JP6196800B2 - Sliding member - Google Patents
Sliding member Download PDFInfo
- Publication number
- JP6196800B2 JP6196800B2 JP2013096283A JP2013096283A JP6196800B2 JP 6196800 B2 JP6196800 B2 JP 6196800B2 JP 2013096283 A JP2013096283 A JP 2013096283A JP 2013096283 A JP2013096283 A JP 2013096283A JP 6196800 B2 JP6196800 B2 JP 6196800B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- circular recess
- sliding member
- circular
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sliding-Contact Bearings (AREA)
Description
この発明は、摺動部材に関する。 The present invention relates to a sliding member.
軸受材料などの摺動部材として、固体潤滑剤となる黒鉛を用いた銅合金を使うことが知られている。例えば、特許文献1には、銅基焼結合金製軸受を製造するにあたって、銅をコーティングした塊状グラファイトを配合し、軸受の表面に塊状グラファイトを分散配置させる方法が記載されている。また、特許文献2には、金属基体の表面に形成された孔などの凹部に、黒鉛を主体とする棒状の固体潤滑剤を、珪酸ナトリウムを介することで埋設させ、黒鉛と珪酸ナトリウムの両方を固体潤滑剤として機能させる旨が記載されている。 As a sliding member such as a bearing material, it is known to use a copper alloy using graphite as a solid lubricant. For example, Patent Document 1 describes a method of blending massive graphite coated with copper and dispersing massive graphite on the surface of a bearing when manufacturing a copper-based sintered alloy bearing. Patent Document 2 discloses that a bar-shaped solid lubricant mainly composed of graphite is embedded in a recess such as a hole formed on the surface of a metal substrate through sodium silicate, and both graphite and sodium silicate are contained. It describes that it functions as a solid lubricant.
しかしながら、特許文献1の方法では、焼結合金内に意図的に大量の異物を配合することになるため、銅コーティングによって劈開こそしにくいものの、全体的な強度の低下は避けられなかった。また、特許文献2の方法では、孔などの凹部に合わせた形状の黒鉛を主体とする固体潤滑剤を準備する必要があるだけでなく、珪酸ナトリウムを接着剤として黒鉛を接着させるため、200℃ほどでの乾燥処理が必要であった(特許文献2[0017])。さらに、接着された黒鉛を主体とする固体潤滑剤は、摺動面にmmオーダーで分布しているため、固体潤滑剤が少ない箇所もmmオーダーで多数存在してしまい、その摺動部材に接する被摺動部材には、mmオーダーでの不連続な固体潤滑領域が発生してしまうという問題があった。 However, in the method of Patent Document 1, since a large amount of foreign matter is intentionally mixed in the sintered alloy, although it is difficult to cleave with the copper coating, a decrease in the overall strength is inevitable. Further, in the method of Patent Document 2, it is necessary not only to prepare a solid lubricant mainly composed of graphite having a shape matched to a recess such as a hole, but also to adhere graphite using sodium silicate as an adhesive. The drying process was required (Patent Document 2 [0017]). Furthermore, since the solid lubricant mainly composed of adhered graphite is distributed on the sliding surface in the order of mm, there are a large number of places where the solid lubricant is small in the order of mm and is in contact with the sliding member. The sliding member has a problem that a discontinuous solid lubricating region in the order of mm occurs.
そこでこの発明は、銅合金製の摺動部材を製造するにあたり、強度の低下を起こすことなく、また、接着や乾燥などの処理を行う必要なく、かつ、不連続面を発生させないように、摺動部材表面に黒鉛を配することを目的とする。 Therefore, the present invention provides a sliding member that does not cause a decrease in strength, does not require a treatment such as adhesion or drying, and does not generate a discontinuous surface when manufacturing a sliding member made of a copper alloy. It aims at arranging graphite on the moving member surface.
