conditions.
- Example 16 ⁇ Synthesis of hyperbranched polymer 7 using DVB and B-1> A 3 L reaction flask was charged with 180 g of 1-propanol, and nitrogen was allowed to flow for 5 minutes with stirring, followed by heating until 1-propanol was refluxed (standard boiling point 97 ° C.). In a separate 2 L reaction flask, 15.6 g (120 mmol) of DVB, 21.1 g of B-1 (84 mmol, 70 mol% with respect to DVB), and 720 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
- Fragments of monomer A and polymerization initiator B calculated from 13 C NMR spectra of hyperbranched polymers 1, 2, 3, 4, 6, 7 synthesized in Examples 1 to 4, Example 15, and Example 16.
- Table 1 shows the composition ratio (molar ratio) and the average particle diameter measured by a dynamic light scattering photometer.
- Example 5 ⁇ Dispersion of CNT-1 using highly branched polymer 2 (1)>
- a dispersant 0.50 g of the hyperbranched polymer 2 synthesized in Example 2 was dissolved in 49.25 g of NMP, and 0.25 g of CNT-1 was added to this solution as MWCNT.
- This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device to obtain a black MWCNT-containing dispersion liquid in which MWCNT was uniformly dispersed without a precipitate.
- the above MWCNT-containing dispersion was allowed to stand at room temperature (approximately 25 ° C.) for 1 month, and then the presence of sediment in the dispersion was visually confirmed, and the dispersion stability of this dispersion was determined according to the following criteria. Evaluated. The evaluation results are shown in Table 2. ⁇ Dispersion stability> ⁇ : No sediment can be confirmed. (Triangle
- Example 6 ⁇ Dispersion of CNT-1 using highly branched polymer 2 (2)>
- Example 5 the same operation and evaluation were performed except that the addition amount of the hyperbranched polymer 2 was changed to 0.25 g and the amount of NMP was changed to 49.50 g.
- the evaluation results are shown in Table 2.
- Example 7 ⁇ Dispersion of CNT-1 using highly branched polymer 4 (1)>
- Example 5 the same operation and evaluation were performed except that the dispersant was changed to the hyperbranched polymer 4 synthesized in Example 4. The evaluation results are shown in Table 2.
- Example 8 ⁇ Dispersion of CNT-1 using hyperbranched polymer 4 (2)>
- Example 5 the same operation and evaluation were performed except that the dispersant and the amount of addition were changed to 0.25 g of the hyperbranched polymer 4 synthesized in Example 4 and the amount of NMP was changed to 49.50 g, respectively. .
- the evaluation results are shown in Table 2.
- Example 17 ⁇ Dispersion of CNT-1 using highly branched polymer 6 (1)>
- Example 5 the same operation and evaluation were performed except that the dispersant was changed to the hyperbranched polymer 6 synthesized in Example 15. The evaluation results are shown in Table 2.
- Example 18 ⁇ Dispersion of CNT-1 using highly branched polymer 6 (2)>
- Example 17 the same operation and evaluation were performed except that the dispersion solvent was changed from NMP to IPA. The evaluation results are shown in Table 2.
- Example 19 ⁇ Dispersion of CNT-1 using highly branched polymer 6 (3)>
- Example 17 the same operation and evaluation were performed except that the dispersion solvent was changed from NMP to PGME. The evaluation results are shown in Table 2.
- Example 20 ⁇ Dispersion of CNT-1 using highly branched polymer 7 (1)> The same operations and evaluations were performed in Example 5 except that the dispersant was changed to the hyperbranched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 2.
- Example 21 ⁇ Dispersion of CNT-1 using highly branched polymer 7 (2)>
- Example 5 the same operation and evaluation were performed except that the dispersant and the amount of addition were changed to 0.25 g of the hyperbranched polymer 7 synthesized in Example 16 and the amount of NMP was changed to 49.50 g, respectively. .
- the evaluation results are shown in Table 2.
- Example 5 Dispersant was changed to the hyperbranched polymer 5 synthesized in Reference Production Example 1. The evaluation results are shown in Table 2.
- Example 2 ⁇ Dispersion of CNT-1 using highly branched polymer 5 (2)>
- Example 5 the same operation and evaluation were carried out except that the dispersant and the amount added were changed to 0.25 g of the hyperbranched polymer 5 synthesized in Reference Production Example 1 and the amount of NMP was changed to 49.50 g, respectively. It was.
- the evaluation results are shown in Table 2.
- Example 3 ⁇ Dispersion of CNT-1 using PVP (1)>
- Example 5 the same operation and evaluation were performed except that the dispersant was changed to PVP.
- the evaluation results are shown in Table 2.
- Example 4 ⁇ Dispersion of CNT-1 using PVP (2)>
- Example 5 the same operations and evaluations were performed except that the dispersant and the amount added thereof were changed to 0.25 g of PVP and the amount of NMP was changed to 49.50 g, respectively.
- the evaluation results are shown in Table 2.
- Example 9 ⁇ Dispersion of CNT-2 using hyperbranched polymer 2 (1)>
- Example 5 the same operation and evaluation were performed except that MWCNT was changed to CNT-2.
- the evaluation results are shown in Table 3.
- Example 10 ⁇ Dispersion of CNT-2 using hyperbranched polymer 2 (2)>
- Example 5 the same operation and evaluation were performed except that MWCNT was changed to CNT-2, the addition amount of the hyperbranched polymer 2 was changed to 0.25 g, and the amount of NMP was changed to 49.50 g.
- the evaluation results are shown in Table 3.
- Example 11 ⁇ Dispersion of CNT-2 using highly branched polymer 4> The same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to the hyperbranched polymer 4 synthesized in Example 4 in Example 5. The evaluation results are shown in Table 3.
- Example 22 ⁇ Dispersion of CNT-2 using highly branched polymer 6> The same operations and evaluations were performed except that in Example 5, MWCNT was changed to CNT-2 and the dispersant was changed to the highly branched polymer 6 synthesized in Example 15. The evaluation results are shown in Table 3.
- Example 23 ⁇ Dispersion of CNT-2 using highly branched polymer 7> The same operations and evaluations were performed except that in Example 5, MWCNT was changed to CNT-2 and the dispersant was changed to the highly branched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 3.
- Example 6 ⁇ Dispersion of CNT-2 using PVP>
- Example 5 the same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to PVP.
- the evaluation results are shown in Table 3.
- Example 24 ⁇ Dispersion of CNT-4 using highly branched polymer 7> The same operation and evaluation were performed except that in Example 5, MWCNT was changed to CNT-4 and the dispersant was changed to the highly branched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 4.
- Example 25 ⁇ Dispersion of CNT-5 using highly branched polymer 7>
- Example 24 the same operation and evaluation were performed except that MWCNT was changed to CNT-5.
- the evaluation results are shown in Table 4.
- Example 26 ⁇ Dispersion of CNT-6 using highly branched polymer 7>
- Example 24 the same operation and evaluation were performed except that MWCNT was changed to CNT-6.
- the evaluation results are shown in Table 4.
- Example 27 ⁇ Dispersion of CNT-7 using highly branched polymer 7>
- Example 24 the same operation and evaluation were performed except that MWCNT was changed to CNT-7.
- the evaluation results are shown in Table 4.
- Example 28 ⁇ Dispersion of CNT-8 using highly branched polymer 7>
- Example 24 the same operation and evaluation were performed except that MWCNT was changed to CNT-8.
- the evaluation results are shown in Table 4.
- Example 9 ⁇ Dispersion of CNT-4 using PVP>
- Example 5 the same operation and evaluation were performed except that MWCNT was changed to CNT-4 and the dispersant was changed to PVP.
- the evaluation results are shown in Table 4.
- the uniformity of the thin film is also good, and it has become clear that the dispersant of the present invention is advantageous in obtaining a highly conductive and uniform thin film composite.
- Comparative Example 1 and Comparative Example 2 using the hyperbranched polymer 5 as a dispersant could not maintain the dispersion state, and the result that the polymer has no dispersion performance was obtained.
- MWCNT MWCNT
- Examples 9 to 11, Examples 22 and 23 MWCNT
- the dispersant of the present invention can also be dispersed with MWCNTs commercially available from various manufacturers, and Example 24 and Comparative Example 9 (CNT-4), which have the same MWCNT species, Example 25 and Comparative Example 10 (CNT-5), Example 26 and Comparative Example 11 (CNT-6), Example 27 and Comparative Example 12 (CNT-7), and Example 28 and Comparative Example 13 (CNT-) Comparing 8), the MWCNT thin film composites produced using the dispersant of the present invention (Examples 24 to 28) were obtained when PVP known as a CNT dispersant was used (Comparative Examples 9 to 13).
- the dispersant of the present invention is advantageous in obtaining a highly conductive and uniform thin film composite and is widely applicable in the dispersion of commercially available MWCNTs. became.
- Example 12 ⁇ Dispersion of CNT-3 using highly branched polymer 2> As a dispersant, 1 mg of hyperbranched polymer 2 synthesized in Example 2 was dissolved in 5 mL of NMP, and 0.5 mg of CNT-3 as SWCNT was added to this solution. This mixture is sonicated for 1 hour at room temperature using an ultrasonic cleaner, and centrifuged at 10,000 G for 1 hour at room temperature (approximately 25 ° C.) to recover a black transparent SWCNT-containing solution as a supernatant. did.
- Example 29 ⁇ Dispersion of CNT-3 using highly branched polymer 6> The same operation as in Example 12 was performed except that the dispersant was changed to the hyperbranched polymer 6 synthesized in Example 15.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
- Example 30 ⁇ Dispersion of CNT-3 using highly branched polymer 7> The same operation as in Example 12 was performed except that the dispersant was changed to the hyperbranched polymer 7 synthesized in Example 16.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
- Example 7 ⁇ Dispersion of CNT-3 using PVP>
- Example 12 the same operation was performed except that the hyperbranched polymer 2 was changed to PVP, but SWCNT could not be dispersed.
- Example 12 ⁇ Dispersion with CNT-3 alone>
- Example 12 the same operation was performed except that the addition of the hyperbranched polymer 2 was omitted, but the SWCNT could not be dispersed.
- Example 13 ⁇ Thermal curing of CNT-1 thin film composite using hyperbranched polymer 2 and JER> As a dispersant, 0.50 g of the hyperbranched polymer 2 synthesized in Example 2 was dissolved in 49.25 g of NMP, and 0.25 g of CNT-1 as MWCNT was added to this solution. This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device to obtain a black MWCNT-containing dispersion liquid in which MWCNT was uniformly dispersed without a precipitate.
- Example 14 ⁇ Thermal curing of CNT-1 thin film composite using hyperbranched polymer 2 and EPL>
- Example 13 the same operation and evaluation were performed except that the polyfunctional epoxy compound was changed to EPL and the post-baking temperature was changed to 230 ° C.
- the evaluation results are shown in Table 5.
- the thin films obtained in Examples 13 and 14 were uniform, and the dispersibility of MWCNT was maintained even when a thin film was prepared by adding a polyfunctional epoxy compound. Further, it was confirmed that the surface resistance value was lowered and the pencil hardness was greatly improved by thermosetting by post-baking. From this, it is clear that the hyperbranched polymer of the present invention used as a dispersant also acts as a curing accelerator for epoxy compounds, and can be suitably used for applications requiring hardness as a thin film. The result to be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Colloid Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Provided is a carbon nanotube (CNT) dispersant capable of dispersing CNTs to the size of individual CNTs in a medium such as an organic solvent. The carbon nanotube dispersant is characterized by comprising a highly branched polymer which has a weight average molecular weight of 1,000 to 2,000,000 when measured in terms of polystyrene obtained by means of gel permeation chromatography, and has an amino functional group or an imino functional group in the terminals thereof.
Description
本発明は、カーボンナノチューブ分散剤に関し、更に詳述すると、アミノ官能基又はイミノ官能基を末端に含有する高分岐ポリマーからなるカーボンナノチューブ分散剤、並びに該分散剤及びカーボンナノチューブを含む組成物に関する。
The present invention relates to a carbon nanotube dispersant. More specifically, the present invention relates to a carbon nanotube dispersant composed of a highly branched polymer containing an amino functional group or an imino functional group at the terminal, and a composition containing the dispersant and the carbon nanotube.
カーボンナノチューブ(以下、CNTとも略記する。)はナノテクノロジーの有力な素材として、広範な分野で応用の可能性が検討されている。その用途としてはトランジスターや顕微鏡用プローブなどのように単独のCNTそのものを使用する方法と、電子放出電極や燃料電池用電極、又はCNTを分散した導電性複合体などのように多数のCNTをまとめてバルクとして使用する方法とに大別される。
単独のCNTを使用する場合、CNTを溶媒中に添加してこれに超音波を照射した後、電気泳動などで単一に分散しているCNTのみを取り出す方法などが用いられている。
一方、バルクで用いる導電性複合体ではマトリックス材となるポリマー中などにCNTを良好に分散させる必要がある。しかし、一般的にCNTは分散しにくいという問題があり、通常の複合体ではCNTの分散が不完全なまま用いられている。そのため、十分にカーボンナノチューブの性能を発現させて用いられているとは言い難く、さらにこの問題はカーボンナノチューブの各種用途への応用を難しくさせることにもつながっている。このためCNT表面の改質、化学修飾などによって分散性を向上する方法が種々検討されている。 Carbon nanotubes (hereinafter also abbreviated as CNT) are considered as potential materials for nanotechnology, and their applicability in a wide range of fields has been studied. The applications include the use of a single CNT itself, such as a transistor or a probe for a microscope, and a large number of CNTs, such as an electron emission electrode, a fuel cell electrode, or a conductive composite in which CNTs are dispersed. It is roughly divided into the method of using as a bulk.
When using single CNT, after adding CNT in a solvent and irradiating this with an ultrasonic wave, the method of taking out only the CNT which is disperse | distributing single by electrophoresis etc. is used.
On the other hand, in a conductive composite used in bulk, it is necessary to disperse CNTs well in a polymer serving as a matrix material. However, in general, there is a problem that CNTs are difficult to disperse, and normal composites are used with incomplete CNT dispersion. For this reason, it is difficult to say that carbon nanotubes are used with sufficient performance, and this problem also makes it difficult to apply carbon nanotubes to various applications. For this reason, various methods for improving dispersibility by modifying the CNT surface, chemical modification, and the like have been studied.
単独のCNTを使用する場合、CNTを溶媒中に添加してこれに超音波を照射した後、電気泳動などで単一に分散しているCNTのみを取り出す方法などが用いられている。
一方、バルクで用いる導電性複合体ではマトリックス材となるポリマー中などにCNTを良好に分散させる必要がある。しかし、一般的にCNTは分散しにくいという問題があり、通常の複合体ではCNTの分散が不完全なまま用いられている。そのため、十分にカーボンナノチューブの性能を発現させて用いられているとは言い難く、さらにこの問題はカーボンナノチューブの各種用途への応用を難しくさせることにもつながっている。このためCNT表面の改質、化学修飾などによって分散性を向上する方法が種々検討されている。 Carbon nanotubes (hereinafter also abbreviated as CNT) are considered as potential materials for nanotechnology, and their applicability in a wide range of fields has been studied. The applications include the use of a single CNT itself, such as a transistor or a probe for a microscope, and a large number of CNTs, such as an electron emission electrode, a fuel cell electrode, or a conductive composite in which CNTs are dispersed. It is roughly divided into the method of using as a bulk.
When using single CNT, after adding CNT in a solvent and irradiating this with an ultrasonic wave, the method of taking out only the CNT which is disperse | distributing single by electrophoresis etc. is used.
On the other hand, in a conductive composite used in bulk, it is necessary to disperse CNTs well in a polymer serving as a matrix material. However, in general, there is a problem that CNTs are difficult to disperse, and normal composites are used with incomplete CNT dispersion. For this reason, it is difficult to say that carbon nanotubes are used with sufficient performance, and this problem also makes it difficult to apply carbon nanotubes to various applications. For this reason, various methods for improving dispersibility by modifying the CNT surface, chemical modification, and the like have been studied.
このようなCNTを分散させる方法としては、例えばCNTをドデシル硫酸ナトリウムなどの低分子界面活性剤を含有する水溶液に添加する方法(特許文献1参照)が提案されている。しかしながらこれら低分子界面活性剤を使用した場合、CNTを分散させた溶液の薄膜形成能が低く、薄膜化を容易にするために重合性のモノマーやポリマーを更に添加する必要がある。このため、薄膜中にこれら非導電性の有機物が存在し、導電性が損なわれるという問題がある。またこの方法では、数mmオーダーのCNTの塊を数μmオーダーの塊にサイズダウンさせる程度のものであり、CNT単独のサイズ(直径0.8~100nm)への分散には到底達していないものであった。
As a method of dispersing such CNTs, for example, a method of adding CNTs to an aqueous solution containing a low molecular surfactant such as sodium dodecyl sulfate (see Patent Document 1) has been proposed. However, when these low molecular surfactants are used, the ability to form a thin film in a solution in which CNTs are dispersed is low, and it is necessary to further add a polymerizable monomer or polymer in order to facilitate thinning. For this reason, there exists a problem that these nonelectroconductive organic substances exist in a thin film and electroconductivity is impaired. In this method, the mass of CNTs on the order of several millimeters is reduced to a size of several μm, and dispersion to the size of CNTs alone (diameter 0.8 to 100 nm) has not been achieved. Met.
一方、ポリマーを用いてCNTを分散させる方法として、コイル状構造を持つポリ(m-フェニレンビニレン-co-ジオクトキシ-p-フェニレンビニレン)をCNT表面に付着させる方法(例えば特許文献2参照)も提案されている。ここでは、有機溶媒中にCNTを孤立に分散させることが可能で、CNT1本にポリマーが付着しているTEM影像も示されている(図1乃至図4参照)。しかしこの発明の目的は、一度ある程度にまでCNTを分散させた後沈殿させ、CNTの構造を損傷させることなく精製・回収するというものである。しかし、この方法は長期的にCNTを分散させた状態で保つことを意図するものではないため、CNTを長期間分散状態で保存することはできなかった。
On the other hand, as a method of dispersing CNTs using a polymer, a method of attaching poly (m-phenylene vinylene-co-dioctoxy-p-phenylene vinylene) having a coiled structure to the CNT surface is also proposed (see, for example, Patent Document 2). Has been. Here, a TEM image in which CNTs can be dispersed in an organic solvent and a polymer is attached to one CNT is also shown (see FIGS. 1 to 4). However, an object of the present invention is to disperse CNTs to a certain extent and then precipitate them, and to purify and collect them without damaging the CNT structure. However, since this method is not intended to keep the CNT dispersed in the long term, the CNT could not be stored in the dispersed state for a long time.
更に、CNTに官能基を付加させる等の方法により化学修飾を施し、分散性を付与したもの(例えば非特許文献1参照)が報告されている。しかしCNTに化学修飾を施すとCNTを構成するπ共役系が破壊されやすく、高導電性等のCNT本来の特性が損なわれるという問題点があった。
Furthermore, a material that has been subjected to chemical modification by adding a functional group to CNTs to impart dispersibility (for example, see Non-Patent Document 1) has been reported. However, when the CNTs are chemically modified, the π-conjugated system constituting the CNTs is easily broken, and there is a problem that the original characteristics of the CNTs such as high conductivity are impaired.
上記の問題点を解決する方法として、水溶性ポリマーであるポリビニルピロリドンのようなポリマーによりCNTを分散させる方法(例えば非特許文献2参照)も知られている。しかし、そられポリマーは水溶性ポリマーであるため、その応用範囲は限られている。
As a method for solving the above problems, a method of dispersing CNTs with a polymer such as polyvinyl pyrrolidone which is a water-soluble polymer (for example, see Non-Patent Document 2) is also known. However, since the polymer is a water-soluble polymer, its application range is limited.
一方、有機溶媒を用いる方法として、塩基性官能基を有する化合物を用い、ケトン系の有機溶媒に分散させる方法(例えば特許文献3参照)が提案されている。しかし、この方法は塩基性官能基に関する詳細な規定がなく、安定的に分散できるCNTの直径が限定されている。
更に、非イオン性界面活性剤であるポリオキシエチレン系化合物を用い、アミド系の極性有機溶媒中に分散させる方法(例えば特許文献4参照)や、前記ポリビニルピロリドンによりアミド系極性有機溶媒中に分散させる方法(例えば特許文献5参照)、アルコール系有機溶媒中に分散させる方法(例えば特許文献6参照)も提案されている。しかし、分散剤として用いられるポリマーは直鎖状ポリマーであることを特徴としたものであり、高分岐ポリマーについての知見は明らかにされていない。 On the other hand, as a method using an organic solvent, a method of using a compound having a basic functional group and dispersing it in a ketone-based organic solvent has been proposed (for example, see Patent Document 3). However, this method has no detailed provisions regarding basic functional groups, and the diameter of CNTs that can be stably dispersed is limited.
Further, a polyoxyethylene compound that is a nonionic surfactant is used and dispersed in an amide polar organic solvent (see, for example, Patent Document 4) or dispersed in an amide polar organic solvent using the polyvinylpyrrolidone. And a method of dispersing in an alcoholic organic solvent (see, for example, Patent Document 6) have also been proposed. However, the polymer used as the dispersant is characterized by being a linear polymer, and no knowledge about the hyperbranched polymer has been clarified.
更に、非イオン性界面活性剤であるポリオキシエチレン系化合物を用い、アミド系の極性有機溶媒中に分散させる方法(例えば特許文献4参照)や、前記ポリビニルピロリドンによりアミド系極性有機溶媒中に分散させる方法(例えば特許文献5参照)、アルコール系有機溶媒中に分散させる方法(例えば特許文献6参照)も提案されている。しかし、分散剤として用いられるポリマーは直鎖状ポリマーであることを特徴としたものであり、高分岐ポリマーについての知見は明らかにされていない。 On the other hand, as a method using an organic solvent, a method of using a compound having a basic functional group and dispersing it in a ketone-based organic solvent has been proposed (for example, see Patent Document 3). However, this method has no detailed provisions regarding basic functional groups, and the diameter of CNTs that can be stably dispersed is limited.
Further, a polyoxyethylene compound that is a nonionic surfactant is used and dispersed in an amide polar organic solvent (see, for example, Patent Document 4) or dispersed in an amide polar organic solvent using the polyvinylpyrrolidone. And a method of dispersing in an alcoholic organic solvent (see, for example, Patent Document 6) have also been proposed. However, the polymer used as the dispersant is characterized by being a linear polymer, and no knowledge about the hyperbranched polymer has been clarified.
CNTの分散剤として高分岐ポリマーに着目した方法(例えば非特許文献3参照)も提案されている。高分岐ポリマーとはスターポリマーや、デンドリティック(樹枝状)ポリマーとして分類されるデンドリマー、ハイパーブランチポリマーなどのように、骨格内に分岐を有するポリマーである。これらの高分岐ポリマーは、従来の高分子が一般的に紐状の形状であるのに対し、積極的に分岐を導入している点で比較的疎な内部空間や粒子性を有するという特異な形状を示すと共に、各種官能基の導入により修飾可能な多数の末端を有しており、これらの特徴を利用することで直鎖状のポリマーと比較してCNTを高度に分散させる可能性がある。
しかし、前述の高分岐ポリマーを分散剤として用いた非特許文献の例では、長期的にCNTの孤立分散状態を保つには、機械的な処理のほかに熱処理も必要としており、さらにCNTの分散能はそれほど高いものではなかった。 A method focusing on a highly branched polymer as a dispersant for CNT (see, for example, Non-Patent Document 3) has also been proposed. The hyperbranched polymer is a polymer having a branch in the skeleton, such as a star polymer, a dendrimer classified as a dendritic (dendritic) polymer, or a hyperbranched polymer. These hyperbranched polymers are unique in that they have a relatively sparse internal space and particle characteristics in that the conventional polymers generally have a string-like shape but actively introduce branches. It has a large number of ends that can be modified by introducing various functional groups, and has the possibility of highly dispersing CNTs compared to linear polymers by utilizing these characteristics. .
However, in the example of non-patent literature using the above-mentioned hyperbranched polymer as a dispersant, heat treatment is required in addition to mechanical treatment in order to maintain the isolated dispersion state of CNT in the long term. Noh was not so high.
しかし、前述の高分岐ポリマーを分散剤として用いた非特許文献の例では、長期的にCNTの孤立分散状態を保つには、機械的な処理のほかに熱処理も必要としており、さらにCNTの分散能はそれほど高いものではなかった。 A method focusing on a highly branched polymer as a dispersant for CNT (see, for example, Non-Patent Document 3) has also been proposed. The hyperbranched polymer is a polymer having a branch in the skeleton, such as a star polymer, a dendrimer classified as a dendritic (dendritic) polymer, or a hyperbranched polymer. These hyperbranched polymers are unique in that they have a relatively sparse internal space and particle characteristics in that the conventional polymers generally have a string-like shape but actively introduce branches. It has a large number of ends that can be modified by introducing various functional groups, and has the possibility of highly dispersing CNTs compared to linear polymers by utilizing these characteristics. .
However, in the example of non-patent literature using the above-mentioned hyperbranched polymer as a dispersant, heat treatment is required in addition to mechanical treatment in order to maintain the isolated dispersion state of CNT in the long term. Noh was not so high.
本発明は、このような事情に鑑みてなされたものであり、有機溶媒中などの媒体中で、CNTをその単独サイズまで分散させ得る、CNT分散剤を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a CNT dispersant capable of dispersing CNTs to their single size in a medium such as an organic solvent.
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、アミノ官能基又はイミノ官能基を末端に導入した高分岐ポリマーが、CNTの分散能に優れること、及びこの高分岐ポリマーをCNTの分散剤として用いた場合に、CNT(の少なくとも一部)を、その単独サイズまで孤立分散させ得ることを見出し、本発明を完成した。
As a result of intensive studies to achieve the above object, the present inventors have found that a highly branched polymer having an amino functional group or an imino functional group introduced at its terminal has excellent CNT dispersibility, and this highly branched polymer. The present inventors have found that CNT (at least a part thereof) can be isolated and dispersed up to its single size when used as a CNT dispersant.
すなわち本発明は、第1観点として、アミノ官能基又はイミノ官能基を末端に有し、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量が1,000乃至2,000,000である高分岐ポリマーからなることを特徴とする、カーボンナノチューブ分散剤に関する。
第2観点として、前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して5乃至200モル%のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである、第1観点に記載のカーボンナノチューブ分散剤に関する。
第3観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、ヘテロ環アミン構造を有する重合開始剤である、第1観点又は第2観点に記載のカーボンナノチューブ分散剤に関する。
第4観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[1]で表される官能基を有する重合開始剤である、第1観点又は第2観点に記載のカーボンナノチューブ分散剤に関する。 That is, the present invention provides, as a first aspect, a high molecular weight having an amino functional group or an imino functional group at the end and having a weight average molecular weight of 1,000 to 2,000,000 as measured by gel permeation chromatography in terms of polystyrene. The present invention relates to a carbon nanotube dispersant characterized by comprising a branched polymer.
As a second aspect, the hyperbranched polymer has a monomer A having two or more radical polymerizable double bonds in the molecule, and 5 to 200 mol% of amino functional group or imino functional group with respect to the monomer A. The present invention relates to the carbon nanotube dispersant according to the first aspect, which is a hyperbranched polymer obtained by polymerization in the presence of the polymerization initiator B it has.
As a third aspect, the present invention relates to the carbon nanotube dispersant according to the first aspect or the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
As a fourth aspect, the carbon according to the first aspect or the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a functional group represented by the formula [1]. The present invention relates to a nanotube dispersant.
第2観点として、前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して5乃至200モル%のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである、第1観点に記載のカーボンナノチューブ分散剤に関する。
第3観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、ヘテロ環アミン構造を有する重合開始剤である、第1観点又は第2観点に記載のカーボンナノチューブ分散剤に関する。
第4観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[1]で表される官能基を有する重合開始剤である、第1観点又は第2観点に記載のカーボンナノチューブ分散剤に関する。 That is, the present invention provides, as a first aspect, a high molecular weight having an amino functional group or an imino functional group at the end and having a weight average molecular weight of 1,000 to 2,000,000 as measured by gel permeation chromatography in terms of polystyrene. The present invention relates to a carbon nanotube dispersant characterized by comprising a branched polymer.
As a second aspect, the hyperbranched polymer has a monomer A having two or more radical polymerizable double bonds in the molecule, and 5 to 200 mol% of amino functional group or imino functional group with respect to the monomer A. The present invention relates to the carbon nanotube dispersant according to the first aspect, which is a hyperbranched polymer obtained by polymerization in the presence of the polymerization initiator B it has.
As a third aspect, the present invention relates to the carbon nanotube dispersant according to the first aspect or the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
As a fourth aspect, the carbon according to the first aspect or the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a functional group represented by the formula [1]. The present invention relates to a nanotube dispersant.
(式[1]中、R1,R2及びR3はそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基又は炭素原子数1乃至6のヒドロキシアルキル基を表し、またはR1,R2及びR3の任意の2つ以上はそれらが結合する窒素原子と一緒になって、環を形成していてもよい。)
第5観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[2]で表される重合開始剤である、第2観点に記載のカーボンナノチューブ分散剤に関する。 (In the formula [1], R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1. , R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.)
As a fifth aspect, the present invention relates to the carbon nanotube dispersant according to the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator represented by the formula [2].
第5観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[2]で表される重合開始剤である、第2観点に記載のカーボンナノチューブ分散剤に関する。 (In the formula [1], R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1. , R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.)
As a fifth aspect, the present invention relates to the carbon nanotube dispersant according to the second aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator represented by the formula [2].
(式[2]中、R1,R2及びR3は前記式[1]で定義されたものを表し、R4及びR5はそれぞれ独立して、炭素原子数1乃至6のアルキル基を表す。)
第6観点として、前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内に少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーA及び該モノマーCの合計モルに対して、5モル%以上200モル%以下の量のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである、第1観点に記載のカーボンナノチューブ分散剤に関する。
第7観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、ヘテロ環アミン構造を有する重合開始剤である、第6観点に記載のカーボンナノチューブ分散剤に関する。
第8観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[1]で表される官能基を有する重合開始剤である、第6観点に記載のカーボンナノチューブ分散剤に関する。 (In the formula [2], R 1 , R 2 and R 3 represent those defined in the formula [1], and R 4 and R 5 each independently represents an alkyl group having 1 to 6 carbon atoms. To express.)
As a sixth aspect, the hyperbranched polymer includes a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer C having at least one radical polymerizable double bond in the molecule. Hyperbranching obtained by polymerizing in the presence of a polymerization initiator B having an amino functional group or imino functional group in an amount of 5 mol% or more and 200 mol% or less with respect to the total mol of the monomer A and the monomer C The carbon nanotube dispersant according to the first aspect, which is a polymer.
As a seventh aspect, the present invention relates to the carbon nanotube dispersant according to the sixth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
As an eighth aspect, the carbon nanotube dispersant according to the sixth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a functional group represented by the formula [1]. .
