JP6191051B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer Download PDF

Info

Publication number
JP6191051B2
JP6191051B2 JP2013101900A JP2013101900A JP6191051B2 JP 6191051 B2 JP6191051 B2 JP 6191051B2 JP 2013101900 A JP2013101900 A JP 2013101900A JP 2013101900 A JP2013101900 A JP 2013101900A JP 6191051 B2 JP6191051 B2 JP 6191051B2
Authority
JP
Japan
Prior art keywords
ray
intensity
concentration
solder bump
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013101900A
Other languages
Japanese (ja)
Other versions
JP2014222191A (en
Inventor
浩 河野
河野  浩
秀明 ▲高▼橋
秀明 ▲高▼橋
聖史 藤村
聖史 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2013101900A priority Critical patent/JP6191051B2/en
Publication of JP2014222191A publication Critical patent/JP2014222191A/en
Application granted granted Critical
Publication of JP6191051B2 publication Critical patent/JP6191051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Sn−Ag系の半田バンプの組成について分析する蛍光X線分析装置に関する。   The present invention relates to an X-ray fluorescence analyzer for analyzing the composition of Sn-Ag solder bumps.

従来、半導体デバイスの電極として、半導体基板上に形成した鉛フリーのSn−Ag系の半田バンプが用いられているが(特許文献1参照)、半導体デバイスの歩留まりの維持、向上のために、基板上に形成したSn−Ag系の半田バンプの組成の管理が必要である。この組成の管理においては、半田バンプに偏析が少ないこと、つまり、半田バンプの全体の組成と半田バンプの表面の組成との差異が許容範囲内であることも求められる。   Conventionally, a lead-free Sn-Ag solder bump formed on a semiconductor substrate has been used as an electrode of a semiconductor device (see Patent Document 1). However, in order to maintain and improve the yield of the semiconductor device, It is necessary to manage the composition of the Sn-Ag solder bumps formed above. In the management of this composition, it is also required that the solder bumps are less segregated, that is, the difference between the overall composition of the solder bumps and the composition of the surface of the solder bumps is within an allowable range.

これに関連して、電子部品が実装されたプリント板ユニットに用いられているSn−Pb系の鉛半田について、Sn−Kα線の分布とSn−Lα線の分布の差分を取ることによって得たSnの分布と、Pbの分布とが重なる場合に、Sn−Pb合金つまり鉛半田が、プリント板ユニットに実装された電子部品の表面ではなく、内部に存在すると判定する第1の従来技術がある(特許文献2参照)。第1の従来技術では、電子部品内部のSn−Pb(高融点半田)の分布と、電子部品表面のSn−Pb(電極めっきまたは実装半田)の分布とが表示される。   In this connection, the Sn-Pb lead solder used in the printed board unit on which the electronic component is mounted was obtained by taking the difference between the Sn-Kα ray distribution and the Sn-Lα ray distribution. When the distribution of Sn and the distribution of Pb overlap, there is a first prior art that determines that the Sn—Pb alloy, that is, lead solder, is present not inside the surface of the electronic component mounted on the printed board unit (See Patent Document 2). In the first prior art, the distribution of Sn—Pb (high melting point solder) inside the electronic component and the distribution of Sn—Pb (electrode plating or mounting solder) on the surface of the electronic component are displayed.

また、玩具のような消費者製品において、Pb−Lα線の測定強度とPb−Lβ線の測定強度との比に基づいて、鉛が製品の表面にあるのか、内部にあるのかを判定する第2の従来技術もある(特許文献3参照)。   Further, in a consumer product such as a toy, a process for determining whether lead is on the surface of the product or inside based on the ratio of the measured intensity of the Pb-Lα ray and the measured intensity of the Pb-Lβ ray. There is also a prior art 2 (see Patent Document 3).

