JP2005300211A - Performance estimation method on worked iron core - Google Patents

Performance estimation method on worked iron core Download PDF

Info

Publication number
JP2005300211A
JP2005300211A JP2004113114A JP2004113114A JP2005300211A JP 2005300211 A JP2005300211 A JP 2005300211A JP 2004113114 A JP2004113114 A JP 2004113114A JP 2004113114 A JP2004113114 A JP 2004113114A JP 2005300211 A JP2005300211 A JP 2005300211A
Authority
JP
Japan
Prior art keywords
magnetic
performance
iron core
processed
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004113114A
Other languages
Japanese (ja)
Inventor
Tsutomu Kaido
力 開道
Takashi Mogi
尚 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004113114A priority Critical patent/JP2005300211A/en
Publication of JP2005300211A publication Critical patent/JP2005300211A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a performance estimation method on a worked iron core for easily and highly accurately conducting performance evaluation so far performed only through actual measurement. <P>SOLUTION: As to a performance estimation method on worked magnetic materials and on an iron core into which the magnetic materials are combined, the performance of the worked iron core is estimated by using a function that expresses work degradation of a magnetic material by using a distance from a worked part. Further, as to a performance estimation method on worked magnetic materials and on an iron core into which the magnetic materials are combined, work degradation is divided between a plastic deformation area and an elastic deformation area; the magnetic characteristics of a specimen obtained by rolling the magnetic material are used for the plastic deformation area while averaged magnetic characteristics are used for the elastic deformation area, the averaged magnetic characteristic being obtained by averaging magnetic characteristics under tension and magnetic characteristics under compressive force of the same size as the tension. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉄心性能の推定法に関するものである。   The present invention relates to a method for estimating iron core performance.

電磁機器は小型軽量、低損失高効率であることが求められ、鉄心には高透磁率、低鉄損のものが求められる。このためには鉄心素材に高透磁率、低鉄損のものが使用される。しかし、この高性能鉄心材料を用いても所定の鉄心形状にするために打ち抜き加工すると、加工ひずみで鉄心素材特性は劣化し、最終的には電磁機器性能も劣化する。   Electromagnetic devices are required to be small, light and have low loss and high efficiency. Iron cores are required to have high permeability and low iron loss. For this purpose, an iron core material having high magnetic permeability and low iron loss is used. However, even if this high-performance iron core material is used, if punching is performed to obtain a predetermined iron core shape, the core material characteristics deteriorate due to the processing strain, and ultimately the performance of the electromagnetic equipment also deteriorates.

電磁機器の最適設計のためには、数値解析で磁気回路設計の最適化が行われる。しかし、上記のように、鉄心素材の加工劣化などにより、数値解析による電磁機器性能推定精度は低下し問題がある。   For optimal design of electromagnetic equipment, magnetic circuit design is optimized by numerical analysis. However, as described above, there is a problem in that the accuracy of electromagnetic device performance estimation by numerical analysis is lowered due to processing deterioration of the core material.

本発明は、加工磁性材料或いはその組み合わせ鉄心の性能を推定する方法を提供する。   The present invention provides a method for estimating the performance of a processed magnetic material or a combination core thereof.

本発明の特徴とするところは、
(1)加工した磁性材料及びその磁性材料を組み合わせた鉄心の性能を推定する方法において、加工部からの距離で磁性材料の加工劣化を表す関数を用いる加工鉄心性能の推定方法、
(2)加工した磁性材料及びその磁性材料を組み合わせた鉄心の性能を推定する方法において、加工劣化を塑性変形領域と弾性変形領域に分けて、塑性変形領域に対しては前記の磁性材料を圧延した試料の磁気特性を用い、弾性変形領域に対しては、張力下の磁気特性と前記張力と同じ大きさの圧縮力下の磁気特性を同じ磁界で平均した磁気特性を用いる加工鉄心性能の推定方法、
(3)加工した磁性材料及びその磁性材料を組み合わせた鉄心の性能を推定する方法において、加工劣化を塑性変形領域と弾性変形領域に分けて、塑性変形領域に対しては前記の磁性材料を圧延した試料の磁気特性を用い、弾性変形領域に対しては、[励磁方向応力−(励磁方向と直角方向の二方向の応力の和)/2]を励磁方向応力とした磁気特性を用いる加工鉄心性能の推定方法、
(4)塑性変形領域と弾性変形領域に、各々、(1)記載の推定方法を用いる(2)または(3)記載の加工鉄心性能の推定方法、
(5)加工した磁性材料或いは組み合わせ鉄心を歪み取り焼鈍して用いる場合に、(1)〜(4)のいずれか1項に記載の加工鉄心性能の推定方法を用いて、焼鈍後の加工鉄心性能を推定する加工鉄心性能の推定方法、
(6)加工した磁性材料或いは組み合わせ鉄心を用いた電磁機器の性能について、(1)〜(5)のいずれか1項に記載の加工鉄心性能の推定方法を用いて推定する電磁機器性能の推定法にある。
The feature of the present invention is that
(1) In a method for estimating the performance of a processed magnetic material and an iron core combining the magnetic materials, a method for estimating a processed iron core performance using a function representing processing deterioration of the magnetic material at a distance from the processed portion,
(2) In a method for estimating the performance of a processed magnetic material and an iron core combining the magnetic materials, the work deterioration is divided into a plastic deformation region and an elastic deformation region, and the magnetic material is rolled into the plastic deformation region. For the elastically deformed region, the performance of the processed iron core is estimated using the magnetic properties obtained by averaging the magnetic properties under tension and the magnetic properties under the compression force of the same magnitude as the tension with the same magnetic field. Method,
(3) In a method for estimating the performance of a processed magnetic material and an iron core combining the magnetic materials, the work deterioration is divided into a plastic deformation region and an elastic deformation region, and the magnetic material is rolled into the plastic deformation region. The processed iron core using the magnetic properties of [Excitation direction stress-(Sum of stresses in two directions perpendicular to the excitation direction) / 2] for the elastic deformation region using the magnetic properties of the sample. Performance estimation method,
(4) The estimation method of the processed core performance according to (2) or (3), wherein the estimation method according to (1) is used for each of the plastic deformation region and the elastic deformation region,
(5) When a processed magnetic material or a combined iron core is used after being subjected to strain relief annealing, the post-annealed iron core is obtained by using the method for estimating the machined iron performance according to any one of (1) to (4). Method for estimating machined core performance to estimate performance,
(6) About the performance of the electromagnetic device using the processed magnetic material or the combined iron core, the estimation of the electromagnetic device performance estimated using the method for estimating the machined core performance described in any one of (1) to (5) Is in the law.