この発明は、摺動面に形成された複数の円形凹部と、上記円形凹部内に保持された黒鉛とを備え、上記円形凹部を形成する際にその周囲に生じる隆起部をその円形凹部の中央側へ塑性変形させた縮径開口部を備える摺動部材とすることで、上記の課題を解決したのである。 The present invention comprises a plurality of circular recesses formed on a sliding surface and graphite held in the circular recesses, and a raised portion formed around the circular recess is formed at the center of the circular recess. The above-mentioned problem has been solved by using a sliding member having a reduced diameter opening plastically deformed to the side.
上記の周囲に隆起部を生じる円形凹部の形成方法としては、一旦製造した摺動部材の表面に粒子を当てたディンプルを形成させたりすることで、外力により変形させて円形凹部を形成させながら、その円形凹部の肉の一部を周囲に蓄積、あるいは変形させて隆起部を生じさせるものがよい。 As a method of forming a circular recess that generates a raised portion around the above, by forming a dimple with particles applied to the surface of the sliding member once manufactured, while deforming by external force to form a circular recess, It is preferable that a part of the meat of the circular recess is accumulated or deformed in the periphery to generate a raised portion.
なお、完全な真円である必要はなく、内部に黒鉛を保持できる範囲で、楕円形であってもよい。 In addition, it does not need to be a perfect perfect circle, and may be elliptical as long as graphite can be held inside.
上記円形凹部に黒鉛を保持させる方法としては、黒鉛の薄い剥離片が上記円形凹部に収まるのであればよく、例えば、摺動面に直接に黒鉛の塊を圧接しながら動かすといったことによって、表面の円形凹部内に黒鉛の塊の一部が剥離されて付着すれば、それだけで静電的に黒鉛を保持することができる。また、黒鉛を液体中に分散させて、上記円形凹部に流し込んだ後、液体を除去することでも、上記円形凹部内に黒鉛を保持させることができる。 As a method of holding the graphite in the circular recess, it is only necessary that a thin exfoliated piece of graphite fits in the circular recess. For example, by moving the graphite lump directly in contact with the sliding surface, If a part of the lump of graphite is peeled off and attached in the circular recess, the graphite can be held electrostatically by itself. Alternatively, the graphite can be held in the circular recess by removing the liquid after the graphite is dispersed in the liquid and poured into the circular recess.
上記の隆起部を円形凹部の中央側へ塑性変形させるのは、上記の黒鉛を保持させる前でもよいし、後でもよい。ただし、塑性変形前に保持させるのであれば、黒鉛の直接圧接でも、黒鉛分散液体による導入でもいずれも可能だが、塑性変形後に保持させるのであれば、開口部が縮径しているため、直接圧接による導入は難しく、黒鉛分散液体によるとよい。 The bulging portion may be plastically deformed toward the center of the circular concave portion before or after holding the graphite. However, if it is held before plastic deformation, either direct pressure welding of graphite or introduction with a graphite dispersion liquid is possible, but if held after plastic deformation, the opening is reduced in diameter so that direct pressure welding is possible. Is difficult to introduce by graphite dispersion liquid.
いずれの手順にせよ、適切な大きさで、かつ適切な占有率を占めるように形成された円形凹部に、後から黒鉛を保持させることによって、部材自体の強度低下を起こすことなく、表面に黒鉛を配することができる。黒鉛は銅合金に対して、その他の接着成分を使わなくても縮径開口部によって囲まれるために付着させた状態を長期間保持できるので、余分な処理は必要なく、かつ、接着剤を用いる場合よりも高い均一性をもって配置させることができる。 Regardless of the procedure, by holding graphite in a circular recess formed in an appropriate size and occupying an appropriate occupancy ratio, the surface of the graphite itself can be reduced without causing a reduction in the strength of the member itself. Can be arranged. Because graphite is surrounded by a reduced diameter opening without using other adhesive components, graphite can be kept attached for a long period of time, so no extra treatment is required and an adhesive is used. It can be arranged with higher uniformity than in the case.