特許第4425799号公報Japanese Patent No. 4425799 特開2007−163183号公報JP 2007-163183 A 米国特許第8155268号明細書US Pat. No. 8,155,268

しかし、Sn−Ag系の半田バンプを形成した基板に第1の従来技術を適用しても、基板表面におけるSn−Ag合金の分布として、基板に形成したSn−Ag系の半田バンプの分布が表示されるのみで、半田バンプの全体の組成と半田バンプの表面の組成との差異が許容範囲内であるか否かを判定することはできない。また、Sn−Ag系の半田バンプを形成した基板に第2の従来技術を適用しても、SnまたはAgが、基板の表面にあることが確認されるのみで、半田バンプの全体の組成と半田バンプの表面の組成との差異が許容範囲内であるか否かを判定することはできない。   However, even if the first conventional technique is applied to a substrate on which Sn-Ag solder bumps are formed, the distribution of Sn-Ag solder bumps formed on the substrate is distributed as Sn-Ag alloy distribution on the substrate surface. It is not possible to determine whether or not the difference between the overall composition of the solder bumps and the composition of the surface of the solder bumps is within an allowable range. Further, even if the second conventional technique is applied to a substrate on which Sn-Ag solder bumps are formed, it is only confirmed that Sn or Ag is present on the surface of the substrate, and the overall composition of the solder bumps It cannot be determined whether or not the difference from the composition of the surface of the solder bump is within an allowable range.

そこで、本発明は、基板上に形成したSn−Ag系の半田バンプについて、全体の組成と表面の組成との差異が許容範囲内であるか否かを判定できる蛍光X線分析装置を提供することを目的とする。   Therefore, the present invention provides an X-ray fluorescence analyzer capable of determining whether or not the difference between the overall composition and the surface composition is within an allowable range for Sn-Ag solder bumps formed on a substrate. For the purpose.

前記目的を達成するために、本発明は、基板上にSn−Ag系の半田バンプを形成した試料にX線源から1次X線を照射して、発生する蛍光X線の強度を検出手段で測定する蛍光X線分析装置であって、定量手段と偏析評価手段とを備える。前記定量手段は、前記検出手段で測定したAg−Kα線の強度とSn−Kα線の強度との比に基づいて、半田バンプの全体(表面のみならず内部も含めた全体)における銀の濃度である全体濃度を求めるとともに、前記検出手段で測定したAg−Lα線の強度とSn−Lα線の強度との比に基づいて、半田バンプの表面における銀の濃度である表面濃度を求める。前記偏析評価手段は、前記全体濃度と前記表面濃度との差が所定値以下であるか否かによって、半田バンプにおける偏析の評価を行う。   In order to achieve the above object, the present invention provides a means for detecting the intensity of fluorescent X-rays generated by irradiating a primary X-ray from a X-ray source onto a sample in which a Sn-Ag solder bump is formed on a substrate. X-ray fluorescence analysis apparatus for measuring with a quantification means and segregation evaluation means. Based on the ratio of the intensity of Ag-Kα rays and the intensity of Sn-Kα rays measured by the detecting means, the quantitative means is the concentration of silver in the entire solder bump (the entire surface including not only the surface but also the inside). And the surface concentration, which is the silver concentration on the surface of the solder bump, is obtained based on the ratio of the intensity of the Ag-Lα ray and the intensity of the Sn-Lα ray measured by the detecting means. The segregation evaluation means evaluates segregation in the solder bumps depending on whether or not the difference between the total concentration and the surface concentration is a predetermined value or less.

基板上に半田バンプが配列される密度は試料によって異なり、全体濃度が同じでも半田バンプの密度が高いと、Ag−Kα線の測定強度は大きくなる。それゆえ、全体濃度を求めるにあたり、Ag−Kα線の測定強度そのものに基づくと、正確に全体濃度を求めることができない。本発明によれば、まず、定量手段によって全体濃度を求めるにあたり、Ag−Kα線の測定強度そのものに基づくのではなく、銀と共存する錫からのSn−Kα線の測定強度との比に基づく。そのため、試料によって異なる基板上の半田バンプの密度の影響を受けることなく、正確に全体濃度を求めることができる。なお、Kα線を利用するのは、Kα線が半田バンプの表面のみならず内部も含めた全体から発生するからである。   The density at which the solder bumps are arranged on the substrate varies depending on the sample. If the density of the solder bumps is high even if the overall concentration is the same, the measurement intensity of the Ag-Kα line increases. Therefore, when determining the total concentration, it is not possible to accurately determine the total concentration based on the measured intensity of the Ag-Kα ray itself. According to the present invention, first, when determining the total concentration by the quantitative means, it is not based on the measured intensity of the Ag-Kα ray itself but based on the ratio of the measured intensity of Sn-Kα ray from tin coexisting with silver. . Therefore, it is possible to accurately obtain the total concentration without being affected by the density of solder bumps on the substrate that differs depending on the sample. The reason why the Kα line is used is that the Kα line is generated not only from the surface of the solder bump but also from the whole.