本発明の加工鉄心性能の推定方法は、数値解析、加工部の結晶粒変形観察、磁区観察、硬度測定をもとに、磁性材料の素材の磁気特性、圧延された磁性材料の磁気特性や磁性材料の応力付加時の磁気特性から、鉄心性能を推定するものであり、従来の加工鉄心性能は実測でしか高精度で評価できなかったものが容易に高精度に可能にするものである。従来の推定法では、殆どが加工部近傍の劣化部と正常部に分けて評価していたが、実際には、塑性変形域と弾性変形域を考慮しないと精度良く推定できなく、本発明では、これらを考慮したことにより高精度の推定ができた。また、本推定方法は加工部からの距離の関数で劣化分布を求めて行うものであり、どのような形状の加工品でも適用可能であり、実際のモータ鉄心に適している。   The method for estimating the performance of a processed iron core according to the present invention is based on numerical analysis, crystal grain deformation observation, magnetic domain observation, and hardness measurement of a processed part, based on magnetic properties of the magnetic material, magnetic properties of the rolled magnetic material, and magnetic properties. The core performance is estimated from the magnetic characteristics of the material when stress is applied, and the conventional machined core performance that can only be evaluated with high accuracy only by actual measurement is easily made possible with high accuracy. In the conventional estimation method, most of the evaluation was performed by evaluating the deteriorated part near the machined part and the normal part. However, in actuality, if the plastic deformation area and the elastic deformation area are not taken into account, the estimation cannot be performed accurately. By taking these into account, high-precision estimation was possible. In addition, this estimation method is performed by obtaining the deterioration distribution as a function of the distance from the processed part, and can be applied to a processed product of any shape, and is suitable for an actual motor core.

磁性材料は、Fe、Ni、Coあるいはこれらを含む磁性材料で、電磁鋼板、パーマロイ、Fe-Co-V材などの板状材料、電磁軟鉄、鋳造鉄、Fe-Ni材、Fe-Co-V材などの塊状、棒状の磁性材料である。   Magnetic materials are Fe, Ni, Co or magnetic materials containing these, such as magnetic steel sheets, permalloy, and Fe-Co-V materials, electromagnetic soft iron, cast iron, Fe-Ni materials, Fe-Co-V. It is a lump-like or rod-like magnetic material.

鉄心はこれらを積層したり、束ねたもので、かしめや溶接をされているものも含む。鉄心は、トランス、モータ、発電機、リアクトル、インダクタなどのエネルギー変換機器や、電子電気回路に用いられるトランス、インダクタ、フィルタ、センサー、あるいは磁気シールドとして用いる。   The iron core is a laminate or bundle of these, including those that are crimped or welded. The iron core is used as a transformer, an inductor, a filter, a sensor, or a magnetic shield used in energy conversion devices such as a transformer, a motor, a generator, a reactor, and an inductor, and an electronic electric circuit.

加工は打ち抜き、剪断、曲げ、あるいは放電加工、レーザ加工、エッチング加工である。以後、これらをまとめて、打ち抜きや剪断などを記す。   Processing is stamping, shearing, bending, or electric discharge processing, laser processing, etching processing. From now on, these will be summarized and stamped and sheared.

加工部からの距離とは、加工部からの最短距離xであり、磁性材料の加工劣化を表す関数はそのxを用いて表す。   The distance from the processed portion is the shortest distance x from the processed portion, and a function representing the processing deterioration of the magnetic material is expressed using the x.

磁性材料を打ち抜き、剪断すると、加工部に最も近い部分は塑性変形し、ダレなどを形成し、この塑性変形領域部分は磁気特性や硬度が変化する。従って、塑性変形領域は、加工により板厚などの形状が変化している部分、加工断面写真で結晶粒径が変形している部分、或いは硬度が変化している部分であり、打ち抜き加工や剪断加工ではダレなどが生じている部分である。曲げ加工の場合は、上記と同様に、塑性変形領域を定義できる。放電加工、レーザ加工は溶解部分、エッチング加工は化学的に浸食されている部分も塑性変形と同じものとして扱う。塑性変形領域としては最大塑性変形率の1/10以上変形している部分、或いは加工による硬度上昇分の1/10以内で硬度が増加している部分、放電加工、レーザ加工の溶解部分としては結晶粒界が溶けている部分、エッチング加工の化学的に浸食されている部分としては腐食されている部分をそれぞれ対象とした。塑性変形領域の最大塑性変形率の1/10は実施例1で示しているように、塑性変形に対して磁気特性劣化がほぼ飽和する値であり、硬度変化もそれに比例するものと考えた。   When the magnetic material is punched and sheared, the portion closest to the processed portion is plastically deformed to form a sag or the like, and this plastic deformation region portion changes in magnetic properties and hardness. Therefore, the plastic deformation region is a portion where the shape such as the plate thickness is changed by processing, a portion where the crystal grain size is deformed in the processing cross-sectional photograph, or a portion where the hardness is changing, and is subjected to punching processing or shearing. This is a part where sagging or the like occurs in processing. In the case of bending, a plastic deformation region can be defined as described above. Electrical discharge machining and laser machining are treated as melted parts, and etching processes are treated as chemically deformed parts as plastic deformation. As a plastic deformation region, a portion deformed by more than 1/10 of the maximum plastic deformation rate, a portion where the hardness is increased within 1/10 of the hardness increase due to processing, a melting portion of electric discharge machining, laser machining, etc. The part where the crystal grain boundary is melted and the part where the etching process is chemically eroded are the part which is corroded. As shown in Example 1, 1/10 of the maximum plastic deformation rate in the plastic deformation region is a value at which the magnetic characteristic deterioration is almost saturated with respect to the plastic deformation, and the change in hardness is considered to be proportional thereto.