第6観点として、前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内に少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーA及び該モノマーCの合計モルに対して、5モル%以上200モル%以下の量のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである、第1観点に記載のカーボンナノチューブ分散剤に関する。
第7観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、ヘテロ環アミン構造を有する重合開始剤である、第6観点に記載のカーボンナノチューブ分散剤に関する。
第8観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[1]で表される官能基を有する重合開始剤である、第6観点に記載のカーボンナノチューブ分散剤に関する。 (In the formula [2], R 1 , R 2 and R 3 represent those defined in the formula [1], and R 4 and R 5 each independently represents an alkyl group having 1 to 6 carbon atoms. To express.)
As a sixth aspect, the hyperbranched polymer includes a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer C having at least one radical polymerizable double bond in the molecule. Hyperbranching obtained by polymerizing in the presence of a polymerization initiator B having an amino functional group or imino functional group in an amount of 5 mol% or more and 200 mol% or less with respect to the total mol of the monomer A and the monomer C The carbon nanotube dispersant according to the first aspect, which is a polymer.
As a seventh aspect, the present invention relates to the carbon nanotube dispersant according to the sixth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
As an eighth aspect, the carbon nanotube dispersant according to the sixth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a functional group represented by the formula [1]. .
(式[1]中、R1,R2及びR3はそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基又は炭素原子数1乃至6のヒドロキシアルキル基を表し、またはR1,R2及びR3の任意の2つ以上はそれらが結合する窒素原子と一緒になって、環を形成していてもよい。)
第9観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[2]で表される重合開始剤である、第8観点に記載のカーボンナノチューブ分散剤に関する。 (In the formula [1], R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1. , R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.)
As a ninth aspect, the present invention relates to the carbon nanotube dispersant according to the eighth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator represented by the formula [2].
第9観点として、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[2]で表される重合開始剤である、第8観点に記載のカーボンナノチューブ分散剤に関する。 (In the formula [1], R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1. , R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.)
As a ninth aspect, the present invention relates to the carbon nanotube dispersant according to the eighth aspect, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator represented by the formula [2].
(式[2]中、R1,R2及びR3は前記式[1]で定義されたものを表し、R4及びR5はそれぞれ独立して、炭素原子数1乃至6のアルキル基を表す。)
第10観点として、第1観点乃至第9観点のうち何れか一項に記載のカーボンナノチューブ分散剤、及びカーボンナノチューブを含む組成物に関する。
第11観点として、前記カーボンナノチューブが、単層カーボンナノチューブ、二層カーボンナノチューブ及び多層カーボンナノチューブから選ばれる少なくとも一種である、第10観点に記載の組成物に関する。
第12観点として、前記カーボンナノチューブ分散剤が、前記カーボンナノチューブの表面に付着又は配位して複合体を形成している、第10観点又は第11観点に記載の組成物に関する。
第13観点として、さらに有機溶媒を含む、第10観点乃至第12観点のうち何れか一項に記載の組成物に関する。
第14観点として、前記カーボンナノチューブが、前記有機溶媒に分散されてなる、第13観点に記載の組成物に関する。
第15観点として、前記複合体が前記有機溶媒に分散している、第13観点に記載の組成物に関する。
第16観点として、さらに有機溶媒に可溶な熱硬化性化合物を含む、第10観点乃至第15観点のうち何れか一項に記載の組成物に関する。
第17観点として、前記熱硬化性化合物が、多官能エポキシ化合物である、第16観点に記載の組成物に関する。
第18観点として、第10観点乃至第17観点のうち何れか一項に記載の組成物から得られる薄膜に関する。
第19観点として、第16観点又は第17観点に記載の組成物から得られる薄膜に、熱処理を施すことで得られる硬化膜に関する。
第20観点として、第1観点乃至第9観点のうち何れか一項に記載のカーボンナノチューブ分散剤、カーボンナノチューブ、及び有機溶媒を混合して混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする、組成物の製造方法に関する。
第21観点として、前記機械的処理が、超音波処理であることを特徴とする、第20観点に記載の製造方法に関する。
第22観点として、前記カーボンナノチューブ分散剤を前記有機溶媒に溶かしてなる溶液中に、前記カーボンナノチューブを添加して前記混合物を調製する工程と、この混合物を超音波処理する工程を含むことを特徴とする、第21観点に記載の製造方法に関する。 (In the formula [2], R 1 , R 2 and R 3 represent those defined in the formula [1], and R 4 and R 5 each independently represents an alkyl group having 1 to 6 carbon atoms. To express.)
As a tenth aspect, the present invention relates to the carbon nanotube dispersant according to any one of the first aspect to the ninth aspect, and a composition containing carbon nanotubes.
An eleventh aspect relates to the composition according to the tenth aspect, wherein the carbon nanotube is at least one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
As a twelfth aspect, the present invention relates to the composition according to the tenth aspect or the eleventh aspect, wherein the carbon nanotube dispersant adheres to or coordinates with the surface of the carbon nanotube to form a composite.
As a thirteenth aspect, the present invention relates to the composition according to any one of the tenth aspect to the twelfth aspect, further including an organic solvent.
As a fourteenth aspect, the present invention relates to the composition according to the thirteenth aspect, in which the carbon nanotube is dispersed in the organic solvent.
As a fifteenth aspect, the present invention relates to the composition according to the thirteenth aspect, in which the complex is dispersed in the organic solvent.
As a sixteenth aspect, the present invention relates to the composition according to any one of the tenth aspect to the fifteenth aspect, further including a thermosetting compound soluble in an organic solvent.
As a seventeenth aspect, the present invention relates to the composition according to the sixteenth aspect, in which the thermosetting compound is a polyfunctional epoxy compound.
As an eighteenth aspect, the present invention relates to a thin film obtained from the composition according to any one of the tenth aspect to the seventeenth aspect.
As a 19th viewpoint, it is related with the cured film obtained by heat-processing to the thin film obtained from the composition as described in a 16th viewpoint or a 17th viewpoint.
As a twentieth aspect, a step of preparing a mixture by mixing the carbon nanotube dispersant according to any one of the first aspect to the ninth aspect, a carbon nanotube, and an organic solvent, and mechanically treating the mixture And a process for producing the composition.
As a twenty-first aspect, the present invention relates to the manufacturing method according to the twentieth aspect, wherein the mechanical treatment is ultrasonic treatment.
A twenty-second aspect includes a step of preparing the mixture by adding the carbon nanotubes to a solution obtained by dissolving the carbon nanotube dispersant in the organic solvent, and a step of ultrasonicating the mixture. And the manufacturing method according to the twenty-first aspect.
第10観点として、第1観点乃至第9観点のうち何れか一項に記載のカーボンナノチューブ分散剤、及びカーボンナノチューブを含む組成物に関する。
第11観点として、前記カーボンナノチューブが、単層カーボンナノチューブ、二層カーボンナノチューブ及び多層カーボンナノチューブから選ばれる少なくとも一種である、第10観点に記載の組成物に関する。
第12観点として、前記カーボンナノチューブ分散剤が、前記カーボンナノチューブの表面に付着又は配位して複合体を形成している、第10観点又は第11観点に記載の組成物に関する。
第13観点として、さらに有機溶媒を含む、第10観点乃至第12観点のうち何れか一項に記載の組成物に関する。
第14観点として、前記カーボンナノチューブが、前記有機溶媒に分散されてなる、第13観点に記載の組成物に関する。
第15観点として、前記複合体が前記有機溶媒に分散している、第13観点に記載の組成物に関する。
第16観点として、さらに有機溶媒に可溶な熱硬化性化合物を含む、第10観点乃至第15観点のうち何れか一項に記載の組成物に関する。
第17観点として、前記熱硬化性化合物が、多官能エポキシ化合物である、第16観点に記載の組成物に関する。
第18観点として、第10観点乃至第17観点のうち何れか一項に記載の組成物から得られる薄膜に関する。
第19観点として、第16観点又は第17観点に記載の組成物から得られる薄膜に、熱処理を施すことで得られる硬化膜に関する。
第20観点として、第1観点乃至第9観点のうち何れか一項に記載のカーボンナノチューブ分散剤、カーボンナノチューブ、及び有機溶媒を混合して混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする、組成物の製造方法に関する。
第21観点として、前記機械的処理が、超音波処理であることを特徴とする、第20観点に記載の製造方法に関する。
第22観点として、前記カーボンナノチューブ分散剤を前記有機溶媒に溶かしてなる溶液中に、前記カーボンナノチューブを添加して前記混合物を調製する工程と、この混合物を超音波処理する工程を含むことを特徴とする、第21観点に記載の製造方法に関する。 (In the formula [2], R 1 , R 2 and R 3 represent those defined in the formula [1], and R 4 and R 5 each independently represents an alkyl group having 1 to 6 carbon atoms. To express.)
As a tenth aspect, the present invention relates to the carbon nanotube dispersant according to any one of the first aspect to the ninth aspect, and a composition containing carbon nanotubes.
An eleventh aspect relates to the composition according to the tenth aspect, wherein the carbon nanotube is at least one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
As a twelfth aspect, the present invention relates to the composition according to the tenth aspect or the eleventh aspect, wherein the carbon nanotube dispersant adheres to or coordinates with the surface of the carbon nanotube to form a composite.
As a thirteenth aspect, the present invention relates to the composition according to any one of the tenth aspect to the twelfth aspect, further including an organic solvent.
As a fourteenth aspect, the present invention relates to the composition according to the thirteenth aspect, in which the carbon nanotube is dispersed in the organic solvent.
As a fifteenth aspect, the present invention relates to the composition according to the thirteenth aspect, in which the complex is dispersed in the organic solvent.
As a sixteenth aspect, the present invention relates to the composition according to any one of the tenth aspect to the fifteenth aspect, further including a thermosetting compound soluble in an organic solvent.
As a seventeenth aspect, the present invention relates to the composition according to the sixteenth aspect, in which the thermosetting compound is a polyfunctional epoxy compound.
As an eighteenth aspect, the present invention relates to a thin film obtained from the composition according to any one of the tenth aspect to the seventeenth aspect.
As a 19th viewpoint, it is related with the cured film obtained by heat-processing to the thin film obtained from the composition as described in a 16th viewpoint or a 17th viewpoint.
As a twentieth aspect, a step of preparing a mixture by mixing the carbon nanotube dispersant according to any one of the first aspect to the ninth aspect, a carbon nanotube, and an organic solvent, and mechanically treating the mixture And a process for producing the composition.
As a twenty-first aspect, the present invention relates to the manufacturing method according to the twentieth aspect, wherein the mechanical treatment is ultrasonic treatment.
A twenty-second aspect includes a step of preparing the mixture by adding the carbon nanotubes to a solution obtained by dissolving the carbon nanotube dispersant in the organic solvent, and a step of ultrasonicating the mixture. And the manufacturing method according to the twenty-first aspect.
本発明の分散剤は、アミノ官能基又はイミノ官能基を末端に導入した高分岐ポリマーからなり、カーボンナノチューブの分散能に優れ、カーボンナノチューブの少なくとも一部をその単独のサイズ(直径0.8乃至100nm)にまで分離して、所謂「孤立溶解」の状態で安定に(凝集することなく)有機溶媒に分散させることができる。なお本発明において「孤立溶解」とは、カーボンナノチューブが相互の凝集力によって塊状や束状、縄状となることなく、カーボンナノチューブの1本1本がバラバラになって媒体に分散して存在している状態を指す。
しかも分散剤、カーボンナノチューブ及び有機溶媒を含有する溶液を超音波処理などの機械的処理だけで、カーボンナノチューブを分散させることができ、分散にあたり更なる加熱などの工程を省略し且つ処理時間を短縮することができる。
したがって、本発明のカーボンナノチューブ分散剤を用いることで、カーボンナノチューブ(の少なくとも一部)を孤立溶解の状態で分散させた、カーボンナノチューブ含有組成物を容易に得ることができる。 The dispersant of the present invention is composed of a highly branched polymer having an amino functional group or an imino functional group introduced at its terminal, has excellent dispersibility of carbon nanotubes, and at least a part of the carbon nanotubes has a single size (diameter 0.8 to 0.8). 100 nm) and can be stably dispersed (without aggregation) in an organic solvent in a so-called “isolated dissolution” state. In the present invention, “isolated dissolution” means that the carbon nanotubes are dispersed into the medium in such a way that the carbon nanotubes are not separated into a lump, bundle, or rope due to mutual cohesive force. Refers to the state.
Moreover, carbon nanotubes can be dispersed by a mechanical treatment such as ultrasonic treatment of a solution containing a dispersant, carbon nanotubes, and an organic solvent, eliminating the need for further heating and other processing steps and shortening the treatment time. can do.
Therefore, by using the carbon nanotube dispersant of the present invention, it is possible to easily obtain a carbon nanotube-containing composition in which carbon nanotubes (at least a part thereof) are dispersed in an isolated dissolved state.
しかも分散剤、カーボンナノチューブ及び有機溶媒を含有する溶液を超音波処理などの機械的処理だけで、カーボンナノチューブを分散させることができ、分散にあたり更なる加熱などの工程を省略し且つ処理時間を短縮することができる。
したがって、本発明のカーボンナノチューブ分散剤を用いることで、カーボンナノチューブ(の少なくとも一部)を孤立溶解の状態で分散させた、カーボンナノチューブ含有組成物を容易に得ることができる。 The dispersant of the present invention is composed of a highly branched polymer having an amino functional group or an imino functional group introduced at its terminal, has excellent dispersibility of carbon nanotubes, and at least a part of the carbon nanotubes has a single size (diameter 0.8 to 0.8). 100 nm) and can be stably dispersed (without aggregation) in an organic solvent in a so-called “isolated dissolution” state. In the present invention, “isolated dissolution” means that the carbon nanotubes are dispersed into the medium in such a way that the carbon nanotubes are not separated into a lump, bundle, or rope due to mutual cohesive force. Refers to the state.
Moreover, carbon nanotubes can be dispersed by a mechanical treatment such as ultrasonic treatment of a solution containing a dispersant, carbon nanotubes, and an organic solvent, eliminating the need for further heating and other processing steps and shortening the treatment time. can do.
Therefore, by using the carbon nanotube dispersant of the present invention, it is possible to easily obtain a carbon nanotube-containing composition in which carbon nanotubes (at least a part thereof) are dispersed in an isolated dissolved state.
そして本発明により得られるカーボンナノチューブ含有組成物は、基板に塗布するだけで容易に薄膜形成が可能であり、しかも高導電性薄膜を得ることができる。
そして上記組成物において、カーボンナノチューブの量をその用途に応じて調整することが容易であるため、各種半導体素材、電導体素材等として幅広い用途に好適に用いることができる。 The carbon nanotube-containing composition obtained by the present invention can be easily formed into a thin film by simply applying it to a substrate, and a highly conductive thin film can be obtained.
And in the said composition, since it is easy to adjust the quantity of a carbon nanotube according to the use, it can use suitably for a wide use as various semiconductor materials, conductor materials, etc.
そして上記組成物において、カーボンナノチューブの量をその用途に応じて調整することが容易であるため、各種半導体素材、電導体素材等として幅広い用途に好適に用いることができる。 The carbon nanotube-containing composition obtained by the present invention can be easily formed into a thin film by simply applying it to a substrate, and a highly conductive thin film can be obtained.
And in the said composition, since it is easy to adjust the quantity of a carbon nanotube according to the use, it can use suitably for a wide use as various semiconductor materials, conductor materials, etc.
<カーボンナノチューブ(CNT)分散剤>
本発明に係るCNT分散剤は、アミノ官能基又はイミノ官能基を末端に有する高分岐ポリマー、より詳細には、分子内に2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して5モル%乃至200モル%の量のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られ、且つ、重量平均分子量が1,000乃至2,000,000である高分岐ポリマーからなる。
この高分岐ポリマーは、CNTやCNTの欠陥部位に存在するカルボキシル基に対して、高い親和性を示すと考えられる塩基性官能基(アミノ官能基又はイミノ官能基)を末端に多数有しているために、CNTの高い分散能が期待できる。また、この高分岐ポリマーは、上記モノマーAと開始剤Bの組合せや条件により、様々な骨格のデザインや官能基導入、分子量や分布の制御、更には機能付与を行うことが可能であるなどの特徴を有する。また分岐構造を有することで、直鎖状のものでは見られない高溶解性をも有している。 <Carbon nanotube (CNT) dispersant>
The CNT dispersant according to the present invention comprises a highly branched polymer having an amino functional group or an imino functional group at its end, more specifically, a monomer A having two or more radical polymerizable double bonds in the molecule. It is obtained by polymerizing in the presence of a polymerization initiator B having an amino functional group or imino functional group in an amount of 5 mol% to 200 mol% with respect to A, and has a weight average molecular weight of 1,000 to 2, It consists of a hyperbranched polymer that is 1,000,000.
This hyperbranched polymer has many basic functional groups (amino functional groups or imino functional groups) that are considered to have high affinity for CNTs and carboxyl groups present at CNT defects. Therefore, high dispersibility of CNT can be expected. Moreover, this hyperbranched polymer can perform various skeleton designs, introduction of functional groups, control of molecular weight and distribution, and further functionalization depending on the combination and conditions of the monomer A and the initiator B. Has characteristics. Moreover, by having a branched structure, it also has a high solubility that cannot be seen in a straight chain.
本発明に係るCNT分散剤は、アミノ官能基又はイミノ官能基を末端に有する高分岐ポリマー、より詳細には、分子内に2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して5モル%乃至200モル%の量のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られ、且つ、重量平均分子量が1,000乃至2,000,000である高分岐ポリマーからなる。
この高分岐ポリマーは、CNTやCNTの欠陥部位に存在するカルボキシル基に対して、高い親和性を示すと考えられる塩基性官能基(アミノ官能基又はイミノ官能基)を末端に多数有しているために、CNTの高い分散能が期待できる。また、この高分岐ポリマーは、上記モノマーAと開始剤Bの組合せや条件により、様々な骨格のデザインや官能基導入、分子量や分布の制御、更には機能付与を行うことが可能であるなどの特徴を有する。また分岐構造を有することで、直鎖状のものでは見られない高溶解性をも有している。 <Carbon nanotube (CNT) dispersant>
The CNT dispersant according to the present invention comprises a highly branched polymer having an amino functional group or an imino functional group at its end, more specifically, a monomer A having two or more radical polymerizable double bonds in the molecule. It is obtained by polymerizing in the presence of a polymerization initiator B having an amino functional group or imino functional group in an amount of 5 mol% to 200 mol% with respect to A, and has a weight average molecular weight of 1,000 to 2, It consists of a hyperbranched polymer that is 1,000,000.
This hyperbranched polymer has many basic functional groups (amino functional groups or imino functional groups) that are considered to have high affinity for CNTs and carboxyl groups present at CNT defects. Therefore, high dispersibility of CNT can be expected. Moreover, this hyperbranched polymer can perform various skeleton designs, introduction of functional groups, control of molecular weight and distribution, and further functionalization depending on the combination and conditions of the monomer A and the initiator B. Has characteristics. Moreover, by having a branched structure, it also has a high solubility that cannot be seen in a straight chain.
本発明において、当該ポリマーの重量平均分子量が1,000未満であると、CNTの分散能が著しく低下する、若しくは分散能を発揮しなくなる虞があり、2,000,000を超えると、分散処理における取り扱いが極めて困難となる虞がある。重量平均分子量が2,000乃至1,000,000の高分岐ポリマーがより好ましい。
なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィーによる測定値(ポリスチレン換算)である。 In the present invention, if the weight average molecular weight of the polymer is less than 1,000, the dispersibility of CNTs may be remarkably lowered or the dispersibility may not be exhibited. If it exceeds 2,000,000, a dispersion treatment is performed. There is a possibility that the handling in the case becomes extremely difficult. A highly branched polymer having a weight average molecular weight of 2,000 to 1,000,000 is more preferred.
In addition, the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィーによる測定値(ポリスチレン換算)である。 In the present invention, if the weight average molecular weight of the polymer is less than 1,000, the dispersibility of CNTs may be remarkably lowered or the dispersibility may not be exhibited. If it exceeds 2,000,000, a dispersion treatment is performed. There is a possibility that the handling in the case becomes extremely difficult. A highly branched polymer having a weight average molecular weight of 2,000 to 1,000,000 is more preferred.
In addition, the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
本発明において、前記分子内に2個以上のラジカル重合性二重結合を有するモノマーAは、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有することが好ましく、特にジビニル化合物又はジ(メタ)アクリレート化合物であることが好ましい。なお、本発明では(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
In the present invention, the monomer A having two or more radically polymerizable double bonds in the molecule preferably has one or both of a vinyl group and a (meth) acryl group, and particularly a divinyl compound or di ( A meth) acrylate compound is preferred. In the present invention, the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound. For example, (meth) acrylic acid refers to acrylic acid and methacrylic acid.
このようなモノマーAとしては、例えば、以下の(A1)乃至(A7)に示した有機化合物が例示される。
(A1)ビニル系炭化水素:
(A1-1)脂肪族ビニル系炭化水素類;イソプレン、ブタジエン、3-メチル-1,2-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,2-ポリブタジエン、ペンタジエン、ヘキサジエン、オクタジエン等。
(A1-2)脂環式ビニル系炭化水素;シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ノルボルナジエン等。
(A1-3)芳香族ビニル系炭化水素;ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフルオレン、ジビニルカルバゾール、ジビニルピリジン等。
(A2)ビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル、ビニルケトン:
(A2-1)ビニルエステル;アジピン酸ジビニル、マレイン酸ジビニル、フタル酸ジビニル、イソフタル酸ジビニル、イタコン酸ジビニル、ビニル(メタ)アクリレート等。
(A2-2)アリルエステル;マレイン酸ジアリル、フタル酸ジアリル、イソフタル酸ジアリル、アジピン酸ジアリル、アリル(メタ)アクリレート等。
(A2-3)ビニルエーテル;ジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等。
(A2-4)アリルエーテル;ジアリルエーテル、ジアリルオキシエタン、トリアリルオキシエタン、テトラアリルオキシエタン、テトラアリルオキシプロパン、テトラアリルオキシブタン、テトラメタリルオキシエタン等。
(A2-5)ビニルケトン;ジビニルケトン、ジアリルケトン等。
(A3)(メタ)アクリル酸エステル:
エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、アルコキシチタントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ウンデシレノキシエチレングリコールジ(メタ)アクリレート、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、ビスフェノールAジエトキシジ(メタ)アクリレート等。
(A4)ポリアルキレングリコール鎖を有するビニル系化合物:
ポリエチレングリコール(分子量300)ジ(メタ)アクリレート、ポリプロピレングリコール(分子量500)ジ(メタ)アクリレート等。
(A5)含窒素ビニル系化合物:
ジアリルアミン、ジアリルイソシアヌレート、ジアリルシアヌレート、メチレンビス(メタ)アクリルアミド、ビスマレイミド等。
(A6)含ケイ素ビニル系化合物:
ジメチルジビニルシラン、ジビニルメチルフェニルシラン、ジフェニルジビニルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラフェニルジシラザン、ジエトキジビニルシラン等。
(A7)含フッ素ビニル系化合物:
1,4-ジビニルパーフルオロブタン、1,6-ジビニルパーフルオロヘキサン、1,8-ジビニルパーフルオロオクタン等。 Examples of such a monomer A include organic compounds shown in the following (A1) to (A7).
(A1) Vinyl hydrocarbon:
(A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene etc.
(A1-2) Alicyclic vinyl hydrocarbon; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene, etc.
(A1-3) Aromatic vinyl hydrocarbons: divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, divinylbiphenyl, divinylnaphthalene, divinylfluorene, divinylcarbazole, divinylpyridine and the like.
(A2) Vinyl ester, allyl ester, vinyl ether, allyl ether, vinyl ketone:
(A2-1) Vinyl ester; divinyl adipate, divinyl maleate, divinyl phthalate, divinyl isophthalate, divinyl itaconate, vinyl (meth) acrylate and the like.
(A2-2) Allyl ester: diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate, allyl (meth) acrylate, etc.
(A2-3) Vinyl ether; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether and the like.
(A2-4) Allyl ether; diallyl ether, diallyloxyethane, triallyloxyethane, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, tetramethallyloxyethane and the like.
(A2-5) Vinyl ketone; divinyl ketone, diallyl ketone and the like.
(A3) (Meth) acrylic acid ester:
Ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, alkoxy titanium tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 1,9-nonanediol Di (meth) acrylate, 1,10-decanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dioxane glycol di (meth) acrylate, 2-hydroxy 1-acryloyloxy-3-methacryloyloxypropane, 2-hydroxy-1,3-di (meth) acryloyloxypropane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, un Decylenoxyethylene glycol di (meth) acrylate, bis [4- (meth) acryloylthiophenyl] sulfide, bis [2- (meth) acryloylthioethyl] sulfide, 1,3-adamantanediol di (meth) acrylate, 1 , 3-adamantane dimethanol di (meth) acrylate, bisphenol A diethoxydi (meth) acrylate, etc.
(A4) Vinyl compound having a polyalkylene glycol chain:
Polyethylene glycol (molecular weight 300) di (meth) acrylate, polypropylene glycol (molecular weight 500) di (meth) acrylate, and the like.
(A5) Nitrogen-containing vinyl compound:
Diallylamine, diallyl isocyanurate, diallyl cyanurate, methylenebis (meth) acrylamide, bismaleimide and the like.
(A6) Silicon-containing vinyl compound:
Dimethyldivinylsilane, divinylmethylphenylsilane, diphenyldivinylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetraphenyldisilazane , Dietodivinylsilane and the like.
(A7) Fluorine-containing vinyl compound:
1,4-divinylperfluorobutane, 1,6-divinylperfluorohexane, 1,8-divinylperfluorooctane and the like.
(A1)ビニル系炭化水素:
(A1-1)脂肪族ビニル系炭化水素類;イソプレン、ブタジエン、3-メチル-1,2-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,2-ポリブタジエン、ペンタジエン、ヘキサジエン、オクタジエン等。
(A1-2)脂環式ビニル系炭化水素;シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ノルボルナジエン等。
(A1-3)芳香族ビニル系炭化水素;ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフルオレン、ジビニルカルバゾール、ジビニルピリジン等。
(A2)ビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル、ビニルケトン:
(A2-1)ビニルエステル;アジピン酸ジビニル、マレイン酸ジビニル、フタル酸ジビニル、イソフタル酸ジビニル、イタコン酸ジビニル、ビニル(メタ)アクリレート等。
(A2-2)アリルエステル;マレイン酸ジアリル、フタル酸ジアリル、イソフタル酸ジアリル、アジピン酸ジアリル、アリル(メタ)アクリレート等。
(A2-3)ビニルエーテル;ジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等。
(A2-4)アリルエーテル;ジアリルエーテル、ジアリルオキシエタン、トリアリルオキシエタン、テトラアリルオキシエタン、テトラアリルオキシプロパン、テトラアリルオキシブタン、テトラメタリルオキシエタン等。
(A2-5)ビニルケトン;ジビニルケトン、ジアリルケトン等。
(A3)(メタ)アクリル酸エステル:
エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、アルコキシチタントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ウンデシレノキシエチレングリコールジ(メタ)アクリレート、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、ビスフェノールAジエトキシジ(メタ)アクリレート等。
(A4)ポリアルキレングリコール鎖を有するビニル系化合物:
ポリエチレングリコール(分子量300)ジ(メタ)アクリレート、ポリプロピレングリコール(分子量500)ジ(メタ)アクリレート等。
(A5)含窒素ビニル系化合物:
ジアリルアミン、ジアリルイソシアヌレート、ジアリルシアヌレート、メチレンビス(メタ)アクリルアミド、ビスマレイミド等。
(A6)含ケイ素ビニル系化合物:
ジメチルジビニルシラン、ジビニルメチルフェニルシラン、ジフェニルジビニルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラフェニルジシラザン、ジエトキジビニルシラン等。
(A7)含フッ素ビニル系化合物:
1,4-ジビニルパーフルオロブタン、1,6-ジビニルパーフルオロヘキサン、1,8-ジビニルパーフルオロオクタン等。 Examples of such a monomer A include organic compounds shown in the following (A1) to (A7).
(A1) Vinyl hydrocarbon:
(A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene etc.
(A1-2) Alicyclic vinyl hydrocarbon; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene, etc.
(A1-3) Aromatic vinyl hydrocarbons: divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, divinylbiphenyl, divinylnaphthalene, divinylfluorene, divinylcarbazole, divinylpyridine and the like.
(A2) Vinyl ester, allyl ester, vinyl ether, allyl ether, vinyl ketone:
(A2-1) Vinyl ester; divinyl adipate, divinyl maleate, divinyl phthalate, divinyl isophthalate, divinyl itaconate, vinyl (meth) acrylate and the like.
(A2-2) Allyl ester: diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate, allyl (meth) acrylate, etc.
(A2-3) Vinyl ether; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether and the like.
(A2-4) Allyl ether; diallyl ether, diallyloxyethane, triallyloxyethane, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, tetramethallyloxyethane and the like.
(A2-5) Vinyl ketone; divinyl ketone, diallyl ketone and the like.
(A3) (Meth) acrylic acid ester:
Ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, alkoxy titanium tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 1,9-nonanediol Di (meth) acrylate, 1,10-decanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dioxane glycol di (meth) acrylate, 2-hydroxy 1-acryloyloxy-3-methacryloyloxypropane, 2-hydroxy-1,3-di (meth) acryloyloxypropane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, un Decylenoxyethylene glycol di (meth) acrylate, bis [4- (meth) acryloylthiophenyl] sulfide, bis [2- (meth) acryloylthioethyl] sulfide, 1,3-adamantanediol di (meth) acrylate, 1 , 3-adamantane dimethanol di (meth) acrylate, bisphenol A diethoxydi (meth) acrylate, etc.
(A4) Vinyl compound having a polyalkylene glycol chain:
Polyethylene glycol (molecular weight 300) di (meth) acrylate, polypropylene glycol (molecular weight 500) di (meth) acrylate, and the like.
(A5) Nitrogen-containing vinyl compound:
Diallylamine, diallyl isocyanurate, diallyl cyanurate, methylenebis (meth) acrylamide, bismaleimide and the like.
(A6) Silicon-containing vinyl compound:
Dimethyldivinylsilane, divinylmethylphenylsilane, diphenyldivinylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetraphenyldisilazane , Dietodivinylsilane and the like.
(A7) Fluorine-containing vinyl compound:
1,4-divinylperfluorobutane, 1,6-divinylperfluorohexane, 1,8-divinylperfluorooctane and the like.