同様に、定量手段によって半田バンプの表面における銀の濃度である表面濃度を求めるにあたっても、Ag−Lα線の測定強度そのものに基づくのではなく、Sn−Lα線の測定強度との比に基づくので、正確に表面濃度を求めることができる。なお、Lα線を利用するのは、Lα線が半田バンプの表面(厳密には表面近傍)のみから発生するからである。そして、偏析評価手段が、正確に求められた全体濃度と表面濃度との差が所定値以下であるか否かによって、半田バンプにおける偏析の評価を行うので、基板上に形成したSn−Ag系の半田バンプについて、全体の組成と表面の組成との差異が許容範囲内であるか否かを判定できる。   Similarly, when determining the surface concentration which is the concentration of silver on the surface of the solder bump by the quantitative means, it is not based on the measured intensity of the Ag-Lα ray but based on the ratio to the measured intensity of the Sn-Lα ray. The surface concentration can be obtained accurately. The reason why the Lα line is used is that the Lα line is generated only from the surface of the solder bump (strictly, near the surface). And the segregation evaluation means evaluates the segregation in the solder bumps depending on whether or not the difference between the total concentration and the surface concentration obtained accurately is a predetermined value or less, so that the Sn-Ag system formed on the substrate It can be determined whether or not the difference between the overall composition and the surface composition is within an allowable range.

本発明の一実施形態の蛍光X線分析装置を示す概略図である。1 is a schematic view showing a fluorescent X-ray analyzer according to an embodiment of the present invention. 図1の試料の部分拡大図である。It is the elements on larger scale of the sample of FIG.

以下、本発明の一実施形態の蛍光X線分析装置について、図にしたがって説明する。図1に示すように、この装置は、試料台8に載置された試料3にX線管などのX線源1から1次X線2を照射して、発生する蛍光X線4の強度を検出手段9で測定する蛍光X線分析装置であって、定量手段10と偏析評価手段11とを備える。定量手段10および偏析評価手段11は、具体的には、コンピューターおよびそれに接続された入出力機器で構成される。   Hereinafter, an X-ray fluorescence analyzer according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this apparatus irradiates a sample 3 placed on a sample stage 8 with primary X-rays 2 from an X-ray source 1 such as an X-ray tube, and generates an intensity of fluorescent X-rays 4 generated. Is a fluorescent X-ray analysis apparatus that measures the amount of light by a detection means 9, and includes a quantitative means 10 and a segregation evaluation means 11. Specifically, the quantification means 10 and the segregation evaluation means 11 are configured by a computer and input / output devices connected thereto.

検出手段9は、試料3から発生する蛍光X線4を分光する分光素子5と、分光された蛍光X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いる検出手段9には、測定する蛍光X線4の波長が固定された固定型と、測定する蛍光X線4の波長を走査できる走査型とがあるが、必要に応じ、いずれをいくつ備えてもよい。また、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段とすることもできる。   The detection means 9 includes a spectroscopic element 5 that separates fluorescent X-rays 4 generated from the sample 3 and a detector 7 that measures the intensity of each spectroscopic fluorescent X-ray 6. The detection means 9 using the spectroscopic element 5 includes a fixed type in which the wavelength of the fluorescent X-ray 4 to be measured is fixed and a scanning type in which the wavelength of the fluorescent X-ray 4 to be measured can be scanned. Any number may be provided. In addition, a detector having high energy resolution can be used as the detection means without using the spectroscopic element 5.