弾性変形領域は打ち抜きや剪断などの加工端に連なる塑性変形領域に隣接する部分で、上記の塑性変形領域の変形に基づく弾性応力の影響領域で、放電加工、レーザ加工の溶解により熱歪みを受けている部分であり、実施例1に見られるように、磁区構造に影響を与えている領域である。この領域の幅は、磁区観察、加工の応力数値計算で求めたり、実測データから換算されるものであり、これを基に、同じ加工や同類形状の鉄心に施される同類の加工に適用することができる。   The elastic deformation area is the area adjacent to the plastic deformation area connected to the machining end such as punching and shearing, and is the area affected by the elastic stress based on the deformation of the plastic deformation area. As shown in Example 1, this is a region that affects the magnetic domain structure. The width of this area is obtained by magnetic domain observation and numerical value calculation of machining stress, or converted from measured data, and based on this, it is applied to the same machining and similar machining performed on similar-shaped iron cores. be able to.

塑性変形領域に用いる磁気特性は、加工される最も変形が大きい変形率以内に相当する当該磁性材料の冷延加工歪みのデータを塑性変形領域の全域に用いる。好ましくは塑性変形域の平均変形率に相当する当該磁性材料の冷延加工歪みのデータを用いると良い。簡便的には、最大変形率の1/2に相当する当該磁性材料の冷延加工歪みのデータを用いても良い。各部の変形率を分布的に用いても良く、加工端からの最短距離xの関数を代表的な変形分布を組み込んで、各部変形率ε(x)に対する冷延加工歪みで劣化したデータf(x)を用いて、磁性材料、鉄心、更にはこれらを使用した電気機器の性能推定に用いても良い。   As the magnetic characteristics used in the plastic deformation region, data on the cold-rolling strain of the magnetic material corresponding to the deformation rate within which the greatest deformation is processed is used throughout the plastic deformation region. Preferably, data of cold-rolling strain of the magnetic material corresponding to the average deformation rate in the plastic deformation region is used. For simplicity, cold rolling strain data of the magnetic material corresponding to 1/2 of the maximum deformation rate may be used. The deformation rate of each part may be used in a distributed manner, and the data f () deteriorated by cold-rolling work strain for each part deformation rate ε (x) by incorporating a representative deformation distribution as a function of the shortest distance x from the machining end. x) may be used to estimate the performance of magnetic materials, iron cores, and electrical equipment using these.

弾性変形領域に用いる磁気特性は、弾性変形領域では圧縮力と張力が同等に混在するので、同じ大きさの張力と圧縮下の磁気特性を同磁界で合成した磁気特性(以後、張力圧縮併合の磁気特性と記す。)、あるいは[励磁方向応力−(励磁方向と直角方向の二方向の応力の和)/2]を励磁方向応力とした場合の磁気特性データを板厚方向に平均した磁気特性(以後、三次元併合の磁気特性と記す。)を用いる。各部の弾性応力を分布的に用いても良く、加工端からの最短距離xの関数を代表的な弾性変形分布を組み込んで、各部の張力、圧縮の大きさσ(x)に対する張力圧縮併合や三次元併合の磁気特性の磁気特性データg(x)を用いて、磁性材料、鉄心、更にはこれらを使用した電気機器の性能推定に用いても良い。   The magnetic characteristics used in the elastic deformation region are the same in both the compression force and tension in the elastic deformation region. (Magnetic characteristics).) Or [Excitation direction stress-(Sum of two directions perpendicular to the excitation direction) / 2] Excitation direction stress. (Hereinafter referred to as magnetic characteristics of three-dimensional merger). The elastic stress of each part may be used in a distributed manner, and a representative elastic deformation distribution is incorporated into the function of the shortest distance x from the machining end, and the tension compression and compression for the tension and compression magnitude σ (x) of each part The magnetic property data g (x) of the three-dimensional merged magnetic properties may be used to estimate the performance of magnetic materials, iron cores, and electrical equipment using these.

加工した磁性材料或いは組み合わせ鉄心を歪み取り焼鈍して用いる場合にも適用できる。この場合は、塑性変形歪により再結晶される領域が塑性変形領域に対応する。この場合には、各部のε(x)は残留する応力歪みσと再結晶後の粒径Dに影響されるものであり、残留応力歪みは焼鈍温度Tと時間tで、σ[1−exp(−T/T)・t/t]で表し、ε(x)はσに比例するものとし、或いはε(x)は加工前の結晶粒径をDとし1/D−1/D に比例するとし、定数や比例計数は実験や実測値により求める。別途、冷延加工したものを歪み取り焼鈍条件で焼鈍し、求められる磁気特性データをf(x)としても良い。 The present invention can also be applied to a case where a processed magnetic material or a combination iron core is used after being subjected to strain relief annealing. In this case, the region recrystallized by the plastic deformation strain corresponds to the plastic deformation region. In this case, ε (x) of each part is influenced by the residual stress strain σ and the grain size D after recrystallization, and the residual stress strain is σ 0 [1- exp (−T 0 / T) · t / t 0 ], and ε (x) is proportional to σ, or ε (x) is the crystal grain size before processing as D 0 and 1 / D N − Assuming that it is proportional to 1 / D 0 N , constants and proportional counts are obtained by experiments or actual measurement values. Separately, a product that has been cold-rolled may be annealed under strain relief annealing conditions, and the required magnetic property data may be f (x).

