JP6189661B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP6189661B2
JP6189661B2 JP2013151774A JP2013151774A JP6189661B2 JP 6189661 B2 JP6189661 B2 JP 6189661B2 JP 2013151774 A JP2013151774 A JP 2013151774A JP 2013151774 A JP2013151774 A JP 2013151774A JP 6189661 B2 JP6189661 B2 JP 6189661B2
Authority
JP
Japan
Prior art keywords
light
hole
convex portion
emitted
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013151774A
Other languages
Japanese (ja)
Other versions
JP2015023215A (en
Inventor
素子 力丸
素子 力丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013151774A priority Critical patent/JP6189661B2/en
Publication of JP2015023215A publication Critical patent/JP2015023215A/en
Application granted granted Critical
Publication of JP6189661B2 publication Critical patent/JP6189661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体発光装置に関するものであり、詳しくは、半導体レーザ素子と、半導体レーザ素子から出射したレーザ光を拡散する光拡散部材と、光拡散部材からの拡散レーザ光を波長変換する波長変換部材とを備えた半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device, and more specifically, a semiconductor laser element, a light diffusion member that diffuses laser light emitted from the semiconductor laser element, and a wavelength conversion that converts the wavelength of the diffusion laser light from the light diffusion member. The present invention relates to a semiconductor light emitting device including a member.

従来、この種の半導体発光装置としては、例えば、特許文献1に「半導体レーザ装置」として開示された、図11に示す構造のものがある。   Conventionally, as this type of semiconductor light emitting device, for example, there is one having a structure shown in FIG.

それは、リード80を有する円盤状のステム81にブロック部82が設けられ、ブロック部82の側面に半導体レーザ素子83が固定されている。ステム81の上面には、ブロック部82及びブロック部82に固定された半導体レーザ素子83を覆うように、ステム81の上面の周縁近傍から垂直方向に延びる円筒状のキャップ84が設けられている。   The block portion 82 is provided on a disc-shaped stem 81 having leads 80, and the semiconductor laser element 83 is fixed to the side surface of the block portion 82. A cylindrical cap 84 extending in the vertical direction from the vicinity of the periphery of the upper surface of the stem 81 is provided on the upper surface of the stem 81 so as to cover the block portion 82 and the semiconductor laser element 83 fixed to the block portion 82.

キャップ84の上部には開口部85が設けられていると共に、開口部85を上側から覆うように接合層86を介してガラス部材87が載設され、ガラス部材87の上には波長選択性を有する反射膜88を挟んで波長変換部材89が載設された構造となっている。   An opening 85 is provided in the upper part of the cap 84, and a glass member 87 is placed via a bonding layer 86 so as to cover the opening 85 from above, and wavelength selectivity is provided on the glass member 87. A wavelength conversion member 89 is placed with a reflective film 88 interposed therebetween.

これにより、半導体レーザ素子83から出射されたレーザ光は、キャップ84の開口部85を通過した後に反射膜88を透過して波長変換部材89に入射し、波長変換部材89で波長変換された光と波長変換されない光(レーザ光)とが波長変換部材89から出射してその出射光の混色(加法混色)による混色(加法混色)光が得られる。   As a result, the laser light emitted from the semiconductor laser element 83 passes through the opening 85 of the cap 84, passes through the reflection film 88, enters the wavelength conversion member 89, and is wavelength-converted by the wavelength conversion member 89. And light (laser light) that is not wavelength-converted is emitted from the wavelength conversion member 89, and mixed color (additive color mixture) light is obtained by color mixture (additive color mixture) of the emitted light.

このとき、波長変換部材89で波長変換された光(散乱光)は、その一部がキャップ84の方向に向かうが、その多くはキャップ84に到達する前に反射膜88によって反射されて反射光が半導体レーザ装置90の出射光として寄与し、それにより半導体レーザ装置90の光取り出し効率が高まることになる。   At this time, a part of the light (scattered light) converted in wavelength by the wavelength conversion member 89 is directed toward the cap 84, but most of the light is reflected by the reflective film 88 before reaching the cap 84, and is reflected light. Contributes as the emitted light of the semiconductor laser device 90, thereby increasing the light extraction efficiency of the semiconductor laser device 90.

特開2009−105125号公報JP 2009-105125 A

ところで、上記特許文献1に開示された半導体レーザ装置90は、キャップ84(特に、キャップ84の開口部85)に対して波長変換部材89の直接的あるいは間接的な位置決め手段が設けられていない。そのため、製造工程において、キャップ84に対する波長変換部材89の位置ずれが生じて、波長変換部材89の中心が開口部85の中心からずれた位置に位置した場合、換言すると、波長変換部材89の中心がレーザ光の光軸上からずれた位置に位置した場合、波長変換部材89に照射されたレーザ光は、波長変換部材89に対して中心からずれた位置に照射される。そのため、波長変換部材89に入射したレーザ光の面方向の強度分布は一様とはならず、半導体レーザ装置90からの出射光は輝度ムラ及び色度ムラを有するものとなる。   Incidentally, the semiconductor laser device 90 disclosed in Patent Document 1 is not provided with a direct or indirect positioning means for the wavelength conversion member 89 with respect to the cap 84 (particularly, the opening 85 of the cap 84). Therefore, in the manufacturing process, when the wavelength conversion member 89 is displaced with respect to the cap 84 and the center of the wavelength conversion member 89 is located at a position shifted from the center of the opening 85, in other words, the center of the wavelength conversion member 89. Is positioned at a position shifted from the optical axis of the laser beam, the laser beam irradiated on the wavelength conversion member 89 is irradiated at a position shifted from the center with respect to the wavelength conversion member 89. For this reason, the intensity distribution in the surface direction of the laser light incident on the wavelength conversion member 89 is not uniform, and the emitted light from the semiconductor laser device 90 has uneven brightness and uneven chromaticity.

また、同様に、キャップ84に対する波長変換部材89の位置ずれが生じて、開口部85に波長変換部材89で覆われない部分が生じた場合、開口部85を通過したレーザ光の一部は、波長変換部材89に入射することなくそのまま、あるいはガラス部材87及び反射膜88のいずれか一方又は両方を透過した後、外部に向けて出射されることになる。そのため、半導体レーザ装置90からの出射光は、部分的にレーザ光の色相成分の多い部分が生じて色度ムラを有するものとなる。   Similarly, when the position shift of the wavelength conversion member 89 with respect to the cap 84 occurs, and a portion that is not covered with the wavelength conversion member 89 is generated in the opening 85, a part of the laser light that has passed through the opening 85 is Without being incident on the wavelength conversion member 89, or after being transmitted through one or both of the glass member 87 and the reflection film 88, the light is emitted to the outside. Therefore, the emitted light from the semiconductor laser device 90 has a portion with a large hue component of the laser beam and has chromaticity unevenness.