この発明により、銅合金製の部材から、強度低下を起こすことなく、また、接着や乾燥などの処理を行う必要なく、かつ、不連続面の発生を抑制しながら、長期間に亘って利用可能な、表面に黒鉛を配した有用な銅合金製摺動部材を得ることができる。 According to the present invention, it is possible to use from a copper alloy member for a long period of time without causing a decrease in strength, without requiring treatment such as adhesion and drying, and suppressing the occurrence of discontinuous surfaces. In addition, a useful copper alloy sliding member having graphite on the surface can be obtained.
さらにより好適には、この発明の条件下で銅合金の表面に開口部の縮径によって囲まれて保持された黒鉛が固体潤滑剤として作用することにより、その摺動部材は潤滑油の供給がない、いわゆる無給油の状態で長期間に亘って使用を続けることもできる。 Even more preferably, under the conditions of this invention, the graphite surrounded and held by the reduced diameter of the opening acts as a solid lubricant, so that the sliding member is supplied with lubricating oil. It can also be used over a long period of time without so-called lubrication.
以下、この発明について具体的に説明する。この発明は、表面に形成した円形凹部に保持させた黒鉛により潤滑油を供給する必要なく長期間に亘って利用できる銅合金系の摺動部材である。ここで銅合金系であるとは、50質量%以上が銅からなる合金であることをいい、Snを1質量%以上15質量%以下含む青銅系銅合金でもよい。このような青銅系銅合金となる成分であると、高強度となるため好ましい。その他、Fe、Pなど、一般的な銅合金が含有する元素を含んでいてよい。 The present invention will be specifically described below. The present invention is a copper alloy-based sliding member that can be used for a long period of time without the need to supply lubricating oil with graphite held in a circular recess formed on the surface. Here, copper alloy-based means that 50% by mass or more is an alloy made of copper, and may be a bronze-based copper alloy containing 1% by mass to 15% by mass of Sn. A component that becomes such a bronze-based copper alloy is preferable because of its high strength. In addition, an element contained in a general copper alloy such as Fe or P may be included.
この発明にかかる摺動部材は、摺動部材の外形を形成させた後、(A)摺動面に上記円形凹部を形成させるステップ、(B)上記円形凹部に黒鉛を保持させるステップ、(C)上記円形凹部を縮径させるステップ、を、(B)と(C)の順番を可変可能に実行することで得られる。すなわち、図1に掲げる手順と、図2に掲げる手順のいずれかの方法で得ることが出来る。 In the sliding member according to the present invention, after forming the outer shape of the sliding member, (A) a step of forming the circular recess on the sliding surface, (B) a step of holding graphite in the circular recess, (C ) The step of reducing the diameter of the circular recess is obtained by changing the order of (B) and (C). That is, it can be obtained by any one of the procedure shown in FIG. 1 and the procedure shown in FIG.
銅合金系材料によって摺動部材の外形を形成させる方法は特に限定されない。例えば、所定の成分比で配合した粉末を、溶解した後鋳型によって冷却して形成してもよいし、粉末を固めた後に焼結させて形成させてもよい。 The method for forming the outer shape of the sliding member with the copper alloy material is not particularly limited. For example, a powder blended at a predetermined component ratio may be melted and then cooled by a mold, or may be formed by sintering after the powder is hardened.
その上で、まずいずれの手順でも、上記円形凹部を形成するステップ(A)を行う。図1、図2とも、(a)から(b)の手順である。上記円形凹部の形成する方法は、その周囲に隆起部を生じさせながら形成できるものであれば、特に限定されるものではない。例えば、銅合金より硬度の高い粒子を激突させて、表面に微細なディンプルとして上記円形凹部を形成させる方法が挙げられる。この粒子は球形であると好ましいが、完全な球でなくても円形凹部は形成可能である。なお、円形凹部も完全な真円である必要はなく、内部に黒鉛を保持できる程度の変形であれば楕円であってもよい。 Then, first, in any procedure, the step (A) for forming the circular recess is performed. 1 and 2 are the procedures from (a) to (b). The method for forming the circular concave portion is not particularly limited as long as it can be formed while generating a raised portion around the circular concave portion. For example, there is a method in which particles having a hardness higher than that of a copper alloy are collided to form the circular recess as fine dimples on the surface. The particles are preferably spherical, but circular recesses can be formed even if they are not perfect spheres. Note that the circular recess does not have to be a perfect circle, and may be an ellipse as long as the deformation is such that graphite can be held inside.