加工した磁性材料或いは組み合わせ鉄心を用いた電気機器の性能を推定する場合に用いる。電気機器は、家電、工場、鉄道、自動車、事務機器などに用いられるモータ、発電機、リアクトル、シールド材、また、発電所や発電機機に用いられる発電機など、あらゆる電気機器、電磁装置に適用できる。   Used to estimate the performance of electrical equipment using processed magnetic materials or combined iron cores. Electrical equipment is used in all electrical equipment and electromagnetic devices such as motors, generators, reactors, shield materials used in home appliances, factories, railways, automobiles, office equipment, and generators used in power plants and generators. Applicable.

シャー加工劣化による鉄心性能推定の実例、磁化曲線の推定法を挙げる。磁界Hにおける端部からの距離xにおける磁化曲線をB(x,H)、加工歪みがない状態の磁化曲線をB(H)とする。加工端部から距離wまでの領域を塑性変形部として、この領域の磁化曲線は一定で、実測例より、
B(x,H)=B(H)=0.44・ln(H)−2 …(1)
とする。加工端部からの距離wからwまでの領域を弾性変形部として、
B(x,H)=B(H)+{B(H)−B(H)}(x−w)/(w−w
…(2)
で表せると仮定する。加工幅がwである試料全体の磁化特性は測定した場合、w>2wのとき、磁化曲線は
Ba(w)=[2B(H)w+{B(H)+B(H)}(w−w
+B(H)(w−2w)]/w
=B(H)−[B(H)−B(H)](w+w)/w …(3)
となる。従って、加工幅w(mm)における一定の磁界での平均磁束密度を
Ba(w)=b−a/w …(4)
で表せると仮定して、板厚0.5mmの電磁鋼板において剪断幅を変化させて磁化曲線を測定した結果、図1をもとに求めてみる。
磁界H=800A/mにおいて、Ba(1.1)=0.73T、Ba(1.6)=0.85T、Ba(3)=1.18T、Ba(6)=1.42T、Ba(15)=1.5Tであったので、回帰解析より、
Ba(w)=1.53−0.47/w …(5)
となる。式(3),(5)より、(w+w)を求めると、w+w=0.83mmとなる。wは板厚の半分として0.25mmとすると、w=0.78mmとなった。
結局、剪断幅w(mm)の電磁鋼板の場合、剪断加工後の磁化特性は次の式で推定できることとなる。
Ba(w)=B(H)−0.83[B(H)−0.44・ln(H)+2]/w
…(6)
An example of estimating iron core performance due to shearing deterioration and a method of estimating a magnetization curve will be given. Let B (x, H) be the magnetization curve at a distance x from the end in the magnetic field H, and B 0 (H) be the magnetization curve without processing distortion. The region from the processing end to the distance w P is a plastic deformation portion, and the magnetization curve of this region is constant.
B (x, H) = B P (H) = 0.44 · ln (H) −2 (1)
And An area from the distance w P to w E from the machining end is defined as an elastically deformable portion.
B (x, H) = B P (H) + {B 0 (H) −B P (H)} (x−w P ) / (w E −w P )
... (2)
Assuming that If the processing width is measured magnetization characteristic of the whole sample is w, w> when 2w E, the magnetization curve Ba (w) = [2B P (H) w P + {B P (H) + B 0 (H )} (W E −w P )
+ B 0 (H) (w−2w E )] / w
= B 0 (H) − [B 0 (H) −B P (H)] (w P + w E ) / w (3)
It becomes. Therefore, the average magnetic flux density at a constant magnetic field in the processing width w (mm) is expressed as Ba (w) = ba−w / (4)
As a result of measuring the magnetization curve by changing the shear width in an electromagnetic steel sheet having a thickness of 0.5 mm, it is determined based on FIG.
At a magnetic field H = 800 A / m, Ba (1.1) = 0.73T, Ba (1.6) = 0.85T, Ba (3) = 1.18T, Ba (6) = 1.42T, Ba ( 15) = 1.5T, so from regression analysis,
Ba (w) = 1.53-0.47 / w (5)
It becomes. When (w P + w E ) is obtained from the equations (3) and (5), it becomes w P + w E = 0.83 mm. Assuming that w P is 0.25 mm as half the plate thickness, w E = 0.78 mm.
Eventually, in the case of an electromagnetic steel sheet having a shear width w (mm), the magnetization characteristics after shearing can be estimated by the following equation.
Ba (w) = B 0 (H) −0.83 [B 0 (H) −0.44 · ln (H) +2] / w
... (6)