また、波長変換部材89は含有する蛍光体が光散乱性を有しているため、波長変換部材89を通らないで外部に向けて出射した光は散乱光とはならない。そのため、この半導体レーザ装置90を照明装置や表示装置の光源として用いた場合、観視者の目に対する安全性(アイセーフティ)を損なう恐れがある。   Further, since the phosphor contained in the wavelength conversion member 89 has light scattering properties, the light emitted toward the outside without passing through the wavelength conversion member 89 does not become scattered light. Therefore, when this semiconductor laser device 90 is used as a light source for an illumination device or a display device, there is a risk that the safety (eye safety) for the eyes of the viewer is impaired.

更に、製造工程において、キャップ84にガラス部材87を接合する接合層86が開口部85内のレーザ光の光路上にはみ出した場合、レーザ光がその部分に当たって光路が乱れたりあるいは遮られてレーザ光の強度分布が偏った分布となり、半導体レーザ装置90からの出射光が輝度ムラ及び色度ムラを有するものとなる。   Furthermore, in the manufacturing process, when the bonding layer 86 for bonding the glass member 87 to the cap 84 protrudes onto the optical path of the laser beam in the opening 85, the laser beam hits that portion, and the optical path is disturbed or blocked. The intensity distribution is uneven and the emitted light from the semiconductor laser device 90 has uneven brightness and uneven chromaticity.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、半導体レーザ素子と、半導体レーザ素子から出射したレーザ光を拡散する光拡散部材と、光拡散部材からの拡散レーザ光を波長変換する波長変換部材とを備え、出射光が均一な輝度分布及び色度分布を有すると共に観視者に対するアイセーフティを確実に確保することができる半導体発光装置を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and the object of the present invention is to provide a semiconductor laser element, a light diffusing member for diffusing laser light emitted from the semiconductor laser element, and a diffusion from the light diffusing member. An object of the present invention is to provide a semiconductor light-emitting device that includes a wavelength conversion member that converts the wavelength of laser light, and in which emitted light has a uniform luminance distribution and chromaticity distribution and can reliably ensure eye safety for a viewer. .

上記課題を解決するために、本発明の請求項1に記載された発明は、貫通孔を有する基台と、前記貫通孔を塞ぐように前記基台に配置された、光拡散部材及び波長変換部材を有する導光体と、出射光が前記貫通孔に向けて出射されるように配置された半導体レーザ素子と、前記導光体を構成する前記光拡散部材及び前記波長変換部材の夫々の側面を一体に覆う光拡散反射部材と、を備え、前記導光体は、半導体レーザ側に前記光拡散部材が位置し、光出射側に前記波長変換部材が位置し、前記光出射側の光出射面は平面であり、前記光拡散部材は、半導体レーザに対向する側の面の中央部に前記半導体レーザ側に突出する球状の凸部と、前記凸部の周囲に平面部を有しており、前記凸部を前記貫通孔に嵌合した状態で前記平面部が前記基台上面であって、前記貫通孔の周囲に固定されており、前記凸部に前記半導体レーザ素子からの出射光が照射されることを特徴とするものである。 In order to solve the above problems, the invention described in claim 1 of the present invention includes a base having a through hole, a light diffusing member and a wavelength converter disposed on the base so as to close the through hole. A light guide having a member , a semiconductor laser element disposed so that emitted light is emitted toward the through-hole, and side surfaces of the light diffusion member and the wavelength conversion member constituting the light guide A light diffusing and reflecting member that integrally covers the light guide, wherein the light guide has the light diffusing member located on the semiconductor laser side, the wavelength converting member located on the light emitting side, and the light emitting side light emitting side. The surface is a flat surface, and the light diffusing member has a spherical convex portion projecting toward the semiconductor laser side at a central portion of the surface facing the semiconductor laser, and a flat portion around the convex portion. The planar portion is on the base in a state where the convex portion is fitted in the through hole. A is, is fixed to the periphery of the through hole, the light emitted from the semiconductor laser element to the protruding portion is characterized in that the irradiation.

また、本発明の請求項2に記載された発明は、請求項1において、前記凸部の高さは、前記貫通孔の長さ以下であることを特徴とするものである。 The invention described in claim 2 of the present invention is characterized in that, in claim 1, the height of the convex portion is equal to or less than the length of the through hole .

また、本発明の請求項3に記載された発明は、請求項1又は請求項2のいずれかにおいて、前記凸部は、前記貫通孔の長手方向に垂直な断面における中心位置に位置することを特徴とするものである。 Further, in the invention described in claim 3 of the present invention, in any one of claim 1 or claim 2 , the convex portion is located at a center position in a cross section perpendicular to the longitudinal direction of the through hole. It is a feature.

本発明の半導体発光装置は、凸部を有する光拡散部材と波長変換部材とで構成された導光体を、貫通孔を有する基台に凸部を貫通孔に嵌めた状態で配置し、半導体レーザから出射したレーザ光が導光体を構成する光拡散部材の凸部から入射することにより、波長変換部材からレーザ光とは異なる色相の拡散光が出射するようにした。   A semiconductor light emitting device according to the present invention includes a light guide body constituted by a light diffusing member having a convex portion and a wavelength conversion member, and a semiconductor substrate in which the convex portion is fitted in the through hole on the base having the through hole. The laser light emitted from the laser is incident from the convex portion of the light diffusing member constituting the light guide, so that the diffused light having a hue different from that of the laser light is emitted from the wavelength conversion member.

その結果、半導体発光装置からは、輝度が高く且つ均一な輝度分布及び色度分布を有する出射光を得ることができた。   As a result, it was possible to obtain emitted light having high luminance and uniform luminance distribution and chromaticity distribution from the semiconductor light emitting device.

本発明の半導体発光装置に係わる実施形態の平面図である。It is a top view of embodiment concerning the semiconductor light-emitting device of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 波長変換モジュールの製造方法の説明図である。It is explanatory drawing of the manufacturing method of a wavelength conversion module. 実施形態の光学的な説明図である。It is an optical explanatory view of an embodiment. レーザ光の反射に係わる説明図である。It is explanatory drawing regarding reflection of a laser beam. 同様に、レーザ光の反射に係わる説明図である。Similarly, it is explanatory drawing regarding reflection of a laser beam. 第4のホルダに対する導光体の位置ずれに係わる説明図である。It is explanatory drawing regarding the position shift of the light guide with respect to the 4th holder. 同じく、第4のホルダに対する導光体の位置ずれに係わる説明図である。Similarly, it is explanatory drawing regarding the position shift of the light guide with respect to the 4th holder. 光拡散部材の凸部の形状に係わる説明図である。It is explanatory drawing regarding the shape of the convex part of a light-diffusion member. 同じく、光拡散部材の凸部の形状に係わる説明図である。Similarly, it is explanatory drawing regarding the shape of the convex part of a light-diffusion member. 従来例の説明図である。It is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図10を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本実施形態の半導体発光装置の平面図、図2は図1のA−A断面図である。   FIG. 1 is a plan view of the semiconductor light emitting device of this embodiment, and FIG. 2 is a cross-sectional view taken along the line AA of FIG.