これらのうち好ましいものは、上記(A1-3)群の芳香族ビニル系炭化水素化合物、(A2)群のビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル及びビニルケトン、(A3)群の(メタ)アクリル酸エステル、(A4)群のポリアルキレングリコール鎖を有するビニル系化合物、並びに(A5)群の含窒素ビニル系化合物である。特に好ましいのは、(A1-3)群に属するジビニルベンゼン、(A2)群に属するフタル酸ジアリル、(A3)群に属するエチレングリコールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAジエトキシジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン並びに(A5)群に属するメチレンビス(メタ)アクリルアミドである。これらの中でもジビニルベンゼン、エチレングリコールジ(メタ)アクリレート及びビスフェノールAジエトキシジ(メタ)アクリレートが好ましく、ジビニルベンゼンがより好ましい。
Of these, preferred are the aromatic vinyl hydrocarbon compounds of group (A1-3), vinyl esters, allyl esters, vinyl ethers, allyl ethers and vinyl ketones of group (A2), and (meth) acrylic of group (A3). An acid ester, a vinyl compound having a polyalkylene glycol chain of (A4) group, and a nitrogen-containing vinyl compound of (A5) group. Particularly preferred are divinylbenzene belonging to group (A1-3), diallyl phthalate belonging to group (A2), ethylene glycol di (meth) acrylate belonging to group (A3), 1,3-adamantane dimethanol di (meta). ) Acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A diethoxydi (meth) acrylate, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene and (A5) group Methylenebis (meth) acrylamide. Among these, divinylbenzene, ethylene glycol di (meth) acrylate and bisphenol A diethoxydi (meth) acrylate are preferable, and divinylbenzene is more preferable.
本発明における、アミノ官能基又はイミノ官能基を有する重合開始剤Bは、アミノ基、及びアンモニアの水素原子を一価又は二価の炭化水素残基で置換したアミン又はイミン化合物の他、ヘテロ環アミンを含む重合開始剤である。
これらの例としては、シクロヘキシルアミン、ジメチルアミン、トリエチルアミン、フェネチルアミン、ジベンジルアミンなどの第1級乃至第3級脂肪族アミン;アニリン、ジメチルアミノピリジン、ジフェニルアミン、トリフェニルアミンなどの第1級乃至第3級芳香族アミン;メタンイミン、プロパン-2-イミン、N-メチルエタンイミンなどのイミン;ピロリン、ピロリジン、ピラゾリン、ピラゾリジン、イミダゾリン、イミダゾリジン、ジヒドロピリジン、テトラヒドロピリジン、ピペリジン、ジヒドロピリミジン、テトラヒドロピリミジン、ヘキサヒドロピリミジン、ジヒドロピラジン、テトラヒドロピラジン、ピペラジン、モルホリン、チオモルホリン、キヌクリジン、1,4-ジアザビシクロ[2.2.2]オクタンなどの脂環式へテロ環アミン;ピロール、ピラゾール、イミダゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、キノリン、イソキノリン、シンノリン、フタラジン、キナゾリン、キノキサリン、カルバゾールなどの芳香族へテロ環アミン等の構造を含む重合開始剤が挙げられる。 In the present invention, the polymerization initiator B having an amino functional group or an imino functional group includes an amino group and an amine or imine compound in which a hydrogen atom of ammonia is substituted with a monovalent or divalent hydrocarbon residue, as well as a heterocyclic ring. A polymerization initiator containing an amine.
Examples thereof include primary to tertiary aliphatic amines such as cyclohexylamine, dimethylamine, triethylamine, phenethylamine, and dibenzylamine; primary to tertiary amines such as aniline, dimethylaminopyridine, diphenylamine, and triphenylamine. Tertiary aromatic amines; imines such as methanimine, propane-2-imine, N-methylethanimine; pyrroline, pyrrolidine, pyrazoline, pyrazolidine, imidazoline, imidazolidine, dihydropyridine, tetrahydropyridine, piperidine, dihydropyrimidine, tetrahydropyrimidine, hexa Such as hydropyrimidine, dihydropyrazine, tetrahydropyrazine, piperazine, morpholine, thiomorpholine, quinuclidine, 1,4-diazabicyclo [2.2.2] octane Cyclic heterocyclic amines; polymerization initiators containing structures such as aromatic heterocyclic amines such as pyrrole, pyrazole, imidazole, pyridine, pyridazine, pyrimidine, pyrazine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, carbazole Is mentioned.
これらの例としては、シクロヘキシルアミン、ジメチルアミン、トリエチルアミン、フェネチルアミン、ジベンジルアミンなどの第1級乃至第3級脂肪族アミン;アニリン、ジメチルアミノピリジン、ジフェニルアミン、トリフェニルアミンなどの第1級乃至第3級芳香族アミン;メタンイミン、プロパン-2-イミン、N-メチルエタンイミンなどのイミン;ピロリン、ピロリジン、ピラゾリン、ピラゾリジン、イミダゾリン、イミダゾリジン、ジヒドロピリジン、テトラヒドロピリジン、ピペリジン、ジヒドロピリミジン、テトラヒドロピリミジン、ヘキサヒドロピリミジン、ジヒドロピラジン、テトラヒドロピラジン、ピペラジン、モルホリン、チオモルホリン、キヌクリジン、1,4-ジアザビシクロ[2.2.2]オクタンなどの脂環式へテロ環アミン;ピロール、ピラゾール、イミダゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、キノリン、イソキノリン、シンノリン、フタラジン、キナゾリン、キノキサリン、カルバゾールなどの芳香族へテロ環アミン等の構造を含む重合開始剤が挙げられる。 In the present invention, the polymerization initiator B having an amino functional group or an imino functional group includes an amino group and an amine or imine compound in which a hydrogen atom of ammonia is substituted with a monovalent or divalent hydrocarbon residue, as well as a heterocyclic ring. A polymerization initiator containing an amine.
Examples thereof include primary to tertiary aliphatic amines such as cyclohexylamine, dimethylamine, triethylamine, phenethylamine, and dibenzylamine; primary to tertiary amines such as aniline, dimethylaminopyridine, diphenylamine, and triphenylamine. Tertiary aromatic amines; imines such as methanimine, propane-2-imine, N-methylethanimine; pyrroline, pyrrolidine, pyrazoline, pyrazolidine, imidazoline, imidazolidine, dihydropyridine, tetrahydropyridine, piperidine, dihydropyrimidine, tetrahydropyrimidine, hexa Such as hydropyrimidine, dihydropyrazine, tetrahydropyrazine, piperazine, morpholine, thiomorpholine, quinuclidine, 1,4-diazabicyclo [2.2.2] octane Cyclic heterocyclic amines; polymerization initiators containing structures such as aromatic heterocyclic amines such as pyrrole, pyrazole, imidazole, pyridine, pyridazine, pyrimidine, pyrazine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, carbazole Is mentioned.
したがって、前記アミノ官能基又はイミノ官能基を有する重合開始剤Bとしては、好ましくはヘテロ環アミン構造を含む重合開始剤や、下記式[1]で表される官能基を有する重合開始剤、特にアゾ系重合開始剤を挙げることができる。
Therefore, the polymerization initiator B having an amino functional group or imino functional group is preferably a polymerization initiator having a heterocyclic amine structure, or a polymerization initiator having a functional group represented by the following formula [1], particularly An azo polymerization initiator can be mentioned.
式[1]中、R1、R2及びR3はそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基又は炭素原子数1乃至6のヒドロキシアルキル基を表し、またはR1,R2及びR3の任意の2つ以上はそれらが結合する窒素原子と一緒になって、環を形成していてもよい。
In the formula [1], R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, or R 1 , Any two or more of R 2 and R 3 may be combined with the nitrogen atom to which they are bonded to form a ring.
上記式[1]で表される官能基の例としては、例えば下記式[A]乃至[M]で表される基を挙げることができるが、これらに限定されるものではない。
Examples of the functional group represented by the above formula [1] include groups represented by the following formulas [A] to [M], but are not limited thereto.
上記式[A]乃至[M]で表される官能基を有する化合物からなるアゾ系重合開始剤としては、下記式[2]で表される重合開始剤を挙げることができる。
Examples of the azo polymerization initiator composed of a compound having a functional group represented by the above formulas [A] to [M] include a polymerization initiator represented by the following formula [2].
式[2]中、R1、R2及びR3は前記式[1]で定義されたものを表し、R4及びR5はそれぞれ独立して、炭素原子数1乃至6のアルキル基を表す。
In the formula [2], R 1 , R 2 and R 3 represent those defined in the formula [1], and R 4 and R 5 each independently represent an alkyl group having 1 to 6 carbon atoms. .
上記式[2]で表されるアゾ系重合開始剤としては、例えば以下の(1)~(2)に示す化合物を挙げることができる;
(1)環状アゾアミジン化合物:
2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジヒドレート、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]-プロパン]ジヒドロクロリド、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジヒドロクロリド等。
(2)アゾアミジン化合物:
2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラヒドレート等。 Examples of the azo polymerization initiator represented by the above formula [2] include compounds shown in the following (1) to (2);
(1) Cyclic azoamidine compound:
2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] -propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride and the like.
(2) Azoamidine compound:
2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and the like.
(1)環状アゾアミジン化合物:
2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジヒドレート、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]-プロパン]ジヒドロクロリド、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジヒドロクロリド等。
(2)アゾアミジン化合物:
2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラヒドレート等。 Examples of the azo polymerization initiator represented by the above formula [2] include compounds shown in the following (1) to (2);
(1) Cyclic azoamidine compound:
2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] -propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride and the like.
(2) Azoamidine compound:
2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and the like.
上記アゾ系重合開始剤の中でも、ヘテロ環アミン構造を含む、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]又は2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジヒドロクロリドが特に好ましい。
Among the above azo polymerization initiators, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] or 2,2′-azobis (1-imino-1-containing a heterocyclic amine structure is included. Pyrrolidino-2-methylpropane) dihydrochloride is particularly preferred.
前記重合開始剤Bは、前記モノマーA対して、5モル%乃至200モル%の量で使用され、好ましくは15モル%乃至200モル%、より好ましくは15モル%乃至170モル%、より好ましくは50モル%乃至100モル%の量で使用される。
The polymerization initiator B is used in an amount of 5 mol% to 200 mol%, preferably 15 mol% to 200 mol%, more preferably 15 mol% to 170 mol%, more preferably, relative to the monomer A. Used in an amount of 50 mol% to 100 mol%.
本発明における分散剤は、前述の分子内に2個以上のラジカル重合性二重結合を有するモノマーAに加えて、分子内に少なくとも1個のラジカル重合性二重結合を有するモノマーCを用い、該モノマーA及び該モノマーCの合計モルに対して、5モル%以上200モル%以下の量の前述のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーからなる分散剤も対象とする。
The dispersant in the present invention uses a monomer C having at least one radical polymerizable double bond in the molecule in addition to the monomer A having two or more radical polymerizable double bonds in the molecule, It is obtained by polymerizing in the presence of the polymerization initiator B having the above-mentioned amino functional group or imino functional group in an amount of 5 mol% or more and 200 mol% or less with respect to the total mol of the monomer A and the monomer C. Dispersants composed of highly branched polymers are also targeted.
本発明において、分子内に少なくとも1個のラジカル重合性二重結合を有するモノマーCは、好ましくはビニル基又は(メタ)アクリル基の何れか一方を少なくとも1つ有することが好ましい。
このようなモノマーCとしては、例えば、以下の(C1)乃至(C3)に示した有機化合物が例示される。
(C1)(メタ)アクリル化合物:
(C1-1)(メタ)アクリル酸類;(メタ)アクリル酸、イタコン酸、2-トリフルオロメチルアクリル酸、2-エチルアクリル酸、2-プロピルアクリル酸、2-ブロモメチルアクリル酸、2-アセトアミドアクリル酸、2-エチルアクリロイルクロリド、3,3-ジメチル(メタ)アクリロイルクロリド。
(C1-2)(メタ)アクリル酸エステル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、モノ-2-(メタ)アクリロイルオキシエチルサクシネート、ビス[2-(メタ)アクリロイルオキシエチル]ホスフェート、2-(メタ)アクリロイルオキシエチルアセトアセテート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、[2-(メタ)アクリロイルオキシエチル]トリメチルアンモニウムクロリド、2-イソシアナトエチル(メタ)アクリレート、2-[9H-カルバゾール-9-イル]エチル(メタ)アクリレート、ビニル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、アリル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(R)-α―(メタ)アクリロイルオキシ-β,β-ジメチル-γ-ブチロラクトン、2-ナフチル(メタ)アクリレート、エチレングリコールメチルエーテル(メタ)アクリレート、エチレングリコールシクロペンテニルエーテル(メタ)アクリレート、エチレングリコールフェニルエーテル(メタ)アクリレート、エチレングリコール(メタ)アクリレートホスフェート、ジエチレングリコールエチルエーテル(メタ)アクリレート、ジエチレングリコール 2-エチルヘキシルエーテル(メタ)アクリレート、ジプロピレングリコールアリルエーテル(メタ)アクリレート、ネオペンチルグリコールメチルエーテルプロポキシレート(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールメチルエーテル(メタ)アクリレート、ポリエチレングリコールフェニルエーテル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールメチルエーテル(メタ)アクリレート、ポリプロピレングリコール 4-ノニルフェニルエーテル(メタ)アクリレート、エチル 2-エチルアクリレート、ベンジル 2-エチルアクリレート、エチル 2-プロピルアクリレート、ベンジル 2-プロピルアクリレート、メチル 2-アセトアミドアクリレート、エチル cis-2-シアノアクリレート、ビニルクロトネート、ビニルシンナメート、イソプロピルシンナメート、イソブチルシンナメート、tert-ブチルシンナメート、イソアミルシンナメート、エチル 2-シアノ-3,3-ジフェニルアクリレート、2-エチルヘキシル 2-シアノ-3,3-ジフェニルアクリレート。
(C1-3)エポキシ基含有(メタ)アクリル酸エステル類;グリシジル(メタ)アクリレート。
(C1-4)ヒドロキシ基含有(メタ)アクリル酸エステル類;2-ヒドロキシエチル(メタ)アクリレート、2-(4-ベンゾイル-3-ヒドロキシフェノキシ)エチル(メタ)アクリレート、2-ヒドロキシプロピル 2-(メタ)アクリロイルオキシエチルフタレート、カプロラクトン 2-(メタ)アクリロイルオキシエチルエステルヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-アクリロイルオキシ-2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メチル 3-ヒドロキシ-2-メチレンブチレート。
(C1-5)ハロゲン含有(メタ)アクリル酸エステル類;ペンタブロモベンジル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、メチル 2―ブロモアクリレート、tert-ブチル 2-ブロモアクリレート、メチル 2-ブロモメチルアクリレート、エチル 2-ブロモメチルアクリレート。
(C1-6)ケイ素含有(メタ)アクリル酸エステル類;エチル 2-トリメチルシリルメチルアクリレート、3-トリメトキシシリルプロピル(メタ)アクリレート、2-トリメチルシリルオキシエチル(メタ)アクリレート、3-[トリス(トリメチルシロキシ)シリル]プロピル(メタ)アクリレート、トリメチルシリル(メタ)アクリレート。
(C1-7)イオウ含有(メタ)アクリル酸エステル類;2-メチルチオエチル(メタ)アクリレート。
(C1-8)(メタ)アクリルアミド類;(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-トリス(ヒドロキシメチル)メチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソブチルオキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-[3-ジメチルアミノプロピル](メタ)アクリルアミド、3-((メタ)アクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、N-tert-ブチル(メタ)アクリルアミド、4-(メタ)アクリロイルモルホリン、N-フェニル(メタ)アクリルアミド、2-アクリルアミドグリコール酸、2-アクリルアミド-2-メチル-1-プロパンスルホン酸。
(C2)(メタ)アクリロニトリル類:
(メタ)アクリロニトリル、2-クロロアクリロニトリル、1-シアノビニルアセテート。
(C3)ビニル化合物:
(C3-1)スチレン類;スチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、2,4,6-トリメチルスチレン、3,4-ジメトキシスチレン、4-ベンジルオキシ-3-メトキシスチレン、4-エトキシスチレン、4-tert-ブチルスチレン、4-tert-ブトキシスチレン、4-アセトキシスチレン、2-トリフルオロメチルスチレン、3-トリフルオロメチルスチレン、4-トリフルオロメチルスチレン、3,5-ビス(トリフルオロメチル)スチレン、4-ビニルアニリン、4-ビニルアニソール、N,N-ジメチルビニルベンジルアミン、4-ビニルビフェニル、2-フルオロスチレン、3-フルオロスチレン、4-フルオロスチレン、2,6-ジフルオロスチレン、2,3,4,5,6-ペンタフルオロスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、2,6-ジクロロスチレン、2-ブロモスチレン、3-ブロモスチレン、4-ブロモスチレン、3-ニトロスチレン、3-ビニル安息香酸、4-ビニル安息香酸、tert-ブチル 4-ビニルフェニルカーボネート、4-スチレンスルホン酸、4-ビニルフェニルボロン酸、α-メチルスチレン、α,2-ジメチルスチレン、1,3-ジイソプロペニルベンゼン、4-クロロ-α-メチルスチレン、2,4-ジフェニル-4-メチル-1-ペンテン、2-イソプロペニルアニリン、3-イソプロペニル-α,α-ジメチルベンジルイソシアネート、1-フェニル-1-トリメチルシロキシエチレン、α-ブロモスチレン、1-ビニルナフタレン、2-ビニルナフタレン、9-ビニルアントラセン。
(C3-2)含窒素ヘテロ環ビニル化合物;N-ビニルイミダゾール、2-ビニルピリジン、4-ビニルピリジン、9-ビニルカルバゾール、1-ビニル-2-ピロリドン、N-ビニルフタルイミド、N-ビニルカプロラクトン。
(C3-3)ビニルエステル類;ビニルアセテート、ビニルトリフルオロアセテート、ビニルプロピオネート、ビニルピバレート、ビニルデカノエート、ビニルネオデカノエート、ビニルステアレート、ビニルベンゾエート。
(C3-4)ビニルエーテル類;4-ビニルオキシメチルシクロヘキシルメチルベンゾエート、エチルビニルエーテル、2-クロロエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、4-ビニルオキシブチルベンゾエート、イソブチルビニルエーテル、tert-ブチルビニルエーテル、tert-ペンチルビニルエーテル、シクロヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル、オクタデシルビニルエーテル、ドデシルビニルエーテル、ビニルオキシトリメチルシラン、1,4-ブタンジオールビニルエーテル、1,4-シクロヘキサンジメタノールビニルエーテル、エチレングリコールビニルエーテル、エチレングリコールブチルビニルエーテル、ジエチレングリコールビニルエーテル、エチル 1-プロペニルエーテル。
(C3-5)その他ビニル化合物;塩化ビニリデン、cis-1,3-ジクロロ-1-プロペン、2-メチル-2-ビニルオキシラン、ビニルシクロペンタン、ビニルシクロヘキサン、4-ビニル-1-シクロヘキサノン、5-ビニル-2-ノルボルネン、ビニルフェロセン、ビニルトリメチルシラン、ビニルトリメトキシシラン、N-ビニルホルムアミド、N-メチル-N-ビニルアセトアミド、臭化ビニル、エチルビニルスルフィド、メチルビニルスルホン、ビニルスルホン酸、ビニルホスホン酸、trans-4,4’-ジフルオロカルコン。 In the present invention, the monomer C having at least one radical polymerizable double bond in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group.
As such a monomer C, the organic compound shown to the following (C1) thru | or (C3) is illustrated, for example.
(C1) (Meth) acrylic compound:
(C1-1) (meth) acrylic acids; (meth) acrylic acid, itaconic acid, 2-trifluoromethyl acrylic acid, 2-ethyl acrylic acid, 2-propyl acrylic acid, 2-bromomethyl acrylic acid, 2-acetamide Acrylic acid, 2-ethylacryloyl chloride, 3,3-dimethyl (meth) acryloyl chloride.
(C1-2) (meth) acrylic acid esters; methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-carboxyethyl (meth) Acrylate, mono-2- (meth) acryloyloxyethyl succinate, bis [2- (meth) acryloyloxyethyl] phosphate, 2- (meth) acryloyloxyethyl acetoacetate, 2-dimethylaminoethyl (meth) acrylate, 2 -Diethylaminoethyl (meth) acrylate, [2- (meth) acryloyloxyethyl] trimethylammonium chloride, 2-isocyanatoethyl (meth) acrylate, 2- [9H-carbazol-9-yl] ethyl (meth) acrylate, vinyl ( (Meth) acrylate, 3-dimethylaminopropyl (meth) acrylate, allyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) ) Acrylate, (R) -α- (meth) acryloyloxy-β, β-dimethyl-γ-butyrolactone, 2-naphthyl (meth) acrylate, ethylene glycol methyl ether (Meth) acrylate, ethylene glycol cyclopentenyl ether (meth) acrylate, ethylene glycol phenyl ether (meth) acrylate, ethylene glycol (meth) acrylate phosphate, diethylene glycol ethyl ether (meth) acrylate, diethylene glycol 2-ethylhexyl ether (meth) acrylate , Dipropylene glycol allyl ether (meth) acrylate, neopentyl glycol methyl ether propoxylate (meth) acrylate, polyethylene glycol di (meth) acrylate, polyethylene glycol methyl ether (meth) acrylate, polyethylene glycol phenyl ether (meth) acrylate, polypropylene Glycol di (meth) acrylate, Ripropylene glycol methyl ether (meth) acrylate, polypropylene glycol 4-nonylphenyl ether (meth) acrylate, ethyl 2-ethyl acrylate, benzyl 2-ethyl acrylate, ethyl 2-propyl acrylate, benzyl 2-propyl acrylate, methyl 2-acetamide Acrylate, ethyl cis-2-cyanoacrylate, vinyl crotonate, vinyl cinnamate, isopropyl cinnamate, isobutyl cinnamate, tert-butyl cinnamate, isoamyl cinnamate, ethyl 2-cyano-3,3-diphenyl acrylate, 2- Ethylhexyl 2-cyano-3,3-diphenyl acrylate.
(C1-3) Epoxy group-containing (meth) acrylic acid esters; glycidyl (meth) acrylate.
(C1-4) hydroxy group-containing (meth) acrylic acid esters; 2-hydroxyethyl (meth) acrylate, 2- (4-benzoyl-3-hydroxyphenoxy) ethyl (meth) acrylate, 2-hydroxypropyl 2- ( (Meth) acryloyloxyethyl phthalate, caprolactone 2- (meth) acryloyloxyethyl ester hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-acryloyloxy-2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate , Methyl 3-hydroxy-2-methylene-butyrate.
(C1-5) Halogen-containing (meth) acrylic acid esters; pentabromobenzyl (meth) acrylate, pentabromophenyl (meth) acrylate, methyl 2-bromoacrylate, tert-butyl 2-bromoacrylate, methyl 2-bromomethyl Acrylate, ethyl 2-bromomethyl acrylate.
(C1-6) silicon-containing (meth) acrylic acid esters; ethyl 2-trimethylsilylmethyl acrylate, 3-trimethoxysilylpropyl (meth) acrylate, 2-trimethylsilyloxyethyl (meth) acrylate, 3- [tris (trimethylsiloxy) ) Silyl] propyl (meth) acrylate, trimethylsilyl (meth) acrylate.
(C1-7) Sulfur-containing (meth) acrylic acid esters; 2-methylthioethyl (meth) acrylate.
(C1-8) (meth) acrylamides; (meth) acrylamide, diacetone (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-tris (hydroxymethyl) methyl ( (Meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-isobutyloxymethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- [3-dimethylaminopropyl] (meth) acrylamide, 3-((meta ) Acryloylamino) propyltrimethylammonium chloride, N-tert-butyl (meth) acrylamide, 4- (meth) acryloylmorpholine, N-phenyl (meth) acrylamide, 2-acrylamide glycolic acid, 2-acrylamido 2-methyl-1-propanesulfonic acid.
(C2) (Meth) acrylonitriles:
(Meth) acrylonitrile, 2-chloroacrylonitrile, 1-cyanovinyl acetate.
(C3) Vinyl compound:
(C3-1) styrenes; styrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 2,4,6-trimethylstyrene, 3,4-dimethoxystyrene, 4-benzyloxy-3-methoxystyrene, 4-ethoxystyrene, 4-tert-butylstyrene, 4-tert-butoxystyrene, 4-acetoxystyrene, 2-trifluoromethylstyrene, 3-trifluoromethylstyrene, 4- Trifluoromethylstyrene, 3,5-bis (trifluoromethyl) styrene, 4-vinylaniline, 4-vinylanisole, N, N-dimethylvinylbenzylamine, 4-vinylbiphenyl, 2-fluorostyrene, 3-fluorostyrene , 4-fluorostyrene, 2,6-difluorostyrene 2,3,4,5,6-pentafluorostyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,6-dichlorostyrene, 2-bromostyrene, 3-bromostyrene, 4- Bromostyrene, 3-nitrostyrene, 3-vinylbenzoic acid, 4-vinylbenzoic acid, tert-butyl 4-vinylphenyl carbonate, 4-styrenesulfonic acid, 4-vinylphenylboronic acid, α-methylstyrene, α, 2 -Dimethylstyrene, 1,3-diisopropenylbenzene, 4-chloro-α-methylstyrene, 2,4-diphenyl-4-methyl-1-pentene, 2-isopropenylaniline, 3-isopropenyl-α, α -Dimethylbenzyl isocyanate, 1-phenyl-1-trimethylsiloxyethylene, α-bromostyrene, 1 Vinyl naphthalene, 2-vinyl naphthalene, 9-vinyl anthracene.
(C3-2) nitrogen-containing heterocyclic vinyl compound; N-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole, 1-vinyl-2-pyrrolidone, N-vinylphthalimide, N-vinylcaprolactone.
(C3-3) Vinyl esters; vinyl acetate, vinyl trifluoroacetate, vinyl propionate, vinyl pivalate, vinyl decanoate, vinyl neodecanoate, vinyl stearate, vinyl benzoate.
(C3-4) vinyl ethers; 4-vinyloxymethylcyclohexylmethyl benzoate, ethyl vinyl ether, 2-chloroethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 4-vinyloxybutyl benzoate, isobutyl vinyl ether, tert-butyl vinyl ether, tert-pentyl Vinyl ether, cyclohexyl vinyl ether, 2-ethylhexyl vinyl ether, octadecyl vinyl ether, dodecyl vinyl ether, vinyloxytrimethylsilane, 1,4-butanediol vinyl ether, 1,4-cyclohexanedimethanol vinyl ether, ethylene glycol vinyl ether, ethylene glycol butyl vinyl ether, diethylene glycol vinyl ether, Ethyl 1 -Propenyl ether.
(C3-5) Other vinyl compounds; vinylidene chloride, cis-1,3-dichloro-1-propene, 2-methyl-2-vinyloxirane, vinylcyclopentane, vinylcyclohexane, 4-vinyl-1-cyclohexanone, 5- Vinyl-2-norbornene, vinylferrocene, vinyltrimethylsilane, vinyltrimethoxysilane, N-vinylformamide, N-methyl-N-vinylacetamide, vinyl bromide, ethyl vinyl sulfide, methyl vinyl sulfone, vinyl sulfonic acid, vinyl phosphone Acid, trans-4,4′-difluorochalcone.
このようなモノマーCとしては、例えば、以下の(C1)乃至(C3)に示した有機化合物が例示される。
(C1)(メタ)アクリル化合物:
(C1-1)(メタ)アクリル酸類;(メタ)アクリル酸、イタコン酸、2-トリフルオロメチルアクリル酸、2-エチルアクリル酸、2-プロピルアクリル酸、2-ブロモメチルアクリル酸、2-アセトアミドアクリル酸、2-エチルアクリロイルクロリド、3,3-ジメチル(メタ)アクリロイルクロリド。
(C1-2)(メタ)アクリル酸エステル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、モノ-2-(メタ)アクリロイルオキシエチルサクシネート、ビス[2-(メタ)アクリロイルオキシエチル]ホスフェート、2-(メタ)アクリロイルオキシエチルアセトアセテート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、[2-(メタ)アクリロイルオキシエチル]トリメチルアンモニウムクロリド、2-イソシアナトエチル(メタ)アクリレート、2-[9H-カルバゾール-9-イル]エチル(メタ)アクリレート、ビニル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、アリル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(R)-α―(メタ)アクリロイルオキシ-β,β-ジメチル-γ-ブチロラクトン、2-ナフチル(メタ)アクリレート、エチレングリコールメチルエーテル(メタ)アクリレート、エチレングリコールシクロペンテニルエーテル(メタ)アクリレート、エチレングリコールフェニルエーテル(メタ)アクリレート、エチレングリコール(メタ)アクリレートホスフェート、ジエチレングリコールエチルエーテル(メタ)アクリレート、ジエチレングリコール 2-エチルヘキシルエーテル(メタ)アクリレート、ジプロピレングリコールアリルエーテル(メタ)アクリレート、ネオペンチルグリコールメチルエーテルプロポキシレート(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールメチルエーテル(メタ)アクリレート、ポリエチレングリコールフェニルエーテル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールメチルエーテル(メタ)アクリレート、ポリプロピレングリコール 4-ノニルフェニルエーテル(メタ)アクリレート、エチル 2-エチルアクリレート、ベンジル 2-エチルアクリレート、エチル 2-プロピルアクリレート、ベンジル 2-プロピルアクリレート、メチル 2-アセトアミドアクリレート、エチル cis-2-シアノアクリレート、ビニルクロトネート、ビニルシンナメート、イソプロピルシンナメート、イソブチルシンナメート、tert-ブチルシンナメート、イソアミルシンナメート、エチル 2-シアノ-3,3-ジフェニルアクリレート、2-エチルヘキシル 2-シアノ-3,3-ジフェニルアクリレート。
(C1-3)エポキシ基含有(メタ)アクリル酸エステル類;グリシジル(メタ)アクリレート。
(C1-4)ヒドロキシ基含有(メタ)アクリル酸エステル類;2-ヒドロキシエチル(メタ)アクリレート、2-(4-ベンゾイル-3-ヒドロキシフェノキシ)エチル(メタ)アクリレート、2-ヒドロキシプロピル 2-(メタ)アクリロイルオキシエチルフタレート、カプロラクトン 2-(メタ)アクリロイルオキシエチルエステルヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-アクリロイルオキシ-2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メチル 3-ヒドロキシ-2-メチレンブチレート。
(C1-5)ハロゲン含有(メタ)アクリル酸エステル類;ペンタブロモベンジル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、メチル 2―ブロモアクリレート、tert-ブチル 2-ブロモアクリレート、メチル 2-ブロモメチルアクリレート、エチル 2-ブロモメチルアクリレート。
(C1-6)ケイ素含有(メタ)アクリル酸エステル類;エチル 2-トリメチルシリルメチルアクリレート、3-トリメトキシシリルプロピル(メタ)アクリレート、2-トリメチルシリルオキシエチル(メタ)アクリレート、3-[トリス(トリメチルシロキシ)シリル]プロピル(メタ)アクリレート、トリメチルシリル(メタ)アクリレート。
(C1-7)イオウ含有(メタ)アクリル酸エステル類;2-メチルチオエチル(メタ)アクリレート。
(C1-8)(メタ)アクリルアミド類;(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-トリス(ヒドロキシメチル)メチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソブチルオキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-[3-ジメチルアミノプロピル](メタ)アクリルアミド、3-((メタ)アクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、N-tert-ブチル(メタ)アクリルアミド、4-(メタ)アクリロイルモルホリン、N-フェニル(メタ)アクリルアミド、2-アクリルアミドグリコール酸、2-アクリルアミド-2-メチル-1-プロパンスルホン酸。
(C2)(メタ)アクリロニトリル類:
(メタ)アクリロニトリル、2-クロロアクリロニトリル、1-シアノビニルアセテート。
(C3)ビニル化合物:
(C3-1)スチレン類;スチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、2,4,6-トリメチルスチレン、3,4-ジメトキシスチレン、4-ベンジルオキシ-3-メトキシスチレン、4-エトキシスチレン、4-tert-ブチルスチレン、4-tert-ブトキシスチレン、4-アセトキシスチレン、2-トリフルオロメチルスチレン、3-トリフルオロメチルスチレン、4-トリフルオロメチルスチレン、3,5-ビス(トリフルオロメチル)スチレン、4-ビニルアニリン、4-ビニルアニソール、N,N-ジメチルビニルベンジルアミン、4-ビニルビフェニル、2-フルオロスチレン、3-フルオロスチレン、4-フルオロスチレン、2,6-ジフルオロスチレン、2,3,4,5,6-ペンタフルオロスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、2,6-ジクロロスチレン、2-ブロモスチレン、3-ブロモスチレン、4-ブロモスチレン、3-ニトロスチレン、3-ビニル安息香酸、4-ビニル安息香酸、tert-ブチル 4-ビニルフェニルカーボネート、4-スチレンスルホン酸、4-ビニルフェニルボロン酸、α-メチルスチレン、α,2-ジメチルスチレン、1,3-ジイソプロペニルベンゼン、4-クロロ-α-メチルスチレン、2,4-ジフェニル-4-メチル-1-ペンテン、2-イソプロペニルアニリン、3-イソプロペニル-α,α-ジメチルベンジルイソシアネート、1-フェニル-1-トリメチルシロキシエチレン、α-ブロモスチレン、1-ビニルナフタレン、2-ビニルナフタレン、9-ビニルアントラセン。
(C3-2)含窒素ヘテロ環ビニル化合物;N-ビニルイミダゾール、2-ビニルピリジン、4-ビニルピリジン、9-ビニルカルバゾール、1-ビニル-2-ピロリドン、N-ビニルフタルイミド、N-ビニルカプロラクトン。
(C3-3)ビニルエステル類;ビニルアセテート、ビニルトリフルオロアセテート、ビニルプロピオネート、ビニルピバレート、ビニルデカノエート、ビニルネオデカノエート、ビニルステアレート、ビニルベンゾエート。
(C3-4)ビニルエーテル類;4-ビニルオキシメチルシクロヘキシルメチルベンゾエート、エチルビニルエーテル、2-クロロエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、4-ビニルオキシブチルベンゾエート、イソブチルビニルエーテル、tert-ブチルビニルエーテル、tert-ペンチルビニルエーテル、シクロヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル、オクタデシルビニルエーテル、ドデシルビニルエーテル、ビニルオキシトリメチルシラン、1,4-ブタンジオールビニルエーテル、1,4-シクロヘキサンジメタノールビニルエーテル、エチレングリコールビニルエーテル、エチレングリコールブチルビニルエーテル、ジエチレングリコールビニルエーテル、エチル 1-プロペニルエーテル。
(C3-5)その他ビニル化合物;塩化ビニリデン、cis-1,3-ジクロロ-1-プロペン、2-メチル-2-ビニルオキシラン、ビニルシクロペンタン、ビニルシクロヘキサン、4-ビニル-1-シクロヘキサノン、5-ビニル-2-ノルボルネン、ビニルフェロセン、ビニルトリメチルシラン、ビニルトリメトキシシラン、N-ビニルホルムアミド、N-メチル-N-ビニルアセトアミド、臭化ビニル、エチルビニルスルフィド、メチルビニルスルホン、ビニルスルホン酸、ビニルホスホン酸、trans-4,4’-ジフルオロカルコン。 In the present invention, the monomer C having at least one radical polymerizable double bond in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group.