打ち抜き加工劣化を推定するに当たり、塑性変形域の幅を打ち抜き形状のダレ部の幅で決め、弾性変形幅は実機を磁区観察結果より決める。図2は加工部のダレ側表面写真であり、結晶粒が浮かび上がった部分が塑性変形部であり、塑性変形幅は板厚の半分であった。図3はダレ側とは反対のカエリ側の写真であり、打ち抜き部に、打ち抜き型の研磨すじがプリントされている部分が塑性変形部分に対応し、この写真から推定される塑性変形幅も板厚の半分であった。以上より、塑性変形幅は板厚の1/2と判定した。図4は、ダレ側とカエリ側の磁区写真であり、磁区に影響(カエリ側:磁壁間隔が狭くなっている部分、ダレ側:磁区が明確に見える部分)を与えている部分が板厚の2倍であり、弾性変形幅を板厚の2倍と判定した。   In estimating the punching deterioration, the width of the plastic deformation region is determined by the width of the punched sag portion, and the elastic deformation width is determined from the magnetic domain observation result of the actual machine. FIG. 2 is a sag surface photograph of the processed part. The part where the crystal grains emerged was the plastic deformation part, and the plastic deformation width was half of the plate thickness. FIG. 3 is a photograph of the burrs side opposite to the sag side, where the punched portion of the punched mold is printed on the punched portion corresponding to the plastically deformed portion, and the plastic deformation width estimated from this photograph is the plate. It was half the thickness. From the above, the plastic deformation width was determined to be 1/2 of the plate thickness. Fig. 4 is a photograph of magnetic domains on the sag side and the burrs side. The thickness of the part giving influences on the mag- netic domains (the burrs side: the part where the domain wall interval is narrowed, the sag side: the part where the magnetic domains are clearly visible). The elastic deformation width was determined to be twice the plate thickness.

電磁鋼板素材特性の磁化特性と鉄損を測定し、B(H)、W(B)とした。板厚と同じ板幅(塑性変形幅の2倍)に剪断した電磁鋼板の磁気特性を測定して、その結果より、塑性変形部分の磁化特性と鉄損をB(H)、W(B)とした。板厚の5倍の幅(塑性変形幅の2倍と弾性変形幅の2倍の和)に剪断した電磁鋼板の磁気特性を測定して、その結果の磁化特性と鉄損をBPE(H)、WPE(B)とした。これより、弾性変形部分の磁化特性と鉄損の平均値B(H)、W(B)は、
(H)={5BPE(H)−B(H)}/4
(B(H))={5WPE(BPE(H))−W(B(H))}/4
で表せる。
The magnetic properties and iron loss of the electrical steel sheet material properties were measured and designated as B 0 (H) and W 0 (B). The magnetic properties of the electrical steel sheet sheared to the same plate width as the plate thickness (twice the plastic deformation width) were measured, and from the results, the magnetic properties and iron loss of the plastically deformed portion were determined as B P (H), W P ( B). By measuring the magnetic properties of electrical steel sheet was sheared in a thickness of 5 times the width (twice the sum of twice the elastic deformation range of the plastic deformation range), the resulting magnetization characteristics and iron loss B PE (H ), W PE (B). From this, the magnetization characteristics of the elastically deformed portion and the average values B E (H) and W E (B) of the iron loss are
B E (H) = {5B PE (H) −B P (H)} / 4
W E (B E (H)) = {5 W PE (B PE (H)) − W P (B P (H))} / 4
It can be expressed as

以上より、本発明推定方法による加工部からの距離xの磁気特性は、塑性変形域、弾性変形域の磁気特性はそれぞれその領域で均一と仮定し、板厚をtとして、
x<t/2のとき、B(H)、W(B)
t/2≦x<2tのとき、B(H)、W(B)
2t≦xのとき、B(H)、W(B)
とした。
From the above, it is assumed that the magnetic properties of the distance x from the processed part by the estimation method of the present invention are uniform in the plastic deformation region and the elastic deformation region, respectively, and the thickness is t.
When x <t / 2, B P (H), W P (B)
When t / 2 ≦ x <2t, B E (H), W E (B)
When 2t ≦ x, B 0 (H), W 0 (B)
It was.

板厚の電磁鋼板を打ち抜き、2極誘導モータの鉄心を製作した。このモータ鉄心の磁気特性を推定するにあたり、打ち抜きによる形状変形と残留歪(塑性変形)、残留応力(弾性応力)を3次元解析で求め、残留歪による磁気特性への影響は、残留歪を圧延率として電磁鋼板を圧延した試料の磁気特性データを用い、残留応力に対しては、[励磁方向応力−(励磁方向と直角方向の二方向の応力の和)/2]を励磁方向応力とした場合の磁気特性データを用いた。この方法で、無負荷状態のモータ鉄損を求めたところ、本発明の推定によると、(打ち抜き鉄心での鉄損)/(無歪での鉄損)で1.31倍となった。この推定精度を検証するためモータ鉄損を実測したところ、(打ち抜き鉄心での鉄損)/(放電加工での鉄損)で1.37倍であり、かなりの精度で推定出来ていることが分かった。   Thick magnetic steel sheets were punched out to produce iron cores for 2-pole induction motors. In estimating the magnetic properties of this motor core, the shape deformation due to punching, residual strain (plastic deformation), and residual stress (elastic stress) are obtained by three-dimensional analysis. The effect of residual strain on magnetic properties is determined by rolling residual strain. For the residual stress, the excitation direction stress is defined as [Excitation direction stress-(sum of two directions perpendicular to the excitation direction) / 2] for the residual stress. Magnetic property data for the case was used. When the motor iron loss in an unloaded state was determined by this method, according to the estimation of the present invention, it was 1.31 times (iron loss in punched iron core) / (iron loss without strain). When the motor iron loss was measured in order to verify this estimation accuracy, it was 1.37 times (iron loss in punched iron core) / (iron loss in electric discharge machining), and was estimated with considerable accuracy. I understood.

