JP6182694B2 - Seasoning and method for producing the same - Google Patents

Seasoning and method for producing the same Download PDF

Info

Publication number
JP6182694B2
JP6182694B2 JP2013020241A JP2013020241A JP6182694B2 JP 6182694 B2 JP6182694 B2 JP 6182694B2 JP 2013020241 A JP2013020241 A JP 2013020241A JP 2013020241 A JP2013020241 A JP 2013020241A JP 6182694 B2 JP6182694 B2 JP 6182694B2
Authority
JP
Japan
Prior art keywords
moromi
seasoning
protein
decomposition
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013020241A
Other languages
Japanese (ja)
Other versions
JP2014150729A (en
Inventor
横山定治
Original Assignee
横山 定治
横山 定治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横山 定治, 横山 定治 filed Critical 横山 定治
Priority to JP2013020241A priority Critical patent/JP6182694B2/en
Publication of JP2014150729A publication Critical patent/JP2014150729A/en
Application granted granted Critical
Publication of JP6182694B2 publication Critical patent/JP6182694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Seasonings (AREA)

Description

本発明は、各種の蛋白質含有素材より得られる調味料に関する。   The present invention relates to a seasoning obtained from various protein-containing materials.

調味料は化学調味料と天然調味料に大別される。天然調味料は動植物、魚介類から抽出されるエキス調味料、動物性蛋白を加水分解した動物性蛋白加水分解物、植物性蛋白を加水分解した植物性蛋白加水分解物、酵母を加水分解した酵母エキス調味料があり、大量に生産されている。上記の加水分解方法では以前は酸分解が主流であったが人体に有害な物質が副生することから、最近は酵素分解による蛋白質の加水分解が主流となりつつある。本発明は酵素加水分解による動物性蛋白加水分解物、植物性蛋白加水分解物、酵母エキス調味料、及び魚介類蛋白酵素分解物に関する。ところで各種蛋白質素材の酵素分解による調味料生産に於いては、呈味性の良い高品質の製品を如何に再現性良く、更に製造途中の腐敗細菌の増殖を防ぎながら効率良く安価に生産出来るかが重要である。古くからの伝統的手法と共に多くの新規手法が提案されている。製造過程での分解諸味中に於いて、一般に調味料原料中の蛋白質はエンド型蛋白分解酵素で可溶化され、全窒素量の数値が増加する。それと共に、諸味中に生成したペプチドがアミノペプチダーゼ、カルボキシペプチダーゼ等のエキソ型蛋白分解酵素等の作用で呈味性のある遊離アミノ酸に分解される。その結果諸味中のアミノ態窒素量の数値が増加すると考えられている。 Seasonings are broadly divided into chemical seasonings and natural seasonings. Natural seasonings include animal, plant, fish and shellfish extract seasonings, animal protein hydrolyzate hydrolyzed animal protein, vegetable protein hydrolyzate hydrolyzed vegetable protein, yeast hydrolyzed yeast There is an extract seasoning and it is produced in large quantities. In the above hydrolysis method, acid decomposition has been the mainstream before, but since substances harmful to the human body are by-produced, recently, hydrolysis of proteins by enzymatic decomposition is becoming mainstream. The present invention relates to an animal protein hydrolyzate, a vegetable protein hydrolyzate, a yeast extract seasoning, and a seafood protein enzyme hydrolyzate by enzymatic hydrolysis. By the way, in seasoning production by enzymatic decomposition of various protein materials, how can high-quality products with good taste be produced with good reproducibility and efficiently and inexpensively while preventing the growth of spoilage bacteria during production? is important. Many new methods have been proposed along with the traditional methods. In the process of decomposing moromi in the manufacturing process, the protein in the seasoning material is generally solubilized by the endo-type proteolytic enzyme, and the value of the total nitrogen amount increases. At the same time, peptides produced in moromi are degraded into free amino acids with taste by the action of exo-type proteolytic enzymes such as aminopeptidase and carboxypeptidase. As a result, it is thought that the amount of amino nitrogen in moromi increases.