As such a monomer C, the organic compound shown to the following (C1) thru | or (C3) is illustrated, for example.
(C1) (Meth) acrylic compound:
(C1-1) (meth) acrylic acids; (meth) acrylic acid, itaconic acid, 2-trifluoromethyl acrylic acid, 2-ethyl acrylic acid, 2-propyl acrylic acid, 2-bromomethyl acrylic acid, 2-acetamide Acrylic acid, 2-ethylacryloyl chloride, 3,3-dimethyl (meth) acryloyl chloride.
(C1-2) (meth) acrylic acid esters; methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-carboxyethyl (meth) Acrylate, mono-2- (meth) acryloyloxyethyl succinate, bis [2- (meth) acryloyloxyethyl] phosphate, 2- (meth) acryloyloxyethyl acetoacetate, 2-dimethylaminoethyl (meth) acrylate, 2 -Diethylaminoethyl (meth) acrylate, [2- (meth) acryloyloxyethyl] trimethylammonium chloride, 2-isocyanatoethyl (meth) acrylate, 2- [9H-carbazol-9-yl] ethyl (meth) acrylate, vinyl ( (Meth) acrylate, 3-dimethylaminopropyl (meth) acrylate, allyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) ) Acrylate, (R) -α- (meth) acryloyloxy-β, β-dimethyl-γ-butyrolactone, 2-naphthyl (meth) acrylate, ethylene glycol methyl ether (Meth) acrylate, ethylene glycol cyclopentenyl ether (meth) acrylate, ethylene glycol phenyl ether (meth) acrylate, ethylene glycol (meth) acrylate phosphate, diethylene glycol ethyl ether (meth) acrylate, diethylene glycol 2-ethylhexyl ether (meth) acrylate , Dipropylene glycol allyl ether (meth) acrylate, neopentyl glycol methyl ether propoxylate (meth) acrylate, polyethylene glycol di (meth) acrylate, polyethylene glycol methyl ether (meth) acrylate, polyethylene glycol phenyl ether (meth) acrylate, polypropylene Glycol di (meth) acrylate, Ripropylene glycol methyl ether (meth) acrylate, polypropylene glycol 4-nonylphenyl ether (meth) acrylate, ethyl 2-ethyl acrylate, benzyl 2-ethyl acrylate, ethyl 2-propyl acrylate, benzyl 2-propyl acrylate, methyl 2-acetamide Acrylate, ethyl cis-2-cyanoacrylate, vinyl crotonate, vinyl cinnamate, isopropyl cinnamate, isobutyl cinnamate, tert-butyl cinnamate, isoamyl cinnamate, ethyl 2-cyano-3,3-diphenyl acrylate, 2- Ethylhexyl 2-cyano-3,3-diphenyl acrylate.
(C1-3) Epoxy group-containing (meth) acrylic acid esters; glycidyl (meth) acrylate.
(C1-4) hydroxy group-containing (meth) acrylic acid esters; 2-hydroxyethyl (meth) acrylate, 2- (4-benzoyl-3-hydroxyphenoxy) ethyl (meth) acrylate, 2-hydroxypropyl 2- ( (Meth) acryloyloxyethyl phthalate, caprolactone 2- (meth) acryloyloxyethyl ester hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-acryloyloxy-2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate , Methyl 3-hydroxy-2-methylene-butyrate.
(C1-5) Halogen-containing (meth) acrylic acid esters; pentabromobenzyl (meth) acrylate, pentabromophenyl (meth) acrylate, methyl 2-bromoacrylate, tert-butyl 2-bromoacrylate, methyl 2-bromomethyl Acrylate, ethyl 2-bromomethyl acrylate.
(C1-6) silicon-containing (meth) acrylic acid esters; ethyl 2-trimethylsilylmethyl acrylate, 3-trimethoxysilylpropyl (meth) acrylate, 2-trimethylsilyloxyethyl (meth) acrylate, 3- [tris (trimethylsiloxy) ) Silyl] propyl (meth) acrylate, trimethylsilyl (meth) acrylate.
(C1-7) Sulfur-containing (meth) acrylic acid esters; 2-methylthioethyl (meth) acrylate.
(C1-8) (meth) acrylamides; (meth) acrylamide, diacetone (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-tris (hydroxymethyl) methyl ( (Meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-isobutyloxymethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- [3-dimethylaminopropyl] (meth) acrylamide, 3-((meta ) Acryloylamino) propyltrimethylammonium chloride, N-tert-butyl (meth) acrylamide, 4- (meth) acryloylmorpholine, N-phenyl (meth) acrylamide, 2-acrylamide glycolic acid, 2-acrylamido 2-methyl-1-propanesulfonic acid.
(C2) (Meth) acrylonitriles:
(Meth) acrylonitrile, 2-chloroacrylonitrile, 1-cyanovinyl acetate.
(C3) Vinyl compound:
(C3-1) styrenes; styrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 2,4,6-trimethylstyrene, 3,4-dimethoxystyrene, 4-benzyloxy-3-methoxystyrene, 4-ethoxystyrene, 4-tert-butylstyrene, 4-tert-butoxystyrene, 4-acetoxystyrene, 2-trifluoromethylstyrene, 3-trifluoromethylstyrene, 4- Trifluoromethylstyrene, 3,5-bis (trifluoromethyl) styrene, 4-vinylaniline, 4-vinylanisole, N, N-dimethylvinylbenzylamine, 4-vinylbiphenyl, 2-fluorostyrene, 3-fluorostyrene , 4-fluorostyrene, 2,6-difluorostyrene 2,3,4,5,6-pentafluorostyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,6-dichlorostyrene, 2-bromostyrene, 3-bromostyrene, 4- Bromostyrene, 3-nitrostyrene, 3-vinylbenzoic acid, 4-vinylbenzoic acid, tert-butyl 4-vinylphenyl carbonate, 4-styrenesulfonic acid, 4-vinylphenylboronic acid, α-methylstyrene, α, 2 -Dimethylstyrene, 1,3-diisopropenylbenzene, 4-chloro-α-methylstyrene, 2,4-diphenyl-4-methyl-1-pentene, 2-isopropenylaniline, 3-isopropenyl-α, α -Dimethylbenzyl isocyanate, 1-phenyl-1-trimethylsiloxyethylene, α-bromostyrene, 1 Vinyl naphthalene, 2-vinyl naphthalene, 9-vinyl anthracene.
(C3-2) nitrogen-containing heterocyclic vinyl compound; N-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole, 1-vinyl-2-pyrrolidone, N-vinylphthalimide, N-vinylcaprolactone.
(C3-3) Vinyl esters; vinyl acetate, vinyl trifluoroacetate, vinyl propionate, vinyl pivalate, vinyl decanoate, vinyl neodecanoate, vinyl stearate, vinyl benzoate.
(C3-4) vinyl ethers; 4-vinyloxymethylcyclohexylmethyl benzoate, ethyl vinyl ether, 2-chloroethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 4-vinyloxybutyl benzoate, isobutyl vinyl ether, tert-butyl vinyl ether, tert-pentyl Vinyl ether, cyclohexyl vinyl ether, 2-ethylhexyl vinyl ether, octadecyl vinyl ether, dodecyl vinyl ether, vinyloxytrimethylsilane, 1,4-butanediol vinyl ether, 1,4-cyclohexanedimethanol vinyl ether, ethylene glycol vinyl ether, ethylene glycol butyl vinyl ether, diethylene glycol vinyl ether, Ethyl 1 -Propenyl ether.
(C3-5) Other vinyl compounds; vinylidene chloride, cis-1,3-dichloro-1-propene, 2-methyl-2-vinyloxirane, vinylcyclopentane, vinylcyclohexane, 4-vinyl-1-cyclohexanone, 5- Vinyl-2-norbornene, vinylferrocene, vinyltrimethylsilane, vinyltrimethoxysilane, N-vinylformamide, N-methyl-N-vinylacetamide, vinyl bromide, ethyl vinyl sulfide, methyl vinyl sulfone, vinyl sulfonic acid, vinyl phosphone Acid, trans-4,4′-difluorochalcone.
これら化合物のうち、好ましいものとしては、上記(C1)群、(C2)群、(C3-1)群及び(C3-2)群に記載の化合物であり、特に好ましいものとしては(C1-2)群の(メタ)アクリル酸エステル類、(C1-4)群のヒドロキシ(メタ)アクリル酸エステル類、(C3-1)群のスチレン類及び(C3-2)群の含窒素ヘテロ環ビニル化合物であり、より好ましいものとしてはメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、スチレン、2-ビニルナフタレン、N-ビニルイミダゾール、2-ビニルピリジン、1-ビニル-2-ピロリドンである。
Among these compounds, preferred are the compounds described in groups (C1), (C2), (C3-1) and (C3-2), and particularly preferred are (C1-2). ) Group (meth) acrylic acid esters, (C1-4) group hydroxy (meth) acrylic acid esters, (C3-1) group styrenes and (C3-2) group nitrogen-containing heterocyclic vinyl compounds More preferred are methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, styrene, 2-vinylnaphthalene, N-vinylimidazole, 2-vinylpyridine, and 1-vinyl-2-pyrrolidone.
本発明の分散剤として用いる高分岐ポリマーの、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(以下Mwと略記)は、好ましくは1,000乃至2,000,000、さらに好ましくは2,000乃至1,000,000である。
The hyperbranched polymer used as the dispersant of the present invention has a weight average molecular weight (hereinafter abbreviated as Mw) measured in terms of polystyrene by gel permeation chromatography, preferably 1,000 to 2,000,000, more preferably 2. , 1,000 to 1,000,000.
前記高分岐ポリマーは、前述のモノマーA、又はモノマーAとモノマーCに対して所定量の重合開始剤Bの存在下で重合させて得られる。該重合方法としては公知の方法、例えば溶液重合、分散重合、沈殿重合、及び塊状重合等が挙げられ、中でも溶液重合又は沈殿重合が好ましい。特に分子量制御の点から、有機溶媒中での溶液重合によって反応を実施することが好ましい。
The hyperbranched polymer is obtained by polymerizing the monomer A or the monomer A and the monomer C in the presence of a predetermined amount of the polymerization initiator B. Examples of the polymerization method include known methods such as solution polymerization, dispersion polymerization, precipitation polymerization, and bulk polymerization. Among these, solution polymerization or precipitation polymerization is preferable. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
このとき用いられる有機溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素系溶媒;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロリド、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、オルトジクロロベンゼン等のハロゲン系溶媒;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル系又はエステルエーテル系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等のケトン系溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、2-エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール、プロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、乳酸エチル等のアルコール系溶媒;N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;酢酸、プロピオン酸等の脂肪族カルボン酸系溶媒、並びにこれらの2種以上の混合溶媒が挙げられる。
Examples of organic solvents used here include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit, and cyclohexane Solvent: Halogen solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate An ester solvent such as ethyl cellosolve acetate or propylene glycol monomethyl ether acetate; an ether solvent such as diethyl ether, tetrahydrofuran or 1,4-dioxane; acetone; Ketone solvents such as tilethylketone, methylisobutylketone, di-n-butylketone, cyclohexanone; methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, 2-ethylhexyl alcohol, benzyl alcohol, Alcohol solvents such as ethylene glycol, propylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, ethyl lactate; N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone Amide solvents such as dimethyl sulfoxide; aliphatic carboxylic acid solvents such as acetic acid and propionic acid, and a mixture of two or more of these solvents. It is.
これらのうち好ましいものは、芳香族炭化水素系溶媒、ハロゲン系溶媒、エステル系溶媒、エーテル系溶媒、ケトン系溶媒、アルコール系溶媒、アミド系溶媒、脂肪族カルボン酸系溶媒等であり、特に好ましいものはベンゼン、トルエン、キシレン、オルトジクロロベンゼン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、テトラヒドロフラン、ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、エチレングリコール、プロピレングリコールモノメチルエーテル、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン及び酢酸であり、最も好ましいものは、n-プロパノール、n-ブタノール、エチレングリコール、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン及び酢酸である。
Among these, preferred are aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents, amide solvents, aliphatic carboxylic acid solvents, and the like. Benzene, toluene, xylene, orthodichlorobenzene, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, tetrahydrofuran, dioxane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol , Tert-butanol, ethylene glycol, propylene glycol monomethyl ether, N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone and the like It is acetic acid, the most preferred are n- propanol, n- butanol, ethylene glycol, N, N'-dimethylformamide, N, N'-dimethylacetamide, N- methyl-2-pyrrolidone and acetic acid.
上記重合反応を有機溶媒の存在下で行う場合、重合反応物全体における有機溶媒の含量は前記モノマーAの1質量部に対し、好ましくは5乃至120質量部、さらに好ましくは10乃至110質量部、最も好ましくは30乃至100質量部である。
When the polymerization reaction is performed in the presence of an organic solvent, the content of the organic solvent in the entire polymerization reaction product is preferably 5 to 120 parts by weight, more preferably 10 to 110 parts by weight, with respect to 1 part by weight of the monomer A. Most preferably, it is 30 to 100 parts by mass.
重合反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N2等の不活性ガス雰囲気下で行うのが好ましい。
重合温度は、反応混合物の沸点以下であれば任意であるが、重合効率と分子量調節の点から、好ましくは50℃以上200℃以下、さらに好ましくは80℃以上150℃以下、より好ましくは80℃以上120℃以下である。
より好ましくは、重合反応の温度は前述の重合開始剤Bの10時間半減期温度より20℃以上高い温度で実施され、より具体的には、前記モノマーA(及び所望によりさらに前記モノマーC)、前記重合開始剤B及び有機溶媒を含む溶液を、該重合開始剤Bの10時間半減期温度より20℃以上高い温度に保たれた該有機溶媒中へ滴下することにより、重合反応を行うことが好ましい。また、さらにより好ましくは反応圧力下での前記有機溶媒の還流温度で重合反応を実施することが好ましい。
反応時間は、反応温度や、モノマーA(及びモノマーC)及び重合開始剤Bの種類及び割合、有機溶媒種等によって変動するものであるため一概には規定できないが、好ましくは30分以上720分以下、さらに好ましくは40分以上540分以下である。 The polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
The polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but from the viewpoint of polymerization efficiency and molecular weight control, it is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. It is 120 degrees C or less.
More preferably, the temperature of the polymerization reaction is carried out at a temperature that is 20 ° C. or more higher than the 10-hour half-life temperature of the aforementioned polymerization initiator B, and more specifically, the monomer A (and optionally the monomer C), A polymerization reaction can be performed by dropping a solution containing the polymerization initiator B and the organic solvent into the organic solvent maintained at a temperature 20 ° C. or more higher than the 10-hour half-life temperature of the polymerization initiator B. preferable. It is even more preferable to carry out the polymerization reaction at the reflux temperature of the organic solvent under a reaction pressure.
The reaction time varies depending on the reaction temperature, the types and ratios of the monomer A (and monomer C) and the polymerization initiator B, the organic solvent species, etc., but cannot be defined unconditionally, but preferably 30 minutes or more and 720 minutes Hereinafter, it is more preferably 40 minutes or more and 540 minutes or less.
重合温度は、反応混合物の沸点以下であれば任意であるが、重合効率と分子量調節の点から、好ましくは50℃以上200℃以下、さらに好ましくは80℃以上150℃以下、より好ましくは80℃以上120℃以下である。
より好ましくは、重合反応の温度は前述の重合開始剤Bの10時間半減期温度より20℃以上高い温度で実施され、より具体的には、前記モノマーA(及び所望によりさらに前記モノマーC)、前記重合開始剤B及び有機溶媒を含む溶液を、該重合開始剤Bの10時間半減期温度より20℃以上高い温度に保たれた該有機溶媒中へ滴下することにより、重合反応を行うことが好ましい。また、さらにより好ましくは反応圧力下での前記有機溶媒の還流温度で重合反応を実施することが好ましい。
反応時間は、反応温度や、モノマーA(及びモノマーC)及び重合開始剤Bの種類及び割合、有機溶媒種等によって変動するものであるため一概には規定できないが、好ましくは30分以上720分以下、さらに好ましくは40分以上540分以下である。 The polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
The polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but from the viewpoint of polymerization efficiency and molecular weight control, it is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. It is 120 degrees C or less.
More preferably, the temperature of the polymerization reaction is carried out at a temperature that is 20 ° C. or more higher than the 10-hour half-life temperature of the aforementioned polymerization initiator B, and more specifically, the monomer A (and optionally the monomer C), A polymerization reaction can be performed by dropping a solution containing the polymerization initiator B and the organic solvent into the organic solvent maintained at a temperature 20 ° C. or more higher than the 10-hour half-life temperature of the polymerization initiator B. preferable. It is even more preferable to carry out the polymerization reaction at the reflux temperature of the organic solvent under a reaction pressure.
The reaction time varies depending on the reaction temperature, the types and ratios of the monomer A (and monomer C) and the polymerization initiator B, the organic solvent species, etc., but cannot be defined unconditionally, but preferably 30 minutes or more and 720 minutes Hereinafter, it is more preferably 40 minutes or more and 540 minutes or less.
より好ましくは、特定の酸の存在下で、有機溶媒中での溶液重合を実施することが好ましい。なお、前述したように酢酸を有機溶媒として使用して溶液重合を行うことは好ましい。しかしながら、臭気等の観点から多量の酸を重合溶媒として用いることは実用上困難といえることから、実際には、特定の酸を前記重合開始剤Bに対して100モル%乃至400モル%の量で存在させて、重合を行うことが望ましい。
More preferably, solution polymerization in an organic solvent is preferably performed in the presence of a specific acid. As described above, it is preferable to perform solution polymerization using acetic acid as an organic solvent. However, since it can be said that it is practically difficult to use a large amount of acid as a polymerization solvent from the viewpoint of odor or the like, the amount of the specific acid is actually 100 mol% to 400 mol% with respect to the polymerization initiator B. It is desirable to carry out the polymerization in the presence of
ここで使用できる酸としては以下のものを挙げることができる。
無機酸:塩酸、硫酸、リン酸、臭化水素酸等。
芳香族カルボン酸:安息香酸、トリメリット酸、トリメシン酸、ピロメリット酸、ベンゼンペンタカルボン酸、メリット酸、アニス酸、トルイル酸、プロピル安息香酸、プロポキシ安息香酸、ヒドロキシ安息香酸、n-オクチル安息香酸、n-オクチルオキシ安息香酸、ヘキシル安息香酸、ヘキシルオキシ安息香酸、ヘプチル安息香酸、ヘプチルオキシ安息香酸、エチル安息香酸、エトキシ安息香酸、n-ブチル安息香酸、sec-ブチル安息香酸、tert-ブチル安息香酸、ブトキシ安息香酸、ブロモ安息香酸、ベンジルオキシ安息香酸、アミル安息香酸、アミルオキシ安息香酸、アミノ安息香酸、アセチル安息香酸、アセトキシ安息香酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、アントラセンカルボン酸、アントラセンジカルボン酸、アントラキノンカルボン酸、アントラキノンジカルボン酸、ピレンカルボン酸、ピレンジカルボン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等。
脂肪族カルボン酸:酢酸、トリフルオロ酢酸、吉草酸、ウンデカン酸、トリデカン酸、トリコサン酸、ステアリン酸、プロピオン酸、ペンタデカン酸、ペンタコサン酸、パルミチン酸、ノナン酸、ノナデカン酸、ノナコサン酸、オクタン酸、オクタコサン酸、ヘプタコサン酸、ヘンエイコサン酸、ミリスチン酸、メリシン酸、リグリノセリン酸、ラウリン酸、ヘキサン酸、ヘプタン酸、ヘプタデカン酸、デカン酸、セロチン酸、酪酸、ベヘン酸、アラキジン酸、オレイン酸、リノレン酸、リノール酸、エルカ酸、エライジン酸、アラキドン酸等。
アミノ酸:L-バリン、L-トリプトファン、L-セリン、L-プロリン、L-フェニルアラニン、L-オルニチン、L-ロイシン、L-イソロイシン、L-ヒスチジン、L-グルタミン、L-システイン、L-アスパラギン、L-アラニン、L-チロシン、L-トレオニン、L-リシン、L-アルギニン、L-グリシン及びこれらアミノ酸の窒素原子がアセチル保護、ブトキシカルボニル保護、カルボベンゾキシ保護されたもの等、又はこれらのD体、ラセミ体等。 The following can be mentioned as an acid which can be used here.
Inorganic acids: hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, etc.
Aromatic carboxylic acids: benzoic acid, trimellitic acid, trimesic acid, pyromellitic acid, benzenepentacarboxylic acid, merit acid, anisic acid, toluic acid, propylbenzoic acid, propoxybenzoic acid, hydroxybenzoic acid, n-octylbenzoic acid N-octyloxybenzoic acid, hexylbenzoic acid, hexyloxybenzoic acid, heptylbenzoic acid, heptyloxybenzoic acid, ethylbenzoic acid, ethoxybenzoic acid, n-butylbenzoic acid, sec-butylbenzoic acid, tert-butylbenzoic acid Acid, butoxybenzoic acid, bromobenzoic acid, benzyloxybenzoic acid, amylbenzoic acid, amyloxybenzoic acid, aminobenzoic acid, acetylbenzoic acid, acetoxybenzoic acid, naphthalenecarboxylic acid, naphthalenedicarboxylic acid, anthracenecarboxylic acid, anthracenedica Bon acid, anthraquinone carboxylic acid, anthraquinone dicarboxylic acid, pyrene carboxylic acid, Pi dicarboxylic acid, p- toluenesulfonic acid, and trifluoromethanesulfonic acid.
Aliphatic carboxylic acid: acetic acid, trifluoroacetic acid, valeric acid, undecanoic acid, tridecanoic acid, tricosanoic acid, stearic acid, propionic acid, pentadecanoic acid, pentacosanoic acid, palmitic acid, nonanoic acid, nonadecanoic acid, nonacosanoic acid, octanoic acid, Octacosanoic acid, heptacosanoic acid, heneicosanoic acid, myristic acid, melicic acid, ligrinoceric acid, lauric acid, hexanoic acid, heptanoic acid, heptadecanoic acid, decanoic acid, serotic acid, butyric acid, behenic acid, arachidic acid, oleic acid, linolenic acid, Linoleic acid, erucic acid, elaidic acid, arachidonic acid, etc.
Amino acids: L-valine, L-tryptophan, L-serine, L-proline, L-phenylalanine, L-ornithine, L-leucine, L-isoleucine, L-histidine, L-glutamine, L-cysteine, L-asparagine, L-alanine, L-tyrosine, L-threonine, L-lysine, L-arginine, L-glycine and those whose nitrogen atoms are acetyl protected, butoxycarbonyl protected, carbobenzoxy protected, etc., or these D Body, racemic body, etc.
無機酸:塩酸、硫酸、リン酸、臭化水素酸等。
芳香族カルボン酸:安息香酸、トリメリット酸、トリメシン酸、ピロメリット酸、ベンゼンペンタカルボン酸、メリット酸、アニス酸、トルイル酸、プロピル安息香酸、プロポキシ安息香酸、ヒドロキシ安息香酸、n-オクチル安息香酸、n-オクチルオキシ安息香酸、ヘキシル安息香酸、ヘキシルオキシ安息香酸、ヘプチル安息香酸、ヘプチルオキシ安息香酸、エチル安息香酸、エトキシ安息香酸、n-ブチル安息香酸、sec-ブチル安息香酸、tert-ブチル安息香酸、ブトキシ安息香酸、ブロモ安息香酸、ベンジルオキシ安息香酸、アミル安息香酸、アミルオキシ安息香酸、アミノ安息香酸、アセチル安息香酸、アセトキシ安息香酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、アントラセンカルボン酸、アントラセンジカルボン酸、アントラキノンカルボン酸、アントラキノンジカルボン酸、ピレンカルボン酸、ピレンジカルボン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等。
脂肪族カルボン酸:酢酸、トリフルオロ酢酸、吉草酸、ウンデカン酸、トリデカン酸、トリコサン酸、ステアリン酸、プロピオン酸、ペンタデカン酸、ペンタコサン酸、パルミチン酸、ノナン酸、ノナデカン酸、ノナコサン酸、オクタン酸、オクタコサン酸、ヘプタコサン酸、ヘンエイコサン酸、ミリスチン酸、メリシン酸、リグリノセリン酸、ラウリン酸、ヘキサン酸、ヘプタン酸、ヘプタデカン酸、デカン酸、セロチン酸、酪酸、ベヘン酸、アラキジン酸、オレイン酸、リノレン酸、リノール酸、エルカ酸、エライジン酸、アラキドン酸等。
アミノ酸:L-バリン、L-トリプトファン、L-セリン、L-プロリン、L-フェニルアラニン、L-オルニチン、L-ロイシン、L-イソロイシン、L-ヒスチジン、L-グルタミン、L-システイン、L-アスパラギン、L-アラニン、L-チロシン、L-トレオニン、L-リシン、L-アルギニン、L-グリシン及びこれらアミノ酸の窒素原子がアセチル保護、ブトキシカルボニル保護、カルボベンゾキシ保護されたもの等、又はこれらのD体、ラセミ体等。 The following can be mentioned as an acid which can be used here.
Inorganic acids: hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, etc.
Aromatic carboxylic acids: benzoic acid, trimellitic acid, trimesic acid, pyromellitic acid, benzenepentacarboxylic acid, merit acid, anisic acid, toluic acid, propylbenzoic acid, propoxybenzoic acid, hydroxybenzoic acid, n-octylbenzoic acid N-octyloxybenzoic acid, hexylbenzoic acid, hexyloxybenzoic acid, heptylbenzoic acid, heptyloxybenzoic acid, ethylbenzoic acid, ethoxybenzoic acid, n-butylbenzoic acid, sec-butylbenzoic acid, tert-butylbenzoic acid Acid, butoxybenzoic acid, bromobenzoic acid, benzyloxybenzoic acid, amylbenzoic acid, amyloxybenzoic acid, aminobenzoic acid, acetylbenzoic acid, acetoxybenzoic acid, naphthalenecarboxylic acid, naphthalenedicarboxylic acid, anthracenecarboxylic acid, anthracenedica Bon acid, anthraquinone carboxylic acid, anthraquinone dicarboxylic acid, pyrene carboxylic acid, Pi dicarboxylic acid, p- toluenesulfonic acid, and trifluoromethanesulfonic acid.
Aliphatic carboxylic acid: acetic acid, trifluoroacetic acid, valeric acid, undecanoic acid, tridecanoic acid, tricosanoic acid, stearic acid, propionic acid, pentadecanoic acid, pentacosanoic acid, palmitic acid, nonanoic acid, nonadecanoic acid, nonacosanoic acid, octanoic acid, Octacosanoic acid, heptacosanoic acid, heneicosanoic acid, myristic acid, melicic acid, ligrinoceric acid, lauric acid, hexanoic acid, heptanoic acid, heptadecanoic acid, decanoic acid, serotic acid, butyric acid, behenic acid, arachidic acid, oleic acid, linolenic acid, Linoleic acid, erucic acid, elaidic acid, arachidonic acid, etc.