分析対象である試料3は、図2の部分拡大図に示すように、基板3aとその上に形成された多数のSn−Ag系の半田バンプ3bで構成されている。半田バンプ3bは、図2の紙面における左右方向および奥方向に多数配列されている。基板3a上に半田バンプ3bが配列される密度(基板3aの単位面積あたりの半田バンプ3bの数)は、試料3によって異なる。   As shown in the partial enlarged view of FIG. 2, the sample 3 to be analyzed is composed of a substrate 3a and a number of Sn-Ag solder bumps 3b formed thereon. A large number of solder bumps 3b are arranged in the left-right direction and the depth direction on the paper surface of FIG. The density at which the solder bumps 3b are arranged on the substrate 3a (the number of solder bumps 3b per unit area of the substrate 3a) varies depending on the sample 3.

図1の定量手段10は、まず、検出手段9で測定したAg−Kα線の強度とSn−Kα線の強度との比に基づいて、周知の検量線法により、つまりあらかじめ標準試料を用いて作成しておいた検量線を適用して、半田バンプ3bの全体(半田バンプ3bの表面のみならず内部も含めた全体)における銀の濃度である全体濃度Ct (%)を求める。   First, the quantification means 10 of FIG. 1 is based on the ratio of the intensity of Ag-Kα rays and the intensity of Sn-Kα rays measured by the detection means 9 by a known calibration curve method, that is, using a standard sample in advance. By applying the prepared calibration curve, an overall concentration Ct (%) which is the concentration of silver in the entire solder bump 3b (the entire surface including not only the surface of the solder bump 3b but also the inside) is obtained.

ここで、Kα線を利用するのは、Kα線が半田バンプ3bの表面のみならず内部も含めた全体から発生するからである。また、Ag−Kα線の測定強度とSn−Kα線の測定強度との比に基づくのは、以下の理由による。全体濃度Ct が同じでも半田バンプ3bの密度が高いと、Ag−Kα線の測定強度は大きくなる。それゆえ、全体濃度Ct を求めるにあたり、Ag−Kα線の測定強度そのものに基づくと、正確に全体濃度Ct を求めることができない。そこで、Ag−Kα線の測定強度そのものに基づくのではなく、銀と共存する錫からのSn−Kα線の測定強度との比に基づくこととした。これにより、半田バンプ3bの密度の影響を受けることなく、正確に全体濃度Ct を求めることができる。   Here, the reason why the Kα line is used is that the Kα line is generated not only from the surface of the solder bump 3b but also from the whole. The reason why the measurement intensity of Ag-Kα ray is based on the ratio of the measurement intensity of Sn-Kα ray is as follows. Even if the total concentration Ct is the same, if the density of the solder bumps 3b is high, the measured intensity of the Ag-Kα line increases. Therefore, when determining the total concentration Ct, it is not possible to accurately determine the total concentration Ct based on the measured intensity of the Ag-Kα ray itself. Therefore, it was not based on the measured intensity of the Ag-Kα ray itself but based on the ratio with the measured intensity of the Sn—Kα ray from tin coexisting with silver. As a result, the total concentration Ct can be accurately obtained without being affected by the density of the solder bumps 3b.

また、定量手段10は、検出手段9で測定したAg−Lα線の強度とSn−Lα線の強度との比に基づいて、やはり周知の検量線法により、半田バンプ3bの表面における銀の濃度である表面濃度Cs (%)を求める。ここで、Lα線を利用するのは、Lα線が半田バンプ3bの表面(厳密には表面近傍)のみから発生するからである。また、表面濃度Cs を求めるにあたっても、Ag−Lα線の測定強度そのものに基づくのではなく、Sn−Lα線の測定強度との比に基づくので、正確に表面濃度Cs を求めることができる。   Further, the quantification means 10 is based on the ratio of the intensity of Ag-Lα ray and the intensity of Sn-Lα ray measured by the detection means 9, the silver concentration on the surface of the solder bump 3 b by the well-known calibration curve method. The surface concentration Cs (%) is obtained. Here, the reason why the Lα ray is used is that the Lα ray is generated only from the surface of the solder bump 3b (strictly, near the surface). In determining the surface concentration Cs, the surface concentration Cs can be accurately determined because it is not based on the measured intensity of the Ag-Lα ray but based on the ratio to the measured intensity of the Sn-Lα ray.