リング鉄心の磁気特性の加工劣化の影響を推定した例を示す。塑性変形域を加工部の結晶粒変形部分とし、その幅をwとした。板厚に対するダレの大きさの比率の1/2を圧延率とする磁気特性をこの領域の磁気特性とした。弾性変形域は、応力σは加工部からの距離xに対してσexp{(w−x)/x}で表せるとし、磁気特性は張力σと圧縮力σの磁気特性の平均とした。なお、σとxは実施例3と同じ様に、加工での残留応力計算より求め、最大の残留応力と応力残留域幅をσとxとした。 An example in which the influence of machining deterioration on the magnetic properties of a ring core is estimated will be shown. Plastic deformation zone and the crystal grains deformed portion of the working portion, and the width w P. The magnetic characteristic in which the rolling ratio is 1/2 of the ratio of the sagging size to the plate thickness was defined as the magnetic characteristic of this region. In the elastic deformation region, the stress σ can be expressed by σ E exp {(w P −x) / x E } with respect to the distance x from the processed portion, and the magnetic characteristics are the average of the magnetic characteristics of the tension σ and the compressive force σ. did. As in Example 3, σ E and x E were obtained by calculation of residual stress in processing, and the maximum residual stress and stress residual area width were set as σ E and x E.

この方法を、無方向性電磁鋼板50A1000を打ち抜いた外径125mm、内径100mmのリングに適用した。加工部の結晶粒変形部分の幅として実測したところ、板厚の1/3であったので、wは板厚の1/3とした。板厚に対するダレの大きさの比率は実測より0.3であったので、塑性変形域の平均変形率を0.3の1/2の0.15とし、塑性変形域の磁気特性は圧延率15%で圧延した磁気特性(圧延方向)とした。素材の磁気特性と圧延率15%で圧延した磁気特性より、リング特性を推定した。実測値の鉄損が15%劣化であったが、推定値では18%となった。 This method was applied to a ring having an outer diameter of 125 mm and an inner diameter of 100 mm punched from the non-oriented electrical steel sheet 50A1000. It was measured as the width of the crystal grains deformed portion of the processing unit, so there was a thickness of 1/3, w P was 1/3 of plate thickness. Since the ratio of the sagging size to the plate thickness was 0.3 from the actual measurement, the average deformation rate in the plastic deformation region was set to 0.15 that is 1/2 of 0.3, and the magnetic property in the plastic deformation region was the rolling rate. It was set as the magnetic characteristic (rolling direction) rolled at 15%. The ring characteristics were estimated from the magnetic characteristics of the material and the magnetic characteristics rolled at a rolling rate of 15%. The actually measured iron loss was 15% deteriorated, but the estimated value was 18%.

実施例4に対して、硬度より塑性変形域を求めた。板厚1/2の部分において、マイクロビカースで5ポイント増加した幅を塑性変形域とした。実施例では塑性変形域の幅として板厚の0.44倍がえられ、鉄損の推定劣化率は13%となった。   For Example 4, the plastic deformation region was determined from the hardness. The width increased by 5 points with micro Vickers in the portion of the plate thickness 1/2 was defined as the plastic deformation region. In the example, the width of the plastic deformation region was 0.44 times the plate thickness, and the estimated deterioration rate of the iron loss was 13%.

二方向性電磁鋼板をワイヤカットで加工したEIコア[加工(磁路)幅は25mm]の鉄心推定をした。加工部を磁区観察したところ、加工部で加工された結晶粒の全体が加工方向(加工部に直角方向)に最も近い磁化容易方向に磁化が向いていることが観察された。この加工された結晶粒の磁気特性は、二方向性電磁鋼板を磁界中焼鈍して一方向に磁化を向けた試料の磁気特性の方向依存性より推定した。例えば、EIコアのように加工部に平行に励磁する場合は、加工方向に最も近い磁化容易方向が加工方向より5°であれば、この磁化容易方向は励磁方向に対して85°となるので、磁界中焼鈍方向に対して85°の二方向性電磁鋼板の磁気特性を用いる。加工部にあり、加工された結晶粒の磁気特性をこの方法で推定し、それ以外の部分は素材特性を用いて、鉄損を推定したところ、36%増加となった。   An iron core of an EI core [working (magnetic path) width is 25 mm] obtained by processing a bidirectional magnetic steel sheet by wire cutting was estimated. When the magnetic domain was observed in the processed part, it was observed that the entire crystal grain processed in the processed part was oriented in the easy magnetization direction closest to the processing direction (perpendicular to the processed part). The magnetic properties of the processed crystal grains were estimated from the direction dependency of the magnetic properties of a sample in which a bi-directional electrical steel sheet was annealed in a magnetic field and magnetized in one direction. For example, when exciting in parallel to the machining part as in the EI core, if the easy magnetization direction closest to the machining direction is 5 ° from the machining direction, this easy magnetization direction is 85 ° with respect to the excitation direction. The magnetic properties of a bi-directional electrical steel sheet having an angle of 85 ° with respect to the annealing direction in the magnetic field are used. When the magnetic properties of the processed crystal grains in the processed portion were estimated by this method and the iron loss was estimated using the material properties for the other portions, the increase was 36%.

実施例4のリング鉄心の歪み取り焼鈍後の磁気特性を推定する。前もって、調べておいた5%冷延後、焼鈍した鉄心素材の再結晶平均粒径と磁気特性の関係を用いて、塑性変形域の歪み取り焼鈍後の磁気特性変化は、歪み取り焼鈍後の塑性変形部の平均結晶粒径より磁気特性を求める。   The magnetic characteristic after the strain relief annealing of the ring iron core of Example 4 is estimated. Using the relationship between the recrystallized average grain size and the magnetic properties of the core material annealed after 5% cold rolling, which was investigated in advance, the change in magnetic properties after strain relief annealing in the plastic deformation region is the same as that after strain relief annealing. The magnetic properties are determined from the average crystal grain size of the plastic deformation part.