また、酵素分解調味料の製造過程での腐敗細菌増殖を抑制する方法に関しては、食塩添加、アルコール添加、高温かつ短時間反応、酸性またはアルカリpHでの分解反応について従来から多くの研究者により検討されて来た。蛋白質素材の酵素分解物として我国では穀醤としての醤油が広く知られている。また東南アジア地方には各国で特有の魚醤が製造されている。これら調味料の製造に於いて腐敗細菌の増殖抑制は最重要課題の一つである。そのために、醤油では約17重量%、魚醤では約20重量%またはそれ以上の食塩存在下での長期間の仕込み期間が必要とされている。しかしながら、製品に含まれる高濃度の食塩がこれら醤油、魚醤の用途拡大を阻む要因の一つと考えられている。更に、最近の消費者の健康志向からも減塩、さらには無塩の調味料を市場は要求している。 In addition, regarding methods for inhibiting the growth of spoilage bacteria during the production of enzyme-degraded seasonings, many researchers have studied the addition of salt, alcohol, high temperature and short time reaction, and degradation reaction at acidic or alkaline pH. Has been. In Japan, soy sauce as a grain soy is widely known as an enzyme degradation product of protein material. In Southeast Asia, fish soy peculiar to each country is manufactured. In the production of these seasonings, suppression of the growth of spoilage bacteria is one of the most important issues. Therefore, a long preparation period in the presence of about 17% by weight of soy sauce and about 20% by weight or more of fish soy is required. However, high-concentration salt contained in the product is considered to be one of the factors that hinder the use expansion of these soy sauce and fish sauce. Furthermore, the market demands low-salt and non-salt seasonings from the recent consumer health orientation.

特公昭53−18797では黒麹菌の生産する蛋白分解酵素を使用し蛋白質素材の分解を行っている。分解諸味に酢酸を0.1〜5.0容量%添加して微酸性(pH4.5〜6.0)、40〜50℃附近で3〜11日程度分解をおこなうことで、無塩の調味料を得ている。しかしながら、この方法では酸性化のために酢酸を使用しており、出来た調味料に酢酸特有のエグ味が生じる場合がある。また、腐敗細菌の汚染を防ぐために40〜50℃の温度条件で11日間諸味を保持しているが製造量が大量になった場合に設備投資額、及びエネルギー消費が大きくなり製造コストの面で問題である。 Japanese Patent Publication No. 53-18797 uses a proteolytic enzyme produced by Aspergillus niger to decompose protein material. Acetic acid is added to the decomposed moromi in an amount of 0.1-5.0% by volume, slightly acidic (pH 4.5-6.0), and decomposed for about 3 to 11 days at around 40-50 ° C. I get a fee. However, in this method, acetic acid is used for acidification, and an acetic acid peculiar to acetic acid may occur in the resulting seasoning. In addition, in order to prevent the contamination of spoilage bacteria, the moromi taste is maintained for 11 days at a temperature of 40 to 50 ° C. However, when the production amount becomes large, the amount of capital investment and energy consumption increases, and the production cost increases. It is a problem.