その後のステップは手順により異なる。まず、上記円形凹部に黒鉛を保持するステップ(B)から説明する。このステップは、図1の手順では(A)の後(bからc)に行うが、図2の手順では(C)の後(cからd)に行う。上記円形凹部に黒鉛を保持させる方法は、黒鉛の剥離片を静電的に上記円形凹部に導入し、保持できれば特に限定されない。ただし、接着剤によらない結合であることが望ましい。例えば、塊状の黒鉛を、上記円形凹部を有する摺動面に圧接させたまま摩擦することで、凹部の縁で黒鉛の塊を削り、その剥離片を凹部内に固着させる方法が挙げられる。ここで用いる黒鉛の塊は、純粋な黒鉛でなくてもよく、黒鉛を塊にするための硫黄や粘土、その他の結合成分を有していてもよい。なお、これらの結合成分は、上記摺動面への静電的な付着に大きな影響を及ぼさないものである。また他の方法としては、液中に黒鉛の剥離片を分散させた分散液を塗布した後、溶媒を乾燥させてもよい。 The subsequent steps vary depending on the procedure. First, the step (B) for holding graphite in the circular recess will be described. This step is performed after (A) (b to c) in the procedure of FIG. 1, but after (C) (c to d) in the procedure of FIG. The method for holding the graphite in the circular recess is not particularly limited as long as the graphite exfoliation piece can be electrostatically introduced and held in the circular recess. However, it is desirable that the bonding is not based on an adhesive. For example, there is a method in which a lump of graphite is rubbed while being pressed against a sliding surface having a circular recess, and the lump of graphite is scraped off at the edge of the recess and the peeled piece is fixed in the recess. The graphite lump used here may not be pure graphite, and may have sulfur, clay, and other binding components for lumping graphite. Note that these coupling components do not significantly affect the electrostatic adhesion to the sliding surface. As another method, the solvent may be dried after applying the dispersion liquid in which the exfoliated pieces of graphite are dispersed in the liquid.
ただし、上記の保持方法のうち、摺動面に塊状の黒鉛を圧接摩擦する方法を行う場合には、下記(C)よりも先に(B)を実行する方が好ましい。下記(C)を実行した後では開口部が縮径されるために、黒鉛を圧接しても上記円形凹部の内部へ黒鉛を保持させることがやや難しくなるためである。一方、黒鉛分散液を用いる場合には、(B)と(C)の順番はどちらでも可能であり、図1の手順、図2の手順のどちらでも特にデメリットなく実行可能である。 However, among the above-mentioned holding methods, when performing a method in which the massive graphite is pressed and rubbed on the sliding surface, it is preferable to execute (B) before (C) below. This is because, after executing the following (C), the diameter of the opening is reduced, so that it is somewhat difficult to hold the graphite inside the circular recess even if the graphite is pressed. On the other hand, when a graphite dispersion is used, the order of (B) and (C) can be either, and either the procedure of FIG. 1 or the procedure of FIG.
次に上記円形凹部を縮径させるステップ(C)を説明する。このステップは、図1の手順では(B)の後(cからd)に行い、図2の手順では(A)の後(bからc)に行う。
上記(A)の段階で上記円形凹部の周囲に形成された隆起部を、円形凹部の中央側へ向かって塑性変形させて縮径する。もし縮径されていないと、摺動される圧力によって黒鉛が円形凹部の縁から剥がれてしまい、図3のような状態になりやすい。開口部が縮径された縮径開口部とすると、孔は小さくなるものの、内部には広い空間を残したまま、すなわち十分な黒鉛を保持したままとすることができるので、上記円形凹部に保持された黒鉛が、摺動時に剥離しにくくなり、長期間に亘って摺動性を保持できるようになる。
Next, the step (C) for reducing the diameter of the circular recess will be described. This step is performed after (B) (c to d) in the procedure of FIG. 1, and after (A) (b to c) in the procedure of FIG.