Amino acids: L-valine, L-tryptophan, L-serine, L-proline, L-phenylalanine, L-ornithine, L-leucine, L-isoleucine, L-histidine, L-glutamine, L-cysteine, L-asparagine, L-alanine, L-tyrosine, L-threonine, L-lysine, L-arginine, L-glycine and those whose nitrogen atoms are acetyl protected, butoxycarbonyl protected, carbobenzoxy protected, etc., or these D Body, racemic body, etc.
上記酸の中でも、芳香族カルボン酸群が好ましく、最も好ましくは安息香酸である。
Among the above acids, the aromatic carboxylic acid group is preferable, and benzoic acid is most preferable.
酸存在下で重合させた場合、重合反応終了後に塩基で中和させることが好ましく、このとき用いられる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物などが挙げられる。
When the polymerization is carried out in the presence of an acid, it is preferable to neutralize with a base after completion of the polymerization reaction. Examples of the base used at this time include alkali metal water such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide. An oxide etc. are mentioned.
重合反応の終了後、得られた高分岐ポリマーを任意の方法で回収し、必要に応じて洗浄等の後処理を行う。反応溶液から高分子を回収する方法としては、再沈殿等の方法が挙げられる。
After completion of the polymerization reaction, the obtained hyperbranched polymer is collected by an arbitrary method, and post-treatment such as washing is performed as necessary. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
得られた高分岐ポリマーの1次粒子の平均粒子径は、好ましくは1nm以上100nm以下、さらに好ましくは5nm以上50nm以下である。
The average particle size of the primary particles of the obtained hyperbranched polymer is preferably 1 nm to 100 nm, more preferably 5 nm to 50 nm.
本発明に係るCNT含有組成物(CNT組成物)は、前記CNT分散剤(高分岐ポリマー)とCNTとを含んでなる。
CNTは通常、アーク放電法、化学気相成長法(以下、CVD法という。)、レーザー・アブレーション法等によって作製され、ここで使用されるCNTは何れの方法によって得られたものであってもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTと記載。)と、2枚のグラフェン・シートが同心円状に巻かれた二層CNT(以下、DWCNTと記載。)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(以下、MWCNTと記載。)とがある。本発明のCNT組成物においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、又は複数を組み合わせて使用できる。 The CNT-containing composition (CNT composition) according to the present invention comprises the CNT dispersant (highly branched polymer) and CNT.
CNTs are usually produced by arc discharge method, chemical vapor deposition method (hereinafter referred to as CVD method), laser ablation method, etc., and CNTs used here can be obtained by any method. Good. In addition, a single-walled CNT (hereinafter referred to as SWCNT) in which a single carbon film (graphene sheet) is wound in a cylindrical shape and a two-layered structure in which two graphene sheets are wound concentrically. There are CNT (hereinafter referred to as DWCNT) and multilayer CNT (hereinafter referred to as MWCNT) in which a plurality of graphene sheets are concentrically wound. In the CNT composition of the present invention, SWCNT, DWCNT, and MWCNT can be used alone or in combination.
CNTは通常、アーク放電法、化学気相成長法(以下、CVD法という。)、レーザー・アブレーション法等によって作製され、ここで使用されるCNTは何れの方法によって得られたものであってもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTと記載。)と、2枚のグラフェン・シートが同心円状に巻かれた二層CNT(以下、DWCNTと記載。)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(以下、MWCNTと記載。)とがある。本発明のCNT組成物においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、又は複数を組み合わせて使用できる。 The CNT-containing composition (CNT composition) according to the present invention comprises the CNT dispersant (highly branched polymer) and CNT.
CNTs are usually produced by arc discharge method, chemical vapor deposition method (hereinafter referred to as CVD method), laser ablation method, etc., and CNTs used here can be obtained by any method. Good. In addition, a single-walled CNT (hereinafter referred to as SWCNT) in which a single carbon film (graphene sheet) is wound in a cylindrical shape and a two-layered structure in which two graphene sheets are wound concentrically. There are CNT (hereinafter referred to as DWCNT) and multilayer CNT (hereinafter referred to as MWCNT) in which a plurality of graphene sheets are concentrically wound. In the CNT composition of the present invention, SWCNT, DWCNT, and MWCNT can be used alone or in combination.
上記の方法でSWCNT、DWCNT、MWCNTを作製する際には、同時にフラーレンやグラファイト、非晶性炭素が副生産物として生成され、またニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存するので、これらの不純物の除去、精製を必要とする場合がある。不純物の除去には、硝酸、硫酸などによる酸処理とともに、超音波処理が有効である。しかし、硝酸、硫酸などによる酸処理ではCNTを構成するπ共役系が破壊され、CNT本来の特性が損なわれてしまう可能性があるため、適切な条件下で精製して使用することが望ましい。
When producing SWCNT, DWCNT, and MWCNT by the above method, fullerene, graphite, and amorphous carbon are simultaneously generated as by-products, and catalyst metals such as nickel, iron, cobalt, and yttrium remain. It may be necessary to remove and purify these impurities. In order to remove impurities, ultrasonic treatment is effective together with acid treatment with nitric acid, sulfuric acid and the like. However, acid treatment with nitric acid, sulfuric acid or the like destroys the π-conjugated system constituting CNT and may impair the original properties of CNT. Therefore, it is desirable to purify and use under appropriate conditions.
CNTはグラフェン・シートの巻き方(螺旋度、カイラリティー)により電気特性が金属的なものから半導体的なものまで変化する。
CNTのカイラリティーは図11に示されるカイラルベクトル(R=na1+ma2、ただしm、nは整数)により規定され、n=m及びn-m=3p(ただしpは整数)の場合には金属的性質、それ以外の場合(n≠m、n-m≠3p)には半導体性質をそれぞれ示すことが知られている。このため、特にSWCNTを使用する場合は、ある種のカイラリティーを選択的に分散した組成物とすることが重要である。
本発明の高分岐ポリマーを、CNTの分散剤として使用することで、ある特定のカイラリティーを有するCNTを、選択的に分散させた組成物が得られる可能性がある。 The electrical characteristics of CNTs vary from metallic to semiconducting depending on how the graphene sheet is wound (helicality, chirality).
The chirality of CNT is defined by the chiral vector shown in FIG. 11 (R = na 1 + ma 2 , where m and n are integers). In the case of n = m and nm = 3p (where p is an integer) It is known that the metallic properties and the semiconductor properties are shown in other cases (n ≠ m, nm−3 ≠ 3p). For this reason, particularly when SWCNT is used, it is important to obtain a composition in which a certain kind of chirality is selectively dispersed.
By using the hyperbranched polymer of the present invention as a CNT dispersant, there is a possibility that a composition in which CNTs having a specific chirality are selectively dispersed is obtained.
CNTのカイラリティーは図11に示されるカイラルベクトル(R=na1+ma2、ただしm、nは整数)により規定され、n=m及びn-m=3p(ただしpは整数)の場合には金属的性質、それ以外の場合(n≠m、n-m≠3p)には半導体性質をそれぞれ示すことが知られている。このため、特にSWCNTを使用する場合は、ある種のカイラリティーを選択的に分散した組成物とすることが重要である。
本発明の高分岐ポリマーを、CNTの分散剤として使用することで、ある特定のカイラリティーを有するCNTを、選択的に分散させた組成物が得られる可能性がある。 The electrical characteristics of CNTs vary from metallic to semiconducting depending on how the graphene sheet is wound (helicality, chirality).
The chirality of CNT is defined by the chiral vector shown in FIG. 11 (R = na 1 + ma 2 , where m and n are integers). In the case of n = m and nm = 3p (where p is an integer) It is known that the metallic properties and the semiconductor properties are shown in other cases (n ≠ m, nm−3 ≠ 3p). For this reason, particularly when SWCNT is used, it is important to obtain a composition in which a certain kind of chirality is selectively dispersed.
By using the hyperbranched polymer of the present invention as a CNT dispersant, there is a possibility that a composition in which CNTs having a specific chirality are selectively dispersed is obtained.
本発明のCNT組成物は、さらに上記分散剤(高分岐ポリマー)の溶解能を有する有機溶媒を含んでいてもよい。
このような有機溶媒としては、例えば、テトラヒドロフラン(THF)、ジエチルエーテル、ジメトキシエタン(DME)などのエーテル系化合物、塩化メチレン、クロロホルムなどのハロゲン化炭化水素、N,N’-ジメチルホルムアミド(DMF)、N,N’-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)などのアミド系化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系化合物、メタノール、エタノール、イソプロパノール、プロパノールなどのアルコール類、n-ヘプタン、n-ヘキサン、シクロヘキサンなどの脂肪族炭化水素類、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類等が挙げられ、これら有機溶媒は、一種単独で又は二種以上混合して用いることができる。
特に、CNTの孤立溶解の割合を向上させ得るという点から、NMP、メタノール、イソプロパノールが好ましい。さらに組成物の成膜性をも向上し得るための添加剤として、エチルセロソルブ、ブチルセロソルブなどのセロソルブ類の溶媒を、少量含むことが望ましい。 The CNT composition of the present invention may further contain an organic solvent capable of dissolving the dispersant (highly branched polymer).
Examples of such organic solvents include ether compounds such as tetrahydrofuran (THF), diethyl ether and dimethoxyethane (DME), halogenated hydrocarbons such as methylene chloride and chloroform, N, N′-dimethylformamide (DMF). Amide compounds such as N, N′-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP), ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methanol, ethanol, isopropanol, propanol Alcohols such as n-heptane, n-hexane and cyclohexane, and aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene. These organic solvents are used alone. Or it can be used as a mixture of two or more thereof.
In particular, NMP, methanol, and isopropanol are preferable because the ratio of isolated dissolution of CNT can be improved. Furthermore, it is desirable to contain a small amount of a cellosolve solvent such as ethyl cellosolve or butyl cellosolve as an additive for improving the film formability of the composition.
このような有機溶媒としては、例えば、テトラヒドロフラン(THF)、ジエチルエーテル、ジメトキシエタン(DME)などのエーテル系化合物、塩化メチレン、クロロホルムなどのハロゲン化炭化水素、N,N’-ジメチルホルムアミド(DMF)、N,N’-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)などのアミド系化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系化合物、メタノール、エタノール、イソプロパノール、プロパノールなどのアルコール類、n-ヘプタン、n-ヘキサン、シクロヘキサンなどの脂肪族炭化水素類、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類等が挙げられ、これら有機溶媒は、一種単独で又は二種以上混合して用いることができる。
特に、CNTの孤立溶解の割合を向上させ得るという点から、NMP、メタノール、イソプロパノールが好ましい。さらに組成物の成膜性をも向上し得るための添加剤として、エチルセロソルブ、ブチルセロソルブなどのセロソルブ類の溶媒を、少量含むことが望ましい。 The CNT composition of the present invention may further contain an organic solvent capable of dissolving the dispersant (highly branched polymer).
Examples of such organic solvents include ether compounds such as tetrahydrofuran (THF), diethyl ether and dimethoxyethane (DME), halogenated hydrocarbons such as methylene chloride and chloroform, N, N′-dimethylformamide (DMF). Amide compounds such as N, N′-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP), ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methanol, ethanol, isopropanol, propanol Alcohols such as n-heptane, n-hexane and cyclohexane, and aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene. These organic solvents are used alone. Or it can be used as a mixture of two or more thereof.
In particular, NMP, methanol, and isopropanol are preferable because the ratio of isolated dissolution of CNT can be improved. Furthermore, it is desirable to contain a small amount of a cellosolve solvent such as ethyl cellosolve or butyl cellosolve as an additive for improving the film formability of the composition.
本発明のCNT組成物の調製法は任意であり、分散剤が液状の場合には、当該分散剤とCNTとを適宜混合し、分散剤が固体の場合には、これを溶融させた後、CNTと混合して調製することができる。
また、有機溶媒を用いる場合には、分散剤、CNT、有機溶媒を任意の順序で混合して組成物を調製すればよく、例えばこれらを一緒に混合してもよいし、或いは、分散剤を有機溶媒に溶解した溶液中に、CNTを添加して混合してもよい。
この際、分散剤、CNT及び有機溶媒からなる混合物を分散処理することが好ましく、この処理により、CNTの孤立分散の割合をより向上させることができる。分散処理としては、機械的処理としてのボールミル、ビーズミル、ジェットミルなどを用いた湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられるが、処理効率を考慮すると、超音波処理が好適である。
分散処理の時間は任意であるが、5分間から10時間程度が好ましく、10分間から5時間程度がより好ましい。 The method for preparing the CNT composition of the present invention is arbitrary. When the dispersant is in a liquid state, the dispersant and CNT are mixed as appropriate, and when the dispersant is a solid, after melting it, It can be prepared by mixing with CNT.
When an organic solvent is used, a composition may be prepared by mixing a dispersant, CNT, and an organic solvent in an arbitrary order. For example, these may be mixed together, or a dispersant may be used. CNTs may be added and mixed in a solution dissolved in an organic solvent.
At this time, it is preferable to disperse a mixture composed of a dispersant, CNTs, and an organic solvent, and this treatment can further improve the ratio of isolated dispersion of CNTs. Examples of dispersion processing include wet processing using a ball mill, bead mill, jet mill, etc. as mechanical processing, and ultrasonic processing using a bath type or probe type sonicator. However, in consideration of processing efficiency, ultrasonic processing is performed. Is preferred.
The time for the dispersion treatment is arbitrary, but is preferably about 5 minutes to 10 hours, more preferably about 10 minutes to 5 hours.
また、有機溶媒を用いる場合には、分散剤、CNT、有機溶媒を任意の順序で混合して組成物を調製すればよく、例えばこれらを一緒に混合してもよいし、或いは、分散剤を有機溶媒に溶解した溶液中に、CNTを添加して混合してもよい。
この際、分散剤、CNT及び有機溶媒からなる混合物を分散処理することが好ましく、この処理により、CNTの孤立分散の割合をより向上させることができる。分散処理としては、機械的処理としてのボールミル、ビーズミル、ジェットミルなどを用いた湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられるが、処理効率を考慮すると、超音波処理が好適である。
分散処理の時間は任意であるが、5分間から10時間程度が好ましく、10分間から5時間程度がより好ましい。 The method for preparing the CNT composition of the present invention is arbitrary. When the dispersant is in a liquid state, the dispersant and CNT are mixed as appropriate, and when the dispersant is a solid, after melting it, It can be prepared by mixing with CNT.
When an organic solvent is used, a composition may be prepared by mixing a dispersant, CNT, and an organic solvent in an arbitrary order. For example, these may be mixed together, or a dispersant may be used. CNTs may be added and mixed in a solution dissolved in an organic solvent.
At this time, it is preferable to disperse a mixture composed of a dispersant, CNTs, and an organic solvent, and this treatment can further improve the ratio of isolated dispersion of CNTs. Examples of dispersion processing include wet processing using a ball mill, bead mill, jet mill, etc. as mechanical processing, and ultrasonic processing using a bath type or probe type sonicator. However, in consideration of processing efficiency, ultrasonic processing is performed. Is preferred.
The time for the dispersion treatment is arbitrary, but is preferably about 5 minutes to 10 hours, more preferably about 10 minutes to 5 hours.
本発明のCNT組成物における、分散剤とCNTとの混合比率は、質量比で1,000:1乃至1:100程度とすることができる。
また、有機溶媒を使用した組成物中における分散剤の濃度は、CNTを有機溶媒に分散させ得る濃度であれば特に限定されるものではないが、本発明においては、組成物中に0.001乃至30質量%程度とすることが好ましく、0.005乃至20質量%程度とすることがより好ましい。
また、この組成物中におけるCNTの濃度は、少なくともCNTの一部が孤立分散する限りにおいて任意であるが、本発明においては、組成物中に0.0001乃至20質量%程度とすることが好ましく、0.001乃至10質量%程度とすることがより好ましい。
以上のようにして調製されたCNT組成物中では、分散剤がCNTの表面に付着して複合体を形成しているものと推測される。 The mixing ratio of the dispersant and the CNT in the CNT composition of the present invention can be about 1,000: 1 to 1: 100 by mass ratio.
Further, the concentration of the dispersant in the composition using the organic solvent is not particularly limited as long as it is a concentration capable of dispersing CNTs in the organic solvent, but in the present invention, 0.001 in the composition. It is preferable to set it as about thru | or 30 mass%, and it is more preferable to set it as about 0.005 thru | or 20 mass%.
Further, the concentration of CNTs in the composition is arbitrary as long as at least a part of the CNTs is isolated and dispersed, but in the present invention, it is preferable to set the concentration to about 0.0001 to 20% by mass in the composition. More preferably, the content is about 0.001 to 10% by mass.
In the CNT composition prepared as described above, it is presumed that the dispersant adheres to the surface of the CNT to form a composite.
また、有機溶媒を使用した組成物中における分散剤の濃度は、CNTを有機溶媒に分散させ得る濃度であれば特に限定されるものではないが、本発明においては、組成物中に0.001乃至30質量%程度とすることが好ましく、0.005乃至20質量%程度とすることがより好ましい。
また、この組成物中におけるCNTの濃度は、少なくともCNTの一部が孤立分散する限りにおいて任意であるが、本発明においては、組成物中に0.0001乃至20質量%程度とすることが好ましく、0.001乃至10質量%程度とすることがより好ましい。
以上のようにして調製されたCNT組成物中では、分散剤がCNTの表面に付着して複合体を形成しているものと推測される。 The mixing ratio of the dispersant and the CNT in the CNT composition of the present invention can be about 1,000: 1 to 1: 100 by mass ratio.
Further, the concentration of the dispersant in the composition using the organic solvent is not particularly limited as long as it is a concentration capable of dispersing CNTs in the organic solvent, but in the present invention, 0.001 in the composition. It is preferable to set it as about thru | or 30 mass%, and it is more preferable to set it as about 0.005 thru | or 20 mass%.
Further, the concentration of CNTs in the composition is arbitrary as long as at least a part of the CNTs is isolated and dispersed, but in the present invention, it is preferable to set the concentration to about 0.0001 to 20% by mass in the composition. More preferably, the content is about 0.001 to 10% by mass.
In the CNT composition prepared as described above, it is presumed that the dispersant adheres to the surface of the CNT to form a composite.
本発明のCNT組成物は、前記有機溶媒に可溶な汎用合成樹脂と混合して複合化させたものでも良い。汎用合成樹脂の例としては、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)などのポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)などのポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;PMMA(ポリメチルメタクリレート)などの(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペートなどのポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂、並びに、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の熱硬化性樹脂が挙げられる。
The CNT composition of the present invention may be mixed with a general-purpose synthetic resin that is soluble in the organic solvent and combined. Examples of general-purpose synthetic resins include polyolefin resins such as PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer); PS (polystyrene) , Polystyrene resins such as HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer); polycarbonate resin; Polyvinyl resin; Polyamide resin; (Meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate , PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate / adipate and other polyester resins; polyphenylene ether resin; modified polyphenylene ether resin; polyacetal resin; polysulfone resin; Polyvinyl alcohol resin; polyglycolic acid; modified starch; cellulose acetate, cellulose triacetate; chitin, chitosan; thermoplastic resin such as lignin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy Examples thereof include thermosetting resins such as resins.
また、本発明のCNT組成物は、前記有機溶媒に可溶な熱硬化性化合物と混合して複合化させたものでも良い。
好ましい上記熱硬化性化合物としては多官能エポキシ化合物が挙げられる。なお、本明細書における熱硬化性化合物の意味するところは、狭義の単量体化合物(モノマー)だけでなく、二量体、三量体、オリゴマーや反応性高分子をも包含するものである。
前記多官能エポキシ化合物としては、分子内にエポキシ基を2個以上含有するものであれば良く、特に制限されるものではないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ダイマー酸グリシジルエステル型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、複素環含有エポキシ樹脂、ジグリシジルエポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、等が好適に使用され、1種以上が混合して用いられる。
なお、本発明のCNT組成物は、熱硬化性化合物とともに、分子中に1個のエポキシ基を含む化合物を反応性希釈剤として含んでも良い。
本発明のCNT組成物における多官能エポキシ化合物の含量は、前記分散剤の1質量部に対し、好ましくは0.1乃至100質量部、さらに好ましくは1乃至10質量部である。 Further, the CNT composition of the present invention may be mixed with a thermosetting compound that is soluble in the organic solvent and combined.
Preferred examples of the thermosetting compound include polyfunctional epoxy compounds. In addition, the meaning of the thermosetting compound in this specification includes not only a monomer compound (monomer) in a narrow sense but also a dimer, a trimer, an oligomer, and a reactive polymer. .
The polyfunctional epoxy compound is not particularly limited as long as it contains two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type Epoxy resin, dimer acid glycidyl ester type epoxy resin, polyalkylene ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, naphthol type epoxy resin, naphthalene type An epoxy resin, an alicyclic epoxy resin, a heterocyclic ring-containing epoxy resin, a diglycidyl epoxy resin, a glycidylamine type epoxy resin, a halogenated bisphenol A type epoxy resin, and the like are preferably used. Mixed and used in.
In addition, the CNT composition of this invention may contain the compound containing one epoxy group in a molecule | numerator as a reactive diluent with a thermosetting compound.
The content of the polyfunctional epoxy compound in the CNT composition of the present invention is preferably 0.1 to 100 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the dispersant.
好ましい上記熱硬化性化合物としては多官能エポキシ化合物が挙げられる。なお、本明細書における熱硬化性化合物の意味するところは、狭義の単量体化合物(モノマー)だけでなく、二量体、三量体、オリゴマーや反応性高分子をも包含するものである。
前記多官能エポキシ化合物としては、分子内にエポキシ基を2個以上含有するものであれば良く、特に制限されるものではないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ダイマー酸グリシジルエステル型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、複素環含有エポキシ樹脂、ジグリシジルエポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、等が好適に使用され、1種以上が混合して用いられる。
なお、本発明のCNT組成物は、熱硬化性化合物とともに、分子中に1個のエポキシ基を含む化合物を反応性希釈剤として含んでも良い。
本発明のCNT組成物における多官能エポキシ化合物の含量は、前記分散剤の1質量部に対し、好ましくは0.1乃至100質量部、さらに好ましくは1乃至10質量部である。 Further, the CNT composition of the present invention may be mixed with a thermosetting compound that is soluble in the organic solvent and combined.
Preferred examples of the thermosetting compound include polyfunctional epoxy compounds. In addition, the meaning of the thermosetting compound in this specification includes not only a monomer compound (monomer) in a narrow sense but also a dimer, a trimer, an oligomer, and a reactive polymer. .
The polyfunctional epoxy compound is not particularly limited as long as it contains two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type Epoxy resin, dimer acid glycidyl ester type epoxy resin, polyalkylene ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, naphthol type epoxy resin, naphthalene type An epoxy resin, an alicyclic epoxy resin, a heterocyclic ring-containing epoxy resin, a diglycidyl epoxy resin, a glycidylamine type epoxy resin, a halogenated bisphenol A type epoxy resin, and the like are preferably used. Mixed and used in.
In addition, the CNT composition of this invention may contain the compound containing one epoxy group in a molecule | numerator as a reactive diluent with a thermosetting compound.
The content of the polyfunctional epoxy compound in the CNT composition of the present invention is preferably 0.1 to 100 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the dispersant.
本発明のCNT組成物(溶液)は、PET、ガラス、ITOなどの適当な基板上にキャスト法、スピンコート法、バーコート法、ロールコート法、ディップコート法などの適宜な方法により、塗布して薄膜を成膜することが可能である。
得られた薄膜は、CNTの金属的性質を活かした帯電防止膜、透明電極等の導電性材料、あるいは半導体的性質を活かした光電変換素子及び電界発光素子等に好適に用いることができる。 The CNT composition (solution) of the present invention is applied on an appropriate substrate such as PET, glass, ITO, or the like by an appropriate method such as a casting method, a spin coating method, a bar coating method, a roll coating method, or a dip coating method. Thus, a thin film can be formed.
The obtained thin film can be suitably used for an antistatic film utilizing the metallic properties of CNT, a conductive material such as a transparent electrode, or a photoelectric conversion element and an electroluminescent device utilizing semiconductor properties.
得られた薄膜は、CNTの金属的性質を活かした帯電防止膜、透明電極等の導電性材料、あるいは半導体的性質を活かした光電変換素子及び電界発光素子等に好適に用いることができる。 The CNT composition (solution) of the present invention is applied on an appropriate substrate such as PET, glass, ITO, or the like by an appropriate method such as a casting method, a spin coating method, a bar coating method, a roll coating method, or a dip coating method. Thus, a thin film can be formed.
The obtained thin film can be suitably used for an antistatic film utilizing the metallic properties of CNT, a conductive material such as a transparent electrode, or a photoelectric conversion element and an electroluminescent device utilizing semiconductor properties.
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)GPC(ゲル浸透クロマトグラフィー)
装置:昭和電工(株)製 GPC-101
カラム:昭和電工(株)製 LF-804×3
カラム温度:60℃
溶媒:20mM LiBr添加NMP
流量:0.6mL/分
検出器:UV(280nm)
(2)1H NMRスペクトル及び13C NMRスペクトル
装置:日本電子データム(株)製 JNM-ECA700
溶媒:CDCl3
内部標準:テトラメチルシラン
(3)動的光散乱光度計(粒径測定)
装置:大塚電子(株)製 FDLS-3000
(4)ホットプレート(プリベーク、ポストベーク)
装置:アズワン(株)製 MH-180CS、MH-3CS
(5)プローブ型超音波照射装置(分散処理)
装置:Hielscher Ultrasonics社製 UIP1000
(6)超音波洗浄器(分散処理)
装置:東京硝子器械(株)製 FU-6H
(7)抵抗率計(表面抵抗測定)
装置:三菱化学(株)製 ロレスタ-GP
プローブ:三菱化学(株)製 直列4探針プローブ ASP(探針間距離:5mm)
(8)ヘイズメーター(全光透過率測定)
装置:日本電色工業(株)製 NDH5000
(9)小型高速冷却遠心機(遠心分離)
装置:(株)トミー精工製 SRX-201
(10)紫外・可視・近赤外分光光度計(吸光度測定)
装置:(株)島津製作所製 UV-3600
測定波長:400~1650nm EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1) GPC (gel permeation chromatography)
Equipment: GPC-101, Showa Denko Co., Ltd.
Column: Showa Denko LF-804 × 3
Column temperature: 60 ° C
Solvent: NMP with 20 mM LiBr added
Flow rate: 0.6 mL / min Detector: UV (280 nm)
(2) 1 H NMR spectrum and 13 C NMR spectrum Apparatus: JNM-ECA700 manufactured by JEOL Datum Co., Ltd.
Solvent: CDCl 3
Internal standard: Tetramethylsilane (3) Dynamic light scattering photometer (particle size measurement)
Equipment: FDLS-3000 manufactured by Otsuka Electronics Co., Ltd.
(4) Hot plate (pre-bake, post-bake)
Equipment: MH-180CS, MH-3CS, manufactured by AS ONE
(5) Probe-type ultrasonic irradiation device (dispersion processing)
Apparatus: UIP1000 manufactured by Hielscher Ultrasonics
(6) Ultrasonic cleaner (dispersion processing)
Equipment: FU-6H manufactured by Tokyo Glass Instrument Co., Ltd.
(7) Resistivity meter (surface resistance measurement)
Equipment: Loresta-GP, manufactured by Mitsubishi Chemical Corporation
Probe: In-line 4-probe probe ASP manufactured by Mitsubishi Chemical Corporation (distance between probes: 5 mm)
(8) Haze meter (total light transmittance measurement)
Device: NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd.
(9) Small high-speed cooling centrifuge (centrifugation)
Equipment: SRX-201, manufactured by Tommy Seiko Co., Ltd.
(10) Ultraviolet / visible / near infrared spectrophotometer (absorbance measurement)
Apparatus: UV-3600 manufactured by Shimadzu Corporation
Measurement wavelength: 400-1650nm
なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)GPC(ゲル浸透クロマトグラフィー)
装置:昭和電工(株)製 GPC-101
カラム:昭和電工(株)製 LF-804×3
カラム温度:60℃
溶媒:20mM LiBr添加NMP
流量:0.6mL/分
検出器:UV(280nm)
(2)1H NMRスペクトル及び13C NMRスペクトル
装置:日本電子データム(株)製 JNM-ECA700
溶媒:CDCl3
内部標準:テトラメチルシラン
(3)動的光散乱光度計(粒径測定)
装置:大塚電子(株)製 FDLS-3000
(4)ホットプレート(プリベーク、ポストベーク)
装置:アズワン(株)製 MH-180CS、MH-3CS
(5)プローブ型超音波照射装置(分散処理)
装置:Hielscher Ultrasonics社製 UIP1000
(6)超音波洗浄器(分散処理)
装置:東京硝子器械(株)製 FU-6H
(7)抵抗率計(表面抵抗測定)
装置:三菱化学(株)製 ロレスタ-GP
プローブ:三菱化学(株)製 直列4探針プローブ ASP(探針間距離:5mm)
(8)ヘイズメーター(全光透過率測定)
装置:日本電色工業(株)製 NDH5000
(9)小型高速冷却遠心機(遠心分離)
装置:(株)トミー精工製 SRX-201
(10)紫外・可視・近赤外分光光度計(吸光度測定)
装置:(株)島津製作所製 UV-3600
測定波長:400~1650nm EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1) GPC (gel permeation chromatography)
Equipment: GPC-101, Showa Denko Co., Ltd.
Column: Showa Denko LF-804 × 3
Column temperature: 60 ° C
Solvent: NMP with 20 mM LiBr added
Flow rate: 0.6 mL / min Detector: UV (280 nm)
(2) 1 H NMR spectrum and 13 C NMR spectrum Apparatus: JNM-ECA700 manufactured by JEOL Datum Co., Ltd.
Solvent: CDCl 3
Internal standard: Tetramethylsilane (3) Dynamic light scattering photometer (particle size measurement)
Equipment: FDLS-3000 manufactured by Otsuka Electronics Co., Ltd.
(4) Hot plate (pre-bake, post-bake)
Equipment: MH-180CS, MH-3CS, manufactured by AS ONE
(5) Probe-type ultrasonic irradiation device (dispersion processing)
Apparatus: UIP1000 manufactured by Hielscher Ultrasonics
(6) Ultrasonic cleaner (dispersion processing)
Equipment: FU-6H manufactured by Tokyo Glass Instrument Co., Ltd.
(7) Resistivity meter (surface resistance measurement)
Equipment: Loresta-GP, manufactured by Mitsubishi Chemical Corporation
Probe: In-line 4-probe probe ASP manufactured by Mitsubishi Chemical Corporation (distance between probes: 5 mm)
(8) Haze meter (total light transmittance measurement)
Device: NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd.
(9) Small high-speed cooling centrifuge (centrifugation)
Equipment: SRX-201, manufactured by Tommy Seiko Co., Ltd.