そして、偏析評価手段11は、全体濃度Ct と表面濃度Cs との差(両数値の大きい方から小さい方を引いた値)つまり|Ct −Cs |が、所定値以下であるか否かによって、半田バンプ3bにおける偏析の評価を行う。例えば、所定値を0.1とすると、|Ct −Cs |≦0.1の場合は、半田バンプ3bにおける偏析の程度が許容範囲内であると評価し、|Ct −Cs |>0.1の場合は、半田バンプ3bにおける偏析の程度が許容範囲を超えていると評価する。評価の結果は、例えば、図示しない液晶ディスプレイに表示される。   Then, the segregation evaluation means 11 determines whether or not the difference between the total concentration Ct and the surface concentration Cs (a value obtained by subtracting the smaller value from the larger value), that is, | Ct−Cs | The segregation in the solder bump 3b is evaluated. For example, when the predetermined value is 0.1, when | Ct−Cs | ≦ 0.1, it is evaluated that the degree of segregation in the solder bump 3b is within an allowable range, and | Ct−Cs |> 0.1. In this case, it is evaluated that the degree of segregation in the solder bump 3b exceeds the allowable range. The result of the evaluation is displayed on a liquid crystal display (not shown), for example.

なお、全体濃度Ct および表面濃度Cs は、試料3において、1次X線2が照射され、かつ検出手段9が見込んでいる領域についての値であるので、必要に応じて、試料3をX線源1および検出手段9に対して移動させ、上述の検出手段9による測定、定量手段10および偏析評価手段11の動作を繰り返す。   Note that the total concentration Ct and the surface concentration Cs are values for a region of the sample 3 that is irradiated with the primary X-ray 2 and that the detection means 9 expects. It moves with respect to the source 1 and the detection means 9, and repeats the operation of the measurement, quantification means 10 and segregation evaluation means 11 by the detection means 9 described above.

以上のように、本実施形態の装置によれば、全体濃度Ct および表面濃度Cs が正確に求められ、両者の差|Ct −Cs |が所定値以下であるか否かによって、半田バンプ3bにおける偏析の評価を行うので、基板3a上に形成したSn−Ag系の半田バンプ3bについて、全体の組成と表面の組成との差異が許容範囲内であるか否かを判定できる。   As described above, according to the apparatus of the present embodiment, the total concentration Ct and the surface concentration Cs are accurately obtained, and depending on whether or not the difference | Ct−Cs | Since the evaluation of segregation is performed, it is possible to determine whether or not the difference between the overall composition and the surface composition of the Sn-Ag solder bump 3b formed on the substrate 3a is within an allowable range.

なお、全体濃度Ct および/または表面濃度Cs が所定の許容範囲内であるか否かの判定を併せて行ってもよいし、その判定が許容範囲内のときにのみ、全体の組成と表面の組成との差異が許容範囲内であるか否かを判定してもよい。   It should be noted that the determination as to whether or not the total concentration Ct and / or the surface concentration Cs is within a predetermined allowable range may be performed together, and only when the determination is within the allowable range, the overall composition and the surface concentration It may be determined whether the difference from the composition is within an acceptable range.

1 X線源
2 1次X線
3 試料
3a 基板
3b 半田バンプ
4 蛍光X線
9 検出手段
10 定量手段
11 偏析評価手段
1 X-ray source 2 Primary X-ray 3 Sample 3a Substrate 3b Solder bump 4 Fluorescent X-ray 9 Detection means 10 Quantification means 11 Segregation evaluation means

Claims (1)