The raised portion formed around the circular recess in the step (A) is plastically deformed toward the center of the circular recess to reduce the diameter. If the diameter is not reduced, the graphite is peeled off from the edge of the circular recess due to the sliding pressure, and the state as shown in FIG. 3 is likely to occur. If the diameter of the opening is reduced, the hole becomes smaller, but a large space is left inside, that is, sufficient graphite can be held. The formed graphite is difficult to peel off during sliding, and can maintain slidability for a long period of time.
上記の開口部を縮径させる方法としては、摺動表面全体に塑性変形できるだけの圧力を掛ける必要があり、具体的には、バニシングツール、プレス機、単純なローラによる加工、上記円形凹部よりも面積が十分に大きいハンマーによる打撃などが利用できる。なお、表面に黒鉛を有する材料で圧力を掛けると、黒鉛を円形凹部に補充させつつ縮径開口部を形成させることができる。 As a method of reducing the diameter of the opening, it is necessary to apply pressure enough to plastically deform the entire sliding surface. Specifically, the processing is performed by a burnishing tool, a press machine, a simple roller, and the circular recess. A hammer with a sufficiently large area can be used. When pressure is applied with a material having graphite on the surface, the reduced diameter opening can be formed while graphite is replenished in the circular recess.
またこのステップ(C)において、隆起部を変形させるに伴って摺動表面を平滑化しておくことが好ましい。すなわち、変形後は上記隆起部の頂上が、円形凹部の周辺と同じ高さにまで押さえ込まれていることが好ましい。 In this step (C), it is preferable that the sliding surface is smoothed as the raised portion is deformed. That is, it is preferable that after the deformation, the top of the raised portion is pressed down to the same height as the periphery of the circular recess.
黒鉛を保持させる時点での、摺動面において上記円形凹部が占める面積は、5%以上であることが好ましく、7%以上であるとより好ましく、10%以上であるとさらに好ましい。一方で、上記円形凹部が占める率が高いほど黒鉛を保持しやすいため、摺動部材自体の強度が確保できる範囲であれば特に上限は存在しない。 The area occupied by the circular recess on the sliding surface at the time of holding graphite is preferably 5% or more, more preferably 7% or more, and further preferably 10% or more. On the other hand, since the higher the ratio occupied by the circular recesses, the easier it is to hold graphite, there is no particular upper limit as long as the strength of the sliding member itself can be secured.
上記のそれぞれの円形凹部の表面における開口部の大きさの平均は、形成させた時点において、5μm以上であると好ましい。開口部が小さすぎると、黒鉛を上記円形凹部に導入することが難しくなり、形状次第では保持することも難しくなるためである。 The average size of the openings on the surface of each of the circular recesses is preferably 5 μm or more at the time of formation. If the opening is too small, it is difficult to introduce graphite into the circular recess, and it is difficult to hold the graphite depending on the shape.
一方、開口部を形成させた後に周囲の隆起部を中央側へ塑性変形させた後の縮径開口部は、75μm以下であると好ましい。75μmを超えると縮径開口部が広すぎて、黒鉛の剥離片を保持しきれなくなるおそれがあるためである。 On the other hand, it is preferable that the diameter-reduced opening after the opening is formed and the surrounding raised portion is plastically deformed toward the center side is 75 μm or less. This is because if the diameter exceeds 75 μm, the reduced-diameter opening is too wide to hold the graphite exfoliation pieces.
以下、この発明にかかる銅合金系摺動部材の具体的な実施例を示す。まず、試験材として、錫、鉄、硫黄、リンを含む銅合金の焼結体を、板厚5mmの熱間圧延鋼板上に、厚さ2mmの焼結体層となるように作製した。その塑性は硫化物を含んだ青銅合金であるCDA(米国銅開発協会)規格C90280相当である。 Specific examples of the copper alloy-based sliding member according to the present invention will be described below. First, as a test material, a sintered body of a copper alloy containing tin, iron, sulfur, and phosphorus was prepared on a hot-rolled steel sheet having a thickness of 5 mm so as to form a sintered body layer having a thickness of 2 mm. Its plasticity is equivalent to CDA (American Copper Development Association) standard C90280, which is a bronze alloy containing sulfide.