特公昭62−62143では、減塩仕込み醸造法と減麹仕込み醸造法を組み合わせて、食塩10〜16重量%、エタノール1〜5容量%の条件で腐造を防止しつつ、低食塩醤油が製造可能と記載されている。しかしながら、この場合でも得られる醤油の食塩濃度は幾分逓減出来ていても無塩の醤油は得られていない。特公昭62−57297には魚介類原料を、無機塩濃度0.5〜4重量%、温度30〜40℃で5〜10時間、pH4以下で自己消化させるか、酵素類を添加して酵素分解する魚醤油様調味料の製造法がある。該特許に於いては魚肉自身の蛋白分解酵素を作用させるために分解時に塩類を添加しており、それが調味料中に残ってくる。さらに、この特許に於いては蛋白質の可溶化にのみ注力しており、呈味性に重要なアミノ酸の遊離に関する考慮はされていない。 Japanese Patent Publication No. 62-62143 produces a low salt soy sauce by combining a reduced salt brewing method and a reduced brewing brewing method while preventing corrosion under conditions of 10 to 16% by weight of sodium chloride and 1 to 5% by volume of ethanol. It is described as possible. However, even in this case, no salt-free soy sauce is obtained even though the salt concentration of the soy sauce obtained can be reduced somewhat. Japanese Patent Publication No. Sho 62-57297 either self-digests fish and shellfish raw materials at an inorganic salt concentration of 0.5 to 4% by weight at a temperature of 30 to 40 ° C. for 5 to 10 hours at a pH of 4 or lower, or an enzyme is added for enzymatic degradation. There is a manufacturing method for seasoning like fish soy sauce. In this patent, salt is added at the time of decomposition in order to make the proteolytic enzyme of fish itself act, and it remains in the seasoning. Furthermore, this patent focuses only on solubilization of proteins and does not consider the release of amino acids important for taste.

特公平04−20581では醤油麹を冷食塩水で自己消化して抽出したロイシンアミノペプチダーゼを利用して動物性蛋白質原料から調味液が得られている。しかしながら該方法では自己消化のために10℃で20日も必要として、かつ得られる調味液にも10%以上の食塩が含まれるのが難点であった。上記特許の改良法として出された特開平06−125734は麹を冷有機溶媒で自己消化して抽出したロイシンアミノペプチダーゼを利用して、蛋白可溶化のためのエンドプロテアーゼとの二段階反応で無塩の蛋白調味液を製造している。しかしながら、この方法では麹のアルコール抽出操作が煩雑であると共に、一段目、二段目の酵素反応温度が其々50〜60℃、及び40〜45℃、PHがアルカリ性で開始されることを考えると設備、工程管理面の手間とともに、得られる調味液の濃厚な着色化による製品価値の劣化は避けられない。特開平06−46793には節抽出残渣と醤油麹を6〜14重量%、殊に8〜10重量%の食塩水に仕込み、醤油酵母を添加して品温30〜45℃、好ましくは37〜42℃で5〜14日間、好ましくは8〜12日間発酵させる調味料製造法が提案されている。この場合にも得られる調味料中に食塩は含有されている。無塩の調味料は得られていない。 In Japanese Patent Publication No. 04-20581, a seasoning liquid is obtained from an animal protein raw material using leucine aminopeptidase extracted by self-digesting soy sauce cake with cold saline. However, this method requires 20 days at 10 ° C. for self-digestion, and the seasoning liquid to be obtained contains 10% or more of salt. Japanese Patent Application Laid-Open No. 06-125734 issued as an improved method of the above-mentioned patent uses a leucine aminopeptidase that is extracted by self-digestion of salmon with a cold organic solvent, and is a two-step reaction with an endoprotease for protein solubilization. Manufactures salt protein seasoning. However, in this method, the alcohol extraction operation of straw is complicated, and the enzyme reaction temperatures in the first and second stages are 50 to 60 ° C. and 40 to 45 ° C., respectively, and PH is started to be alkaline. In addition to the trouble of equipment and process management, the product value is inevitably deteriorated due to the rich coloring of the seasoning liquid obtained. Japanese Patent Laid-Open No. 06-46793 is prepared by adding 6 to 14% by weight, especially 8 to 10% by weight of salt extraction residue and soy sauce cake, and adding soy sauce yeast to a product temperature of 30 to 45 ° C., preferably 37 to A seasoning production method is proposed in which fermentation is performed at 42 ° C. for 5 to 14 days, preferably 8 to 12 days. Also in this case, salt is contained in the seasoning obtained. No salt-free seasoning has been obtained.