本実施形態の半導体発光装置5は、図1及び図2に示すように、フランジ部11を有する筒状の第1のホルダ10の内部下部に、青色のレーザ光を発振する半導体レーザ素子2を備えた半導体レーザ1が挿着され、内部上部に半導体レーザ1から出射したレーザ光を集光する凸レンズ状の集光レンズ3が配設されている。   As shown in FIGS. 1 and 2, the semiconductor light-emitting device 5 of the present embodiment includes a semiconductor laser element 2 that oscillates blue laser light at the inner lower portion of a cylindrical first holder 10 having a flange portion 11. The provided semiconductor laser 1 is inserted, and a convex lens-shaped condensing lens 3 for condensing the laser light emitted from the semiconductor laser 1 is disposed in the upper part inside.

第1のホルダ10の上面12上には、該第1のホルダ10の周縁部から該周縁部に沿って立ち上がる円環状の第2のホルダ20が載設されていると同時に下部外側面を第2のホルダ20の内側面に抱持された円筒状の第3のホルダ30が配設されている。第3のホルダ30の内部は、半導体レーザ1から出射されたレーザ光が通過するレーザ光路31となる。   On the upper surface 12 of the first holder 10, an annular second holder 20 that rises from the peripheral edge of the first holder 10 along the peripheral edge is placed, and at the same time the lower outer surface is A cylindrical third holder 30 held on the inner surface of the second holder 20 is disposed. The interior of the third holder 30 is a laser beam path 31 through which the laser beam emitted from the semiconductor laser 1 passes.

第3のホルダ30の上端部には、波長変換モジュール70が設けられている。   A wavelength conversion module 70 is provided at the upper end of the third holder 30.

波長変換モジュール70は、底部41に貫通孔42を有する有底開口の円形の第4のホルダ40を有しており、該底部41が第3のホルダ30の上端部に支持固定されている。第4のホルダ40はアルミニウム、ステンレス等の金属材料からなり、貫通孔42の内側面は、粗面化が施されて凹凸面から光拡散反射面44が形成されている。   The wavelength conversion module 70 has a circular fourth holder 40 having a bottomed opening having a through hole 42 in the bottom 41, and the bottom 41 is supported and fixed to the upper end of the third holder 30. The fourth holder 40 is made of a metal material such as aluminum or stainless steel, and the inner surface of the through hole 42 is roughened to form a light diffusive reflecting surface 44 from the uneven surface.

第4のホルダ40の開口内部の中央部には、半導体レーザ1から出射されたレーザ光を受けて該レーザ光を拡散光に変換して出射する光拡散部材52と、光拡散部材52から出射した拡散光を受けて該拡散光の波長とは異なる波長の光に変換して出射する波長変換部材60とが、熱伝導が良好で且つ透明な接着剤(図示せず)で貼り合わされて一体化された円盤状の導光体50が配設されている。この場合、接着剤は、例えば、シリコーン樹脂が用いられる。   A light diffusion member 52 that receives laser light emitted from the semiconductor laser 1, converts the laser light into diffused light, and emits the laser light emitted from the semiconductor laser 1, and is emitted from the light diffusion member 52. The wavelength conversion member 60 that receives the diffused light, converts it into light having a wavelength different from the wavelength of the diffused light, and emits the light is bonded by a transparent adhesive (not shown) having good heat conduction and integrated. A disc-shaped light guide 50 is provided. In this case, for example, a silicone resin is used as the adhesive.

光拡散部材52は、例えば、焼成条件などによって光拡散性を持つように成形したAlからなるセラミックであり、波長変換部材60は、例えば、Alに、例えば、イットリウム・アルミニウム・ガーネット(YAG)にセリウム(Ce)を添加したYAG/Ceの蛍光体粒子が用いられる。YAG/Ceの蛍光体粒子は、黄色光よりも短波長の光、例えば、青色光に励起されて黄色光に波長変換する黄色蛍光体粒子である。なお、光拡散部材52は、透明な樹脂に光拡散粒子が混入・分散されたもので形成されてもよい。また、波長変換部材60は、透明な樹脂に蛍光体粒子が混入・分散されたもので形成されてもよい。 The light diffusing member 52 is a ceramic made of Al 2 O 3 formed so as to have light diffusibility, for example, by firing conditions, and the wavelength conversion member 60 is made of, for example, Al 2 O 3 , for example, yttrium aluminum. YAG / Ce phosphor particles obtained by adding cerium (Ce) to garnet (YAG) are used. YAG / Ce phosphor particles are yellow phosphor particles that are converted to yellow light by being excited by blue light, for example, blue light. The light diffusing member 52 may be formed by mixing and dispersing light diffusing particles in a transparent resin. The wavelength conversion member 60 may be formed of a transparent resin in which phosphor particles are mixed and dispersed.

導光体50は、半導体レーザ1側に光拡散部材52が位置し、光拡散部材52は半導体レーザ1に対向する側の面の中央部に該半導体レーザ1側に突出する球状の凸部53を有しており、この凸部53を第4のホルダ40の底部41の貫通孔42に嵌合した状態で平面部54が第4のホルダ40の底部41の内面に接着剤65を介して接着固定されている。この場合、接着剤65は、例えば、シリコーン樹脂が用いられる。   In the light guide 50, the light diffusion member 52 is located on the semiconductor laser 1 side, and the light diffusion member 52 has a spherical convex portion 53 that protrudes toward the semiconductor laser 1 at the center of the surface facing the semiconductor laser 1. With the convex portion 53 fitted in the through hole 42 of the bottom portion 41 of the fourth holder 40, the flat portion 54 is attached to the inner surface of the bottom portion 41 of the fourth holder 40 with an adhesive 65. Bonded and fixed. In this case, for example, a silicone resin is used as the adhesive 65.

第4のホルダ40の底部41の貫通孔42に嵌合された、光拡散部材52の凸部53は、全体が貫通孔42内に収容されて該貫通孔42から突出することのない高さに設定されている。光拡散部材52の凸部53、半導体レーザ素子2及び集光レンズ3は、夫々の光軸が同一直線(X)上に位置するように配置されている。   The convex portion 53 of the light diffusing member 52 fitted into the through hole 42 of the bottom 41 of the fourth holder 40 is accommodated in the through hole 42 so as not to protrude from the through hole 42. Is set to The convex portion 53 of the light diffusing member 52, the semiconductor laser element 2, and the condenser lens 3 are arranged so that their optical axes are positioned on the same straight line (X).

また、凸部53は、貫通孔42の長手方向に垂直な断面における中心位置に位置している。   Further, the convex portion 53 is located at the center position in the cross section perpendicular to the longitudinal direction of the through hole 42.

第4のホルダ40の側壁部43と導光体50との隙間には、導光体50の周囲を覆うように光拡散反射部材67が充填されている。光拡散反射部材67は、導光体50を構成する光拡散部材52及び波長変換部材60の夫々の側面を一体に覆うと共に、波長変換部材60の上面(光出射面)62にかからないように且つ側壁部43から溢れ出ないように充填されている。   A light diffusion reflection member 67 is filled in a gap between the side wall portion 43 of the fourth holder 40 and the light guide 50 so as to cover the periphery of the light guide 50. The light diffusing and reflecting member 67 integrally covers the respective side surfaces of the light diffusing member 52 and the wavelength converting member 60 that constitute the light guide 50, and does not cover the upper surface (light emitting surface) 62 of the wavelength converting member 60. The side wall 43 is filled so as not to overflow.