(10) Ultraviolet / visible / near infrared spectrophotometer (absorbance measurement)
Apparatus: UV-3600 manufactured by Shimadzu Corporation
Measurement wavelength: 400-1650nm
また、略記号は以下の意味を表す。
DVB:ジビニルベンゼン(新日鐵化学(株)製 DVB-960)
B-1:2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](和光純薬工業(株)製 VA-061)
B-2:2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチル-プロパン)ジハイドロクロリド(和光純薬工業(株)製 VA-067)
MAIB:2,2’-アゾビスイソ酪酸ジメチル(大塚化学(株)製 MAIB)
EPL:エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(ダイセル化学工業(株)製 エポリードGT401)
JER:エポキシ樹脂(ジャパンエポキシレジン(株)製 jER(登録商標)828)
CNT-1:未精製MWCNT(CNT社製 “C Tube 100” 外径10~30nm)
CNT-2:細径MWCNT(Cheap Tubes社製 “MWNTs>95wt%/外径<8nm”)
CNT-3:未精製SWCNT(Carbon Nanotechnologies社製 HiPco)
CNT-4:中径MWCNT(Bayer社製 “Baytubes C 150 P” 外径5~20nm)
CNT-5:中径MWCNT(CNano Technology社製 “FloTube 9000” 外径11nm)
CNT-6:中径MWCNT(昭和電工(株)製 “VGCF-X” 外径15nm)
CNT-7:太径MWCNT(Cheap Tubes社製 “MWCNTs>95wt%/20-40nm” 外径20~40nm)
CNT-8:極太径MWCNT(Cheap Tubes社製 “MWCNTs>95wt%/>50nm”)
PVP:ポリビニルピロリドン(東京化成工業(株)製 K15)
DMF:N,N’-ジメチルホルムアミド
EG:エチレングリコール
NMP:N-メチル-2-ピロリドン
THF:テトラヒドロフラン
DMSO:ジメチルスルホキシド
IPA:2-プロパノール
PGME:プロピレングリコールモノメチルエーテル Abbreviations represent the following meanings.
DVB: Divinylbenzene (DVB-960, manufactured by Nippon Steel Chemical Co., Ltd.)
B-1: 2,2′-azobis [2- (2-imidazolin-2-yl) propane] (VA-061 manufactured by Wako Pure Chemical Industries, Ltd.)
B-2: 2,2′-azobis (1-imino-1-pyrrolidino-2-methyl-propane) dihydrochloride (VA-067 manufactured by Wako Pure Chemical Industries, Ltd.)
MAIB: Dimethyl 2,2′-azobisisobutyrate (MAIB manufactured by Otsuka Chemical Co., Ltd.)
EPL: Epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) -modified ε-caprolactone (Epolyde GT401 manufactured by Daicel Chemical Industries, Ltd.)
JER: Epoxy resin (Japan Epoxy Resin Co., Ltd. jER (registered trademark) 828)
CNT-1: Unrefined MWCNT (“C Tube 100” manufactured by CNT, outer diameter 10-30 nm)
CNT-2: Fine MWCNT (Cheap Tubes “MWNTs> 95 wt% / outer diameter <8 nm”)
CNT-3: Unpurified SWCNT (HiPco manufactured by Carbon Nanotechnologies)
CNT-4: Medium diameter MWCNT (Bayer's “Baytubes C 150 P” outer diameter 5-20 nm)
CNT-5: Medium diameter MWCNT ("FloTube 9000" outer diameter 11 nm, manufactured by CNano Technology)
CNT-6: Medium diameter MWCNT (“VGCF-X” outer diameter 15 nm, manufactured by Showa Denko KK)
CNT-7: Large diameter MWCNT (Cheap Tubes “MWCNTs> 95 wt% / 20-40 nm” outer diameter 20-40 nm)
CNT-8: Extremely large diameter MWCNT (Cheap Tubes “MWCNTs> 95 wt% /> 50 nm”)
PVP: Polyvinylpyrrolidone (Tokyo Chemical Industry Co., Ltd. K15)
DMF: N, N′-dimethylformamide EG: ethylene glycol NMP: N-methyl-2-pyrrolidone THF: tetrahydrofuran DMSO: dimethyl sulfoxide IPA: 2-propanol PGME: propylene glycol monomethyl ether
DVB:ジビニルベンゼン(新日鐵化学(株)製 DVB-960)
B-1:2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](和光純薬工業(株)製 VA-061)
B-2:2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチル-プロパン)ジハイドロクロリド(和光純薬工業(株)製 VA-067)
MAIB:2,2’-アゾビスイソ酪酸ジメチル(大塚化学(株)製 MAIB)
EPL:エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(ダイセル化学工業(株)製 エポリードGT401)
JER:エポキシ樹脂(ジャパンエポキシレジン(株)製 jER(登録商標)828)
CNT-1:未精製MWCNT(CNT社製 “C Tube 100” 外径10~30nm)
CNT-2:細径MWCNT(Cheap Tubes社製 “MWNTs>95wt%/外径<8nm”)
CNT-3:未精製SWCNT(Carbon Nanotechnologies社製 HiPco)
CNT-4:中径MWCNT(Bayer社製 “Baytubes C 150 P” 外径5~20nm)
CNT-5:中径MWCNT(CNano Technology社製 “FloTube 9000” 外径11nm)
CNT-6:中径MWCNT(昭和電工(株)製 “VGCF-X” 外径15nm)
CNT-7:太径MWCNT(Cheap Tubes社製 “MWCNTs>95wt%/20-40nm” 外径20~40nm)
CNT-8:極太径MWCNT(Cheap Tubes社製 “MWCNTs>95wt%/>50nm”)
PVP:ポリビニルピロリドン(東京化成工業(株)製 K15)
DMF:N,N’-ジメチルホルムアミド
EG:エチレングリコール
NMP:N-メチル-2-ピロリドン
THF:テトラヒドロフラン
DMSO:ジメチルスルホキシド
IPA:2-プロパノール
PGME:プロピレングリコールモノメチルエーテル Abbreviations represent the following meanings.
DVB: Divinylbenzene (DVB-960, manufactured by Nippon Steel Chemical Co., Ltd.)
B-1: 2,2′-azobis [2- (2-imidazolin-2-yl) propane] (VA-061 manufactured by Wako Pure Chemical Industries, Ltd.)
B-2: 2,2′-azobis (1-imino-1-pyrrolidino-2-methyl-propane) dihydrochloride (VA-067 manufactured by Wako Pure Chemical Industries, Ltd.)
MAIB:
EPL: Epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) -modified ε-caprolactone (Epolyde GT401 manufactured by Daicel Chemical Industries, Ltd.)
JER: Epoxy resin (Japan Epoxy Resin Co., Ltd. jER (registered trademark) 828)
CNT-1: Unrefined MWCNT (“
CNT-2: Fine MWCNT (Cheap Tubes “MWNTs> 95 wt% / outer diameter <8 nm”)
CNT-3: Unpurified SWCNT (HiPco manufactured by Carbon Nanotechnologies)
CNT-4: Medium diameter MWCNT (Bayer's “Baytubes C 150 P” outer diameter 5-20 nm)
CNT-5: Medium diameter MWCNT ("FloTube 9000" outer diameter 11 nm, manufactured by CNano Technology)
CNT-6: Medium diameter MWCNT (“VGCF-X” outer diameter 15 nm, manufactured by Showa Denko KK)
CNT-7: Large diameter MWCNT (Cheap Tubes “MWCNTs> 95 wt% / 20-40 nm” outer diameter 20-40 nm)
CNT-8: Extremely large diameter MWCNT (Cheap Tubes “MWCNTs> 95 wt% /> 50 nm”)
PVP: Polyvinylpyrrolidone (Tokyo Chemical Industry Co., Ltd. K15)
DMF: N, N′-dimethylformamide EG: ethylene glycol NMP: N-methyl-2-pyrrolidone THF: tetrahydrofuran DMSO: dimethyl sulfoxide IPA: 2-propanol PGME: propylene glycol monomethyl ether
[実施例1]
<DVB及びB-1を用いた高分岐ポリマー1の合成>
200mL反応フラスコに、酢酸44gを仕込み、撹拌しながら5分間窒素を流し込み、内温が100℃になるまで加熱した。
別の100mL反応フラスコに、DVB 2.6g(20mmol)、B-1 3.8g(15mmol、DVBに対して75モル%)及び酢酸44gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
前述の200mL反応フラスコ中の100℃に加熱してある酢酸中に、DVB、B-1及び酢酸が仕込まれた前記100mL反応フラスコから、滴下ポンプを用いて、内容物を45分間かけて滴下した。滴下終了後、30分間熟成させた。
次に、この反応液をTHF 294gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を水19gに再溶解させた。このポリマー水溶液に6N NaOH水溶液13.3mLをゆっくり滴下し中和することで、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム18gに再溶解させた。このポリマー溶液をヘキサン294gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー1)2.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図1及び図2に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは34,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は3.9であった。 [Example 1]
<Synthesis ofhyperbranched polymer 1 using DVB and B-1>
A 200 mL reaction flask was charged with 44 g of acetic acid, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature reached 100 ° C.
Into another 100 mL reaction flask were charged 2.6 g (20 mmol) of DVB, 3.8 g of B-1 (15 mmol, 75 mol% with respect to DVB) and 44 g of acetic acid. The mixture was cooled to 0 ° C. in an ice bath.
The contents were dropped into the acetic acid heated to 100 ° C. in the 200 mL reaction flask from the 100 mL reaction flask charged with DVB, B-1 and acetic acid over 45 minutes using a dropping pump. . After completion of dropping, the mixture was aged for 30 minutes.
Next, this reaction liquid was added to 294 g of THF to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the obtained solid was redissolved in 19 g of water. The polymer was reprecipitated in a slurry state by slowly dropping 13.3 mL of 6N NaOH aqueous solution into this polymer aqueous solution and neutralizing. The slurry was filtered under reduced pressure, and the resulting solid was redissolved in 18 g of chloroform. This polymer solution was added to 294 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 2.1 g of the desired product (highly branched polymer 1) as a white powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIG. 1 and FIG.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 34,000, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 3.9.
<DVB及びB-1を用いた高分岐ポリマー1の合成>
200mL反応フラスコに、酢酸44gを仕込み、撹拌しながら5分間窒素を流し込み、内温が100℃になるまで加熱した。
別の100mL反応フラスコに、DVB 2.6g(20mmol)、B-1 3.8g(15mmol、DVBに対して75モル%)及び酢酸44gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
前述の200mL反応フラスコ中の100℃に加熱してある酢酸中に、DVB、B-1及び酢酸が仕込まれた前記100mL反応フラスコから、滴下ポンプを用いて、内容物を45分間かけて滴下した。滴下終了後、30分間熟成させた。
次に、この反応液をTHF 294gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を水19gに再溶解させた。このポリマー水溶液に6N NaOH水溶液13.3mLをゆっくり滴下し中和することで、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム18gに再溶解させた。このポリマー溶液をヘキサン294gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー1)2.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図1及び図2に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは34,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は3.9であった。 [Example 1]
<Synthesis of
A 200 mL reaction flask was charged with 44 g of acetic acid, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature reached 100 ° C.
Into another 100 mL reaction flask were charged 2.6 g (20 mmol) of DVB, 3.8 g of B-1 (15 mmol, 75 mol% with respect to DVB) and 44 g of acetic acid. The mixture was cooled to 0 ° C. in an ice bath.
The contents were dropped into the acetic acid heated to 100 ° C. in the 200 mL reaction flask from the 100 mL reaction flask charged with DVB, B-1 and acetic acid over 45 minutes using a dropping pump. . After completion of dropping, the mixture was aged for 30 minutes.
Next, this reaction liquid was added to 294 g of THF to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the obtained solid was redissolved in 19 g of water. The polymer was reprecipitated in a slurry state by slowly dropping 13.3 mL of 6N NaOH aqueous solution into this polymer aqueous solution and neutralizing. The slurry was filtered under reduced pressure, and the resulting solid was redissolved in 18 g of chloroform. This polymer solution was added to 294 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 2.1 g of the desired product (highly branched polymer 1) as a white powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIG. 1 and FIG.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 34,000, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 3.9.
[実施例2]
<DVB及びB-1を用いた高分岐ポリマー2の合成>
200mL反応フラスコに、DMF 44gを仕込み、撹拌しながら5分間窒素を流し込み、内温が100℃になるまで加熱した。
別の100mL反応フラスコに、DVB 2.6g(20mmol)、B-1 3.8g(15mmol、DVBに対して75モル%)、安息香酸6.1g(50mmol)及びDMF 44gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
前述の200mL反応フラスコ中の100℃に加熱してあるDMF中に、DVB、B-1、安息香酸及びDMFが仕込まれた前記100mL反応フラスコから、滴下ポンプを用いて、内容物を45分間かけて滴下した。滴下終了後、30分間熟成させた。
次に、この反応液をジイソプロピルエーテル260gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を水/メタノール(質量比1:9)44gに再溶解させた。このポリマー溶液に6N NaOH水溶液13.3mLをゆっくり滴下し中和することで、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム44gに再溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー2)3.6gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図3及び図4に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは33,000、分散度:Mw/Mnは15.8であった。 [Example 2]
<Synthesis ofhyperbranched polymer 2 using DVB and B-1>
A 200 mL reaction flask was charged with 44 g of DMF, and nitrogen was allowed to flow for 5 minutes with stirring until the internal temperature reached 100 ° C.
In a separate 100 mL reaction flask was charged 2.6 g (20 mmol) DVB, 3.8 g B-1 (15 mmol, 75 mol% with respect to DVB), 6.1 g (50 mmol) benzoic acid and 44 g DMF while stirring. Nitrogen was introduced for 5 minutes to replace nitrogen, and the mixture was cooled to 0 ° C. in an ice bath.
From the 100 mL reaction flask charged with DVB, B-1, benzoic acid and DMF in DMF heated to 100 ° C. in the 200 mL reaction flask described above, the contents were allowed to flow for 45 minutes using a dropping pump. And dripped. After completion of dropping, the mixture was aged for 30 minutes.
Next, this reaction liquid was added to 260 g of diisopropyl ether to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the obtained solid was redissolved in 44 g of water / methanol (mass ratio 1: 9). The polymer was reprecipitated in a slurry state by slowly dropping 13.3 mL of 6N NaOH aqueous solution into the polymer solution and neutralizing. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 44 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 3.6 g of the desired product (highly branched polymer 2) as a white powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 3 and 4.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 33,000, and dispersion degree: Mw / Mn was 15.8.
<DVB及びB-1を用いた高分岐ポリマー2の合成>
200mL反応フラスコに、DMF 44gを仕込み、撹拌しながら5分間窒素を流し込み、内温が100℃になるまで加熱した。
別の100mL反応フラスコに、DVB 2.6g(20mmol)、B-1 3.8g(15mmol、DVBに対して75モル%)、安息香酸6.1g(50mmol)及びDMF 44gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
前述の200mL反応フラスコ中の100℃に加熱してあるDMF中に、DVB、B-1、安息香酸及びDMFが仕込まれた前記100mL反応フラスコから、滴下ポンプを用いて、内容物を45分間かけて滴下した。滴下終了後、30分間熟成させた。
次に、この反応液をジイソプロピルエーテル260gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を水/メタノール(質量比1:9)44gに再溶解させた。このポリマー溶液に6N NaOH水溶液13.3mLをゆっくり滴下し中和することで、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム44gに再溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー2)3.6gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図3及び図4に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは33,000、分散度:Mw/Mnは15.8であった。 [Example 2]
<Synthesis of
A 200 mL reaction flask was charged with 44 g of DMF, and nitrogen was allowed to flow for 5 minutes with stirring until the internal temperature reached 100 ° C.
In a separate 100 mL reaction flask was charged 2.6 g (20 mmol) DVB, 3.8 g B-1 (15 mmol, 75 mol% with respect to DVB), 6.1 g (50 mmol) benzoic acid and 44 g DMF while stirring. Nitrogen was introduced for 5 minutes to replace nitrogen, and the mixture was cooled to 0 ° C. in an ice bath.
From the 100 mL reaction flask charged with DVB, B-1, benzoic acid and DMF in DMF heated to 100 ° C. in the 200 mL reaction flask described above, the contents were allowed to flow for 45 minutes using a dropping pump. And dripped. After completion of dropping, the mixture was aged for 30 minutes.
Next, this reaction liquid was added to 260 g of diisopropyl ether to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the obtained solid was redissolved in 44 g of water / methanol (mass ratio 1: 9). The polymer was reprecipitated in a slurry state by slowly dropping 13.3 mL of 6N NaOH aqueous solution into the polymer solution and neutralizing. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 44 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 3.6 g of the desired product (highly branched polymer 2) as a white powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 3 and 4.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 33,000, and dispersion degree: Mw / Mn was 15.8.
[実施例3]
<DVB及びB-1を用いた高分岐ポリマー3の合成>
500mL反応フラスコに、1-プロパノール120gを仕込み、撹拌しながら5分間窒素を流し込み、1-プロパノールが還流するまで(標準沸点97℃)加熱した。
別の200mL反応フラスコに、DVB 2.6g(20mmol)、B-1 3.1g(12mmol、DVBに対して62モル%)、及び1-プロパノール120gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の500mL反応フラスコ中の還流してある1-プロパノール中に、DVB、B-1及び1-プロパノールが仕込まれた前記200mL反応フラスコから、滴下ポンプを用いて、内容物を90分間かけて滴下した。滴下終了後、1時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液から1-プロパノールを留去し、得られた残渣をクロロホルム26gに溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム26gに再溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、淡黄色粉末の目的物(高分岐ポリマー3)2.5gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図5及び図6に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは47,000、分散度:Mw/Mnは13.9であった。 [Example 3]
<Synthesis ofhyperbranched polymer 3 using DVB and B-1>
A 500 mL reaction flask was charged with 120 g of 1-propanol, nitrogen was introduced for 5 minutes with stirring, and the mixture was heated until 1-propanol was refluxed (standard boiling point 97 ° C.).
In another 200 mL reaction flask, 2.6 g (20 mmol) of DVB, 3.1 g of B-1 (12 mmol, 62 mol% based on DVB), and 120 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
From the 200 mL reaction flask charged with DVB, B-1 and 1-propanol in the refluxed 1-propanol in the 500 mL reaction flask, the contents were dropped over 90 minutes using a dropping pump. did. After completion of dropping, the mixture was aged for 1 hour.
Next, 1-propanol was distilled off from this reaction solution using a rotary evaporator, and the resulting residue was dissolved in 26 g of chloroform. This polymer solution was added to 260 g of hexane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 26 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum-dried to obtain 2.5 g of the desired product (highly branched polymer 3) as a pale yellow powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 5 and 6.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 47,000, and dispersion degree: Mw / Mn was 13.9.
<DVB及びB-1を用いた高分岐ポリマー3の合成>
500mL反応フラスコに、1-プロパノール120gを仕込み、撹拌しながら5分間窒素を流し込み、1-プロパノールが還流するまで(標準沸点97℃)加熱した。
別の200mL反応フラスコに、DVB 2.6g(20mmol)、B-1 3.1g(12mmol、DVBに対して62モル%)、及び1-プロパノール120gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の500mL反応フラスコ中の還流してある1-プロパノール中に、DVB、B-1及び1-プロパノールが仕込まれた前記200mL反応フラスコから、滴下ポンプを用いて、内容物を90分間かけて滴下した。滴下終了後、1時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液から1-プロパノールを留去し、得られた残渣をクロロホルム26gに溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム26gに再溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、淡黄色粉末の目的物(高分岐ポリマー3)2.5gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図5及び図6に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは47,000、分散度:Mw/Mnは13.9であった。 [Example 3]
<Synthesis of
A 500 mL reaction flask was charged with 120 g of 1-propanol, nitrogen was introduced for 5 minutes with stirring, and the mixture was heated until 1-propanol was refluxed (standard boiling point 97 ° C.).
In another 200 mL reaction flask, 2.6 g (20 mmol) of DVB, 3.1 g of B-1 (12 mmol, 62 mol% based on DVB), and 120 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
From the 200 mL reaction flask charged with DVB, B-1 and 1-propanol in the refluxed 1-propanol in the 500 mL reaction flask, the contents were dropped over 90 minutes using a dropping pump. did. After completion of dropping, the mixture was aged for 1 hour.
Next, 1-propanol was distilled off from this reaction solution using a rotary evaporator, and the resulting residue was dissolved in 26 g of chloroform. This polymer solution was added to 260 g of hexane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 26 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum-dried to obtain 2.5 g of the desired product (highly branched polymer 3) as a pale yellow powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 5 and 6.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 47,000, and dispersion degree: Mw / Mn was 13.9.
[実施例4]
<DVB及びB-2を用いた高分岐ポリマー4の合成>
200mL反応フラスコに、EG/DMF(質量比1:1)42gを仕込み、撹拌しながら5分間窒素を流し込み、内温が100℃になるまで加熱した。
別の100mL反応フラスコに、DVB 2.6g(20mmol)、B-2 3.5g(10mmol、DVBに対して50モル%)及びEG/DMF(質量比1:1)42gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
前述の200mL反応フラスコ中の100℃に加熱してあるEG/DMF中に、DVB、B-2及びEG/DMFが仕込まれた前記100mL反応フラスコから、滴下ポンプを用いて、内容物を45分間かけて滴下した。滴下終了後、30分間熟成させた。
次に、この反応液をTHF294gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を水42gに再溶解させた。このポリマー水溶液に6N NaOH水溶液3.3mLをゆっくり滴下し中和することで、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム42gに再溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、褐色粉末の目的物(高分岐ポリマー4)3.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図7及び図8に示す。 [Example 4]
<Synthesis of hyperbranched polymer 4 using DVB and B-2>
A 200 mL reaction flask was charged with 42 g of EG / DMF (mass ratio 1: 1), and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature reached 100 ° C.
In a separate 100 mL reaction flask was charged 2.6 g (20 mmol) DVB, 3.5 g B-2 (10 mmol, 50 mol% with respect to DVB) and 42 g EG / DMF (mass ratio 1: 1) with stirring. Nitrogen was introduced for 5 minutes to replace nitrogen, and the mixture was cooled to 0 ° C. in an ice bath.
From the 100 mL reaction flask charged with DVB, B-2, and EG / DMF in EG / DMF heated to 100 ° C. in the 200 mL reaction flask, the contents were removed for 45 minutes using a dropping pump. It was dripped over. After completion of dropping, the mixture was aged for 30 minutes.
Next, this reaction solution was added to 294 g of THF to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the obtained solid was redissolved in 42 g of water. The polymer was reprecipitated in a slurry state by slowly dropping and neutralizing 3.3 mL of 6N NaOH aqueous solution into the polymer aqueous solution. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 42 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum-dried to obtain 3.1 g of the target product (highly branched polymer 4) as a brown powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIG. 7 and FIG.
<DVB及びB-2を用いた高分岐ポリマー4の合成>
200mL反応フラスコに、EG/DMF(質量比1:1)42gを仕込み、撹拌しながら5分間窒素を流し込み、内温が100℃になるまで加熱した。
別の100mL反応フラスコに、DVB 2.6g(20mmol)、B-2 3.5g(10mmol、DVBに対して50モル%)及びEG/DMF(質量比1:1)42gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
前述の200mL反応フラスコ中の100℃に加熱してあるEG/DMF中に、DVB、B-2及びEG/DMFが仕込まれた前記100mL反応フラスコから、滴下ポンプを用いて、内容物を45分間かけて滴下した。滴下終了後、30分間熟成させた。
次に、この反応液をTHF294gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を水42gに再溶解させた。このポリマー水溶液に6N NaOH水溶液3.3mLをゆっくり滴下し中和することで、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、得られた固体をクロロホルム42gに再溶解させた。このポリマー溶液をヘキサン260gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、褐色粉末の目的物(高分岐ポリマー4)3.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図7及び図8に示す。 [Example 4]
<Synthesis of hyperbranched polymer 4 using DVB and B-2>
A 200 mL reaction flask was charged with 42 g of EG / DMF (mass ratio 1: 1), and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the internal temperature reached 100 ° C.
In a separate 100 mL reaction flask was charged 2.6 g (20 mmol) DVB, 3.5 g B-2 (10 mmol, 50 mol% with respect to DVB) and 42 g EG / DMF (mass ratio 1: 1) with stirring. Nitrogen was introduced for 5 minutes to replace nitrogen, and the mixture was cooled to 0 ° C. in an ice bath.
From the 100 mL reaction flask charged with DVB, B-2, and EG / DMF in EG / DMF heated to 100 ° C. in the 200 mL reaction flask, the contents were removed for 45 minutes using a dropping pump. It was dripped over. After completion of dropping, the mixture was aged for 30 minutes.
Next, this reaction solution was added to 294 g of THF to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the obtained solid was redissolved in 42 g of water. The polymer was reprecipitated in a slurry state by slowly dropping and neutralizing 3.3 mL of 6N NaOH aqueous solution into the polymer aqueous solution. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 42 g of chloroform. This polymer solution was added to 260 g of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum-dried to obtain 3.1 g of the target product (highly branched polymer 4) as a brown powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIG. 7 and FIG.
[実施例15]
<DVB及びB-1を用いた高分岐ポリマー6の合成>
3L反応フラスコに、1-プロパノール180gを仕込み、撹拌しながら5分間窒素を流し込み、1-プロパノールが還流するまで(標準沸点97℃)加熱した。
別の2L反応フラスコに、DVB 15.6g(120mmol)、B-1 21.0g(84mmol、DVBに対して70モル%)、及び1-プロパノール720gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の3L反応フラスコ中の還流してある1-プロパノール中に、DVB、B-1及び1-プロパノールが仕込まれた前記2L反応フラスコから、滴下ポンプを用いて、内容物を70分間かけて滴下した。滴下終了後、2時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液から1-プロパノール820gを留去し、ヘプタン1,600gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を1-プロパノール78gに再溶解させた。このポリマー溶液を水3,100gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー6)22.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図12及び図13に示す。なお、測定溶媒は少量のCDCl3を添加したd6-DMSOを用いた。
また、目的物のGPCによる分子量測定を試みたが、前記条件では測定できなかった。 [Example 15]
<Synthesis ofhyperbranched polymer 6 using DVB and B-1>
A 3 L reaction flask was charged with 180 g of 1-propanol, and nitrogen was allowed to flow for 5 minutes with stirring, followed by heating until 1-propanol was refluxed (standard boiling point 97 ° C.).
In a separate 2 L reaction flask, 15.6 g (120 mmol) of DVB, 21.0 g of B-1 (84 mmol, 70 mol% with respect to DVB) and 720 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
From the 2L reaction flask charged with DVB, B-1 and 1-propanol in 1-propanol being refluxed in the 3L reaction flask, the contents were dropped over 70 minutes using a dropping pump. did. After completion of dropping, the mixture was aged for 2 hours.
Next, 820 g of 1-propanol was distilled off from this reaction solution using a rotary evaporator and added to 1,600 g of heptane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 78 g of 1-propanol. This polymer solution was added to 3,100 g of water to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 22.1 g of the target product (highly branched polymer 6) as a white powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 12 and 13. As the measurement solvent, d 6 -DMSO to which a small amount of CDCl 3 was added was used.
Moreover, although the molecular weight measurement by GPC of the target object was tried, it was not able to be measured on the said conditions.
<DVB及びB-1を用いた高分岐ポリマー6の合成>
3L反応フラスコに、1-プロパノール180gを仕込み、撹拌しながら5分間窒素を流し込み、1-プロパノールが還流するまで(標準沸点97℃)加熱した。
別の2L反応フラスコに、DVB 15.6g(120mmol)、B-1 21.0g(84mmol、DVBに対して70モル%)、及び1-プロパノール720gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の3L反応フラスコ中の還流してある1-プロパノール中に、DVB、B-1及び1-プロパノールが仕込まれた前記2L反応フラスコから、滴下ポンプを用いて、内容物を70分間かけて滴下した。滴下終了後、2時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液から1-プロパノール820gを留去し、ヘプタン1,600gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を1-プロパノール78gに再溶解させた。このポリマー溶液を水3,100gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー6)22.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図12及び図13に示す。なお、測定溶媒は少量のCDCl3を添加したd6-DMSOを用いた。
また、目的物のGPCによる分子量測定を試みたが、前記条件では測定できなかった。 [Example 15]
<Synthesis of
A 3 L reaction flask was charged with 180 g of 1-propanol, and nitrogen was allowed to flow for 5 minutes with stirring, followed by heating until 1-propanol was refluxed (standard boiling point 97 ° C.).
In a separate 2 L reaction flask, 15.6 g (120 mmol) of DVB, 21.0 g of B-1 (84 mmol, 70 mol% with respect to DVB) and 720 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
From the 2L reaction flask charged with DVB, B-1 and 1-propanol in 1-propanol being refluxed in the 3L reaction flask, the contents were dropped over 70 minutes using a dropping pump. did. After completion of dropping, the mixture was aged for 2 hours.
Next, 820 g of 1-propanol was distilled off from this reaction solution using a rotary evaporator and added to 1,600 g of heptane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 78 g of 1-propanol. This polymer solution was added to 3,100 g of water to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 22.1 g of the target product (highly branched polymer 6) as a white powder.
The measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 12 and 13. As the measurement solvent, d 6 -DMSO to which a small amount of CDCl 3 was added was used.
Moreover, although the molecular weight measurement by GPC of the target object was tried, it was not able to be measured on the said conditions.
[実施例16]
<DVB及びB-1を用いた高分岐ポリマー7の合成>
3L反応フラスコに、1-プロパノール180gを仕込み、撹拌しながら5分間窒素を流し込み、1-プロパノールが還流するまで(標準沸点97℃)加熱した。
別の2L反応フラスコに、DVB 15.6g(120mmol)、B-1 21.1g(84mmol、DVBに対して70モル%)、及び1-プロパノール720gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の3L反応フラスコ中の還流してある1-プロパノール中に、DVB、B-1及び1-プロパノールが仕込まれた前記2L反応フラスコから、滴下ポンプを用いて、内容物を50分間かけて滴下した。滴下終了後、2時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液から1-プロパノール820gを留去し、ヘプタン1,600gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を1-プロパノール78gに再溶解させた。このポリマー溶液を水3,100gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー7)23.9gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図14及び図15に示す。なお測定には、装置:BRUKER社製 AVANCE III、溶媒:少量のCDCl3を添加したd6-DMSO、内部標準:テトラメチルシランを用いた。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは100,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は10.0であった。 [Example 16]
<Synthesis of hyperbranched polymer 7 using DVB and B-1>
A 3 L reaction flask was charged with 180 g of 1-propanol, and nitrogen was allowed to flow for 5 minutes with stirring, followed by heating until 1-propanol was refluxed (standard boiling point 97 ° C.).
In a separate 2 L reaction flask, 15.6 g (120 mmol) of DVB, 21.1 g of B-1 (84 mmol, 70 mol% with respect to DVB), and 720 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
From the 2L reaction flask charged with DVB, B-1 and 1-propanol in the 1-propanol being refluxed in the 3L reaction flask, the contents were dropped over 50 minutes using a dropping pump. did. After completion of dropping, the mixture was aged for 2 hours.
Next, 820 g of 1-propanol was distilled off from this reaction solution using a rotary evaporator and added to 1,600 g of heptane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 78 g of 1-propanol. This polymer solution was added to 3,100 g of water to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 23.9 g of the target product (highly branched polymer 7) as a white powder.