特公平08−004472ではAspergillus属とRhizopus属二種の麹菌またはそれらの酵素による二段階酵素分解法が提示されている。該方法は上記二属麹菌が生産する蛋白分解酵素の基質特異性の差を利用してアミノ酸を効率良く遊離出来ると記されている。しかしながら、第一段反応、第二段反応ともに温度30〜55度、pH5.0〜9.0、反応時間16〜72時間、合計100時間程度で実施されており、これらの条件で実際の工場生産を汚染細菌の増殖無しに行うには、清澄な環境、精密な製造設備と製造管理、大量のエネルギーを必要として製造コストが高くなる。また、上記特許の改良法として出された特開平08−173086は酵素分解時に11〜15重量%の塩類を加えており、その結果、製品の塩濃度が高くなる問題点がある。 In Japanese Patent Publication No. 08-004472, a two-step enzymatic degradation method using Aspergillus genus and Rhizopus genus gonococcus or their enzymes is presented. This method is described as being capable of efficiently releasing amino acids using the difference in substrate specificity of proteolytic enzymes produced by the above two genera. However, both the first stage reaction and the second stage reaction are carried out at a temperature of 30 to 55 degrees, pH 5.0 to 9.0, reaction time 16 to 72 hours, and a total of about 100 hours. Producing production without the growth of contaminating bacteria requires a clean environment, precise manufacturing equipment and management, and a large amount of energy, resulting in high manufacturing costs. Japanese Patent Laid-Open No. 08-173086 issued as an improved method of the above patent has a problem that the salt concentration of the product becomes high as a result of adding 11 to 15% by weight of salts during the enzymatic decomposition.

特開2001−149033では節抽出残渣の醤油麹での分解をエタノール2〜6容量%、好ましくは2〜4容量%で、食塩5〜12重量%、好ましくは8〜10重量%で30〜40℃に於いて2〜10週間、好ましくは2〜8週間の分解で醤油香気を有さず、出汁様の節香気と旨味を持つ調味料製造法が提供されている。しかしながら、この方法に於いても得られた調味料には10%程度の食塩が含まれていた。 In Japanese Patent Application Laid-Open No. 2001-149033, the decomposition of the koji extraction residue in soy sauce cake is 2 to 6% by volume of ethanol, preferably 2 to 4% by volume, and 5 to 12% by weight, preferably 8 to 10% by weight, and 30 to 40%. There is provided a method for producing a seasoning which has no soy sauce aroma after decomposition for 2 to 10 weeks, preferably 2 to 8 weeks at 0 ° C., and has a soup-like saving aroma and umami. However, the seasoning obtained by this method also contained about 10% salt.

特開2006−94756及び特開2006−94757では夫々食肉蛋白質、または植物性蛋白質をキノコの一種のヒイロタケが産生する蛋白分解酵素で分解してエキス化し調味料を生産している。該法では蛋白質含有原料の水分散液をpH2.0〜6.0、好ましくは2.5〜4.5で、温度は30〜70℃、好ましくは腐敗防止と酵素の失活抑制を目的として45〜55℃で分解している。しかしながら、ヒイロタケ酵素を得るためには培養タンクでの液体培養設備が必要であり、更に培養液の濾過、濃縮、乾燥粉末化を実施するには多大の設備投資を必要とする。加水分解反応も45℃以上で長時間実施するためにはエネルギー、工程管理費用、設備投資等が製造コストを高める。 In JP-A-2006-94756 and JP-A-2006-94757, meat protein or vegetable protein is decomposed with a proteolytic enzyme produced by a kind of mushroom, mushrooms, and extracted to produce a seasoning. In this method, the aqueous dispersion of the protein-containing raw material has a pH of 2.0 to 6.0, preferably 2.5 to 4.5, and a temperature of 30 to 70 ° C., preferably for the purpose of preventing spoilage and inhibiting enzyme deactivation. Decomposes at 45-55 ° C. However, in order to obtain the oyster mushroom enzyme, a liquid culture facility in the culture tank is required, and further, a large capital investment is required to perform filtration, concentration, and dry pulverization of the culture solution. In order to carry out the hydrolysis reaction at a temperature of 45 ° C. or higher for a long time, energy, process management cost, capital investment, etc. increase the manufacturing cost.