光拡散反射部材67は、例えば、透明なシリコーン樹脂に、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)、窒化アルミニウム(AlN)等からなる高反射部材が混入・分散されている。 The light diffusion reflection member 67 is a high reflection member made of, for example, transparent silicone resin, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ), aluminum nitride (AlN), or the like. Is mixed and dispersed.

次に、上述の波長変換モジュール70の製造方法について、図3(a)〜(d)を参照して説明する。   Next, a method for manufacturing the above-described wavelength conversion module 70 will be described with reference to FIGS.

まず、図3(a)の導光体作製工程において、Alよりなる光拡散部材52と、Alにイットリウム・アルミニウム・ガーネット(YAG)にセリウム(Ce)を添加したYAG/Ceの蛍光体粒子が混入・拡散されてなる波長変換部材60とを、熱伝導性が良好なシリコーン樹脂(図示せず)により接着し、シリコーン樹脂を100℃で1時間の加熱硬化条件で仮硬化後に150℃で2時間の加熱硬化条件で本硬化を行って導光体50を作製する。 First, the light guide body preparing step of FIG. 3 (a), was added and the light diffusing member 52 made of Al 2 O 3, yttrium aluminum garnet (YAG) on Al 2 O 3 cerium (Ce) YAG / A wavelength conversion member 60 formed by mixing and diffusing Ce phosphor particles is bonded with a silicone resin (not shown) having good thermal conductivity, and the silicone resin is temporarily heated at 100 ° C. for 1 hour under heat curing conditions. After curing, the light guide 50 is manufactured by performing the main curing under the heat curing condition at 150 ° C. for 2 hours.

次に、図3(b)の接着剤塗布工程において、第4のホルダ40の底部41上面の、貫通孔42の周囲に均一な厚みで、熱伝導性が良好なシリコーン樹脂からなる接着剤65を塗布する。   Next, in the adhesive application step of FIG. 3B, an adhesive 65 made of a silicone resin having a uniform thickness around the through hole 42 on the top surface of the bottom 41 of the fourth holder 40 and good thermal conductivity. Apply.

次に、図3(c)の導光体接着工程において、導光体50を第4のホルダ40の開口部45に移動し、光拡散部材52の凸部53を第4のホルダ40の底部41の貫通孔42に嵌合させた状態で接着剤65上に載置・接着し、シリコーン樹脂65を100℃で1時間の加熱硬化条件で仮硬化後に150℃で2時間の加熱硬化条件で本硬化を行う。   Next, in the light guide bonding process of FIG. 3C, the light guide 50 is moved to the opening 45 of the fourth holder 40, and the convex portion 53 of the light diffusion member 52 is moved to the bottom of the fourth holder 40. 41. The silicone resin 65 is placed on and bonded to the adhesive 65 in a state of being fitted in the through-hole 42 of 41, and the silicone resin 65 is temporarily cured at 100 ° C. for 1 hour and then cured at 150 ° C. for 2 hours. Perform main curing.

最後に、図3(d)の光拡散反射部材充填工程において、第4のホルダ40の側壁部43と導光体50との隙間に、シリコーン樹脂に高反射部材の酸化チタン(TiO)が混入・分散されてなる光拡散反射部材67を充填し、シリコーン樹脂を150℃で4時間の加熱硬化条件で硬化を行う。 Finally, in the light diffusing and reflecting member filling step of FIG. 3D, titanium oxide (TiO 2 ), which is a highly reflective member, is placed on the silicone resin in the gap between the side wall 43 of the fourth holder 40 and the light guide 50. The light diffusing and reflecting member 67 mixed and dispersed is filled and the silicone resin is cured at 150 ° C. for 4 hours under heat curing conditions.

次に、上記構成の半導体発光装置についての光学的な説明を、図4を参照して詳細に行なう。   Next, an optical description of the semiconductor light emitting device having the above-described configuration will be given in detail with reference to FIG.

まず、半導体レーザ素子2で発振して半導体レーザ1から出射された青色レーザ光(以下、「レーザ光」と略称する)は、上方に位置する集光レンズ3内を導光されて出射光(L)が集光しながら第3のホルダ30のレーザ光路31内を光拡散部材52の凸部53に向けて進み、凸部53の光入射面55から光拡散部材52内に入射する。   First, blue laser light (hereinafter abbreviated as “laser light”) oscillated by the semiconductor laser element 2 and emitted from the semiconductor laser 1 is guided through the condensing lens 3 positioned above and emitted ( L) advances in the laser light path 31 of the third holder 30 toward the convex portion 53 of the light diffusing member 52 while condensing, and enters the light diffusing member 52 from the light incident surface 55 of the convex portion 53.

光拡散部材52内に入射したレーザ光は、そのほとんど(L1)が光拡散部材52に混入された光拡散粒子で拡散されてその拡散光が凸部53と反対側の平面(光出射面)56から出射し、出射された拡散レーザ光が接着剤(図示せず)を透過して波長変換部材60の下面(光入射面)61の全面に亘って均一な強度分布で照射される。   Most of the laser light (L1) incident on the light diffusing member 52 is diffused by the light diffusing particles mixed in the light diffusing member 52, and the diffused light is a plane opposite to the convex portion 53 (light emitting surface). The diffused laser light emitted from 56 passes through an adhesive (not shown) and is irradiated on the entire lower surface (light incident surface) 61 of the wavelength conversion member 60 with a uniform intensity distribution.

波長変換部材60の光入射面61に照射された拡散レーザ光は、該光入射面61から波長変換部材60内に入射し、入射光の一部はレーザ光(青色光)がそのまま波長変換部材60内を透過して上面(光出射面)62から外部に向けて出射され、一部は波長変換部材60に混入された蛍光体(黄色蛍光体)粒子を励起して波長変換された、青色光の補色光となる黄色光が光出射面62から外部に向けて出射される。そして、光出射面62から外部に向けて出射された青色拡散光と黄色拡散光の加法混色によって白色拡散光を得ることができる。   The diffused laser light applied to the light incident surface 61 of the wavelength conversion member 60 enters the wavelength conversion member 60 from the light incident surface 61, and the laser light (blue light) is directly used as the wavelength conversion member for a part of the incident light. Blue that is transmitted through the interior 60 and exits from the upper surface (light exit surface) 62 to the outside, and is partially wavelength-excited by exciting phosphor (yellow phosphor) particles mixed in the wavelength conversion member 60. Yellow light that is complementary color light is emitted from the light exit surface 62 to the outside. Then, white diffused light can be obtained by additive color mixture of the blue diffused light and the yellow diffused light emitted outward from the light emitting surface 62.