基板上にSn−Ag系の半田バンプを形成した試料にX線源から1次X線を照射して、発生する蛍光X線の強度を検出手段で測定する蛍光X線分析装置であって、
前記検出手段で測定したAg−Kα線の強度とSn−Kα線の強度との比に基づいて、半田バンプの全体における銀の濃度である全体濃度を求めるとともに、前記検出手段で測定したAg−Lα線の強度とSn−Lα線の強度との比に基づいて、半田バンプの表面における銀の濃度である表面濃度を求める定量手段と、
前記全体濃度と前記表面濃度との差が所定値以下であるか否かによって、半田バンプにおける全体と表面の組成の差異として偏析の評価を行う偏析評価手段とを備えた蛍光X線分析装置。
A fluorescent X-ray analyzer that irradiates a sample, on which a Sn-Ag solder bump is formed on a substrate, with a primary X-ray from an X-ray source and measures the intensity of the generated fluorescent X-rays with a detection means,
Based on the ratio of the intensity of the Ag-Kα ray measured by the detecting means and the intensity of the Sn-Kα ray, the total concentration, which is the silver concentration in the entire solder bump, is obtained, and the Ag− measured by the detecting means. Quantitative means for determining the surface concentration, which is the concentration of silver on the surface of the solder bump, based on the ratio between the intensity of the Lα ray and the intensity of the Sn-Lα ray;
A fluorescent X-ray analysis apparatus comprising segregation evaluation means for evaluating segregation as a difference in composition between the whole and the surface of a solder bump depending on whether or not a difference between the total concentration and the surface concentration is a predetermined value or less.
JP2013101900A 2013-05-14 2013-05-14 X-ray fluorescence analyzer Active JP6191051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101900A JP6191051B2 (en) 2013-05-14 2013-05-14 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101900A JP6191051B2 (en) 2013-05-14 2013-05-14 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2014222191A JP2014222191A (en) 2014-11-27
JP6191051B2 true JP6191051B2 (en) 2017-09-06

Family

ID=52121778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101900A Active JP6191051B2 (en) 2013-05-14 2013-05-14 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP6191051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321369B2 (en) * 2013-12-19 2018-05-09 高周波熱錬株式会社 Method for determining copper concentration in solder
WO2020008727A1 (en) * 2018-07-04 2020-01-09 株式会社リガク Luminescent x-ray analysis device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594787B2 (en) * 2005-04-14 2010-12-08 パナソニック株式会社 Solder specimen preparation method and analysis method, and solder bath management system
EP2138832A1 (en) * 2005-10-04 2009-12-30 Thermo Niton Analyzers LLC Method of layer order verification in a multilayer arrangement
IL180482A0 (en) * 2007-01-01 2007-06-03 Jordan Valley Semiconductors Inspection of small features using x - ray fluorescence

Also Published As

Publication number Publication date
JP2014222191A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
US20130195244A1 (en) X-Ray Inspector
US8891729B2 (en) X-ray analyzer and X-ray analysis method
JP4874118B2 (en) X-ray fluorescence analyzer
EP3064931A1 (en) Quantitative x-ray analysis
JP2003050115A (en) X-ray film thickness meter
JP2008268076A (en) Non-destructive discrimination method, and device
JP2010032485A (en) X-ray analyzer and x-ray analysis method
US9188553B2 (en) X-ray fluorescence analyzer
US8942344B2 (en) Method for determining the concentration of an element in a material
KR102134181B1 (en) Measurement of small features using xrf
JP6191051B2 (en) X-ray fluorescence analyzer
JP4734106B2 (en) Analysis equipment
US8705698B2 (en) X-ray analyzer and mapping method for an X-ray analysis
US7289598B2 (en) X-ray fluorescent analysis apparatus
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP2010054334A (en) X-ray fluorescence analyzer
JP2007057497A (en) System and method for inspecting phosphor film thickness
JP2004108871A (en) X-ray inspection device, x-ray inspection method and x-ray inspection control program
JP5135950B2 (en) X-ray fluorescence analysis method
JP7328135B2 (en) X-ray analysis device, analysis method, and program
JP2000065764A (en) X-ray fluorescence analysis of liquid sample
Sim et al. X-ray absorption-based technique to measure the thickness of multi-layered structures
JP5043387B2 (en) Film analysis method and apparatus by fluorescent X-ray analysis
WO2023277039A1 (en) Transmission x-ray inspecting device, and transmission x-ray inspecting method
JP7190751B2 (en) X-ray fluorescence analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R150 Certificate of patent or registration of utility model

Ref document number: 6191051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250