弾性変形域は、焼鈍温度(K)と時間(h)をT、tとして、残留応力が[1−t/t・exp(−T/T)]に比例するとして、歪み取り焼鈍による磁気特性変化を推定する。本実施例では、700℃では3h、750℃では1hで比例的に加工による歪が解放されるとして、t=5.2×10-10h,T=21900Kとした。[1−t/t・exp(−T/T)]が負になる場合は0として無応力の磁気特性を用いる。650℃で5時間焼鈍した場合、塑性変形部の結晶粒の平均粒径で実測し、その平均粒径に最も近い5%冷延材の焼鈍後の再結晶平均粒径に対応する磁気特性との関係を塑性変形部の磁気特性とした。焼鈍後の塑性変形域の透磁率は、無焼鈍で一桁の透磁率の低下に対して、素材の透磁率に比べ1/5程度まだ回復したが、まだ低く、塑性変形域を透る磁束は低いままとなった。一方、弾性変形域の焼鈍による残留応力は1−t/t・exp(−T/T)=0.50となり、σが1/2になるとした。従って、透磁率(磁界一定)は約70%、鉄損(磁束密度一定)は50%となった。 The elastic deformation region is due to strain relief annealing, assuming that the annealing temperature (K) and time (h) are T and t, and the residual stress is proportional to [1-t / t 0 · exp (−T 0 / T)]. Estimate changes in magnetic properties. In this example, t 0 = 5.2 × 10 −10 h, T 0 = 21900K, assuming that distortion caused by machining is proportionally released at 700 ° C. for 3 hours and at 750 ° C. for 1 hour. When [1−t / t 0 · exp (−T 0 / T)] becomes negative, zero is used as the stress-free magnetic characteristic. When annealed at 650 ° C. for 5 hours, it was measured by the average grain size of the crystal grains in the plastically deformed portion, and the magnetic properties corresponding to the recrystallized average grain size after annealing of the 5% cold rolled material closest to the average grain size This is the magnetic property of the plastic deformation part. The magnetic permeability of the plastic deformation zone after annealing was still about 1/5 compared to the magnetic permeability of the raw material, but the magnetic flux passing through the plastic deformation zone was still lower than the magnetic permeability of the material with respect to the single digit permeability decrease without annealing. Remained low. On the other hand, the residual stress due to annealing in the elastic deformation region is 1-t / t 0 · exp (−T 0 /T)=0.50, and σ E is halved. Therefore, the magnetic permeability (constant magnetic field) was about 70%, and the iron loss (constant magnetic flux density) was 50%.

これらの結果より、鉄心全体での鉄損回復率[=(加工後鉄損−焼鈍後鉄損)/(加工後鉄損−完全回復時鉄損)]を推定すると、は約31%となった。実測では鉄損劣化の約25%回復したので、ほぼ良い一致で推定できた。   Based on these results, the iron loss recovery rate [= (iron loss after processing−iron loss after annealing) / (iron loss after processing−iron loss upon complete recovery)] in the entire iron core is estimated to be about 31%. It was. In actual measurement, about 25% of the iron loss deterioration was recovered, so that it was estimated with almost good agreement.

磁化曲線に与える剪断歪みの影響を示す線図である。It is a diagram which shows the influence of the shear distortion which gives to a magnetization curve. 加工部のダレ側表面の写真である。It is a photograph of the sagging side surface of a processing part. ダレ側とは反対のカエリ側の写真である。This is a photograph of the Kaeri side opposite to the Dare side. ダレ側とカエリ側の磁区写真である。It is a magnetic domain photograph of the Dare side and the Kaeri side.

Claims (6)

加工した磁性材料及びその磁性材料を組み合わせた鉄心の性能を推定する方法において、加工部からの距離で磁性材料の加工劣化を表す関数を用いる加工鉄心性能の推定方法。 In a method for estimating the performance of a processed magnetic material and an iron core that combines the magnetic material, a method for estimating a processed iron core performance using a function that represents processing deterioration of the magnetic material by a distance from a processed portion. 加工した磁性材料及びその磁性材料を組み合わせた鉄心の性能を推定する方法において、加工劣化を塑性変形領域と弾性変形領域に分けて、塑性変形領域に対しては前記の磁性材料を圧延した試料の磁気特性を用い、弾性変形領域に対しては、張力下の磁気特性と前記張力と同じ大きさの圧縮力下の磁気特性を同じ磁界で平均した磁気特性を用いる加工鉄心性能の推定方法。 In the method of estimating the performance of the processed magnetic material and the iron core combining the magnetic material, the work deterioration is divided into a plastic deformation region and an elastic deformation region, and the sample of the sample obtained by rolling the magnetic material is applied to the plastic deformation region. A method for estimating the performance of a machined iron core using magnetic properties, and using magnetic properties obtained by averaging magnetic properties under tension and magnetic properties under a compressive force having the same magnitude as the tension with the same magnetic field for an elastic deformation region. 加工した磁性材料及びその磁性材料を組み合わせた鉄心の性能を推定する方法において、加工劣化を塑性変形領域と弾性変形領域に分けて、塑性変形領域に対しては前記の磁性材料を圧延した試料の磁気特性を用い、弾性変形領域に対しては、[励磁方向応力−(励磁方向と直角方向の二方向の応力の和)/2]を励磁方向応力とした磁気特性を用いる加工鉄心性能の推定方法。 In the method of estimating the performance of the processed magnetic material and the iron core combining the magnetic material, the work deterioration is divided into a plastic deformation region and an elastic deformation region, and the sample of the sample obtained by rolling the magnetic material is applied to the plastic deformation region. Estimating the machining core performance using magnetic properties using the magnetic properties and [excitation direction stress-(sum of two directions perpendicular to the excitation direction) / 2] / 2 for the elastic deformation region. Method. 塑性変形領域と弾性変形領域に、各々、請求項1記載の推定方法を用いる請求項2または請求項3記載の加工鉄心性能の推定方法。 The method for estimating the performance of the processed iron core according to claim 2 or 3, wherein the estimation method according to claim 1 is used for each of the plastic deformation region and the elastic deformation region. 加工した磁性材料或いは組み合わせ鉄心を歪み取り焼鈍して用いる場合に、請求項1〜4のいずれか1項に記載の加工鉄心性能の推定方法を用いて、焼鈍後の加工鉄心性能を推定する加工鉄心性能の推定方法。 When the processed magnetic material or the combined iron core is used after being subjected to strain relief annealing, the machining iron core performance after annealing is estimated using the method for estimating the processed iron core performance according to any one of claims 1 to 4. An estimation method of core performance. 加工した磁性材料或いは組み合わせ鉄心を用いた電磁機器の性能について、請求項1〜5のいずれか1項に記載の加工鉄心性能の推定方法を用いて推定する電磁機器性能の推定法。 The estimation method of the electromagnetic equipment performance which estimates the performance of the electromagnetic equipment using the processed magnetic material or the combined iron core using the processing core performance estimation method according to any one of claims 1 to 5.
JP2004113114A 2004-04-07 2004-04-07 Performance estimation method on worked iron core Withdrawn JP2005300211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113114A JP2005300211A (en) 2004-04-07 2004-04-07 Performance estimation method on worked iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113114A JP2005300211A (en) 2004-04-07 2004-04-07 Performance estimation method on worked iron core