なお、半導体レーザ1から出射して光拡散部材52内に入射して光拡散部材52に混入・分散された光拡散粒子で拡散された拡散レーザ光は、光拡散部材52の側面57方向にも向かうもの(L2)もある。その場合、光拡散部材52の側面57は、導光体50の周囲を覆うように充填された光拡散反射部材67によって覆われており、光拡散部材52の側面57に到達した拡散レーザ光は、光拡散部材52の側面57と接する光拡散反射部材67の接触面及びその近傍で反射されて反射光が光拡散部材52側に戻る。光拡散部材52内に戻った拡散レーザ光は、その一部が光拡散部材52の光出射面56から出射して接着剤を透過して波長変換部材60の光入射面61から波長変換部材60内に入射し、波長変換部材60の光出射面62から青色拡散光と黄色拡散光として外部に向けて出射されて加法混色により白色拡散光が得られる。   The diffused laser light emitted from the semiconductor laser 1 and incident on the light diffusing member 52 and diffused by the light diffusing particles mixed and dispersed in the light diffusing member 52 is also directed toward the side surface 57 of the light diffusing member 52. There is also a heading (L2). In that case, the side surface 57 of the light diffusing member 52 is covered with a light diffusing and reflecting member 67 filled so as to cover the periphery of the light guide 50, and the diffused laser light that has reached the side surface 57 of the light diffusing member 52 is The reflected light returns to the light diffusing member 52 side by being reflected on the contact surface of the light diffusing and reflecting member 67 in contact with the side surface 57 of the light diffusing member 52 and the vicinity thereof. A part of the diffused laser light that has returned into the light diffusing member 52 is emitted from the light emitting surface 56 of the light diffusing member 52, passes through the adhesive, and passes from the light incident surface 61 of the wavelength converting member 60 to the wavelength converting member 60. And diffused as a blue diffused light and a yellow diffused light from the light exit surface 62 of the wavelength conversion member 60 to obtain white diffused light by additive color mixing.

また、光拡散部材52から出射して接着剤を介して波長変換部材60内に入射した拡散レーザ光は、直接波長変換部材60の側面63に向かうものもある。同時に、拡散レーザ光に励起された黄色蛍光体粒子で波長変換された黄色光も波長変換部材60の側面63に向かうものもある。その場合、直接波長変換部材60の側面63に到達したレーザ光(青色レーザ光)及び黄色拡散光は、波長変換部材60の側面63と接する光拡散反射部材67の接触面及びその近傍で反射されて反射光が波長変換部材60側に戻り、夫々の一部が波長変換部材60の光出射面62から青色拡散光と黄色拡散光として外部に向けて出射されて加法混色により白色拡散光が得られる。   Further, the diffused laser light emitted from the light diffusing member 52 and entering the wavelength converting member 60 via the adhesive may be directed directly to the side surface 63 of the wavelength converting member 60. At the same time, some yellow light whose wavelength is converted by the yellow phosphor particles excited by the diffused laser light is also directed toward the side surface 63 of the wavelength conversion member 60. In that case, the laser light (blue laser light) and the yellow diffused light that have directly reached the side surface 63 of the wavelength conversion member 60 are reflected on the contact surface of the light diffusion reflection member 67 that contacts the side surface 63 of the wavelength conversion member 60 and in the vicinity thereof. The reflected light returns to the wavelength conversion member 60 side, and a part of each is emitted to the outside as a blue diffused light and a yellow diffused light from the light emitting surface 62 of the wavelength conversion member 60 to obtain white diffused light by additive color mixing. It is done.

このように、光拡散部材52及び波長変換部材60からなる導光体50の周囲に、該導光体50の周囲を覆うように光拡散反射部材67を充填することにより、導光体50を構成する光拡散部材52及び波長変換部材60の夫々の側方に向かう光も半導体発光装置の出射光として寄与することができる。   As described above, the light guide 50 is formed by filling the light diffuser reflection member 67 around the light guide 50 including the light diffusion member 52 and the wavelength conversion member 60 so as to cover the periphery of the light guide 50. The light directed toward the side of each of the light diffusing member 52 and the wavelength converting member 60 constituting the light diffusing member 52 can also contribute as the light emitted from the semiconductor light emitting device.

その結果、半導体レーザ1から出射したレーザ光の利用効率が高まり、半導体発光装置からは高輝度の出射光を得ることができる。   As a result, the utilization efficiency of the laser light emitted from the semiconductor laser 1 is increased, and high-luminance outgoing light can be obtained from the semiconductor light emitting device.

また、半導体発光装置からは、レーザ光の光路中に配設された光拡散部材52及び波長変換部材60の夫々の光入出射面(55、56)、(61、62)のいずれにも光拡散処理を施すことなく、光拡散部材52に混入・分散された光拡散粒子によって拡散されたレーザ光(青色拡散レーザ光)によって青色の拡散光と黄色の拡散光の加法混色による白色の拡散光を得ることができる。   Further, the semiconductor light emitting device emits light to each of the light incident / exit surfaces (55, 56) and (61, 62) of the light diffusing member 52 and the wavelength converting member 60 disposed in the optical path of the laser light. White diffused light by additive color mixture of blue diffused light and yellow diffused light by laser light (blue diffused laser light) diffused by light diffusing particles mixed and dispersed in the light diffusing member 52 without performing diffusion treatment Can be obtained.

そのため、光拡散部材52及び波長変換部材60の夫々の光入出射面(55、56)、(61、62)のいずれかに拡散処理を施した場合に生じる、光拡散特性が拡散処理を施した面の拡散処理状態に依存するといったことがなく、半導体発光装置からは、均一な光拡散特性に基づく均一な輝度分布及び色度分布を有する出射光を得ることができる。   For this reason, the light diffusion characteristics generated when the diffusion process is performed on any of the light incident / exit surfaces (55, 56), (61, 62) of the light diffusion member 52 and the wavelength conversion member 60 are subjected to the diffusion process. Without depending on the state of the diffusion treatment on the surface, it is possible to obtain emitted light having a uniform luminance distribution and chromaticity distribution based on uniform light diffusion characteristics from the semiconductor light emitting device.

また、光拡散部材52には、半導体レーザ1側に突出し且つ第4のホルダ40の貫通孔42に嵌合した球状の凸部53を有しており、光拡散部材52の最も肉厚の厚い部分の凸部53から、半導体レーザから出射されたレーザ光を入射させるようにしている。   The light diffusing member 52 has a spherical convex portion 53 that protrudes toward the semiconductor laser 1 and fits into the through hole 42 of the fourth holder 40. The light diffusing member 52 has the thickest thickness. Laser light emitted from the semiconductor laser is incident from the convex portion 53 of the part.

そのため、光拡散部材52の、レーザ光が入射する光入射面55から拡散レーザ光が出射する光出射面56までの光路長を長く取ることができ、光拡散性が高まって輝度分布及び色度分布の均一性に寄与するものとなる。しかも、光路長の長大化に寄与する凸部53が第4のホルダ40の貫通孔42内に収容されているため、光拡散部材52全体の肉厚を厚くすることなく光路長の長大化を図ることができる。   Therefore, the light path length of the light diffusing member 52 from the light incident surface 55 on which the laser light is incident to the light emitting surface 56 on which the diffused laser light is emitted can be increased, so that the light diffusibility is increased and the luminance distribution and chromaticity are increased. It contributes to the uniformity of distribution. Moreover, since the convex portion 53 that contributes to the increase in the optical path length is accommodated in the through hole 42 of the fourth holder 40, the optical path length can be increased without increasing the thickness of the entire light diffusion member 52. Can be planned.