この焼結体層の硬さは約220Hvであり、主として粒界部分に微細な硫化物を内包する組織構造であった。この板状素材を、Φ50mm×Φ26mm×h6.2mmのディスク形状に加工し、試験片とした。そしてこのディスクの銅合金焼結層側面を旋削によって仕上げ、試験表面とした。 The sintered body layer had a hardness of about 220 Hv and a structure in which fine sulfides were mainly included in the grain boundary portion. This plate material was processed into a disk shape of Φ50 mm × Φ26 mm × h6.2 mm to obtain a test piece. Then, the side surface of the sintered copper alloy layer of this disk was finished by turning to obtain a test surface.
この表面に、微粒子ピーニングによってマイクロディンプルである円形凹部を形成させた。投射材には平均粒径50μmのガラスビーズを用いた。それぞれの円形凹部の大きさは20μm程度である。その表面に、黒鉛源として三菱鉛筆(株)製uni4.0Bの黒芯を当てて満遍なく摩擦させて、円形凹部内に黒鉛を導入した。さらにこの表面にローラバニシングを行い、円形凹部の周囲の隆起部を押し込んで縮径開口部を形成させた。この表面の写真を図4に示す。 On this surface, a circular concave portion which is a microdimple was formed by fine particle peening. Glass beads having an average particle diameter of 50 μm were used as the projection material. The size of each circular recess is about 20 μm. On the surface, a black core of uni4.0B manufactured by Mitsubishi Pencil Co., Ltd. was applied as a graphite source and rubbed evenly to introduce graphite into the circular recess. Furthermore, roller burnishing was performed on this surface, and the raised portion around the circular recess was pushed in to form a reduced diameter opening. A photograph of this surface is shown in FIG.
<表面粗さRa測定>
下記の摩擦係数試験を開始する前と、終了後とのそれぞれにおいて、ディスク試験片の表面における半径方向の一直線分に亘って、接触式粗さ計により、表面の粗さ(すなわち、高さ方向の変位)を測定し、試験の前後で摩耗により生じた表面の凹みの軸方向断面積差を算出した。この面積差を面積摩耗量とし、ディスク試験片一周分について積分して、体積摩耗量を算出した。摩擦係数試験前のRaを測定したところ、0.24μmであった。
<Surface roughness Ra measurement>
Before and after starting the following coefficient of friction test, the surface roughness (that is, the height direction) is measured by a contact-type roughness meter over a straight line in the radial direction on the surface of the disk specimen. The displacement in the axial direction of the surface depression caused by wear before and after the test was calculated. The area wear amount was defined as the area wear amount, and the volume wear amount was calculated by integrating the disk test piece for one round. When Ra before the friction coefficient test was measured, it was 0.24 μm.
<摩擦係数試験>
この摺動部材の摩擦係数を測定した。測定には図5に示す構造のリングオンディスク試験機を使用した。装置上部に配置されたリング試験片11をモータにより回転させ、下部に配置された半球面と多孔質カーボン凹面から構成される球面空気軸受(図示せず)に繋がる回転板16に固定されたディスク試験片12と接触させる方式である。実験中の摩擦トルクは、ディスク試験片12周囲に固定された板バネを用いて、測定部を片持ち梁の曲げ歪みとして検出し、摩擦力に変換した。
<Friction coefficient test>
The friction coefficient of this sliding member was measured. For the measurement, a ring-on-disk tester having the structure shown in FIG. 5 was used. A disk fixed to a rotating plate 16 connected to a spherical air bearing (not shown) composed of a hemispherical surface and a porous carbon concave surface disposed at the lower portion by rotating a ring test piece 11 disposed at the upper portion of the apparatus by a motor. This is a method of contacting with the test piece 12. The friction torque during the experiment was detected as a bending strain of the cantilever using a leaf spring fixed around the disk test piece 12 and converted into a frictional force.