Publications (1)

Publication Number Publication Date
JP2005300211A true JP2005300211A (en) 2005-10-27

Family

ID=35331931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113114A Withdrawn JP2005300211A (en) 2004-04-07 2004-04-07 Performance estimation method on worked iron core

Country Status (1)

Country Link
JP (1) JP2005300211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170320A (en) * 2007-01-12 2008-07-24 Nippon Steel Corp Electromagnetic field analyzing system
JP2009288010A (en) * 2008-05-28 2009-12-10 Nippon Steel Corp Core loss optimizing system
US7777389B2 (en) 2006-07-13 2010-08-17 Hitachi, Ltd. Rotating electrical machine
JP2015193926A (en) * 2014-03-27 2015-11-05 Jfeスチール株式会社 Method for evaluating nonoriented silicon steel sheet and method for producing the same
WO2016072088A1 (en) * 2014-11-04 2016-05-12 Jfeスチール株式会社 Method for predicting iron loss of non-oriented electrical steel sheet after shearing
JP7009937B2 (en) 2017-11-06 2022-01-26 日本製鉄株式会社 BF estimation method for winding core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777389B2 (en) 2006-07-13 2010-08-17 Hitachi, Ltd. Rotating electrical machine
JP2008170320A (en) * 2007-01-12 2008-07-24 Nippon Steel Corp Electromagnetic field analyzing system
JP2009288010A (en) * 2008-05-28 2009-12-10 Nippon Steel Corp Core loss optimizing system
JP2015193926A (en) * 2014-03-27 2015-11-05 Jfeスチール株式会社 Method for evaluating nonoriented silicon steel sheet and method for producing the same
WO2016072088A1 (en) * 2014-11-04 2016-05-12 Jfeスチール株式会社 Method for predicting iron loss of non-oriented electrical steel sheet after shearing
JP2016092187A (en) * 2014-11-04 2016-05-23 Jfeスチール株式会社 Iron loss prediction method of non-oriented electrical steel sheet after processing
CN107076811A (en) * 2014-11-04 2017-08-18 杰富意钢铁株式会社 The iron loss Forecasting Methodology of non-oriented electromagnetic steel sheet after shearing
RU2658133C1 (en) * 2014-11-04 2018-06-19 ДжФЕ СТИЛ КОРПОРЕЙШН Method for forecasting iron losses of the sheet made of non-textured electrotechnical steel after cutting
US10533969B2 (en) 2014-11-04 2020-01-14 Jfe Steel Corporation Method for predicting iron loss of non-oriented electrical steel sheet after shearing
CN107076811B (en) * 2014-11-04 2020-03-06 杰富意钢铁株式会社 Method for predicting iron loss of non-oriented electromagnetic steel sheet after shearing
JP7009937B2 (en) 2017-11-06 2022-01-26 日本製鉄株式会社 BF estimation method for winding core

Similar Documents

Publication Publication Date Title
Ossart et al. Effect of punching on electrical steels: Experimental and numerical coupled analysis
KR102035729B1 (en) Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained
JP5247965B2 (en) Punched bulk amorphous metal magnetic parts
KR101453224B1 (en) Process for producing non-oriented electromagnetic steel sheet
CN111418035B (en) High permeability soft magnetic alloy and method for manufacturing high permeability soft magnetic alloy
Komatsubara et al. Newly developed electrical steel for high-frequency use
KR101530450B1 (en) Grain oriented electrical steel sheet
CN107210109B (en) The prediction technique of orientation electromagnetic steel plate and its manufacturing method and transformer noise characteristic
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
KR101607909B1 (en) Grain-oriented electrical steel sheet and transformer iron core using same
JP5716811B2 (en) Method for producing non-oriented electrical steel sheet
EP3239309B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
Byerly et al. Magnetostrictive loss reduction through stress relief annealing in an FeNi-based metal amorphous nanocomposite
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP2005300211A (en) Performance estimation method on worked iron core
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
Banks et al. Dynamic magnetostriction and mechanical strain in oriented 3% silicon-iron sheet subject to combined longitudinal and transverse stresses
Paltanea et al. Magnetic anisotropy in silicon iron alloys
JP2008060353A (en) Product iron core transformer and manufacturing method therefor
JPH08269562A (en) Grain-oriented silicon steel sheet reduced in magnetostriction and its production
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6222498B2 (en) Metastable austenitic stainless steel strip or steel plate
JP5131747B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP7240874B2 (en) MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703