14 and 15 show the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product. For the measurement, apparatus: AVANCE III manufactured by BRUKER, solvent: d 6 -DMSO to which a small amount of CDCl 3 was added, and internal standard: tetramethylsilane were used.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 100,000, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 10.0.
<DVB及びB-1を用いた高分岐ポリマー7の合成>
3L反応フラスコに、1-プロパノール180gを仕込み、撹拌しながら5分間窒素を流し込み、1-プロパノールが還流するまで(標準沸点97℃)加熱した。
別の2L反応フラスコに、DVB 15.6g(120mmol)、B-1 21.1g(84mmol、DVBに対して70モル%)、及び1-プロパノール720gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の3L反応フラスコ中の還流してある1-プロパノール中に、DVB、B-1及び1-プロパノールが仕込まれた前記2L反応フラスコから、滴下ポンプを用いて、内容物を50分間かけて滴下した。滴下終了後、2時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液から1-プロパノール820gを留去し、ヘプタン1,600gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、得られた固体を1-プロパノール78gに再溶解させた。このポリマー溶液を水3,100gに添加して、ポリマーをスラリー状態で再沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー7)23.9gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図14及び図15に示す。なお測定には、装置:BRUKER社製 AVANCE III、溶媒:少量のCDCl3を添加したd6-DMSO、内部標準:テトラメチルシランを用いた。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは100,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は10.0であった。 [Example 16]
<Synthesis of hyperbranched polymer 7 using DVB and B-1>
A 3 L reaction flask was charged with 180 g of 1-propanol, and nitrogen was allowed to flow for 5 minutes with stirring, followed by heating until 1-propanol was refluxed (standard boiling point 97 ° C.).
In a separate 2 L reaction flask, 15.6 g (120 mmol) of DVB, 21.1 g of B-1 (84 mmol, 70 mol% with respect to DVB), and 720 g of 1-propanol were charged, and nitrogen was poured for 5 minutes while stirring. Replacement was performed.
From the 2L reaction flask charged with DVB, B-1 and 1-propanol in the 1-propanol being refluxed in the 3L reaction flask, the contents were dropped over 50 minutes using a dropping pump. did. After completion of dropping, the mixture was aged for 2 hours.
Next, 820 g of 1-propanol was distilled off from this reaction solution using a rotary evaporator and added to 1,600 g of heptane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure, and the resulting solid was redissolved in 78 g of 1-propanol. This polymer solution was added to 3,100 g of water to reprecipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 23.9 g of the target product (highly branched polymer 7) as a white powder.
14 and 15 show the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product. For the measurement, apparatus: AVANCE III manufactured by BRUKER, solvent: d 6 -DMSO to which a small amount of CDCl 3 was added, and internal standard: tetramethylsilane were used.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 100,000, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 10.0.
[参考製造例1]
<DVB及びMAIBを用いた高分岐ポリマー5の合成>
500mL反応フラスコに、トルエン74gを仕込み、撹拌しながら5分間窒素を流し込み、トルエンが還流するまで加熱した(標準沸点111℃)。
別の200mL反応フラスコに、DVB 3.9g(30mmol)、MAIB 5.5g(24mmol、DVBに対して80モル%)及びトルエン74gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の500mL反応フラスコ中の還流状態にいるトルエン中に、DVB、MAIB及びトルエンが仕込まれた前記200mL反応フラスコから、滴下ポンプを用いて、内容物を1.5時間かけて滴下した。滴下終了後、6時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液からトルエン121gを留去し、0℃に冷却したメタノール391gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー5)6.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図9及び図10に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは37,000、分散度:Mw/Mnは2.6であった。 [Reference Production Example 1]
<Synthesis ofhyperbranched polymer 5 using DVB and MAIB>
A 500 mL reaction flask was charged with 74 g of toluene, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the toluene was refluxed (standard boiling point 111 ° C.).
In another 200 mL reaction flask, 3.9 g (30 mmol) of DVB, 5.5 g of MAIB (24 mmol, 80 mol% with respect to DVB) and 74 g of toluene were charged, and nitrogen was purged for 5 minutes while stirring.
The contents were added dropwise from the 200 mL reaction flask charged with DVB, MAIB and toluene into the refluxing toluene in the 500 mL reaction flask using a dropping pump over 1.5 hours. After completion of dropping, the mixture was aged for 6 hours.
Next, 121 g of toluene was distilled off from this reaction solution using a rotary evaporator and added to 391 g of methanol cooled to 0 ° C. to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 6.1 g of the desired product (highly branched polymer 5) as a white powder.
9 and 10 show the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 37,000, and dispersion degree: Mw / Mn was 2.6.
<DVB及びMAIBを用いた高分岐ポリマー5の合成>
500mL反応フラスコに、トルエン74gを仕込み、撹拌しながら5分間窒素を流し込み、トルエンが還流するまで加熱した(標準沸点111℃)。
別の200mL反応フラスコに、DVB 3.9g(30mmol)、MAIB 5.5g(24mmol、DVBに対して80モル%)及びトルエン74gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行った。
前述の500mL反応フラスコ中の還流状態にいるトルエン中に、DVB、MAIB及びトルエンが仕込まれた前記200mL反応フラスコから、滴下ポンプを用いて、内容物を1.5時間かけて滴下した。滴下終了後、6時間熟成させた。
次に、ロータリーエバポレーターを用いてこの反応液からトルエン121gを留去し、0℃に冷却したメタノール391gに添加して、ポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー5)6.1gを得た。
得られた目的物の1H NMR及び13C NMRスペクトルの測定結果を図9及び図10に示す。
また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは37,000、分散度:Mw/Mnは2.6であった。 [Reference Production Example 1]
<Synthesis of
A 500 mL reaction flask was charged with 74 g of toluene, and nitrogen was introduced for 5 minutes while stirring, and the mixture was heated until the toluene was refluxed (standard boiling point 111 ° C.).
In another 200 mL reaction flask, 3.9 g (30 mmol) of DVB, 5.5 g of MAIB (24 mmol, 80 mol% with respect to DVB) and 74 g of toluene were charged, and nitrogen was purged for 5 minutes while stirring.
The contents were added dropwise from the 200 mL reaction flask charged with DVB, MAIB and toluene into the refluxing toluene in the 500 mL reaction flask using a dropping pump over 1.5 hours. After completion of dropping, the mixture was aged for 6 hours.
Next, 121 g of toluene was distilled off from this reaction solution using a rotary evaporator and added to 391 g of methanol cooled to 0 ° C. to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 6.1 g of the desired product (highly branched polymer 5) as a white powder.
9 and 10 show the measurement results of 1 H NMR and 13 C NMR spectra of the obtained target product.
Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of a target object was 37,000, and dispersion degree: Mw / Mn was 2.6.
実施例1乃至実施例4、実施例15及び実施例16で合成した高分岐ポリマー1,2,3,4,6,7の、13C NMRスペクトルより算出したモノマーAと重合開始剤Bの断片の組成比(モル比)、及び動的光散乱光度計による平均粒径を表1に示す。
Fragments of monomer A and polymerization initiator B calculated from 13 C NMR spectra of hyperbranched polymers 1, 2, 3, 4, 6, 7 synthesized in Examples 1 to 4, Example 15, and Example 16. Table 1 shows the composition ratio (molar ratio) and the average particle diameter measured by a dynamic light scattering photometer.
[実施例5]
<高分岐ポリマー2を用いたCNT-1の分散(1)>
分散剤として実施例2において合成した高分岐ポリマー2 0.50gをNMP 49.25gに溶解させ、この溶液へMWCNTとしてCNT-1 0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液を得た。
上記MWCNT含有分散液1.0gに、ブチルセロソルブ0.25gを添加し、薄膜作製用の組成物を調製した。得られた組成物50μLを、スリット幅25.4μmのアプリケータを用いてガラス基板上に均一に展開し、100℃で2分間乾燥することで透明で均一なMWCNT/高分岐ポリマー2薄膜複合体を作製した。得られた薄膜複合体の薄膜均一性、表面抵抗及び全光透過率を評価した。なお、薄膜の均一性については、目視により、以下の基準に従って評価した。各評価結果を表2に示す。
<薄膜均一性>
○:凝集物のような塊や膜ムラ(濃淡)が全く確認できない。
△:MWCNTの凝集物や膜ムラ(濃淡)が見られる。
×:MWCNTの凝集物や膜ムラ(濃淡)が薄膜の殆どの部分で見られ、膜としての評価ができない。 [Example 5]
<Dispersion of CNT-1 using highly branched polymer 2 (1)>
As a dispersant, 0.50 g of thehyperbranched polymer 2 synthesized in Example 2 was dissolved in 49.25 g of NMP, and 0.25 g of CNT-1 was added to this solution as MWCNT. This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device to obtain a black MWCNT-containing dispersion liquid in which MWCNT was uniformly dispersed without a precipitate.
0.25 g of butyl cellosolve was added to 1.0 g of the above MWCNT-containing dispersion to prepare a composition for forming a thin film. The obtained composition 50 μL is uniformly spread on a glass substrate using an applicator having a slit width of 25.4 μm, and dried at 100 ° C. for 2 minutes, whereby a transparent and uniform MWCNT / highlybranched polymer 2 thin film composite Was made. Thin film uniformity, surface resistance and total light transmittance of the obtained thin film composite were evaluated. The uniformity of the thin film was evaluated visually according to the following criteria. Each evaluation result is shown in Table 2.
<Thin film uniformity>
○: No clumps such as aggregates or film unevenness (light / dark) can be confirmed.
(Triangle | delta): The aggregate of MWCNT and a film | membrane nonuniformity (light / dark) are seen.
X: Aggregates of MWCNT and film unevenness (light / dark) are seen in almost all parts of the thin film, and cannot be evaluated as a film.
<高分岐ポリマー2を用いたCNT-1の分散(1)>
分散剤として実施例2において合成した高分岐ポリマー2 0.50gをNMP 49.25gに溶解させ、この溶液へMWCNTとしてCNT-1 0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液を得た。
上記MWCNT含有分散液1.0gに、ブチルセロソルブ0.25gを添加し、薄膜作製用の組成物を調製した。得られた組成物50μLを、スリット幅25.4μmのアプリケータを用いてガラス基板上に均一に展開し、100℃で2分間乾燥することで透明で均一なMWCNT/高分岐ポリマー2薄膜複合体を作製した。得られた薄膜複合体の薄膜均一性、表面抵抗及び全光透過率を評価した。なお、薄膜の均一性については、目視により、以下の基準に従って評価した。各評価結果を表2に示す。
<薄膜均一性>
○:凝集物のような塊や膜ムラ(濃淡)が全く確認できない。
△:MWCNTの凝集物や膜ムラ(濃淡)が見られる。
×:MWCNTの凝集物や膜ムラ(濃淡)が薄膜の殆どの部分で見られ、膜としての評価ができない。 [Example 5]
<Dispersion of CNT-1 using highly branched polymer 2 (1)>
As a dispersant, 0.50 g of the
0.25 g of butyl cellosolve was added to 1.0 g of the above MWCNT-containing dispersion to prepare a composition for forming a thin film. The obtained composition 50 μL is uniformly spread on a glass substrate using an applicator having a slit width of 25.4 μm, and dried at 100 ° C. for 2 minutes, whereby a transparent and uniform MWCNT / highly
<Thin film uniformity>
○: No clumps such as aggregates or film unevenness (light / dark) can be confirmed.
(Triangle | delta): The aggregate of MWCNT and a film | membrane nonuniformity (light / dark) are seen.
X: Aggregates of MWCNT and film unevenness (light / dark) are seen in almost all parts of the thin film, and cannot be evaluated as a film.
また、別途、上記MWCNT含有分散液を室温(およそ25℃)で1ヶ月静置後、分散液中の沈降物の存在を目視にて確認し、以下の基準に従って、本分散液の分散安定性を評価した。評価結果を表2に合わせて示す。
<分散安定性>
○:沈降物が確認できない。
△:沈降物が見られる。
×:分散状態を保てず、MWCNTの大部分が沈降物として現れる。 Separately, the above MWCNT-containing dispersion was allowed to stand at room temperature (approximately 25 ° C.) for 1 month, and then the presence of sediment in the dispersion was visually confirmed, and the dispersion stability of this dispersion was determined according to the following criteria. Evaluated. The evaluation results are shown in Table 2.
<Dispersion stability>
○: No sediment can be confirmed.
(Triangle | delta): A sediment is seen.
X: The dispersion state cannot be maintained, and most of the MWCNT appears as a sediment.
<分散安定性>
○:沈降物が確認できない。
△:沈降物が見られる。
×:分散状態を保てず、MWCNTの大部分が沈降物として現れる。 Separately, the above MWCNT-containing dispersion was allowed to stand at room temperature (approximately 25 ° C.) for 1 month, and then the presence of sediment in the dispersion was visually confirmed, and the dispersion stability of this dispersion was determined according to the following criteria. Evaluated. The evaluation results are shown in Table 2.
<Dispersion stability>
○: No sediment can be confirmed.
(Triangle | delta): A sediment is seen.
X: The dispersion state cannot be maintained, and most of the MWCNT appears as a sediment.
[実施例6]
<高分岐ポリマー2を用いたCNT-1の分散(2)>
実施例5において、高分岐ポリマー2の添加量を0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 6]
<Dispersion of CNT-1 using highly branched polymer 2 (2)>
In Example 5, the same operation and evaluation were performed except that the addition amount of thehyperbranched polymer 2 was changed to 0.25 g and the amount of NMP was changed to 49.50 g. The evaluation results are shown in Table 2.
<高分岐ポリマー2を用いたCNT-1の分散(2)>
実施例5において、高分岐ポリマー2の添加量を0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 6]
<Dispersion of CNT-1 using highly branched polymer 2 (2)>
In Example 5, the same operation and evaluation were performed except that the addition amount of the
[実施例7]
<高分岐ポリマー4を用いたCNT-1の分散(1)>
実施例5において、分散剤を実施例4において合成した高分岐ポリマー4に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 7]
<Dispersion of CNT-1 using highly branched polymer 4 (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to the hyperbranched polymer 4 synthesized in Example 4. The evaluation results are shown in Table 2.
<高分岐ポリマー4を用いたCNT-1の分散(1)>
実施例5において、分散剤を実施例4において合成した高分岐ポリマー4に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 7]
<Dispersion of CNT-1 using highly branched polymer 4 (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to the hyperbranched polymer 4 synthesized in Example 4. The evaluation results are shown in Table 2.
[実施例8]
<高分岐ポリマー4を用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、実施例4において合成した高分岐ポリマー4 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 8]
<Dispersion of CNT-1 using hyperbranched polymer 4 (2)>
In Example 5, the same operation and evaluation were performed except that the dispersant and the amount of addition were changed to 0.25 g of the hyperbranched polymer 4 synthesized in Example 4 and the amount of NMP was changed to 49.50 g, respectively. . The evaluation results are shown in Table 2.
<高分岐ポリマー4を用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、実施例4において合成した高分岐ポリマー4 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 8]
<Dispersion of CNT-1 using hyperbranched polymer 4 (2)>
In Example 5, the same operation and evaluation were performed except that the dispersant and the amount of addition were changed to 0.25 g of the hyperbranched polymer 4 synthesized in Example 4 and the amount of NMP was changed to 49.50 g, respectively. . The evaluation results are shown in Table 2.
[実施例17]
<高分岐ポリマー6を用いたCNT-1の分散(1)>
実施例5において、分散剤を実施例15において合成した高分岐ポリマー6に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 17]
<Dispersion of CNT-1 using highly branched polymer 6 (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to thehyperbranched polymer 6 synthesized in Example 15. The evaluation results are shown in Table 2.
<高分岐ポリマー6を用いたCNT-1の分散(1)>
実施例5において、分散剤を実施例15において合成した高分岐ポリマー6に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 17]
<Dispersion of CNT-1 using highly branched polymer 6 (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to the
[実施例18]
<高分岐ポリマー6を用いたCNT-1の分散(2)>
実施例17において、分散溶媒をNMPからIPAに変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 18]
<Dispersion of CNT-1 using highly branched polymer 6 (2)>
In Example 17, the same operation and evaluation were performed except that the dispersion solvent was changed from NMP to IPA. The evaluation results are shown in Table 2.
<高分岐ポリマー6を用いたCNT-1の分散(2)>
実施例17において、分散溶媒をNMPからIPAに変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 18]
<Dispersion of CNT-1 using highly branched polymer 6 (2)>
In Example 17, the same operation and evaluation were performed except that the dispersion solvent was changed from NMP to IPA. The evaluation results are shown in Table 2.
[実施例19]
<高分岐ポリマー6を用いたCNT-1の分散(3)>
実施例17において、分散溶媒をNMPからPGMEに変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 19]
<Dispersion of CNT-1 using highly branched polymer 6 (3)>
In Example 17, the same operation and evaluation were performed except that the dispersion solvent was changed from NMP to PGME. The evaluation results are shown in Table 2.
<高分岐ポリマー6を用いたCNT-1の分散(3)>
実施例17において、分散溶媒をNMPからPGMEに変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 19]
<Dispersion of CNT-1 using highly branched polymer 6 (3)>
In Example 17, the same operation and evaluation were performed except that the dispersion solvent was changed from NMP to PGME. The evaluation results are shown in Table 2.
[実施例20]
<高分岐ポリマー7を用いたCNT-1の分散(1)>
実施例5において、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 20]
<Dispersion of CNT-1 using highly branched polymer 7 (1)>
The same operations and evaluations were performed in Example 5 except that the dispersant was changed to the hyperbranched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 2.
<高分岐ポリマー7を用いたCNT-1の分散(1)>
実施例5において、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 20]
<Dispersion of CNT-1 using highly branched polymer 7 (1)>
The same operations and evaluations were performed in Example 5 except that the dispersant was changed to the hyperbranched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 2.
[実施例21]
<高分岐ポリマー7を用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、実施例16において合成した高分岐ポリマー7 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 21]
<Dispersion of CNT-1 using highly branched polymer 7 (2)>
In Example 5, the same operation and evaluation were performed except that the dispersant and the amount of addition were changed to 0.25 g of the hyperbranched polymer 7 synthesized in Example 16 and the amount of NMP was changed to 49.50 g, respectively. . The evaluation results are shown in Table 2.
<高分岐ポリマー7を用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、実施例16において合成した高分岐ポリマー7 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Example 21]
<Dispersion of CNT-1 using highly branched polymer 7 (2)>
In Example 5, the same operation and evaluation were performed except that the dispersant and the amount of addition were changed to 0.25 g of the hyperbranched polymer 7 synthesized in Example 16 and the amount of NMP was changed to 49.50 g, respectively. . The evaluation results are shown in Table 2.
[比較例1]
<高分岐ポリマー5を用いたCNT-1の分散(1)>
実施例5において、分散剤を参考製造例1において合成した高分岐ポリマー5に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 1]
<Dispersion of CNT-1 using highly branched polymer 5 (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to thehyperbranched polymer 5 synthesized in Reference Production Example 1. The evaluation results are shown in Table 2.
<高分岐ポリマー5を用いたCNT-1の分散(1)>
実施例5において、分散剤を参考製造例1において合成した高分岐ポリマー5に変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 1]
<Dispersion of CNT-1 using highly branched polymer 5 (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to the
[比較例2]
<高分岐ポリマー5を用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、参考製造例1において合成した高分岐ポリマー5 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 2]
<Dispersion of CNT-1 using highly branched polymer 5 (2)>
In Example 5, the same operation and evaluation were carried out except that the dispersant and the amount added were changed to 0.25 g of thehyperbranched polymer 5 synthesized in Reference Production Example 1 and the amount of NMP was changed to 49.50 g, respectively. It was. The evaluation results are shown in Table 2.
<高分岐ポリマー5を用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、参考製造例1において合成した高分岐ポリマー5 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 2]
<Dispersion of CNT-1 using highly branched polymer 5 (2)>
In Example 5, the same operation and evaluation were carried out except that the dispersant and the amount added were changed to 0.25 g of the
[比較例3]
<PVPを用いたCNT-1の分散(1)>
実施例5において、分散剤をPVPに変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 3]
<Dispersion of CNT-1 using PVP (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to PVP. The evaluation results are shown in Table 2.
<PVPを用いたCNT-1の分散(1)>
実施例5において、分散剤をPVPに変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 3]
<Dispersion of CNT-1 using PVP (1)>
In Example 5, the same operation and evaluation were performed except that the dispersant was changed to PVP. The evaluation results are shown in Table 2.
[比較例4]
<PVPを用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、PVP 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 4]
<Dispersion of CNT-1 using PVP (2)>
In Example 5, the same operations and evaluations were performed except that the dispersant and the amount added thereof were changed to 0.25 g of PVP and the amount of NMP was changed to 49.50 g, respectively. The evaluation results are shown in Table 2.
<PVPを用いたCNT-1の分散(2)>
実施例5において、分散剤及びその添加量を、PVP 0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表2に合わせて示す。 [Comparative Example 4]
<Dispersion of CNT-1 using PVP (2)>
In Example 5, the same operations and evaluations were performed except that the dispersant and the amount added thereof were changed to 0.25 g of PVP and the amount of NMP was changed to 49.50 g, respectively. The evaluation results are shown in Table 2.
[実施例9]
<高分岐ポリマー2を用いたCNT-2の分散(1)>
実施例5において、MWCNTをCNT-2に変更した以外は、同様の操作、評価を行った。評価結果を表3に示す。 [Example 9]
<Dispersion of CNT-2 using hyperbranched polymer 2 (1)>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-2. The evaluation results are shown in Table 3.
<高分岐ポリマー2を用いたCNT-2の分散(1)>
実施例5において、MWCNTをCNT-2に変更した以外は、同様の操作、評価を行った。評価結果を表3に示す。 [Example 9]
<Dispersion of CNT-2 using hyperbranched polymer 2 (1)>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-2. The evaluation results are shown in Table 3.
[実施例10]
<高分岐ポリマー2を用いたCNT-2の分散(2)>
実施例5において、MWCNTをCNT-2に、高分岐ポリマー2の添加量を0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 10]
<Dispersion of CNT-2 using hyperbranched polymer 2 (2)>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-2, the addition amount of thehyperbranched polymer 2 was changed to 0.25 g, and the amount of NMP was changed to 49.50 g. The evaluation results are shown in Table 3.
<高分岐ポリマー2を用いたCNT-2の分散(2)>
実施例5において、MWCNTをCNT-2に、高分岐ポリマー2の添加量を0.25gに、NMPの量を49.50gにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 10]
<Dispersion of CNT-2 using hyperbranched polymer 2 (2)>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-2, the addition amount of the
[実施例11]
<高分岐ポリマー4を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を実施例4において合成した高分岐ポリマー4にそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 11]
<Dispersion of CNT-2 using highly branched polymer 4>
The same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to the hyperbranched polymer 4 synthesized in Example 4 in Example 5. The evaluation results are shown in Table 3.
<高分岐ポリマー4を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を実施例4において合成した高分岐ポリマー4にそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 11]
<Dispersion of CNT-2 using highly branched polymer 4>
The same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to the hyperbranched polymer 4 synthesized in Example 4 in Example 5. The evaluation results are shown in Table 3.
[実施例22]
<高分岐ポリマー6を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を実施例15において合成した高分岐ポリマー6に変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 22]
<Dispersion of CNT-2 using highly branchedpolymer 6>
The same operations and evaluations were performed except that in Example 5, MWCNT was changed to CNT-2 and the dispersant was changed to the highlybranched polymer 6 synthesized in Example 15. The evaluation results are shown in Table 3.
<高分岐ポリマー6を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を実施例15において合成した高分岐ポリマー6に変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 22]
<Dispersion of CNT-2 using highly branched
The same operations and evaluations were performed except that in Example 5, MWCNT was changed to CNT-2 and the dispersant was changed to the highly
[実施例23]
<高分岐ポリマー7を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 23]
<Dispersion of CNT-2 using highly branched polymer 7>
The same operations and evaluations were performed except that in Example 5, MWCNT was changed to CNT-2 and the dispersant was changed to the highly branched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 3.
<高分岐ポリマー7を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Example 23]
<Dispersion of CNT-2 using highly branched polymer 7>
The same operations and evaluations were performed except that in Example 5, MWCNT was changed to CNT-2 and the dispersant was changed to the highly branched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 3.
[比較例5]
<高分岐ポリマー5を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を参考製造例1において合成した高分岐ポリマー5にそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Comparative Example 5]
<Dispersion of CNT-2 using highly branchedpolymer 5>
The same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to thehyperbranched polymer 5 synthesized in Reference Production Example 1 in Example 5. The evaluation results are shown in Table 3.
<高分岐ポリマー5を用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤を参考製造例1において合成した高分岐ポリマー5にそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Comparative Example 5]
<Dispersion of CNT-2 using highly branched
The same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to the
[比較例6]
<PVPを用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤をPVPにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Comparative Example 6]
<Dispersion of CNT-2 using PVP>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to PVP. The evaluation results are shown in Table 3.
<PVPを用いたCNT-2の分散>
実施例5において、MWCNTをCNT-2に、分散剤をPVPにそれぞれ変更した以外は、同様の操作、評価を行った。評価結果を表3に合わせて示す。 [Comparative Example 6]
<Dispersion of CNT-2 using PVP>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-2 and the dispersant was changed to PVP. The evaluation results are shown in Table 3.
[実施例24]
<高分岐ポリマー7を用いたCNT-4の分散>
実施例5において、MWCNTをCNT-4に、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作、評価を行った。評価結果を表4に示す。 [Example 24]
<Dispersion of CNT-4 using highly branched polymer 7>
The same operation and evaluation were performed except that in Example 5, MWCNT was changed to CNT-4 and the dispersant was changed to the highly branched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 4.
<高分岐ポリマー7を用いたCNT-4の分散>
実施例5において、MWCNTをCNT-4に、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作、評価を行った。評価結果を表4に示す。 [Example 24]
<Dispersion of CNT-4 using highly branched polymer 7>
The same operation and evaluation were performed except that in Example 5, MWCNT was changed to CNT-4 and the dispersant was changed to the highly branched polymer 7 synthesized in Example 16. The evaluation results are shown in Table 4.
[実施例25]
<高分岐ポリマー7を用いたCNT-5の分散>
実施例24において、MWCNTをCNT-5に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 25]
<Dispersion of CNT-5 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-5. The evaluation results are shown in Table 4.
<高分岐ポリマー7を用いたCNT-5の分散>
実施例24において、MWCNTをCNT-5に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 25]
<Dispersion of CNT-5 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-5. The evaluation results are shown in Table 4.
[実施例26]
<高分岐ポリマー7を用いたCNT-6の分散>
実施例24において、MWCNTをCNT-6に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 26]
<Dispersion of CNT-6 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-6. The evaluation results are shown in Table 4.
<高分岐ポリマー7を用いたCNT-6の分散>
実施例24において、MWCNTをCNT-6に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 26]
<Dispersion of CNT-6 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-6. The evaluation results are shown in Table 4.
[実施例27]
<高分岐ポリマー7を用いたCNT-7の分散>
実施例24において、MWCNTをCNT-7に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 27]
<Dispersion of CNT-7 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-7. The evaluation results are shown in Table 4.
<高分岐ポリマー7を用いたCNT-7の分散>
実施例24において、MWCNTをCNT-7に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 27]
<Dispersion of CNT-7 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-7. The evaluation results are shown in Table 4.
[実施例28]
<高分岐ポリマー7を用いたCNT-8の分散>
実施例24において、MWCNTをCNT-8に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 28]
<Dispersion of CNT-8 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-8. The evaluation results are shown in Table 4.
<高分岐ポリマー7を用いたCNT-8の分散>
実施例24において、MWCNTをCNT-8に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Example 28]
<Dispersion of CNT-8 using highly branched polymer 7>
In Example 24, the same operation and evaluation were performed except that MWCNT was changed to CNT-8. The evaluation results are shown in Table 4.
[比較例9]
<PVPを用いたCNT-4の分散>
実施例5において、MWCNTをCNT-4に、分散剤をPVPに変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 9]
<Dispersion of CNT-4 using PVP>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-4 and the dispersant was changed to PVP. The evaluation results are shown in Table 4.
<PVPを用いたCNT-4の分散>
実施例5において、MWCNTをCNT-4に、分散剤をPVPに変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 9]
<Dispersion of CNT-4 using PVP>
In Example 5, the same operation and evaluation were performed except that MWCNT was changed to CNT-4 and the dispersant was changed to PVP. The evaluation results are shown in Table 4.
[比較例10]
<PVPを用いたCNT-5の分散>
比較例9において、MWCNTをCNT-5に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 10]
<Dispersion of CNT-5 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-5 in Comparative Example 9. The evaluation results are shown in Table 4.
<PVPを用いたCNT-5の分散>
比較例9において、MWCNTをCNT-5に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 10]
<Dispersion of CNT-5 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-5 in Comparative Example 9. The evaluation results are shown in Table 4.
[比較例11]
<PVPを用いたCNT-6の分散>
比較例9において、MWCNTをCNT-6に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 11]
<Dispersion of CNT-6 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-6 in Comparative Example 9. The evaluation results are shown in Table 4.
<PVPを用いたCNT-6の分散>
比較例9において、MWCNTをCNT-6に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 11]
<Dispersion of CNT-6 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-6 in Comparative Example 9. The evaluation results are shown in Table 4.
[比較例12]
<PVPを用いたCNT-7の分散>
比較例9において、MWCNTをCNT-7に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 12]
<Dispersion of CNT-7 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-7 in Comparative Example 9. The evaluation results are shown in Table 4.
<PVPを用いたCNT-7の分散>
比較例9において、MWCNTをCNT-7に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 12]
<Dispersion of CNT-7 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-7 in Comparative Example 9. The evaluation results are shown in Table 4.
[比較例13]
<PVPを用いたCNT-8の分散>
比較例9において、MWCNTをCNT-8に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 13]
<Dispersion of CNT-8 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-8 in Comparative Example 9. The evaluation results are shown in Table 4.
<PVPを用いたCNT-8の分散>
比較例9において、MWCNTをCNT-8に変更した以外は、同様の操作、評価を行った。評価結果を表4に合わせて示す。 [Comparative Example 13]
<Dispersion of CNT-8 using PVP>
The same operation and evaluation were performed except that MWCNT was changed to CNT-8 in Comparative Example 9. The evaluation results are shown in Table 4.