相手材であるリング試験片11は一端側に高周波焼き入れを施した炭素鋼S45Cを用いた外径φ40×内径φ30×厚さ14mmのリング状の試験片(硬さ700〜7520Hv)を用いた。熱処理後に試験表面にラップ仕上げを施して、鏡面(0.003/0.55 Ra/Rmax)とした。ディスク試験片12には上記の通りの焼結体を用い、表面には黒鉛が導入済みである。 The ring test piece 11 which is a counterpart material was a ring-shaped test piece (hardness 700-7520 Hv) having an outer diameter φ40 × inner diameter φ30 × thickness 14 mm using carbon steel S45C subjected to induction hardening on one end side. . After the heat treatment, the test surface was lapped to obtain a mirror surface (0.003 / 0.55 Ra / Rmax). As the disk test piece 12, the sintered body as described above was used, and graphite was already introduced on the surface.
ディスク試験片12の面上に、軸を合わせてリング試験片11を乗せ、その上に円盤13を乗せた。円盤13の中心にボールジョイント14を設け、その上方から80Nの荷重をかけた。この荷重はボールジョイントの上方に設けた歪ゲージ15で測定しており、荷重を維持しているか確認した。常温下でディスク試験片を潤滑油(粘度:5cSt@40℃)に浸鎮した状態でディスク試験片12が乗る回転板16を、リングに対して0.05m/sとなるよう回転させ、摩擦距離が360mとなるまで摩擦係数を測定し、これを0.2秒周期で記録した。その結果を図6に示す。摩擦係数は全体を通じて0.1を超えることなく、さらに、時間経過につれて摩擦係数が減少するという効果が見られた。これは、ディンプルに蓄えられた黒鉛が摺動に伴ってさらに満遍なく拡散され、使用と共に平滑性がさらに向上していると考えられる。しかもその効果が縮径開口部の効果により長期間続いていると考えられる。 The ring test piece 11 was placed on the surface of the disk test piece 12 with the axis aligned, and the disk 13 was placed thereon. A ball joint 14 was provided at the center of the disk 13 and a load of 80 N was applied from above. This load was measured with a strain gauge 15 provided above the ball joint, and it was confirmed whether the load was maintained. The rotating plate 16 on which the disk test piece 12 is placed in a state where the disk test piece is immersed in lubricating oil (viscosity: 5 cSt @ 40 ° C.) at normal temperature is rotated to 0.05 m / s with respect to the ring, and friction is caused. The friction coefficient was measured until the distance was 360 m, and this was recorded at a cycle of 0.2 seconds. The result is shown in FIG. The coefficient of friction did not exceed 0.1 throughout, and the effect of decreasing the coefficient of friction over time was observed. This is considered that the graphite stored in the dimples is more evenly diffused with sliding, and the smoothness is further improved with use. Moreover, it is considered that the effect continues for a long time due to the effect of the reduced diameter opening.
また、終了後にメタノールで洗浄してグラファイトと削り粉を落とした後の表面写真を図7に示す。表面の焼き付きは見られず、摺動部材として良好に作用したことが確かめられた。この時点でのRaを測定したところ、0.35μmとなった。 Moreover, the surface photograph after wash | cleaning with methanol after completion | finish and dropping a graphite and shavings is shown in FIG. No seizure of the surface was observed, and it was confirmed that it worked well as a sliding member. When Ra was measured at this time, it was 0.35 μm.
11 リング試験片
12 ディスク試験片
13 円盤
14 ボールジョイント
15 歪ゲージ
16 回転板
11 Ring test piece 12 Disc test piece 13 Disk 14 Ball joint 15 Strain gauge 16 Rotating plate
Claims (1)
A.摺動面に複数の粒子を衝突させて、周囲に隆起部を有する円形凹部を複数個形成するステップ。
B.上記円形凹部の内部に黒鉛を導入するステップ。
C.上記隆起部を、上記円形凹部の中央側へ塑性変形させて、上記円形凹部の開口部を縮径させるとともに、摺動表面全体を平滑化するステップ。 The manufacturing method of the copper alloy type | system | group sliding member with which the sliding surface was filled with graphite which performs the following step A thru | or C in the order of A, B, C, or A, C, B.