ところで、半導体レーザ1から出射して光拡散部材52の凸部53の光入射面55に照射されたレーザ光(L)は、主に光入射面55から光拡散部材52内に入射するが、一部、光入射面55で反射される光もある。   By the way, the laser light (L) emitted from the semiconductor laser 1 and applied to the light incident surface 55 of the convex portion 53 of the light diffusing member 52 is mainly incident into the light diffusing member 52 from the light incident surface 55. Some of the light is reflected by the light incident surface 55.

その場合、図5(レーザ光の反射に係わる説明図)に示すように、凸部53が、第4のホルダ40の底部41の貫通孔42から突出している場合、凸部53の光入射面55による反射光(L5)は、そのまま光拡散部材52外の範囲(A)の方向に向かい、半導体発光装置の出射光に寄与するものとはならない。   In this case, as shown in FIG. 5 (an explanatory diagram relating to the reflection of laser light), when the convex portion 53 protrudes from the through hole 42 in the bottom portion 41 of the fourth holder 40, the light incident surface of the convex portion 53. The reflected light (L5) by 55 goes in the direction of the range (A) outside the light diffusion member 52 as it is, and does not contribute to the emitted light of the semiconductor light emitting device.

それに対し、図6(レーザ光の反射に係わる説明図)に示すように、凸部53全体が、第4のホルダ40の底部41の貫通孔42内に完全に収まっている場合、光入射面55による反射光(L5)のうち(B)の範囲に向かう光は、凸部53の側方に位置する、第4のホルダ40の底部41の貫通孔42の内側面の光拡散反射面44に照射され、照射光が光拡散反射面44で拡散反射されてその一部が光拡散部材52内に戻り、半導体発光装置の出射光として寄与するものとなる。   On the other hand, as shown in FIG. 6 (an explanatory diagram relating to the reflection of laser light), when the entire convex portion 53 is completely within the through hole 42 of the bottom 41 of the fourth holder 40, the light incident surface The light directed to the range of (B) among the reflected light (L5) by 55 is the light diffusing and reflecting surface 44 on the inner surface of the through hole 42 of the bottom 41 of the fourth holder 40, which is located on the side of the convex portion 53. The irradiated light is diffusely reflected by the light diffusing and reflecting surface 44, and a part thereof returns into the light diffusing member 52, which contributes to the emitted light of the semiconductor light emitting device.

従って、光拡散部材52の凸部53の高さは、第4のホルダ40の底部41の貫通孔42の長さ以下とすることが好ましい。なお、凸部53の高さの最小値は、製造時に成形可能な最小の高さとなる5μmとすることが好ましい。   Therefore, the height of the convex portion 53 of the light diffusing member 52 is preferably equal to or less than the length of the through hole 42 of the bottom portion 41 of the fourth holder 40. In addition, it is preferable that the minimum value of the height of the convex part 53 shall be 5 micrometers which becomes the minimum height which can be shape | molded at the time of manufacture.

また、第4のホルダ40の側壁部43と導光体50との隙間に光拡散反射部材67が充填されているため、導光体50を構成する光拡散部材52及び波長変換部材60から夫々の側面57、63側に向かう光は、各側面57、63と接する光拡散反射部材67の接触面及びその近傍で反射されて反射光が夫々光拡散部材52及び波長変換部材60側に戻り、それによって、光拡散反射部材67への光り漏れが遮断されて該光拡散反射部材67内に入射するする光はほとんどない(図4参照)。   Further, since the light diffusion reflection member 67 is filled in the gap between the side wall portion 43 of the fourth holder 40 and the light guide 50, the light diffusion member 52 and the wavelength conversion member 60 constituting the light guide 50 are respectively used. The light traveling toward the side surfaces 57 and 63 is reflected at and near the contact surface of the light diffusing and reflecting member 67 in contact with the side surfaces 57 and 63, and the reflected light returns to the light diffusing member 52 and the wavelength converting member 60 side, respectively. As a result, light leakage to the light diffusing and reflecting member 67 is blocked and almost no light enters the light diffusing and reflecting member 67 (see FIG. 4).

そのため、半導体発光装置の出射光は波長変換部材60のみから出射されて波長変換部材60の周囲からは出射されず、輝度が高く且つ均一な輝度分布及び色度分布を有する出射光を得ることができる。   Therefore, the emitted light of the semiconductor light emitting device is emitted only from the wavelength conversion member 60 and is not emitted from the periphery of the wavelength conversion member 60, so that the emitted light having high luminance and uniform luminance distribution and chromaticity distribution can be obtained. it can.

次に、半導体発光装置についての構造的な特徴について説明する。   Next, structural features of the semiconductor light emitting device will be described.

導光体50を構成する光拡散部材52に凸部53を設け、導光体50を第4のホルダ40の底部41に接着剤65を介して接着固定するに際し、この凸部53を第4のホルダ40の底部41の貫通孔42に嵌合させることにより、第4のホルダ40の底部41に対して導光体50の位置合わせを容易に且つ正確に行うことができるようにした。   When the light diffusing member 52 constituting the light guide 50 is provided with a convex portion 53 and the light guide 50 is bonded and fixed to the bottom 41 of the fourth holder 40 with an adhesive 65, the convex portion 53 is connected to the fourth light guide 50. The light guide 50 can be easily and accurately aligned with respect to the bottom 41 of the fourth holder 40 by fitting into the through hole 42 of the bottom 41 of the holder 40.

その結果、第4のホルダ40に対して導光体50を装着するための装着装置において、複雑な位置合わせ機構を必要とすることがなく、安価な装置によって良好な作業性を確保することができるため製造コストの低減に寄与するものとなる。   As a result, in the mounting device for mounting the light guide 50 on the fourth holder 40, a complicated alignment mechanism is not required, and good workability can be ensured by an inexpensive device. This contributes to a reduction in manufacturing cost.

また、接着剤65は、導光体50を第4のホルダ40の底部41に装着する際に、導光体50の第4のホルダ40の底部41側への押圧移動によって押し潰されて光拡散部材52の平面部54に沿って広がるが、凸部53側への広がりは該凸部53の立ち上がり部分で堰き止められてそれ以上凸部53の表面上を広がることはない。   Further, when the light guide 50 is mounted on the bottom 41 of the fourth holder 40, the adhesive 65 is crushed and pressed by the pressure movement of the light guide 50 toward the bottom 41 of the fourth holder 40. Although it spreads along the flat surface portion 54 of the diffusing member 52, the spread toward the convex portion 53 side is blocked by the rising portion of the convex portion 53 and does not spread further on the surface of the convex portion 53.

そのため、接着剤65がレーザ光の光路上に位置することはなく、光路を乱したりあるいは遮ってレーザ光の強度分布を偏った分布とするといったようなことがなく、半導体発光装置からの出射光が輝度ムラ及び色度ムラを有するものとはならない。   For this reason, the adhesive 65 is not positioned on the optical path of the laser light, and the optical path is not disturbed or blocked to make the laser light intensity distribution uneven. The incident light does not have luminance unevenness and chromaticity unevenness.