表2に示すとおり、CNT/分散剤混合比が同一である、実施例5,7,17,20及び比較例3、並びに実施例6,8,21及び比較例4をそれぞれ比較すると、本発明の分散剤を用いて作製したCNT-1薄膜複合体(実施例5~8、実施例17,20,21)は、CNTの分散剤として公知であるPVPを用いた場合(比較例3,4)よりも表面抵抗値が低く、全光透過率も同等以上であった。さらに、本発明の分散剤が溶解する溶媒(IPAやPGME)であれば、NMP以外の溶媒中にもCNTを分散することが可能であり(実施例18,19)、MWCNTの分散に幅広く適用できることが明らかとなった。また、薄膜の均一性も良好であり、本発明の分散剤が高導電性で均一な薄膜複合体を得る上で、有利であることが明らかとなった。なお、高分岐ポリマー5を分散剤として用いた比較例1及び比較例2は分散状態を保てず、該ポリマーには分散性能がないとする結果が得られた。
更に、より外径が細いMWCNT(CNT-2)の分散では、表3に示したとおり、本発明の分散剤を用いた場合(実施例9~11、実施例22,23)にのみ、MWCNTが均一に分散したMWCNT含有分散液が得られ、薄膜複合体の調製が可能であった。CNT-2のようなより外径の細いMWCNTを用いることで、薄膜複合体の透明性の向上が期待できるため、本発明の分散剤は透明性の点でも有利であることが明らかとなった。
また表4に示したとおり、本発明の分散剤は、様々なメーカーより市販されているMWCNTでも分散が可能であり、MWCNT種が同じである実施例24及び比較例9(CNT-4)、実施例25及び比較例10(CNT-5)、実施例26及び比較例11(CNT-6)、実施例27及び比較例12(CNT-7)、並びに実施例28及び比較例13(CNT-8)を比較すると、本発明の分散剤を用いて作製したMWCNT薄膜複合体は、(実施例24~28)は、CNTの分散剤として公知であるPVPを用いた場合(比較例9~13)よりも表面抵抗値が1桁~4桁程度も低く、全光透過率も同等以上であった。さらに薄膜の均一性が良好であるため、本発明の分散剤が高導電性で均一な薄膜複合体を得る上で有利であると共に、市販のMWCNTの分散において幅広く適用可能であることが明らかとなった。 As shown in Table 2, when Examples 5, 7, 17, 20 and Comparative Example 3, and Examples 6, 8, 21, and Comparative Example 4 having the same CNT / dispersant mixing ratio were compared, the present invention was compared. CNT-1 thin film composites (Examples 5 to 8, Examples 17, 20, and 21) prepared using the above-described dispersants were obtained using PVP known as a CNT dispersant (Comparative Examples 3 and 4). ) And the total light transmittance was equal or higher. Furthermore, if the solvent (IPA or PGME) in which the dispersant of the present invention is dissolved, CNT can be dispersed in a solvent other than NMP (Examples 18 and 19), and widely applied to the dispersion of MWCNT. It became clear that we could do it. In addition, the uniformity of the thin film is also good, and it has become clear that the dispersant of the present invention is advantageous in obtaining a highly conductive and uniform thin film composite. In addition, Comparative Example 1 and Comparative Example 2 using thehyperbranched polymer 5 as a dispersant could not maintain the dispersion state, and the result that the polymer has no dispersion performance was obtained.
Further, in the dispersion of MWCNT (CNT-2) having a smaller outer diameter, as shown in Table 3, only when the dispersant of the present invention is used (Examples 9 to 11, Examples 22 and 23), MWCNT Thus, a MWCNT-containing dispersion having a uniform dispersion was obtained, and a thin film composite could be prepared. The use of MWCNT having a smaller outer diameter such as CNT-2 can be expected to improve the transparency of the thin film composite. Therefore, it was revealed that the dispersant of the present invention is advantageous in terms of transparency. .
Further, as shown in Table 4, the dispersant of the present invention can also be dispersed with MWCNTs commercially available from various manufacturers, and Example 24 and Comparative Example 9 (CNT-4), which have the same MWCNT species, Example 25 and Comparative Example 10 (CNT-5), Example 26 and Comparative Example 11 (CNT-6), Example 27 and Comparative Example 12 (CNT-7), and Example 28 and Comparative Example 13 (CNT-) Comparing 8), the MWCNT thin film composites produced using the dispersant of the present invention (Examples 24 to 28) were obtained when PVP known as a CNT dispersant was used (Comparative Examples 9 to 13). ) And the total light transmittance was equivalent or better. Furthermore, since the uniformity of the thin film is good, it is clear that the dispersant of the present invention is advantageous in obtaining a highly conductive and uniform thin film composite and is widely applicable in the dispersion of commercially available MWCNTs. became.
更に、より外径が細いMWCNT(CNT-2)の分散では、表3に示したとおり、本発明の分散剤を用いた場合(実施例9~11、実施例22,23)にのみ、MWCNTが均一に分散したMWCNT含有分散液が得られ、薄膜複合体の調製が可能であった。CNT-2のようなより外径の細いMWCNTを用いることで、薄膜複合体の透明性の向上が期待できるため、本発明の分散剤は透明性の点でも有利であることが明らかとなった。
また表4に示したとおり、本発明の分散剤は、様々なメーカーより市販されているMWCNTでも分散が可能であり、MWCNT種が同じである実施例24及び比較例9(CNT-4)、実施例25及び比較例10(CNT-5)、実施例26及び比較例11(CNT-6)、実施例27及び比較例12(CNT-7)、並びに実施例28及び比較例13(CNT-8)を比較すると、本発明の分散剤を用いて作製したMWCNT薄膜複合体は、(実施例24~28)は、CNTの分散剤として公知であるPVPを用いた場合(比較例9~13)よりも表面抵抗値が1桁~4桁程度も低く、全光透過率も同等以上であった。さらに薄膜の均一性が良好であるため、本発明の分散剤が高導電性で均一な薄膜複合体を得る上で有利であると共に、市販のMWCNTの分散において幅広く適用可能であることが明らかとなった。 As shown in Table 2, when Examples 5, 7, 17, 20 and Comparative Example 3, and Examples 6, 8, 21, and Comparative Example 4 having the same CNT / dispersant mixing ratio were compared, the present invention was compared. CNT-1 thin film composites (Examples 5 to 8, Examples 17, 20, and 21) prepared using the above-described dispersants were obtained using PVP known as a CNT dispersant (Comparative Examples 3 and 4). ) And the total light transmittance was equal or higher. Furthermore, if the solvent (IPA or PGME) in which the dispersant of the present invention is dissolved, CNT can be dispersed in a solvent other than NMP (Examples 18 and 19), and widely applied to the dispersion of MWCNT. It became clear that we could do it. In addition, the uniformity of the thin film is also good, and it has become clear that the dispersant of the present invention is advantageous in obtaining a highly conductive and uniform thin film composite. In addition, Comparative Example 1 and Comparative Example 2 using the
Further, in the dispersion of MWCNT (CNT-2) having a smaller outer diameter, as shown in Table 3, only when the dispersant of the present invention is used (Examples 9 to 11, Examples 22 and 23), MWCNT Thus, a MWCNT-containing dispersion having a uniform dispersion was obtained, and a thin film composite could be prepared. The use of MWCNT having a smaller outer diameter such as CNT-2 can be expected to improve the transparency of the thin film composite. Therefore, it was revealed that the dispersant of the present invention is advantageous in terms of transparency. .
Further, as shown in Table 4, the dispersant of the present invention can also be dispersed with MWCNTs commercially available from various manufacturers, and Example 24 and Comparative Example 9 (CNT-4), which have the same MWCNT species, Example 25 and Comparative Example 10 (CNT-5), Example 26 and Comparative Example 11 (CNT-6), Example 27 and Comparative Example 12 (CNT-7), and Example 28 and Comparative Example 13 (CNT-) Comparing 8), the MWCNT thin film composites produced using the dispersant of the present invention (Examples 24 to 28) were obtained when PVP known as a CNT dispersant was used (Comparative Examples 9 to 13). ) And the total light transmittance was equivalent or better. Furthermore, since the uniformity of the thin film is good, it is clear that the dispersant of the present invention is advantageous in obtaining a highly conductive and uniform thin film composite and is widely applicable in the dispersion of commercially available MWCNTs. became.
[実施例12]
<高分岐ポリマー2を用いたCNT-3の分散>
分散剤として実施例2において合成した高分岐ポリマー2 1mgをNMP5mLに溶解させ、この溶液へSWCNTとしてCNT-3 0.5mgを添加した。この混合物に、超音波洗浄器を用いて室温で1時間超音波処理を行い、室温(およそ25℃)で10,000G、1時間の遠心分離により、上澄み液として黒色透明なSWCNT含有溶液を回収した。
得られた黒色透明なSWCNT含有溶液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)、及び金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが孤立分散状態にまで分散されていることが確認された。 [Example 12]
<Dispersion of CNT-3 using highly branchedpolymer 2>
As a dispersant, 1 mg ofhyperbranched polymer 2 synthesized in Example 2 was dissolved in 5 mL of NMP, and 0.5 mg of CNT-3 as SWCNT was added to this solution. This mixture is sonicated for 1 hour at room temperature using an ultrasonic cleaner, and centrifuged at 10,000 G for 1 hour at room temperature (approximately 25 ° C.) to recover a black transparent SWCNT-containing solution as a supernatant. did.
When the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
<高分岐ポリマー2を用いたCNT-3の分散>
分散剤として実施例2において合成した高分岐ポリマー2 1mgをNMP5mLに溶解させ、この溶液へSWCNTとしてCNT-3 0.5mgを添加した。この混合物に、超音波洗浄器を用いて室温で1時間超音波処理を行い、室温(およそ25℃)で10,000G、1時間の遠心分離により、上澄み液として黒色透明なSWCNT含有溶液を回収した。
得られた黒色透明なSWCNT含有溶液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)、及び金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが孤立分散状態にまで分散されていることが確認された。 [Example 12]
<Dispersion of CNT-3 using highly branched
As a dispersant, 1 mg of
When the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
[実施例29]
<高分岐ポリマー6を用いたCNT-3の分散>
実施例12において、分散剤を実施例15において合成した高分岐ポリマー6に変更した以外は、同様の操作を行った。
得られた黒色透明なSWCNT含有溶液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)、及び金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが孤立分散状態にまで分散されていることが確認された。 [Example 29]
<Dispersion of CNT-3 using highly branchedpolymer 6>
The same operation as in Example 12 was performed except that the dispersant was changed to thehyperbranched polymer 6 synthesized in Example 15.
When the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
<高分岐ポリマー6を用いたCNT-3の分散>
実施例12において、分散剤を実施例15において合成した高分岐ポリマー6に変更した以外は、同様の操作を行った。
得られた黒色透明なSWCNT含有溶液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)、及び金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが孤立分散状態にまで分散されていることが確認された。 [Example 29]
<Dispersion of CNT-3 using highly branched
The same operation as in Example 12 was performed except that the dispersant was changed to the
When the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
[実施例30]
<高分岐ポリマー7を用いたCNT-3の分散>
実施例12において、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作を行った。
得られた黒色透明なSWCNT含有溶液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)、及び金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが孤立分散状態にまで分散されていることが確認された。 [Example 30]
<Dispersion of CNT-3 using highly branched polymer 7>
The same operation as in Example 12 was performed except that the dispersant was changed to the hyperbranched polymer 7 synthesized in Example 16.
When the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
<高分岐ポリマー7を用いたCNT-3の分散>
実施例12において、分散剤を実施例16において合成した高分岐ポリマー7に変更した以外は、同様の操作を行った。
得られた黒色透明なSWCNT含有溶液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)、及び金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが孤立分散状態にまで分散されていることが確認された。 [Example 30]
<Dispersion of CNT-3 using highly branched polymer 7>
The same operation as in Example 12 was performed except that the dispersant was changed to the hyperbranched polymer 7 synthesized in Example 16.
When the ultraviolet-visible near-infrared absorption spectrum of the obtained black transparent SWCNT-containing solution was measured, it was found that the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm), and the metal The absorption of the sex band (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed to the isolated dispersion state.
[比較例7]
<PVPを用いたCNT-3の分散>
実施例12において、高分岐ポリマー2をPVPに変更した以外は同様の操作を行ったが、SWCNTを分散させることはできなかった。 [Comparative Example 7]
<Dispersion of CNT-3 using PVP>
In Example 12, the same operation was performed except that thehyperbranched polymer 2 was changed to PVP, but SWCNT could not be dispersed.
<PVPを用いたCNT-3の分散>
実施例12において、高分岐ポリマー2をPVPに変更した以外は同様の操作を行ったが、SWCNTを分散させることはできなかった。 [Comparative Example 7]
<Dispersion of CNT-3 using PVP>
In Example 12, the same operation was performed except that the
[比較例8]
<CNT-3単独での分散>
実施例12において、高分岐ポリマー2の添加を無くした以外は同様の操作を行ったが、SWCNTを分散させることはできなかった。 [Comparative Example 8]
<Dispersion with CNT-3 alone>
In Example 12, the same operation was performed except that the addition of thehyperbranched polymer 2 was omitted, but the SWCNT could not be dispersed.
<CNT-3単独での分散>
実施例12において、高分岐ポリマー2の添加を無くした以外は同様の操作を行ったが、SWCNTを分散させることはできなかった。 [Comparative Example 8]
<Dispersion with CNT-3 alone>
In Example 12, the same operation was performed except that the addition of the
[実施例13]
<高分岐ポリマー2及びJERを用いたCNT-1薄膜複合体の熱硬化>
分散剤として実施例2において合成した高分岐ポリマー2 0.50gをNMP49.25gに溶解させ、この溶液へMWCNTとしてCNT-1 0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液を得た。
上記MWCNT含有分散液1.0gに、あらかじめ調製した多官能エポキシ化合物JERの1.5質量%NMP溶液1.0g、及びブチルセロソルブ0.5gを添加し、薄膜作製用の組成物を調製した。得られた組成物50μLを、スリット幅25.4μmのアプリケータを用いてガラス基板上に均一に展開し、100℃で10分間プリベークし乾燥することで、透明で均一なMWCNT/高分岐ポリマー2/エポキシ化合物薄膜複合体を作製した。この薄膜複合体を、さらに160℃にて30分間ポストベークし熱硬化を行った。
得られた薄膜複合体の、熱硬化前後の表面抵抗、全光透過率及び鉛筆硬度をそれぞれ評価した。なお、鉛筆硬度については、JIS K5400に記載の手かき法に準じて測定した。結果を表5に示す。 [Example 13]
<Thermal curing of CNT-1 thin film composite usinghyperbranched polymer 2 and JER>
As a dispersant, 0.50 g of thehyperbranched polymer 2 synthesized in Example 2 was dissolved in 49.25 g of NMP, and 0.25 g of CNT-1 as MWCNT was added to this solution. This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device to obtain a black MWCNT-containing dispersion liquid in which MWCNT was uniformly dispersed without a precipitate.
To 1.0 g of the above MWCNT-containing dispersion, 1.0 g of a 1.5 mass% NMP solution of a polyfunctional epoxy compound JER prepared in advance and 0.5 g of butyl cellosolve were added to prepare a composition for producing a thin film. 50 μL of the obtained composition is uniformly spread on a glass substrate using an applicator having a slit width of 25.4 μm, pre-baked at 100 ° C. for 10 minutes, and dried to obtain a transparent and uniform MWCNT / highlybranched polymer 2 / Epoxy compound thin film composite was prepared. This thin film composite was further post-baked at 160 ° C. for 30 minutes for thermosetting.
The obtained thin film composite was evaluated for surface resistance before and after thermosetting, total light transmittance and pencil hardness. The pencil hardness was measured according to the handwriting method described in JIS K5400. The results are shown in Table 5.
<高分岐ポリマー2及びJERを用いたCNT-1薄膜複合体の熱硬化>
分散剤として実施例2において合成した高分岐ポリマー2 0.50gをNMP49.25gに溶解させ、この溶液へMWCNTとしてCNT-1 0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液を得た。
上記MWCNT含有分散液1.0gに、あらかじめ調製した多官能エポキシ化合物JERの1.5質量%NMP溶液1.0g、及びブチルセロソルブ0.5gを添加し、薄膜作製用の組成物を調製した。得られた組成物50μLを、スリット幅25.4μmのアプリケータを用いてガラス基板上に均一に展開し、100℃で10分間プリベークし乾燥することで、透明で均一なMWCNT/高分岐ポリマー2/エポキシ化合物薄膜複合体を作製した。この薄膜複合体を、さらに160℃にて30分間ポストベークし熱硬化を行った。
得られた薄膜複合体の、熱硬化前後の表面抵抗、全光透過率及び鉛筆硬度をそれぞれ評価した。なお、鉛筆硬度については、JIS K5400に記載の手かき法に準じて測定した。結果を表5に示す。 [Example 13]
<Thermal curing of CNT-1 thin film composite using
As a dispersant, 0.50 g of the
To 1.0 g of the above MWCNT-containing dispersion, 1.0 g of a 1.5 mass% NMP solution of a polyfunctional epoxy compound JER prepared in advance and 0.5 g of butyl cellosolve were added to prepare a composition for producing a thin film. 50 μL of the obtained composition is uniformly spread on a glass substrate using an applicator having a slit width of 25.4 μm, pre-baked at 100 ° C. for 10 minutes, and dried to obtain a transparent and uniform MWCNT / highly
The obtained thin film composite was evaluated for surface resistance before and after thermosetting, total light transmittance and pencil hardness. The pencil hardness was measured according to the handwriting method described in JIS K5400. The results are shown in Table 5.
[実施例14]
<高分岐ポリマー2及びEPLを用いたCNT-1薄膜複合体の熱硬化>
実施例13において、多官能エポキシ化合物をEPLに、ポストベーク温度を230℃に変更した以外は、同様の操作、評価を行った。評価結果を表5に合わせて示す。 [Example 14]
<Thermal curing of CNT-1 thin film composite usinghyperbranched polymer 2 and EPL>
In Example 13, the same operation and evaluation were performed except that the polyfunctional epoxy compound was changed to EPL and the post-baking temperature was changed to 230 ° C. The evaluation results are shown in Table 5.
<高分岐ポリマー2及びEPLを用いたCNT-1薄膜複合体の熱硬化>
実施例13において、多官能エポキシ化合物をEPLに、ポストベーク温度を230℃に変更した以外は、同様の操作、評価を行った。評価結果を表5に合わせて示す。 [Example 14]
<Thermal curing of CNT-1 thin film composite using
In Example 13, the same operation and evaluation were performed except that the polyfunctional epoxy compound was changed to EPL and the post-baking temperature was changed to 230 ° C. The evaluation results are shown in Table 5.
実施例13、14で得られた薄膜は均一であり、多官能エポキシ化合物を添加し薄膜を作製した場合でもMWCNTの分散性は維持された。更にポストベークにより熱硬化することで、表面抵抗値の低下と鉛筆硬度の大幅な向上が確認された。このことから、分散剤として用いた本発明の高分岐ポリマーは、エポキシ化合物の硬化促進剤としても作用することが明らかであり、薄膜として硬度の求められる用途に好適に用いることが可能であるとする結果が得られた。
The thin films obtained in Examples 13 and 14 were uniform, and the dispersibility of MWCNT was maintained even when a thin film was prepared by adding a polyfunctional epoxy compound. Further, it was confirmed that the surface resistance value was lowered and the pencil hardness was greatly improved by thermosetting by post-baking. From this, it is clear that the hyperbranched polymer of the present invention used as a dispersant also acts as a curing accelerator for epoxy compounds, and can be suitably used for applications requiring hardness as a thin film. The result to be obtained.
Claims (22)
- アミノ官能基又はイミノ官能基を末端に有し、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量が1,000乃至2,000,000である高分岐ポリマーからなることを特徴とする、カーボンナノチューブ分散剤。 It has an amino functional group or an imino functional group at the end, and is characterized by comprising a hyperbranched polymer having a weight average molecular weight of 1,000 to 2,000,000 measured in terms of polystyrene by gel permeation chromatography, Carbon nanotube dispersant.
- 前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して5乃至200モル%のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである、請求項1に記載のカーボンナノチューブ分散剤。 A polymerization initiator B in which the hyperbranched polymer has a monomer A having two or more radically polymerizable double bonds in the molecule and an amino functional group or imino functional group in an amount of 5 to 200 mol% based on the monomer A. The carbon nanotube dispersant according to claim 1, which is a hyperbranched polymer obtained by polymerization in the presence of.
- 前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、ヘテロ環アミン構造を有する重合開始剤である、請求項1又は請求項2に記載のカーボンナノチューブ分散剤。 The carbon nanotube dispersant according to claim 1 or 2, wherein the polymerization initiator B having an amino functional group or an imino functional group is a polymerization initiator having a heterocyclic amine structure.
- 前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[1]で表される官能基を有する重合開始剤である、請求項1又は請求項2に記載のカーボンナノチューブ分散剤。
- 前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[2]で表される重合開始剤である、請求項2に記載のカーボンナノチューブ分散剤。
- 前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内に少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーA及び該モノマーCの合計モルに対して、5モル%以上200モル%以下の量のアミノ官能基又はイミノ官能基を有する重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである、請求項1に記載のカーボンナノチューブ分散剤。 The highly branched polymer comprises a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer C having at least one radical polymerizable double bond in the molecule. It is a highly branched polymer obtained by polymerizing in the presence of a polymerization initiator B having an amino functional group or imino functional group in an amount of 5 mol% or more and 200 mol% or less with respect to the total mol of the monomer C. Item 4. The carbon nanotube dispersant according to Item 1.
- 前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、ヘテロ環アミン構造を有する重合開始剤である、請求項6に記載のカーボンナノチューブ分散剤。 The carbon nanotube dispersant according to claim 6, wherein the polymerization initiator B having the amino functional group or imino functional group is a polymerization initiator having a heterocyclic amine structure.
- 前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[1]で表される官能基を有する重合開始剤である、請求項6に記載のカーボンナノチューブ分散剤。
- 前記アミノ官能基又はイミノ官能基を有する重合開始剤Bが、式[2]で表される重合開始剤である、請求項8に記載のカーボンナノチューブ分散剤。
- 請求項1乃至請求項9のうち何れか一項に記載のカーボンナノチューブ分散剤、及びカーボンナノチューブを含む組成物。 The composition containing the carbon nanotube dispersing agent as described in any one of Claims 1 thru | or 9, and a carbon nanotube.
- 前記カーボンナノチューブが、単層カーボンナノチューブ、二層カーボンナノチューブ及び多層カーボンナノチューブから選ばれる少なくとも一種である、請求項10に記載の組成物。 The composition according to claim 10, wherein the carbon nanotube is at least one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
- 前記カーボンナノチューブ分散剤が、前記カーボンナノチューブの表面に付着又は配位して複合体を形成している、請求項10又は請求項11に記載の組成物。 The composition according to claim 10 or 11, wherein the carbon nanotube dispersant is attached or coordinated to a surface of the carbon nanotube to form a composite.
- さらに有機溶媒を含む、請求項10乃至請求項12のうち何れか一項に記載の組成物。 The composition according to any one of claims 10 to 12, further comprising an organic solvent.
- 前記カーボンナノチューブが、前記有機溶媒に分散されてなる、請求項13に記載の組成物。 The composition according to claim 13, wherein the carbon nanotube is dispersed in the organic solvent.
- 前記複合体が前記有機溶媒に分散している、請求項13に記載の組成物。 The composition according to claim 13, wherein the complex is dispersed in the organic solvent.
- さらに有機溶媒に可溶な熱硬化性化合物を含む、請求項10乃至請求項15のうち何れか一項に記載の組成物。 Furthermore, the composition as described in any one of Claims 10 thru | or 15 containing the thermosetting compound soluble in an organic solvent.
- 前記熱硬化性化合物が、多官能エポキシ化合物である、請求項16に記載の組成物。 The composition according to claim 16, wherein the thermosetting compound is a polyfunctional epoxy compound.
- 請求項10乃至請求項17のうち何れか一項に記載の組成物から得られる薄膜。 A thin film obtained from the composition according to any one of claims 10 to 17.
- 請求項16又は請求項17に記載の組成物から得られる薄膜に、熱処理を施すことで得られる硬化膜。 The cured film obtained by heat-processing the thin film obtained from the composition of Claim 16 or Claim 17.
- 請求項1乃至請求項9のうち何れか一項に記載のカーボンナノチューブ分散剤、カーボンナノチューブ、及び有機溶媒を混合して混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする、組成物の製造方法。 A step of preparing a mixture by mixing the carbon nanotube dispersant according to any one of claims 1 to 9, a carbon nanotube, and an organic solvent, and a step of mechanically treating the mixture. A process for producing a composition, characterized in that
- 前記機械的処理が、超音波処理であることを特徴とする、請求項20に記載の製造方法。 The manufacturing method according to claim 20, wherein the mechanical treatment is ultrasonic treatment.
- 前記カーボンナノチューブ分散剤を前記有機溶媒に溶かしてなる溶液中に、前記カーボンナノチューブを添加して前記混合物を調製する工程と、この混合物を超音波処理する工程を含むことを特徴とする、請求項21に記載の製造方法。 The method comprising: adding the carbon nanotubes to a solution obtained by dissolving the carbon nanotube dispersant in the organic solvent to prepare the mixture; and sonicating the mixture. 22. The production method according to 21.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011521957A JP5900736B2 (en) | 2009-07-08 | 2010-07-08 | Carbon nanotube dispersant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-162253 | 2009-07-08 | ||
JP2009162253 | 2009-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011004864A1 true WO2011004864A1 (en) | 2011-01-13 |
Family
ID=43429289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061621 WO2011004864A1 (en) | 2009-07-08 | 2010-07-08 | Carbon nanotube dispersant |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5900736B2 (en) |
TW (1) | TW201113081A (en) |
WO (1) | WO2011004864A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012170936A (en) * | 2011-02-24 | 2012-09-10 | Nissan Chem Ind Ltd | Carbon nanotube dispersant |
JP2014218393A (en) * | 2013-05-08 | 2014-11-20 | 日本ゼオン株式会社 | Carbon nanotube dispersion |
JPWO2014002885A1 (en) * | 2012-06-26 | 2016-05-30 | 東レ株式会社 | Dispersion of carbon nanotube-containing composition and conductive molded body |
CN116789949A (en) * | 2023-07-19 | 2023-09-22 | 上海交通大学 | Hyperbranched polymer, carbon nanotube dispersion liquid, positive electrode material, positive electrode plate and lithium ion battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004276232A (en) * | 2003-02-24 | 2004-10-07 | Mitsubishi Electric Corp | Carbon nanotube dispersion liquid and method of manufacturing the same |
WO2008139839A1 (en) * | 2007-05-09 | 2008-11-20 | Kyushu University, National University Corporation | Carbon nanotube solubilizer |
JP2010189552A (en) * | 2009-02-18 | 2010-09-02 | Okayama Univ | Novel dendrimer, and use thereof |
-
2010
- 2010-07-08 WO PCT/JP2010/061621 patent/WO2011004864A1/en active Application Filing
- 2010-07-08 JP JP2011521957A patent/JP5900736B2/en active Active
- 2010-07-08 TW TW099122613A patent/TW201113081A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004276232A (en) * | 2003-02-24 | 2004-10-07 | Mitsubishi Electric Corp | Carbon nanotube dispersion liquid and method of manufacturing the same |
WO2008139839A1 (en) * | 2007-05-09 | 2008-11-20 | Kyushu University, National University Corporation | Carbon nanotube solubilizer |
JP2010189552A (en) * | 2009-02-18 | 2010-09-02 | Okayama Univ | Novel dendrimer, and use thereof |
Non-Patent Citations (2)
Title |
---|
KATSUMI SHINOHARA ET AL.: "Hyperbranched Polymer ni yoru Tanso Carbon Nanotube no Kayoka to Kinoka", POLYMER PREPRINTS, vol. 56, no. 1, 10 May 2007 (2007-05-10), JAPAN, pages 1463, XP008132007 * |
RYOTA IKEUCHI ET AL.: "Alkyl-sa o Core ni Motsu Poly(amidoamine) Dendrimer o Mochiita Tanso Carbon Nanotube no Kabunsanka", POLYMER PREPRINTS, vol. 57, no. 2, 9 September 2008 (2008-09-09), JAPAN, pages 3183 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012170936A (en) * | 2011-02-24 | 2012-09-10 | Nissan Chem Ind Ltd | Carbon nanotube dispersant |
JPWO2014002885A1 (en) * | 2012-06-26 | 2016-05-30 | 東レ株式会社 | Dispersion of carbon nanotube-containing composition and conductive molded body |
JP2014218393A (en) * | 2013-05-08 | 2014-11-20 | 日本ゼオン株式会社 | Carbon nanotube dispersion |
CN116789949A (en) * | 2023-07-19 | 2023-09-22 | 上海交通大学 | Hyperbranched polymer, carbon nanotube dispersion liquid, positive electrode material, positive electrode plate and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
TW201113081A (en) | 2011-04-16 |
JPWO2011004864A1 (en) | 2012-12-20 |
JP5900736B2 (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline | |
Dao et al. | Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly (methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity | |
JP4824971B2 (en) | Nanomaterial-containing composition, method for producing the same, and composite using the same | |
JP4908136B2 (en) | Carbon nanotube-containing composition, composite, and production method thereof | |
JP5651111B2 (en) | Hyperbranched polymer and composition containing the same | |
WO2006028200A1 (en) | Nanosubstance-containing composition, process for producing the same, and composite made with the same | |
Huynh et al. | Polymer coating of graphene oxide via reversible addition–fragmentation chain transfer mediated emulsion polymerization | |
WO2007066649A1 (en) | Carbon nanotube-containing composition, composite body, and their production methods | |
Mallakpour et al. | A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly (amide–imide) composites | |
JP5155519B2 (en) | Carbon nanotube-containing curable composition and composite having the cured coating film | |
JP5001527B2 (en) | Curable resin composition, laminate, and production method thereof | |
Mekki et al. | Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts | |
Hu et al. | Surface initiated grafting of polymer chains on carbon nanotubes via one-step cycloaddition of diarylcarbene | |
JP5900736B2 (en) | Carbon nanotube dispersant | |
Yameen et al. | Conducting polymer/SWCNTs modular hybrid materials via Diels–Alder ligation | |
Xie et al. | In situ synthesis and characterization of poly (2, 5-benzoxazole)/multiwalled carbon nanotubes composites | |
Das et al. | A comprehensive study on step-wise surface modification of C60: effect of oxidation and silanization on dynamic mechanical and thermal stability of epoxy nanocomposite | |
Wu et al. | Mechanical and electrochemical properties of UV-curable nanocellulose/urushiol epoxy acrylate anti-corrosive composite coatings | |
Tripathi et al. | Effect of multiwalled carbon nanotubes on the properties of poly (methyl methacrylate) in PMMA/CNT nanocomposites | |
Shen et al. | Insight into In Situ Amphiphilic Functionalization of Few‐Layered Transition Metal Dichalcogenide Nanosheets | |
JP5741785B2 (en) | Metal fine particle dispersant comprising a highly branched polymer having an amino functional group or an imino functional group at its terminal | |
KR101672614B1 (en) | Preparation method of multi-wall carbon nanotube having metharcylate | |
JP5475645B2 (en) | Carbon nanotube solubilizer composed of aroylbiphenyl-based hyperbranched polymer | |
JP5016912B2 (en) | Carbon nanotube-containing composition, process for producing the same, and coating film, cured film or composite obtained therefrom | |
KR102402965B1 (en) | Method for manufacturing modified carbonnano materials and conductive structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10797175 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011521957 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10797175 Country of ref document: EP Kind code of ref document: A1 |