A. A step of causing a plurality of particles to collide with the sliding surface to form a plurality of circular recesses having raised portions around the periphery.
B. Introducing graphite into the circular recess.
C. Plastically deforming the raised portion toward the center of the circular recess to reduce the diameter of the opening of the circular recess and smoothing the entire sliding surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013096283A JP6196800B2 (en) | 2013-05-01 | 2013-05-01 | Sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013096283A JP6196800B2 (en) | 2013-05-01 | 2013-05-01 | Sliding member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014219016A JP2014219016A (en) | 2014-11-20 |
JP6196800B2 true JP6196800B2 (en) | 2017-09-13 |
Family
ID=51937674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013096283A Expired - Fee Related JP6196800B2 (en) | 2013-05-01 | 2013-05-01 | Sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6196800B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021095705A1 (en) | 2019-11-12 | 2021-05-20 | 学校法人名城大学 | Sliding component and method for manufacturing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6400330B2 (en) * | 2014-05-16 | 2018-10-03 | 日立建機株式会社 | Sliding parts and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004308779A (en) * | 2003-04-07 | 2004-11-04 | Daido Metal Co Ltd | Sliding member and its manufacturing method |
-
2013
- 2013-05-01 JP JP2013096283A patent/JP6196800B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021095705A1 (en) | 2019-11-12 | 2021-05-20 | 学校法人名城大学 | Sliding component and method for manufacturing same |
KR20220079654A (en) | 2019-11-12 | 2022-06-13 | 히다찌 겐끼 가부시키가이샤 | Sliding parts and their manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2014219016A (en) | 2014-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2527557A (en) | Bearing element and sliding layer material for a bearing element | |
JP6196800B2 (en) | Sliding member | |
JP5878061B2 (en) | Plain bearing | |
Rathaur et al. | Tribo-mechanical properties of graphite/talc modified polymer composite bearing balls | |
Tomala et al. | Tool–solid lubricant–workpiece interactions in high temperatures applications | |
Tan et al. | Increase in ironing limit of aluminium alloy cups with lubricants containing nanoparticles | |
Tan et al. | Improved seizure resistance of ultra-high-strength steel ironed cups with a lubricant containing SiO 2 nanoparticles | |
WO2016206259A1 (en) | Method for manufacturing ultra-low-noise long-service-life oil-retaining bearing in powder metallurgy | |
JP7389601B2 (en) | sliding member | |
JP4710263B2 (en) | Sliding device | |
JP2009068558A (en) | Powder compact, sintered bearing, and process for producing the same | |
JP5980492B2 (en) | Sliding member | |
JP2009293660A (en) | Sliding bearing and bearing device fitted with the sliding bearing | |
El-Abden | Effect of Silica Nanoparticles and Multiwall Carbon Nanotubes Dispersing Lubricating Grease in Metal Forming | |
WO2015050183A1 (en) | Sliding component and manufacturing method therefor | |
JP6400330B2 (en) | Sliding parts and manufacturing method thereof | |
WO2014024899A1 (en) | Surface modification method for carbon steel | |
JP5850777B2 (en) | Sliding member | |
JP6625333B2 (en) | Manufacturing method of sintered bearing and sintered bearing | |
JP2008019965A (en) | Planetary gear device and rolling bearing | |
CN114599890B (en) | Sliding member and method for manufacturing same | |
JP2003080337A (en) | Press forming method and press forming member | |
JP7339154B2 (en) | SLIDING MEMBER AND METHOD FOR MANUFACTURING SLIDING MEMBER | |
JP5828725B2 (en) | Tool surface modification method | |
Zhao et al. | Effects of friction and lubrication of new water-based nano-graphite lubricant and application during warm extrusion processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6196800 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |