JP6191640B2 - Evaluation method and manufacturing method of non-oriented electrical steel sheet - Google Patents

Evaluation method and manufacturing method of non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6191640B2
JP6191640B2 JP2015059108A JP2015059108A JP6191640B2 JP 6191640 B2 JP6191640 B2 JP 6191640B2 JP 2015059108 A JP2015059108 A JP 2015059108A JP 2015059108 A JP2015059108 A JP 2015059108A JP 6191640 B2 JP6191640 B2 JP 6191640B2
Authority
JP
Japan
Prior art keywords
iron loss
index
electrical steel
steel sheet
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015059108A
Other languages
Japanese (ja)
Other versions
JP2015193926A (en
Inventor
勝 福村
勝 福村
善彰 財前
善彰 財前
尾田 善彦
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015059108A priority Critical patent/JP6191640B2/en
Publication of JP2015193926A publication Critical patent/JP2015193926A/en
Application granted granted Critical
Publication of JP6191640B2 publication Critical patent/JP6191640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、打抜き加工による鉄損特性が良好な無方向性電磁鋼板を的確かつ簡易に評価することができる無方向性電磁鋼板の評価方法およびその評価方法を用いた無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for evaluating a non-oriented electrical steel sheet capable of accurately and easily evaluating a non-oriented electrical steel sheet having good iron loss characteristics by punching, and manufacturing of the non-oriented electrical steel sheet using the evaluation method It is about the method.

一般に、電磁鋼板は打抜き加工等を施されることによって、磁気特性が劣化することが知られている。中でも、鉄損が増加する鉄損劣化(鉄損増加)に関しては、結果的にその電磁鋼板を用いた部品や製品のエネルギーロスによるコストアップにつながるため、打抜き加工による鉄損増加量を小さく抑制し、ひいては打抜き加工後の鉄損量(打抜き加工前の鉄損量+打抜き加工による鉄損増加量)を小さく抑制することが重要となる。すなわち、打抜き加工による鉄損特性(打抜き加工による鉄損増加量、打抜き加工後の鉄損量)を良好にすることが重要となる。   In general, it is known that magnetic properties of an electromagnetic steel sheet deteriorate when subjected to punching or the like. In particular, iron loss deterioration (increased iron loss) that increases iron loss results in increased costs due to energy loss of parts and products using the electrical steel sheet, so the amount of increase in iron loss due to punching is kept small. As a result, it is important to suppress the iron loss after punching (iron loss before punching + increase in iron loss by punching) to be small. That is, it is important to improve the iron loss characteristics by punching (the amount of iron loss increased by punching and the iron loss after punching).

これまで、打抜き加工等が鉄損増加に及ぼす影響を調査するため、実験的あるいは数値解析的に様々なアプローチがなされている。   So far, various approaches have been taken experimentally or numerically to investigate the effects of punching and the like on iron loss increase.

まず、実験的アプローチは数多くの事例が報告されており、ここでは割愛する。   First, many examples of experimental approaches have been reported and will be omitted here.

一方、数値解析的アプローチとしては、非特許文献1および非特許文献2に、せん断打抜きを模擬した数値解析結果より、電磁鋼板に生じる歪や応力の分布を求め、これらと鉄損増加量との関係を調査した事例が公開されている。   On the other hand, as a numerical analysis approach, non-patent document 1 and non-patent document 2 obtain the distribution of strain and stress generated in the electrical steel sheet from the numerical analysis result simulating shear punching, A case study of the relationship has been published.

また、特許文献1や特許文献2には、磁性体(鋼板等)を加工した際の応力を考慮して、その磁性体(鋼板等)の鉄損評価を行うシステムが開示されている。   Further, Patent Document 1 and Patent Document 2 disclose a system that evaluates the iron loss of a magnetic body (steel plate or the like) in consideration of stress when the magnetic body (steel plate or the like) is processed.

また、打抜き加工とは全く異なるが、特許文献3および特許文献4には、鉄損特性の優れた一方向電磁鋼板を得るために、一方向電磁鋼板にレーザビーム照射等により歪を導入した部位近傍に生じた残留応力の板幅方向に垂直な断面における二次元分布について、圧縮残留応力を圧縮残留応力が存在する領域内で積分した値を指標として鉄損特性を評価する手法が開示されている。   Further, although completely different from punching, in Patent Document 3 and Patent Document 4, in order to obtain a unidirectional electrical steel sheet having excellent iron loss characteristics, a part in which strain is introduced into the unidirectional electrical steel sheet by laser beam irradiation or the like. Disclosed is a method for evaluating iron loss characteristics using a value obtained by integrating the compressive residual stress in the region where the compressive residual stress exists for a two-dimensional distribution in the cross section perpendicular to the sheet width direction of the residual stress generated in the vicinity. Yes.

特開2003−240831号公報JP 2003-240831 A 特開2009−052914号公報JP 2009-052914 A 特開2008−106288号公報JP 2008-106288 A 特開2012−172215号公報JP 2012-172215 A

藪本ら、「ハイブリッド/電気自動車の駆動モータ用電磁鋼板」、新日鉄技報第378号、pp.51−54、2003Enomoto et al., “Electromagnetic steel plates for drive motors of hybrid / electric vehicles”, Nippon Steel Technical Report No. 378, pp. 51-54, 2003 柏原ら、「電磁鋼板の打抜き加工による磁気特性劣化量の推定技術の開発」、電気学会論文誌A、Vol.131、No.7、pp.567−574、2011Sugawara et al., “Development of estimation technique of magnetic property degradation due to punching of electrical steel sheet”, IEEJ Transactions A, Vol. 131, no. 7, pp. 567-574, 2011

一般的には、素材として鉄損がより低い電磁鋼板をモータやトランス等の部品や製品に適用すれば、部品や製品としての鉄損が低く抑えられる。しかし、素材の鉄損性能の優劣と、組上げた部品や製品の鉄損性能の優劣が一致しないことがある。   Generally, when an electromagnetic steel sheet having a lower iron loss as a material is applied to a part or product such as a motor or a transformer, the iron loss as a part or product can be kept low. However, the superiority or inferiority of the iron loss performance of the material may not match the superiority or inferiority of the iron loss performance of the assembled parts or products.

その理由として、一つに打抜き加工等による電磁鋼板の鉄損劣化があり、他にその部品や製品の適用周波数帯の違いによる鉄損特性への影響も考えられる。   One reason for this is the deterioration of iron loss in electrical steel sheets due to punching or the like. In addition, the influence on the iron loss characteristics due to the difference in the frequency band of the parts and products can be considered.

したがって、電磁鋼板の加工条件や、電磁鋼板からなる部品や製品の使用条件などに応じて、部品や製品の鉄損が最も小さくなる電磁鋼板が存在することになるが、加工条件や使用条件等を考慮して適正な電磁鋼板か否かを評価する作業は、実際に試作品を作った上で評価を行うなど、非常に工数やコストがかかっているのが実情である。   Therefore, depending on the processing conditions of electromagnetic steel sheets and the use conditions of parts and products made of electromagnetic steel sheets, there will be electromagnetic steel sheets that minimize the iron loss of parts and products. The work to evaluate whether or not it is an appropriate electrical steel sheet taking into account the fact is that it takes a lot of man-hours and costs, such as making an evaluation after actually making a prototype.

これに対し、上述したように、数値解析を活用する取り組み(非特許文献1、2、特許文献1〜4)があるが、それぞれ以下のような問題がある。   On the other hand, as described above, there are efforts to utilize numerical analysis (Non-Patent Documents 1 and 2, and Patent Documents 1 to 4), but each has the following problems.

まず、非特許文献1、2については、大きく分けて二つの問題点がある。一つは、打抜き加工を模擬した数値解析における打抜き端面形状の解析精度であり、もう一つは、その後に必要となる電磁界解析(電磁場解析)の問題である。   First, Non-Patent Documents 1 and 2 have two problems. One is the analysis accuracy of the punched end face shape in the numerical analysis simulating the punching process, and the other is the problem of the electromagnetic field analysis (electromagnetic field analysis) that is required after that.

まず、一つ目の問題点である、打抜き端面形状の解析精度については、非特許文献1、2に示された打抜き端面形状の解析結果は、実際より早い段階で材料(電磁鋼板)が切断・分離されてしまっていると判断され、解析精度が高いとは言い難い。   First, regarding the analysis accuracy of the punching end face shape, which is the first problem, the analysis results of the punching end face shape shown in Non-Patent Documents 1 and 2 show that the material (electrical steel sheet) is cut at an earlier stage than the actual one.・ It is judged that they have been separated, and it is difficult to say that the analysis accuracy is high.

具体的には、数値解析上、打抜き工具の刃先が板厚方向にわずかに押し込まれた状態で、即座に破断してしまっていることにある。その結果、実際に比べて、打抜き端面におけるせん断面長さが短く、また「だれ」が非常に小さい。ちなみに、だれとは、図1に模式的に示すように、打抜き端面近傍が打抜き方向に頭を垂れるように変形した部位もしくはその変形量である。   Specifically, in numerical analysis, the cutting edge of the punching tool is immediately broken in a state of being slightly pushed in the thickness direction. As a result, compared to the actual case, the shear plane length at the punched end face is short, and the “sag” is very small. By the way, as shown schematically in FIG. 1, who is a portion deformed so that the vicinity of the punching end surface hangs down in the punching direction or its deformation amount.

例えば、非特許文献1の図8では、打抜き端面である左端の形状や傾斜が実験と解析結果で明らかに異なっており、上面左端付近のだれの大きさにも乖離が見られる。   For example, in FIG. 8 of Non-Patent Document 1, the shape and inclination of the left end, which is the punching end surface, are clearly different between the experiment and the analysis result, and there is a discrepancy in the size of anyone near the upper left end.

また、非特許文献2のFig.11においては、板厚の12/50、すなわち板厚の24%分だけパンチが材料に食い込んだ時点で、板厚方向に破断が貫通している解析結果が開示されている。しかし、実際には、図2(凹凸部断面の模式図)と図3(断面の光学顕微鏡写真)に例示するような、深さが板厚の約半分(図3では、板厚の約2/3)程度もある丸かしめ用の凹凸加工部が成形できており、数値解析上は打抜き破断が実際よりも早く生じてしまっていることが容易に類推される。   Also, FIG. No. 11 discloses an analysis result in which fracture penetrates in the thickness direction when the punch bites into the material by 12/50 of the thickness, that is, 24% of the thickness. However, in actuality, the depth is about half of the plate thickness (in FIG. 3, about 2 of the plate thickness) as illustrated in FIG. 2 (schematic diagram of the cross section of the concavo-convex portion) and FIG. / 3) An uneven processed part for round caulking can be formed, and it is easily inferred from the numerical analysis that the punching fracture has occurred earlier than actual.

数値解析結果において、破断発生が実際より早く、その結果、だれを小さく見積もった場合、端面近傍の変形状態を過小評価していることを意味し、歪の大きさだけでなく、歪が加わった領域の大きさ、引いては打抜き端面付近に発生・残留する応力の大きさや応力発生領域に直結するので、この点から、非特許文献1、2に示された解析結果は、歪や応力分布の解析精度が高いとは言い難い。   In the numerical analysis results, when the fracture occurred earlier than the actual result, and when any of them was estimated to be small, it meant that the deformation state near the end face was underestimated, and not only the magnitude of the strain but also the strain was added. Since the size of the area, which is directly connected to the size of the stress generated / residual near the punched end face and the stress generation area, the analysis results shown in Non-Patent Documents 1 and 2 show the strain and stress distribution. It is hard to say that the analysis accuracy is high.

次に、二つ目の問題点である、せん断打抜き解析に引き続いて行う電磁界解析については、非特許文献1、2における電磁界解析の趣旨に基づくと、歪や応力が付与された場合の磁気特性変化(劣化)の基礎データを参照した上で、せん断打抜き後の歪分布や応力分布を考慮して、磁気特性劣化を予測することになる。   Next, regarding electromagnetic field analysis performed subsequent to shear punching analysis, which is the second problem, based on the purpose of electromagnetic field analysis in Non-Patent Documents 1 and 2, when strain or stress is applied After referring to the basic data of the magnetic property change (deterioration), the magnetic property deterioration is predicted in consideration of the strain distribution and stress distribution after the shear punching.

そのため、例えば、非特許文献2においては、電磁場解析の要素分割を打抜き解析で用いたものと共通にして、歪や応力の参照を容易にするなど、特別な注意を払っており、通常の電磁場解析とは異なって、板厚方向にも要素分割を施している。打抜き形状が短冊状の矩形板であれば、この解析モデルの適用は何ら問題ないが、例えばモータコアに代表されるような複雑な形状を打抜いた場合には、大規模な3次元解析が必要となり、実際上解析は不可能となる。   For this reason, for example, in Non-Patent Document 2, special attention is paid such that the element division of the electromagnetic field analysis is shared with that used in the punching analysis, and the strain and stress are easily referred to. Unlike analysis, element division is also performed in the thickness direction. If the punching shape is a rectangular rectangular plate, there is no problem in applying this analysis model. However, for example, when a complicated shape such as a motor core is punched, a large-scale three-dimensional analysis is required. Thus, analysis is practically impossible.

また、非特許文献2のFig.12〜Fig.14に示される応力レベルや塑性歪を変化させた場合の電磁鋼板の磁気特性変化に関する詳細なデータが必要となる。これらのデータを採取し、整理してデータベース化することを待って、初めて上記の趣旨に沿った電磁場解析が可能となる。逆に言えば、このデータベースがない材質に対しては、同じような電磁界解析が適用できない。   Also, FIG. 12-FIG. Detailed data relating to the change in the magnetic properties of the electrical steel sheet when the stress level and plastic strain shown in FIG. It is not until these data are collected, organized, and made into a database that the electromagnetic field analysis can be performed for the first time. Conversely, the same electromagnetic field analysis cannot be applied to materials that do not have this database.

一方、上述したように、特許文献1や特許文献2には、磁性体(鋼板等)を加工した際の応力を考慮して、その磁性体(鋼板等)の鉄損評価を行うシステムが開示されている。しかし、特許文献1、2では、応力に関しては解析により求めるとあるが、加工歪による影響には一切触れられていない。また、特許文献2では、用いられた相当応力の式から、打抜き加工部に見られる板厚方向に不均一に分布する応力については、元来その特性を考慮する意図がなく、基本的に焼きばめ等の板厚方向に一様な応力のみを意図していることが明白である。少なくとも、打抜き加工後の板厚方向に分布する歪や応力分布を抽出し、考慮する手法は開示されていない。   On the other hand, as described above, Patent Document 1 and Patent Document 2 disclose a system that evaluates the iron loss of a magnetic material (steel plate, etc.) in consideration of stress when the magnetic material (steel plate, etc.) is processed. Has been. However, in Patent Documents 1 and 2, although the stress is obtained by analysis, there is no mention of the influence of processing strain. Further, in Patent Document 2, the stress that is unevenly distributed in the plate thickness direction found in the punched portion is not originally intended to take into account the characteristics, and is basically baked. It is clear that only a uniform stress in the thickness direction such as a fit is intended. There is no disclosure of a method for extracting and considering at least the strain and stress distribution distributed in the thickness direction after punching.

また、上述したように、特許文献3、4においては、鉄損特性の優れた一方向電磁鋼板を得るために、一方向電磁鋼板にレーザビーム照射等により歪を導入した部位近傍に生じた残留応力の板幅方向に垂直な断面における二次元分布について、圧縮残留応力を圧縮残留応力が存在する領域内で積分した値を指標として評価する手法が開示されている。しかし、特許文献3、4では、指標として圧縮残留応力をその作用領域で面積分した値、すなわちトータルの圧縮力を用いており、詳細は後述する実施例で示すが、結果として異なる電磁鋼板の比較として用いることは難しい。発生する圧縮応力の値は、強度レベルが異なる電磁鋼板の間で、直接絶対値比較することはできず、また、特許文献3の図5に顕著に示されているように、当該指標には鉄損が極小となる指標の値もしくはその範囲があって、その適正範囲も材料毎に違うことが容易に類推されるからである。   In addition, as described above, in Patent Documents 3 and 4, in order to obtain a unidirectional electromagnetic steel sheet with excellent iron loss characteristics, residuals generated in the vicinity of a portion where strain is introduced into the unidirectional electromagnetic steel sheet by laser beam irradiation or the like. For a two-dimensional distribution of a stress in a cross section perpendicular to the plate width direction, a method of evaluating a value obtained by integrating a compressive residual stress in an area where the compressive residual stress exists is disclosed as an index. However, in Patent Documents 3 and 4, the value obtained by dividing the compressive residual stress by the area of action in the region of action, that is, the total compressive force, is used as an index, and the details will be shown in Examples described later. It is difficult to use as a comparison. The value of the generated compressive stress cannot be directly compared in absolute value between electrical steel sheets having different strength levels. Further, as clearly shown in FIG. This is because there is an index value or range within which the iron loss is minimized, and it is easily inferred that the appropriate range varies from material to material.

以上述べたように、従来の手法では、打抜き加工等による歪や応力を精度良く評価しておらず、またそれらによる影響を考慮した電磁界解析を行うには、大量の磁化特性データを必要とすることを含めて、非常に煩雑で、また実用的打抜き形状への適用は困難でもあった。   As described above, the conventional method does not accurately evaluate strain and stress due to punching and the like, and in order to perform electromagnetic field analysis in consideration of the influence of such, a large amount of magnetization characteristic data is required. This is very complicated and difficult to apply to a practical punching shape.

本発明は、電磁鋼板のうち無方向性電磁鋼板に限定して、上記のような問題点を克服し、打抜き加工による鉄損特性(打抜き加工による鉄損増加量、打抜き加工後の鉄損量)が良好な(小さな)無方向性電磁鋼板を的確かつ簡易に評価・選出することができる無方向性電磁鋼板の評価方法およびその評価方法を用いた無方向性電磁鋼板の製造方法を提供することを目的とするものである。   The present invention is limited to non-oriented electrical steel sheets among the electrical steel sheets, and overcomes the above-mentioned problems. Iron loss characteristics by punching (iron loss increase by punching, iron loss after punching) Provides a method for evaluating a non-oriented electrical steel sheet capable of accurately and easily evaluating and selecting a (small) non-oriented electrical steel sheet with good) and a method for producing a non-oriented electrical steel sheet using the evaluation method. It is for the purpose.

上記課題を解決するために、本発明は以下の特徴を有している。   In order to solve the above problems, the present invention has the following features.

[1]無方向性電磁鋼板を加工した後に生じる鉄損増加量を、予め定めた指標によって評価し、その評価結果に基づいて当該無方向性電磁鋼板の鉄損特性の良否を評価する方法であって、前記指標は、加工の数値解析結果から値が定まる相当塑性歪分布と残留応力分布のどちらかひとつ、または両方であることを特徴とする無方向性電磁鋼板の評価方法。   [1] A method for evaluating an increase in iron loss generated after processing a non-oriented electrical steel sheet using a predetermined index, and evaluating the quality of the iron loss characteristics of the non-oriented electrical steel sheet based on the evaluation result. The evaluation method for a non-oriented electrical steel sheet, wherein the index is one or both of an equivalent plastic strain distribution and a residual stress distribution whose value is determined from a numerical analysis result of processing.

[2]前記指標は、相当塑性歪εeq分布に関して、相当塑性歪が発生している領域内で領域積分した指標Iε=∫εeqdA、磁化される方向の応力成分σに関して、切断端面を起点とし、評価断面内を切断端面から遠ざかる任意のラインにそって、圧縮応力が発生している領域内で線積分した指標Iσ=∫(σ/σ)ds(ここで、σは当該無方向性電磁鋼板の降伏応力)であることを特徴とする前記[1]に記載の無方向性電磁鋼板の評価方法。 [2] For the equivalent plastic strain ε eq distribution, the index is the index Iε = ∫ε eq dA obtained by integrating the region in the region where the equivalent plastic strain is generated, and the cut end face is related to the stress component σ in the magnetized direction. The index Iσ = ∫ (σ / σ Y ) ds (where σ Y is the relevant value) obtained by performing line integration in the region where the compressive stress is generated along an arbitrary line moving from the cutting end surface within the evaluation cross section. The method for evaluating a non-oriented electrical steel sheet according to [1] above, wherein the yield stress is a non-oriented electrical steel sheet.

[3]前記指標Iσを電流の商用周波数における鉄損増加量の評価指標として用い、前記指標Iεを電流の高周波帯域での鉄損増加量の評価指標として用いることを特徴とする前記[1]または[2]に記載の無方向性電磁鋼板の評価方法。   [3] The index Iσ is used as an evaluation index of the iron loss increase amount at the commercial frequency of the current, and the index Iε is used as an evaluation index of the iron loss increase amount in the high frequency band of the current [1] Or the evaluation method of the non-oriented electrical steel sheet according to [2].

[4]前記[1]〜[3]のいずれかに記載の無方向性電磁鋼板の評価方法を用いて、鉄損特性が良好であると評価する評価工程を備えたことを特徴とする無方向性電磁鋼板の製造方法。   [4] None provided with an evaluation step of evaluating that the iron loss characteristic is good using the method for evaluating a non-oriented electrical steel sheet according to any one of [1] to [3]. A method for producing grain-oriented electrical steel sheets.

本発明においては、加工による鉄損特性(加工による鉄損増加量、または/および、加工後の鉄損量)が良好な(小さな)無方向性電磁鋼板を的確かつ簡易に評価・選出することができる。   In the present invention, a non-oriented electrical steel sheet having a good (small) non-oriented electrical steel sheet with good (small) iron loss characteristics due to processing (the amount of iron loss increased by processing and / or the amount of iron loss after processing) can be evaluated and selected easily and accurately Can do.

すなわち、本発明は、加工による鉄損増加量を数値解析にて簡便に評価でき、その際に、電磁界解析および電磁界解析に必要となる膨大なデータを必要としない。したがって、例えば、新開発の無方向性電磁鋼板の引張試験特性がわかった時点で、加工の数値解析を行い、本発明によって鉄損劣化量を予測することができ、他の無方向性電磁鋼板との優劣も把握することができる。また、無方向性電磁鋼板の適性として、適用する部品や製品の周波数帯に関する評価も可能となる。加えて、非常に工数を要する磁化特性の応力や歪に対する影響度データを採取する前にこれらの評価が可能となる。   That is, according to the present invention, the amount of increase in iron loss due to machining can be easily evaluated by numerical analysis. Therefore, for example, when the tensile test characteristics of a newly developed non-oriented electrical steel sheet are known, numerical analysis of processing can be performed, and the amount of iron loss deterioration can be predicted by the present invention. You can also grasp the superiority and inferiority. In addition, as the suitability of the non-oriented electrical steel sheet, it is possible to evaluate the frequency band of the applied part or product. In addition, it is possible to evaluate these before collecting data on the degree of influence on the stress and strain of the magnetization characteristics that require much man-hours.

本発明を活用することにより、部品や製品開発時における無方向性電磁鋼板の選定において、適材の絞り込みが容易かつ的確となり、結果的に工数削減と開発期間短縮を図ることができる。一方で、無方向性電磁鋼板用の材料開発において、新規開発材の簡易評価指標として評価に用いることができ、材料開発を効率化する効果もある。   By utilizing the present invention, it becomes easy and accurate to narrow down suitable materials in selecting non-oriented electrical steel sheets when developing parts and products, and as a result, man-hours and development time can be reduced. On the other hand, in the development of materials for non-oriented electrical steel sheets, it can be used for evaluation as a simple evaluation index for newly developed materials, which also has the effect of increasing the efficiency of material development.

打抜き端面形状の模式図である。It is a schematic diagram of a punching end face shape. 丸カシメ用の凹凸部の断面模式図である。It is a cross-sectional schematic diagram of the uneven | corrugated | grooved part for round crimping. 丸カシメ部断面の光学顕微鏡写真例である。It is an example of an optical microscope photograph of a round caulking section. 狭幅短冊板による加工影響度調査サンプルの説明図である。It is explanatory drawing of the processing influence investigation sample by a narrow strip. 鉄損増加量ΔW15/50の測定結果である。It is a measurement result of iron loss increase amount ΔW 15/50 . 鉄損増加量ΔW10/400の測定結果である。It is a measurement result of iron loss increase amount ΔW 10/400 . 打抜き解析結果による相当塑性歪分布の一例を示す図である。It is a figure which shows an example of the equivalent plastic strain distribution by a punching analysis result. 打抜き解析結果による磁化方向応力σ(紙面垂直方向応力)分布の一例を示す図である。It is a figure which shows an example of magnetization direction stress (sigma) z (paper surface direction direction stress) distribution by a punching analysis result. 鉄損増加量ΔW15/50と圧縮応力の線積分値(指標8)との相関を示す図である。It is a figure which shows the correlation with iron loss increase amount (DELTA) W15 / 50 and the line integral value (index | index 8) of a compressive stress. 鉄損増加量ΔW10/400と相当塑性歪の領域積分(指標3)との相関を示す図である。It is a figure which shows the correlation with iron loss increase amount ( DELTA) W10 / 400 and the area integral (index | index 3) of an equivalent plastic strain. 指標1による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 1. FIG. 指標1による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 1. FIG. 指標2による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 2. FIG. 指標2による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 2. FIG. 指標3による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 3. FIG. 指標3による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 3. FIG. 指標4による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 4. FIG. 指標4による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 4. FIG. 指標5による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 5. FIG. 指標5による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 5. FIG. 指標6による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 6. FIG. 指標6による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 6. FIG. 指標7による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 7. FIG. 指標7による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 7. FIG. 指標8による鉄損増加量ΔW15/50の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount (DELTA) W15 / 50 by the parameter | index 8. FIG. 指標8による鉄損増加量ΔW10/400の予測精度を示す図である。It is a figure which shows the prediction precision of the iron loss increase amount ( DELTA) W 10/400 by the parameter | index 8. FIG. 評価指標|Iσ|による材料比較を行った図である。It is the figure which performed the material comparison by evaluation parameter | Iσ |. 評価指標Iε/tによる材料比較を行った図である。It is the figure which performed the material comparison by evaluation parameter | index Iepsilon / t.

本発明は、無方向性電磁鋼板を加工した際に生じる鉄損増加量を簡便に予測できる指標を新たに見出し、その評価指標を用いて無方向性電磁鋼板の鉄損特性の優劣を評価するものである。すなわち、加工によって、切断面である切断端面近傍に板厚方向に不均一な分布をもって発生する相当塑性歪分布と残留応力分布を加工の数値解析に基づいて演算し、その演算結果から値が定まる指標を用いて、電磁界解析を行うことなく、無方向性電磁鋼板の鉄損特性の優劣を評価するものである。   The present invention newly finds an index that can easily predict the amount of increase in iron loss that occurs when a non-oriented electrical steel sheet is processed, and evaluates the superiority or inferiority of the iron loss characteristics of the non-oriented electrical steel sheet using the evaluation index. Is. That is, by processing, the equivalent plastic strain distribution and residual stress distribution generated with a non-uniform distribution in the thickness direction in the vicinity of the cutting end surface, which is the cutting surface, are calculated based on the numerical analysis of the processing, and the value is determined from the calculation result An index is used to evaluate the superiority or inferiority of iron loss characteristics of a non-oriented electrical steel sheet without performing electromagnetic field analysis.

ここでは、加工手段として、打抜き加工を適用した場合を例に説明する。   Here, a case where punching is applied as the processing means will be described as an example.

打抜き加工の場合は、まず打抜き加工の数値解析結果から相当塑性歪分布と残留応力分布を評価する鋼板表面に垂直な断面を決定する。この断面を以下「評価断面」とも称し、切断端面に垂直かつ鋼板表面にも垂直な断面である。ここで、評価指標として、相当塑性歪εeq分布に関して、相当塑性歪が発生している領域内で領域積分した指標Iε=∫εeqdA、または/および、磁化される方向の応力成分σに関して、打抜き端面(打抜き加工の場合の切断端面)を起点とし、評価断面内を打抜き端面から遠ざかる任意のラインにそって、圧縮応力が発生している領域内で線積分した指標Iσ=∫(σ/σ)ds(ここで、σは当該無方向性電磁鋼板の降伏応力)を用いる。 In the case of punching, first, a cross section perpendicular to the steel sheet surface for evaluating the equivalent plastic strain distribution and residual stress distribution is determined from the numerical analysis result of the punching. This section is hereinafter also referred to as “evaluation section”, and is a section perpendicular to the cut end surface and perpendicular to the steel plate surface. Here, as an evaluation index, with respect to the equivalent plastic strain ε eq distribution, the index Iε = ε eq dA integrated in the region where the equivalent plastic strain occurs, and / or the stress component σ in the magnetization direction The index Iσ = ∫ (σ), which is a line integral in a region where compressive stress is generated along an arbitrary line that moves away from the punching end surface within the evaluation cross section, starting from the punching end surface (cut end surface in the case of punching) / Σ Y ) ds (where σ Y is the yield stress of the non-oriented electrical steel sheet).

なお、上記の積分におけるdAのAは面積であり、dsのsは長さである。また、以下に述べる周波数は、励磁電流の周波数のことである。   In the above integration, A of dA is an area, and s of ds is a length. The frequency described below is the frequency of the excitation current.

そして、後述する実施例で示すように、指標Iε=∫εeqdAは高周波帯域での鉄損増加量ΔW10/400(ここでは、磁束密度1.0T、周波数400Hzにおける鉄損増加量であることを示す)と、指標Iσ=∫(σ/σ)dsは商用周波帯における鉄損増加量ΔW15/50(ここでは、磁束密度1.5T、周波数50Hzにおける鉄損増加量であることを示す)とそれぞれ非常に相関が高く、その大小関係も合致することを見出した。よって、これらの指標単独、もしくは、打抜き加工前の鉄損量と打抜き加工による鉄損増加量の和をもって、打抜き加工による鉄損増加を考慮した優劣を評価することが可能となる。 As shown in the examples described later, the index Iε = ∫ε eq dA is the iron loss increase ΔW 10/400 in the high frequency band (here, the iron loss increase at a magnetic flux density of 1.0 T and a frequency of 400 Hz). The index Iσ = ∫ (σ / σ Y ) ds is the iron loss increase ΔW 15/50 in the commercial frequency band (here, the iron loss increase at a magnetic flux density of 1.5 T and a frequency of 50 Hz) It was found that the correlation was very high and the magnitude relationship was also consistent. Therefore, it is possible to evaluate superiority or inferiority in consideration of an increase in iron loss due to punching by using these indices alone or the sum of the amount of iron loss before punching and the amount of increase in iron loss due to punching.

ここで、高周波帯域(ここでは、400Hz)での鉄損増加に関しては、表皮効果の観点から、材料の表層部に特徴的な分布形態を有する歪(ここでは、相当塑性歪εeq)との相関が高く、商用周波数(ここでは、50Hz)での鉄損増加に関しては、打抜き端面付近の材料断面全体かつ板厚中心付近においても特徴的な分布形態を有する応力(ここでは、磁化される方向の圧縮応力σ)との相関が高いことがわかった。詳細は図7を用いて後述するが、相当塑性歪εeqは、材料の表層部において、打抜き端面から離れた深い位置まで発生している。また、詳細は図8を用いて後述するが、圧縮応力σは、概略板厚中心部において打抜き端面から遠く離れた位置まで作用している。なお、圧縮応力σに関しては、それぞれの材料の降伏応力σで基準化した値を用いることで、材料強度が異なる鋼板どうしでも指標を比較できるようにしている。これは、通常、塑性加工後の残留応力については、特段の応力緩和処理を施さなければ、材料強度、特に降伏応力σに応じて、これが高い材料の方が、より絶対値の大きな応力が残留することに基づいている。 Here, regarding the increase in iron loss in a high frequency band (here, 400 Hz), from the viewpoint of the skin effect, the strain having a characteristic distribution form in the surface layer portion of the material (here, equivalent plastic strain ε eq ) Regarding the increase in iron loss at a commercial frequency (here, 50 Hz), the stress (here, the direction in which it is magnetized) has a characteristic distribution form even in the entire material cross section near the punched end face and near the center of the plate thickness. It was found that there is a high correlation with the compressive stress σ). Although the details will be described later with reference to FIG. 7, the equivalent plastic strain ε eq is generated up to a deep position away from the punched end face in the surface layer portion of the material. Although details will be described later with reference to FIG. 8, the compressive stress σ acts to a position far from the punched end face in the approximate center of the plate thickness. Regarding the compressive stress σ, by using a value normalized by the yield stress σ Y of each material, the steel sheets having different material strengths can be compared with each other. This is because the residual stress after plastic working usually has a higher absolute value for a material having a higher value depending on the material strength, particularly the yield stress σ Y , unless special stress relaxation treatment is applied. Based on what remains.

なお、磁化される方向の応力(特に圧縮応力)や塑性歪に関しては、透磁率の低下を招き、鉄損の増大に密接に関与するため、これらは鉄損劣化との関連が強いことを述べておく。   Regarding stress in the magnetized direction (especially compressive stress) and plastic strain, it causes a decrease in permeability and is closely related to an increase in iron loss. Keep it.

ちなみに、上述のように、商用周波数50Hzと比較的高い周波数400Hzの二つの周波数のみで評価することに関しては、更に他の周波数帯域を網羅した指標を見出すことが望ましいものの、上述のように、それぞれの周波数における鉄損増加量が、材料の板厚中心付近に特徴を有する圧縮応力σ、材料の表層付近に特徴を有する相当塑性歪εeqと相関があることから、鉄損増加に対する板厚方向の影響範囲として、代表的な周波数を選択している。 By the way, as described above, regarding evaluation with only two frequencies of the commercial frequency of 50 Hz and the relatively high frequency of 400 Hz, it is desirable to find an index that covers other frequency bands, but as described above, The amount of increase in iron loss at a certain frequency is correlated with the compressive stress σ having a characteristic near the center of the sheet thickness of the material and the equivalent plastic strain ε eq having a characteristic near the surface layer of the material. A representative frequency is selected as the influence range of the above.

なお、部品や製品の適用環境に応じ、商用周波帯における鉄損増加量と高周波帯域での鉄損増加量のどちらか一方の特性が優れていればよい場合もあれば、その両方が優れている必要がある場合もあるので、それぞれの場合に応じて、用いる指標を定めればよい。   Depending on the application environment of the parts and products, either the iron loss increase in the commercial frequency band or the iron loss increase in the high frequency band may be excellent, or both are excellent. In some cases, the index to be used may be determined according to each case.

そして、指標Iσの絶対値|Iσ|が0.05mm以下(|Iσ|≦0.05mm)、または/および、指標Iεを一般化のために板厚tで除した値Iε/tが0.033mm以下(Iε/t≦0.033mm)であれば、当該無方向性電磁鋼板の鉄損特性は良好であると評価するようにしてもよい。   The absolute value | Iσ | of the index Iσ is 0.05 mm or less (| Iσ | ≦ 0.05 mm), and / or the value Iε / t obtained by dividing the index Iε by the thickness t for generalization is 0. If it is 033 mm or less (Iε / t ≦ 0.033 mm), the iron loss characteristic of the non-oriented electrical steel sheet may be evaluated as good.

そして、上記の評価方法を用いた無方向性電磁鋼板の製造方法として、以下に述べるように、フィードバックを行うことが望ましい。   And as a manufacturing method of the non-oriented electrical steel sheet using said evaluation method, it is desirable to perform feedback as described below.

すなわち、まずは、所定の方法により製造された無方向性電磁鋼板から、図4(a)に例示する、磁気特性評価用試験片(通常、試験片の長辺が圧延方向のものと板幅方向のものの両方を用いる)を切り出して磁気特性評価を行い、電磁鋼板としての鉄損量を求める。通常、この工程は、電磁鋼板の製品品質保証上、製造されたコイルごとに定常的に行われることが多い。加えて、一般の無方向性電磁鋼板では必ずしも実施されていない引張試験を実施する。例えば、JIS5号などの引張試験片(上記磁気特性評価用試験片を切り出す電磁鋼板素材を流用することができ、板幅方向を引張方向とすることが多い)を切り出して引張試験を行い、当該材料の機械特性や応力−歪曲線を求める。   That is, first, from a non-oriented electrical steel sheet manufactured by a predetermined method, a test piece for magnetic property evaluation illustrated in FIG. 4A (usually, the long side of the test piece is in the rolling direction and the sheet width direction). Are used to evaluate the magnetic characteristics, and the iron loss amount as the electromagnetic steel sheet is obtained. Usually, this process is frequently performed for each manufactured coil in order to guarantee the product quality of the electrical steel sheet. In addition, a tensile test that is not necessarily performed in general non-oriented electrical steel sheets is performed. For example, a tensile test piece such as JIS No. 5 (a magnetic steel sheet material from which the magnetic property evaluation test piece is cut out can be diverted, and the width direction of the plate is often used as the tensile direction) is cut out, and the tensile test is performed. Obtain mechanical properties and stress-strain curves of materials.

次いで、得られた応力−歪曲線のデータを用い、本発明で示した解析を行い、評価指標IεやIσを求めることによって、打抜き加工による鉄損の増加量を予測する。   Next, using the obtained stress-strain curve data, the analysis shown in the present invention is performed, and the evaluation indexes Iε and Iσ are obtained to predict the increase in iron loss due to punching.

本発明では、打抜き加工によって増加した鉄損増加量、または打抜き加工前の鉄損量と打抜き加工後の鉄損増加量を合算した合計鉄損量に基づいた評価判定を行うことが特徴である。   The present invention is characterized in that the evaluation judgment is made based on the total iron loss amount obtained by adding the iron loss increase amount obtained by the punching process or the iron loss amount before the punching process and the iron loss increase amount after the punching process. .

評価判定に際しては、顧客と取り交わした製品仕様や当該電磁鋼板と同一規格製品の累積された評価結果に基づく閾値などを所定の規準として設けた上で、打抜き加工による鉄損増加量、または打抜き加工前と打抜き加工後の合計鉄損量と比較し、前記鉄損増加量または合計鉄損量が前記所定の規準を超えて大きい場合には、製造工程に対してフィードバックを行う。フィードバックは、例えば、添加する成分の量の調整、あるいは電磁鋼板の製造条件の最適化、一例としては焼鈍温度の条件を調整する、などの手法がある。   In the evaluation judgment, the product specifications exchanged with the customer and the threshold value based on the accumulated evaluation results of the same standard products as the electrical steel sheet are set as predetermined criteria, and the amount of iron loss increased by punching or punching When the iron loss increase amount or the total iron loss amount is larger than the predetermined standard as compared with the total iron loss amount before and after the punching process, feedback is made to the manufacturing process. The feedback includes, for example, a method of adjusting the amount of the component to be added, optimizing the manufacturing conditions of the electrical steel sheet, for example, adjusting the conditions of the annealing temperature.

従来の製造方法との違いは、電磁鋼板自体の鉄損量の評価だけではなく、打ち抜き加工による鉄損増加量を計算し、鉄損増加量に基づいて判定する工程、とを有し、判定工程では打抜き加工による鉄損増加量を加味した判定規準を用いる点である。   The difference from the conventional manufacturing method is not only the evaluation of the iron loss amount of the electromagnetic steel sheet itself, but also the step of calculating the iron loss increase amount by punching and judging based on the iron loss increase amount. In the process, a criterion that uses an increase in iron loss due to punching is used.

これにより、従来は考慮していなかった加工による鉄損増加量を所定の範囲内に抑制・制御することが可能となる。また、顧客が材料を加工した後、またはモータ等の製品に組み上げた後に鉄損増加が発生していることが判明した場合、その原因が電磁鋼板自体の問題か、加工・製作上の不具合かを究明する有効な手段としても用いることが可能となる。   As a result, it is possible to suppress and control the amount of increase in iron loss due to machining, which has not been considered in the past, within a predetermined range. Also, if it is found that the iron loss has increased after the customer has processed the material or assembled it into a product such as a motor, the cause is a problem with the electromagnetic steel sheet itself or a defect in processing / manufacturing It can also be used as an effective means for investigating.

その他、製造方法そのものではないが、評価した鉄損増加量もしくは打抜き加工前後の合計鉄損量に基づいて、顧客要求水準との比較を行い、必要に応じて納入先を変更するなどの、出荷向け先判定にも活用することが可能である。   Other than the manufacturing method itself, shipments such as comparing with the customer requirement level based on the evaluated increase in iron loss or total iron loss before and after punching, and changing the delivery destination as necessary It can also be used for destination determination.

なお、上記は打抜き加工を適用した場合を例に説明したが、加工の手段は打抜き加工に限られるものではない。打抜き加工以外の例として、例えばレーザー切断による加工が挙げられる。レーザー切断により電磁鋼板には塑性歪と残留応力が発生し、そのため鉄損量が増加する。しかしながら、レーザー切断による電磁鋼板の塑性歪と残留応力の大きさと分布は、打抜き加工の場合の大きさと分布とは異なる。よって、評価指標は、適用した加工手段に応じて、適宜選択すればよい。例示はしないが、レーザー切断の場合は、後述する表1に示した指標の中では、指標8(Iσ)が適当であることは確認されている。また、実際に鉄損量の増加が問題になるのは、鉄損増加量が大きくなる打抜き加工などの機械的な切断の場合である。   In the above description, the case where the punching process is applied has been described as an example, but the processing means is not limited to the punching process. As an example other than the punching process, there is a process by laser cutting, for example. Laser cutting generates plastic strain and residual stress in the magnetic steel sheet, which increases the amount of iron loss. However, the magnitude and distribution of the plastic strain and residual stress of the electromagnetic steel sheet by laser cutting are different from those in the case of punching. Therefore, the evaluation index may be appropriately selected according to the applied processing means. Although not illustrated, in the case of laser cutting, it is confirmed that the index 8 (Iσ) is appropriate among the indices shown in Table 1 described later. Also, the actual increase in iron loss is a problem in the case of mechanical cutting such as punching that increases the iron loss increase.

この実施例によって本発明をさらに詳しく説明する。   This example illustrates the invention in more detail.

この実施例では、まず、無方向性電磁鋼板の打抜き加工による鉄損増加量を実測し、次に、打抜き加工の数値解析結果に基づいて、8個の指標候補によって、無方向性電磁鋼板の打抜き加工による鉄損増加量を予測し、実測値との比較検討を行った。そして、その比較検討に基づいて適切な指標を決定した。   In this embodiment, first, the amount of increase in iron loss due to punching of the non-oriented electrical steel sheet is actually measured, and then, based on the numerical analysis result of the punching process, the non-oriented electrical steel sheet is determined by eight index candidates. The amount of increase in iron loss due to punching was predicted and compared with actual measurements. Based on the comparative study, appropriate indicators were determined.

まず、打抜き加工による鉄損増加量を実測・評価した結果について述べる。   First, the results of actual measurement and evaluation of the iron loss increase due to punching will be described.

図4は、打抜き加工による鉄損増加量を実測・評価した手法を説明する図である。図4(a)に示すように、無方向性電磁鋼板の30mm幅の試験片における鉄損量を測定する。次に、図4(b)に示すように、この30mm幅の試験片をせん断打抜き加工して、3個の10mm幅の試験片を作成し、それらを横に並べて鉄損量を測定する。そして、30mm幅の試験片における鉄損量W1に対する3個の10mm幅の試験片における鉄損量W2の増分(W2−W1)をもって、ここでは打抜き加工による鉄損増加量ΔWと定義する。   FIG. 4 is a diagram for explaining a method of actually measuring and evaluating the iron loss increase amount by punching. As shown to Fig.4 (a), the iron loss amount in the test piece of 30 mm width of a non-oriented electrical steel sheet is measured. Next, as shown in FIG.4 (b), this 30 mm width test piece is shear-punched, the three 10 mm width test pieces are produced, they are arranged side by side, and an iron loss amount is measured. And the increment (W2-W1) of the iron loss amount W2 in the three 10 mm width test pieces with respect to the iron loss amount W1 in the 30 mm width test piece is defined here as an iron loss increase amount ΔW due to punching.

試験材は、A材、B材、C材、D材の4種類の無方向性電磁鋼板を用い、せん断打抜き加工条件は、板厚0.35mmの鋼板に対し、クリアランス10μmで行った。また、鉄損量の測定は、1.5T、50Hzと、1.0T、400Hzの2条件で行った。   The test materials used were four types of non-oriented electrical steel sheets, A material, B material, C material, and D material, and the shear punching conditions were performed on a steel plate having a plate thickness of 0.35 mm with a clearance of 10 μm. The iron loss amount was measured under two conditions of 1.5T and 50 Hz and 1.0T and 400 Hz.

図5は、1.5T、50Hzにおける鉄損増加量ΔW15/50を示し、図6は、1.0T、400Hzにおける鉄損増加量ΔW10/400を示す。 FIG. 5 shows the iron loss increase ΔW 15/50 at 1.5 T and 50 Hz, and FIG. 6 shows the iron loss increase ΔW 10/400 at 1.0 T and 400 Hz.

図5と図6から、A材は周波数によらず鉄損増加量が大きく、D材は周波数によらず鉄損増加量が小さいことが言える。また、B材については、高周波400Hzにおける鉄損増加量が小さいことがわかる。   From FIG. 5 and FIG. 6, it can be said that the A material has a large iron loss increase regardless of the frequency, and the D material has a small iron loss increase regardless of the frequency. Moreover, about B material, it turns out that the iron loss increase amount in high frequency 400Hz is small.

次に、打抜き加工の数値解析結果に基づいて、打抜き加工による鉄損増加量を予測・評価し、上記の実測値と比較検討した結果について述べる。   Next, based on the numerical analysis result of the punching process, the amount of increase in iron loss due to the punching process is predicted and evaluated, and the result of comparison with the above actual measurement value is described.

打抜き加工の数値解析については、一例として、前述した非特許文献2に詳細が示されているので、ここでは、非特許文献2と異なる点を中心に基本的な条件を記述すると、この実施例においては、無方向性電磁鋼板の板厚0.35mm、幅30mm短冊状単板への打抜き加工を対象とし、2次元平面歪問題としてモデル化した。数値計算には、弾塑性変形解析ソフトであるLS-DYNAを用いた。材料の物性値としては、引張試験による応力−歪関係を入力データとした。材料破断の指標(判別式)としては、下記(1)式のCockcroft式を用いた。   The details of the numerical analysis of the punching process are shown in detail in Non-Patent Document 2 described above as an example. Here, the basic conditions will be described mainly with respect to points different from Non-Patent Document 2. Was modeled as a two-dimensional plane distortion problem for punching of a non-oriented electrical steel sheet into a single plate having a thickness of 0.35 mm and a width of 30 mm. For numerical calculation, LS-DYNA which is elastoplastic deformation analysis software was used. As a physical property value of the material, a stress-strain relationship by a tensile test was used as input data. As an index (discriminant) of material breakage, the following (1) Cockcroft equation was used.

Figure 0006191640
Figure 0006191640

なお、破断限界値Cについては、引張試験結果の全伸びをベースに同定した値を基本とし、チューニングとして、打抜き加工によるだれが実験結果と合うように調整し、解析の高精度化を図った。 Note that the breakage threshold value C 1 has a tensile total elongation of the test results basic to the values identified based on, as the tuning, who adjusted to match the experimental results punching, working to high accuracy of the analysis It was.

図7は、打抜き加工の数値解析結果から、打抜き加工後の形状と相当塑性歪εeqの分布を示した図である。図7より、鋼板の上下面において、打抜き端面(左端)から比較的深いところにまで塑性歪が入っていることがわかる。なお、図7において、鋼板が磁化される方向は、紙面垂直方向である。 FIG. 7 is a diagram showing the shape after punching and the distribution of the equivalent plastic strain ε eq from the numerical analysis result of punching. From FIG. 7, it can be seen that plastic strain is present in the upper and lower surfaces of the steel plate from the punched end surface (left end) to a relatively deep location. In FIG. 7, the direction in which the steel plate is magnetized is the direction perpendicular to the paper surface.

同様に、図8は、打抜き加工の数値解析結果から、鋼板が磁化される方向(ここでは紙面垂直方向)の応力σについて、特に圧縮側の応力(負の値)の分布が強調されるように表示した図である。σの圧縮側の応力(圧縮応力)は、打抜き加工時にダイに強く当たる面(図8における下面側)だけでなく、板厚中心部においてレベルが大きく、特に板厚中心部では、打抜き端面(左端)から相対的に遠い位置にまで圧縮応力が発生していることが見てとれる。 Similarly, in FIG. 8, the distribution of stress (negative value) on the compression side is particularly emphasized with respect to the stress σ z in the direction in which the steel sheet is magnetized (here, the direction perpendicular to the paper surface) from the numerical analysis result of the punching process. It is the figure displayed as follows. The stress on the compression side of σ z (compression stress) is high not only on the surface that strongly hits the die during punching (the lower surface side in FIG. 8), but also at the center of the plate thickness, especially at the center of the plate thickness, It can be seen that the compressive stress is generated at a position relatively far from the (left end).

そして、数値解析結果に基づく指標の候補として、表1に示した8個の指標を準備し、それぞれの指標によって鉄損増加量ΔW15/50とΔW10/400の予測を行い、上記の実測値と比較を行った。 Then, the eight indexes shown in Table 1 are prepared as index candidates based on the numerical analysis results, and the iron loss increase amounts ΔW 15/50 and ΔW 10/400 are predicted using the respective indexes, and the above-described actual measurement is performed. Comparison was made with the values.

図9は、鉄損増加量ΔW15/50と最も相関が高かった、圧縮応力σを材料の降伏応力σで割った値を線積分した値(∫(σ/σ)ds:指標8)による鉄損増加量ΔW15/50の予測結果を示すものである。図9(a)は前述の図8と同じものであり、図9(b)は指標8による鉄損増加量ΔW15/50の予測値を前述の鉄損増加量ΔW15/50の実測値(図5)と比較した図である。 FIG. 9 shows a value obtained by linearly integrating a value obtained by dividing the compressive stress σ z by the yield stress σ Y of the material, which has the highest correlation with the iron loss increase ΔW 15/50 (∫ (σ z / σ Y ) ds: The prediction result of iron loss increase amount ΔW 15/50 by index 8) is shown. 9 (a) is the same as FIG. 8 described above, FIG. 9 (b) measured values of the predicted values of the foregoing iron loss increase amount [Delta] W 15/50 core loss increase amount [Delta] W 15/50 by indicator 8 It is the figure compared with (FIG. 5).

なお、図9(b)においては、予測値(縦軸)は、A材の予測値が実測値(横軸)に合致するように、予測値の値をスケーリングしてグラフ化している。以降に述べる図9〜図26においても同様である。   In FIG. 9B, the predicted value (vertical axis) is graphed by scaling the predicted value so that the predicted value of the A material matches the measured value (horizontal axis). The same applies to FIGS. 9 to 26 described below.

図9(b)において、実測値(横軸)での大小関係と指標8による予測値(縦軸)での大小関係が合致しており、異なる鋼種の鉄損増加量ΔW15/50をよい精度で予測できていることがわかる。 In FIG. 9B, the magnitude relationship in the actual measurement value (horizontal axis) matches the magnitude relationship in the predicted value (vertical axis) by the index 8, and the iron loss increase ΔW 15/50 of different steel types is good. It turns out that it can be predicted with accuracy.

次に、図10は、鉄損増加量ΔW10/400と最も相関が高かった、相当塑性歪εeqの領域積分値(∫εeqdA:指標3)による鉄損増加量ΔW10/400の予測結果を示すものである。図10(a)は前述の図7と同じものであり、図10(b)は指標3による鉄損増加量ΔW10/400の予測値を前述の鉄損増加量ΔW10/400の実測値(図6)と比較した図である。 Next, FIG. 10 shows the increase in the iron loss increase ΔW 10/400 based on the region integral value of the equivalent plastic strain ε eq () ε eq dA: index 3), which had the highest correlation with the iron loss increase ΔW 10/400 . A prediction result is shown. FIG. 10A is the same as FIG. 7 described above, and FIG. 10B shows the predicted value of the iron loss increase amount ΔW 10/400 according to the index 3 as the actual value of the iron loss increase amount ΔW 10/400 . It is the figure compared with (FIG. 6).

図10(b)において、予測結果は、値が小さい2鋼種(B材、D材)をやや高めに評価しているが、鉄損増加量ΔW10/400の大小関係が合致していることがわかる。 In FIG. 10 (b), the prediction result is that the two steel types (B material and D material) with small values are evaluated slightly higher, but the magnitude relationship of the iron loss increase amount ΔW 10/400 matches. I understand.

そして、図11〜図26に、上記の指標3と指標8に結果も含めて、8個の指標候補による鉄損増加量ΔW15/50とΔW10/400の予測値と実測値との比較を示しており、その比較結果(予測精度)を表1にまとめている。 11 to FIG. 26, including the results of the above-described index 3 and index 8, the comparison between the predicted values of the iron loss increases ΔW 15/50 and ΔW 10/400 and the actual measured values by the eight index candidates. The comparison results (prediction accuracy) are summarized in Table 1.

Figure 0006191640
Figure 0006191640

これらのことから、鉄損増加量ΔW15/50の予測には指標8、鉄損増加量ΔW10/400の予測には指標3を用いれば、それぞれ予測値での大小関係と実測値での大小関係が合致することがわかる。 Therefore, if index 8 is used for prediction of iron loss increase amount ΔW 15/50 and index 3 is used for prediction of iron loss increase amount ΔW 10/400 , the magnitude relationship between the predicted values and the actual measurement values are respectively calculated. It can be seen that the magnitude relationship matches.

これは、周波数による表皮効果の観点から、比較的周波数が高い場合の鉄損増加量ΔW10/400については、特に材料表層部の分布に特徴がある相当塑性歪分布が代表的な指標であることが理解できる。一方、商用周波数での鉄損増加量ΔW15/50については、特に板厚中央部の分布に特徴がある圧縮応力分布が代表的な指標になったと考えられる。 From the viewpoint of the skin effect due to frequency, for the iron loss increase ΔW 10/400 when the frequency is relatively high, the equivalent plastic strain distribution that is particularly characterized by the distribution of the material surface layer is a representative index. I understand that. On the other hand, regarding the iron loss increase ΔW 15/50 at the commercial frequency, it is considered that the compression stress distribution, which is particularly characterized by the distribution in the central portion of the plate thickness, has become a representative index.

これに対して、指標1は特許文献3で開示された指標であるが、指標1による予測値と実測値の大小関係が合致せず、指標2のように各鋼種の降伏応力σを考慮したとしても、実測値の大小関係を予測できなかった。このため、打抜き加工による鉄損増加量の予測には適さない指標であることがわかった。 On the other hand, the index 1 is an index disclosed in Patent Document 3, but the magnitude relationship between the predicted value and the actual measurement value by the index 1 does not match, and the yield stress σ Y of each steel type is taken into consideration as the index 2 Even so, the magnitude relationship between the measured values could not be predicted. For this reason, it turned out that it is a parameter | index unsuitable for the prediction of the iron loss increase amount by stamping.

また、指標4は鉄損増加量ΔW15/50と比較的よい相関を示し、有効な候補の一つであったが、予測精度の点で、指標8に若干及ばなかった。 In addition, index 4 showed a relatively good correlation with iron loss increase ΔW 15/50 and was one of the effective candidates, but it did not reach index 8 slightly in terms of prediction accuracy.

なお、指標5、6、7についても、予測値での大小関係と実測値での大小関係が十分には合致しておらず、打抜き加工による鉄損増加量の予測には適さない指標であることがわかった。   The indices 5, 6, and 7 are also not suitable for predicting the amount of increase in iron loss due to punching because the magnitude relation in the predicted value does not sufficiently match the magnitude relation in the actual measurement value. I understood it.

ちなみに、この実施例では、鉄損増加量の実測値での大小関係と予測値での大小関係の合致を重要視しているが、それは、本指標のみで鉄損特性の優劣を比較することを一つの目的としているためである。   By the way, in this example, the importance of matching the magnitude relationship between the measured value of the iron loss increase and the magnitude relationship between the predicted values is emphasized. This is because of this.

最後に、適切な指標に決定した指標8と指標3を用いて、4鋼種の無方向性電磁鋼板(A材、B材、C材、D材)の鉄損特性の評価を行った結果を図27と図28に示す。   Finally, the results of the evaluation of the iron loss characteristics of the non-oriented electrical steel sheets (A material, B material, C material, D material) of the four steel types using the index 8 and the index 3 determined as appropriate indices. It is shown in FIG. 27 and FIG.

ここで、商用周波帯における鉄損増加量の指標8(すなわち、指標Iσ)については、その絶対値を示し、高周波帯域での鉄損増加量の指標3(すなわち、指標Iε)については、一般化のために板厚tで除した値を示してある。   Here, the index 8 of the iron loss increase amount in the commercial frequency band (that is, the index Iσ) indicates the absolute value, and the index 3 of the iron loss increase amount in the high frequency band (that is, the index Iε) The value divided by the plate thickness t is shown for conversion.

4鋼種の中で、周波数によらず鉄損増加量が小さいD材については、|Iσ|<0.05mmであるとともに、Iε/t=0.033mmであることがわかり、鉄損増加量が小さい材料の一つであることが言える。   Among the four steel types, D material having a small increase in iron loss regardless of frequency is found to be | Iσ | <0.05 mm and Iε / t = 0.033 mm. It can be said that it is one of the small materials.

なお、前述したように、部品や製品の適用環境に応じ、商用周波帯における鉄損増加量と高周波帯域での鉄損増加量のどちらか一方の特性が優れていればよい場合もあれば、その両方が優れている必要がある場合もあるので、それぞれの場合に応じて、用いる指標を定めればよい。   In addition, as described above, depending on the application environment of the part or product, there may be a case where either one of the characteristics of the iron loss increase amount in the commercial frequency band or the iron loss increase amount in the high frequency band is excellent, Since both of them need to be excellent, an index to be used may be determined according to each case.

Claims (2)

無方向性電磁鋼板を加工した後に生じる鉄損増加量を、予め定めた指標によって評価し、その評価結果に基づいて当該無方向性電磁鋼板の鉄損特性の良否を評価する方法であって、
前記指標は、加工の数値解析結果から値が定まる相当塑性歪分布と残留応力分布のどちらかひとつであり、
前記指標は、相当塑性歪εeq分布に関して、相当塑性歪が発生している領域内で領域積分した指標Iε=∫εeqdA、または、前記残留応力分布について、磁化される方向の応力成分σに関して、前記加工によって生じた切断端面を起点とし、評価断面内を前記切断端面から遠ざかる任意のラインにそって、圧縮応力が発生している領域内で線積分した指標Iσ=∫(σ/σY)ds(ここで、σYは当該無方向性電磁鋼板の降伏応力)であるとして、
前記指標Iσを電流の商用周波数における鉄損増加量の評価指標として用い、前記指標Iεを電流の高周波帯域での鉄損増加量の評価指標として用いることを特徴とする無方向性電磁鋼板の評価方法。
It is a method for evaluating an increase in iron loss generated after processing a non-oriented electrical steel sheet by a predetermined index, and evaluating the quality of the iron loss characteristics of the non-oriented electrical steel sheet based on the evaluation result,
The index is one of the equivalent plastic strain distribution and the residual stress distribution, the value of which is determined from the numerical analysis result of processing,
For the equivalent plastic strain εeq distribution, the index is an index Iε = ∫εeqdA obtained by region integration in a region where the equivalent plastic strain occurs, or for the residual stress distribution, the stress component σ in the magnetized direction. An index Iσ = ∫ (σ / σY) ds (Line integration is performed in a region where compressive stress is generated along an arbitrary line moving away from the cut end face within the evaluation cross section starting from the cut end face generated by processing. as here, ShigumaY is the yield stress of the non-oriented electrical steel sheets),
Evaluation of a non-oriented electrical steel sheet , wherein the index Iσ is used as an evaluation index for an increase in iron loss at a commercial frequency of current, and the index Iε is used as an evaluation index for an increase in iron loss at a high frequency band of current. Method.
請求項1に記載の無方向性電磁鋼板の評価方法を用いて、鉄損特性が良好であると評価する評価工程を備えたことを特徴とする無方向性電磁鋼板の製造方法。 The manufacturing method of the non-oriented electrical steel sheet characterized by using the evaluation method of the non-oriented electrical steel plate of Claim 1 and evaluating an iron loss characteristic as favorable.
JP2015059108A 2014-03-27 2015-03-23 Evaluation method and manufacturing method of non-oriented electrical steel sheet Active JP6191640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059108A JP6191640B2 (en) 2014-03-27 2015-03-23 Evaluation method and manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014066705 2014-03-27
JP2014066705 2014-03-27
JP2015059108A JP6191640B2 (en) 2014-03-27 2015-03-23 Evaluation method and manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2015193926A JP2015193926A (en) 2015-11-05
JP6191640B2 true JP6191640B2 (en) 2017-09-06

Family

ID=54433203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059108A Active JP6191640B2 (en) 2014-03-27 2015-03-23 Evaluation method and manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6191640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205752A1 (en) * 2020-04-06 2021-10-14 Jfeスチール株式会社 Method for processing magnetic steel sheet and method for manufacturing motor and motor core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676761B2 (en) * 2001-12-10 2005-07-27 新日本製鐵株式会社 Electromagnetic field analysis system
JP4044891B2 (en) * 2003-12-09 2008-02-06 新日本製鐵株式会社 Magnetic field analysis method and computer program
JP2005300211A (en) * 2004-04-07 2005-10-27 Nippon Steel Corp Performance estimation method on worked iron core
JP5613972B2 (en) * 2006-10-23 2014-10-29 新日鐵住金株式会社 Unidirectional electrical steel sheet with excellent iron loss characteristics
JP4932640B2 (en) * 2007-08-23 2012-05-16 新日本製鐵株式会社 Iron loss optimization system

Also Published As

Publication number Publication date
JP2015193926A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6769561B2 (en) Deformation limit evaluation method, crack prediction method and press die design method
Weiss et al. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets
Elfgen et al. Continuous local material model for cut edge effects in soft magnetic materials
Marretta et al. Influence of material properties variability on springback and thinning in sheet stamping processes: a stochastic analysis
Bohdal et al. Modelling of guillotining process of grain oriented silicon steel using FEM
KR101833191B1 (en) Surface grain refining hot-shearing method and product of surface grain refining hot-shearing
KR102271009B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
Balan et al. Assessment of stresses in float and tempered glass using eigenstrains
KR101951587B1 (en) Fracture prediction method, program, recording medium, and arithmetic processing device
Omura et al. Effect of hardness and thickness of nonoriented electrical steel sheets on iron loss deterioration by shearing process
JP6191640B2 (en) Evaluation method and manufacturing method of non-oriented electrical steel sheet
He et al. Optimum clearance determination in blanking coarse-grained non-oriented electrical steel sheets: Experiment and simulation
Steentjes et al. On the effect of material processing: Microstructural and magnetic properties of electrical steel sheets
Yildiz et al. Springback behavior of DP600 steel: an implicit finite element simulation
CN114201897B (en) Metal sheet edge cracking prediction method considering blanking history
Pepelnjak et al. Numerical determination of the forming limit diagrams
Weiss et al. Loss reduction due to blanking parameter optimization for different non-grain oriented electrical steel grades
Dehmani et al. High cycle fatigue strength assessment methodology considering punching effects
Gmyrek et al. Investigation of local properties of the Fe-Si alloy subjected to mechanical and laser cutting
Karthaus et al. Continuous local material model for the mechanical stress-dependency of magnetic properties in non-oriented electrical steel
Woehrnschimmel et al. Simulating the change of magnetic properties of electrical steel sheets due to punching
Patyk et al. Experimental and numerical investigations and optimisation of grain-oriented silicon steel mechanical cutting process
Hambli et al. Finite element prediction of blanking tool cost caused by wear
Adaixo Numerical study on the effect of mechanical properties variability in sheet metal forming processes
JP6773255B1 (en) Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250