同時に、接着剤65がレーザ光を受けて黒化することにより、半導体レーザ1から出射して光拡散部材52から波長変換部材60に入射するレーザ光の入射効率が低下して半導体発光装置からの出射光の出射効率を低下させる、といった不具合を生じることもない。   At the same time, since the adhesive 65 receives the laser light and becomes black, the incident efficiency of the laser light that is emitted from the semiconductor laser 1 and incident on the wavelength conversion member 60 from the light diffusion member 52 is reduced, and the semiconductor light emitting device emits light. There is no problem of lowering the emission efficiency of the emitted light.

なお、導光体を構成する光拡散部材の、接着剤を介して第4のホルダの底部に装着する側の面が、全面に亘って平坦面で構成された従来の光拡散部材の場合、導光体を第4のホルダの底部に装着する際の位置ずれによって所定の位置よりずれた位置に装着する可能性がある。その場合、図7(導光体の位置ずれに係わる説明図)にあるように、半導体レーザから出射して第4のホルダ140の底部141の貫通孔142を通過して光拡散部材152に照射されたレーザ光(L10)は、光拡散部材152に対して中心からずれた位置に照射される。そのため、光拡散部材152内に入射したレーザ光の面方向の強度分布は一様とはならず、半導体発光装置からの出射光は色バラツキを有するものとなる。   In the case of a conventional light diffusing member in which the surface of the light diffusing member that constitutes the light guide is mounted on the bottom of the fourth holder via an adhesive, the entire surface is a flat surface. There is a possibility that the light guide is mounted at a position shifted from a predetermined position due to a position shift when the light guide is mounted on the bottom of the fourth holder. In this case, as shown in FIG. 7 (an explanatory diagram relating to the positional deviation of the light guide), the light diffusing member 152 is irradiated with light emitted from the semiconductor laser, passing through the through-hole 142 in the bottom portion 141 of the fourth holder 140. The laser beam (L10) thus applied is irradiated to the light diffusing member 152 at a position shifted from the center. For this reason, the intensity distribution in the surface direction of the laser light incident on the light diffusing member 152 is not uniform, and the emitted light from the semiconductor light emitting device has color variations.

また、第4のホルダ140の底部141に対する導光体150の位置ずれは、図8(導光体の位置ずれに係わる説明図)にあるように、それに伴って接着剤165が、第4のホルダ140の底部141の貫通孔142内のレーザ光(L10)の光路上にはみ出す恐れを有している。その場合、接着剤165がレーザ光(L10)を受けて黒化する(Cの部分)ことにより、半導体レーザから出射して光拡散部材152に入射するレーザ光の入射効率が低下して半導体発光装置からの出射光の出射効率を低下させことになる。   Further, as shown in FIG. 8 (an explanatory diagram relating to the positional deviation of the light guide), the positional deviation of the light guide 150 with respect to the bottom 141 of the fourth holder 140 causes the adhesive 165 to move along with the fourth There is a risk that the laser beam (L10) in the through hole 142 in the bottom portion 141 of the holder 140 may protrude onto the optical path. In that case, the adhesive 165 receives the laser light (L10) and is blackened (part C), so that the incident efficiency of the laser light emitted from the semiconductor laser and incident on the light diffusion member 152 is reduced, and the semiconductor light emission is performed. The emission efficiency of the emitted light from the apparatus is reduced.

更に、導光体の極端に大きな位置ずれによって第4のホルダの底部の貫通孔が露出した場合、貫通孔の露出した部分から出射した、半導体レーザからの直接光が、観視者の目に対する安全性(アイセーフティ)を損なう恐れがある(本説明については図示していない)。   Furthermore, when the through hole at the bottom of the fourth holder is exposed due to an extremely large displacement of the light guide, direct light from the semiconductor laser emitted from the exposed part of the through hole is directed to the viewer's eyes. There is a risk of impairing safety (eye safety) (this explanation is not shown).

そこで、第4のホルダの底部に対する導光体の位置ずれに起因する上記問題の発生を回避するために、第4のホルダの底部に対する導光体の装着工程に、導光体の位置合わせ機構を有する装着装置を導入することが考えられるが、装置が高価格化して製造コストを上昇させる要因となる。   Therefore, in order to avoid the occurrence of the above-mentioned problem due to the positional deviation of the light guide with respect to the bottom of the fourth holder, the light guide alignment mechanism is included in the mounting process of the light guide with respect to the bottom of the fourth holder. Although it is conceivable to introduce a mounting apparatus having the above, the price of the apparatus becomes high and the manufacturing cost increases.

これに対し、本願発明の半導体発光装置は、導光体の、接着剤を介して第4のホルダの底部に装着する側の面に凸部を設けることにより、全面に亘って平坦面とした従来の半導体発光装置が有する問題点を解決するものとなっている。   On the other hand, the semiconductor light-emitting device of the present invention has a flat surface over the entire surface by providing a convex portion on the surface of the light guide that is attached to the bottom of the fourth holder via an adhesive. It solves the problems of conventional semiconductor light emitting devices.

なお、第4のホルダ40の底部41の貫通孔42の長手方向に垂直な方向の断面形状と、導光体50を構成する光拡散部材52の凸部53の底面との形状は、同一形状であることが好ましい。同時に、凸部53は、上記本実施形態における球状以外に、上面が底面と同一形状であることが好ましい。具体的には、例えば、図9(凸部の形状に係わる説明図)に示すような、上面53aと底面53bの寸法が同一の柱状の凸部53、あるいは図10(凸部の形状に係わる説明図)に示すような、上面53aが底面53bよりも寸法が小さい錐台状の凸部53が挙げられる。   The cross-sectional shape in the direction perpendicular to the longitudinal direction of the through hole 42 in the bottom portion 41 of the fourth holder 40 and the shape of the bottom surface of the convex portion 53 of the light diffusion member 52 constituting the light guide 50 are the same shape. It is preferable that At the same time, it is preferable that the convex portion 53 has the same shape as the bottom surface in addition to the spherical shape in the present embodiment. Specifically, for example, as shown in FIG. 9 (an explanatory diagram related to the shape of the convex portion), the columnar convex portion 53 having the same dimensions of the upper surface 53a and the bottom surface 53b, or FIG. 10 (related to the shape of the convex portion). A frustum-shaped convex part 53 whose upper surface 53a is smaller in size than the bottom surface 53b as shown in FIG.

また、第4のホルダ40の底部41の貫通孔42の長手方向に垂直な方向の断面形状は、上記本実施形態における円状に限られるものではなく、半導体発光装置から出射される出射光に求められる輝度分布に応じて適宜設定される。   In addition, the cross-sectional shape in the direction perpendicular to the longitudinal direction of the through hole 42 in the bottom 41 of the fourth holder 40 is not limited to the circular shape in the present embodiment, but the emitted light emitted from the semiconductor light emitting device. It is set as appropriate according to the required luminance distribution.

1… 半導体レーザ
2… 半導体レーザ素子
3… 集光レンズ
5… 半導体発光装置
10… 第1のホルダ
11… フランジ部
12… 上面
20… 第2のホルダ
30… 第3のホルダ
31… レーザ光路
40… 第4のホルダ
41… 底部
42… 貫通孔
43… 側壁部
44… 光拡散反射面
45… 開口部
50… 導光体
52… 光拡散部材
53… 凸部
53a… 上面
53b… 底面
54… 平面部
55… 光入射面
56… 光出射面
57… 側面
60… 波長変換部材
61… 光入射面
62… 光出射面
63… 側面
65… 接着剤
67… 光拡散反射部材
70… 波長変換モジュール
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser 2 ... Semiconductor laser element 3 ... Condensing lens 5 ... Semiconductor light-emitting device 10 ... 1st holder 11 ... Flange part 12 ... Upper surface 20 ... 2nd holder 30 ... 3rd holder 31 ... Laser optical path 40 ... 4th holder 41 ... Bottom part 42 ... Through-hole 43 ... Side wall part 44 ... Light diffusion reflection surface 45 ... Opening part 50 ... Light guide body 52 ... Light diffusion member 53 ... Convex part 53a ... Upper surface 53b ... Bottom surface 54 ... Plane part 55 Light incident surface 56 Light emitting surface 57 Side surface 60 Wavelength converting member 61 Light incident surface 62 Light emitting surface 63 Side surface 65 Adhesive 67 Light diffusing reflection member 70 Wavelength converting module

Claims (3)

貫通孔を有する基台と、
前記貫通孔を塞ぐように前記基台に配置された、光拡散部材及び波長変換部材を有する導光体と、
出射光が前記貫通孔に向けて出射されるように配置された半導体レーザ素子と、
前記導光体を構成する前記光拡散部材及び前記波長変換部材の夫々の側面を一体に覆う光拡散反射部材と、
を備え、
前記導光体は、半導体レーザ側に前記光拡散部材が位置し、光出射側に前記波長変換部材が位置し、前記光出射側の光出射面は平面であり、
前記光拡散部材は、半導体レーザに対向する側の面の中央部に前記半導体レーザ側に突出する球状の凸部と、前記凸部の周囲に平面部を有しており、
前記凸部を前記貫通孔に嵌合した状態で前記平面部が前記基台上面であって、前記貫通孔の周囲に固定されており、
前記凸部に前記半導体レーザ素子からの出射光が照射されることを特徴とする半導体発光装置。
A base having a through hole;
A light guide having a light diffusing member and a wavelength converting member disposed on the base so as to close the through-hole;
A semiconductor laser element arranged so that emitted light is emitted toward the through hole;
A light diffusing and reflecting member integrally covering the respective side surfaces of the light diffusing member and the wavelength converting member constituting the light guide;
With
In the light guide, the light diffusion member is located on the semiconductor laser side, the wavelength conversion member is located on the light emission side, and the light emission surface on the light emission side is a plane,
The light diffusing member has a spherical convex portion protruding to the semiconductor laser side at a central portion of the surface facing the semiconductor laser, and a flat portion around the convex portion,
In the state where the convex portion is fitted in the through hole, the flat surface portion is the upper surface of the base, and is fixed around the through hole,
A semiconductor light emitting device characterized in that the convex portion is irradiated with light emitted from the semiconductor laser element.
前記凸部の高さは、前記貫通孔の長さ以下であることを特徴とする請求項に記載の半導体発光装置。 The height of the convex portion, the semiconductor light emitting device according to claim 1, characterized in that it is less than the length of the through hole. 前記凸部は、前記貫通孔の長手方向に垂直な断面における中心位置に位置することを特徴とする請求項1又は請求項2のいずれかに記載の半導体発光装置。 The convex portion is a semiconductor light emitting device according to claim 1 or claim 2, characterized in that located at the center position in a cross section perpendicular to the longitudinal direction of the through hole.
JP2013151774A 2013-07-22 2013-07-22 Semiconductor light emitting device Active JP6189661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151774A JP6189661B2 (en) 2013-07-22 2013-07-22 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151774A JP6189661B2 (en) 2013-07-22 2013-07-22 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2015023215A JP2015023215A (en) 2015-02-02
JP6189661B2 true JP6189661B2 (en) 2017-08-30

Family

ID=52487401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151774A Active JP6189661B2 (en) 2013-07-22 2013-07-22 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP6189661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063330A (en) * 2016-10-12 2018-04-19 日本電気硝子株式会社 Wavelength conversion member and optical lens
CN111936786B (en) 2018-04-12 2023-10-17 松下知识产权经营株式会社 Lighting device
JP2022186075A (en) * 2021-06-04 2022-12-15 株式会社小糸製作所 Light emitting device and distance measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795798B1 (en) * 2004-10-01 2013-07-03 Nichia Corporation Light-emitting device
JP5124908B2 (en) * 2005-03-10 2013-01-23 日亜化学工業株式会社 Light emitting device
JP5228412B2 (en) * 2006-11-21 2013-07-03 日亜化学工業株式会社 Semiconductor light emitting device
JP5233172B2 (en) * 2007-06-07 2013-07-10 日亜化学工業株式会社 Semiconductor light emitting device
JP5435854B2 (en) * 2007-10-13 2014-03-05 日亜化学工業株式会社 Semiconductor light emitting device
JP5228434B2 (en) * 2007-10-15 2013-07-03 日亜化学工業株式会社 Light emitting device
JP5223447B2 (en) * 2008-05-12 2013-06-26 日亜化学工業株式会社 Semiconductor light emitting device
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
JP5896212B2 (en) * 2011-12-20 2016-03-30 スタンレー電気株式会社 LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE

Also Published As

Publication number Publication date
JP2015023215A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP5647028B2 (en) Light emitting device and manufacturing method thereof
US9728684B2 (en) Light emitting apparatus with recessed reflective resin and protruding reflection frame
US8841684B2 (en) Light-emitting device
KR101892593B1 (en) A light emitting device and the manufacturing method
JP5954991B2 (en) Optoelectronics semiconductor components
TWI766032B (en) Light-emitting device and method of manufacturing same
KR101634406B1 (en) Semiconductor arrangement
JP5330306B2 (en) Light emitting device
JP5380052B2 (en) LED lighting device
JP6005953B2 (en) Light emitting device
JP2010225791A (en) Semiconductor light emitting device
JP2017157278A (en) Light emitting device and surface light emitting device using light emitting device
JP6361645B2 (en) Light emitting device
JP2013062393A (en) Light emitting device
JP2013110273A (en) Semiconductor light-emitting device
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP5543386B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
TW201314973A (en) Optoelectronic component and method for manufacturing an optoelectronic component
JP2017152475A (en) Light-emitting device
JP6189661B2 (en) Semiconductor light emitting device
JP5853441B2 (en) Light emitting device
JP6216272B2 (en) LED light emitting device
JP4239564B2 (en) Light emitting diode and LED light
JP5450680B2 (en) Semiconductor light emitting device
JP6259329B2 (en) LED light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250