特開2011−36206では魚介類成分に酸性プロテアーゼと酸性カルボキシペプチダーゼ生産能及びクエン酸生産能の高い麹菌を接種し培養して、高プロテアーゼ活性、高酸性カルボキシペプチダーゼ活性を有し、高クエン酸量で一般汚染細菌の少ない麹を作成し、この麹で魚介類蛋白をpH3.0〜4.5の範囲で45℃、1.5ヶ月酵素分解して食塩濃度7〜13重量%の調味料が得られている。しかしながら、この場合でも得られる調味料は減塩調味料の範疇の製品であり無塩調味料ではない。 In Japanese Patent Application Laid-Open No. 2011-36206, seafood components are inoculated and cultured with koji mold having high ability to produce acid protease, acid carboxypeptidase and citric acid, and have high protease activity, high acid carboxypeptidase activity, and high citric acid content. In this bowl, the seafood protein is enzymatically degraded at 45 ° C. for 1.5 months in the range of pH 3.0 to 4.5 to obtain a seasoning with a salt concentration of 7 to 13% by weight. Has been obtained. However, even in this case, the seasoning obtained is a product in the category of low-salt seasoning and is not a salt-free seasoning.

特公昭53−18797号公報Japanese Patent Publication No.53-18797 特公昭62−62143号公報Japanese Examined Patent Publication No. 62-62143 特公昭62−57297号公報Japanese Patent Publication No. 62-57297 特公平04−20581号公報Japanese Examined Patent Publication No. 04-20581 特開平06−125734号公報Japanese Patent Laid-Open No. 06-125734 特開平06−46793号公報JP-A 06-46793 特公平08−004472号公報Japanese Patent Publication No. 08-004472 特開平08−173086号公報Japanese Patent Application Laid-Open No. 08-173086 特開平2001−149033号公報Japanese Patent Laid-Open No. 2001-149033 特開2006−94756号公報JP 2006-94756 A 特開2006−94757号公報JP 2006-94757 A 特開2011−36206号公報JP 2011-36206 A

本発明の目的は各種蛋白質含有素材を原料して食品産業上利用価値の高い酵素分解調味料を低コストで提供することにあり、設備投資額を少なくしながら、製造途中での腐敗細菌汚染の危惧無しに、衛生的そして安全にかつ経済的コストで薄色の高品質調味料を製造することにある。本発明で得られる調味料が分解、熟成が終了した時点で無塩、またはび低塩であることは大きな意義を有している。即ち、以後の操作に大きな自由度が有り、例えば、そのまま凍結乾燥、噴霧乾燥等で粉末化することで無塩又は減塩の粉末調味料が得られる。又、液体の状態で製品化する場合には食塩とエタノール共同の防腐効果により、例えば食塩8重量%及びエタノール8容量%に調整して防腐効果を持たせることで減塩調味料を作ることが可能である。または、エタノールを添加して15〜18容量%含有に調整することで味醂風調味料を製造することが出来る。 The object of the present invention is to provide low-cost enzymatically-degraded seasonings that are highly useful in the food industry using various protein-containing materials as raw materials. Without fear, the goal is to produce light-colored high-quality seasonings at a hygienic, safe and economical cost. It is significant that the seasoning obtained in the present invention is salt-free or low-salt when decomposition and ripening are completed. That is, there is a great degree of freedom in the subsequent operations. For example, a salt-free or salt-free powder seasoning can be obtained by pulverizing as it is by freeze drying, spray drying or the like. In addition, when commercialized in a liquid state, a salt-reducing seasoning can be made by adjusting the salt to 8% by weight of sodium chloride and 8% by volume of ethanol, for example. Is possible. Alternatively, a miso-style seasoning can be produced by adding ethanol to adjust the content to 15 to 18% by volume.

本発明を概説すると、植物蛋白、魚肉蛋白、動物蛋白及び酵母、又はそれらを含む蛋白質含有素材を調味料原料として耐酸性蛋白分解酵素活性を有する麹を用いて分解、熟成することで腐敗細菌増殖の危惧無しに製造出来る調味料、及びその製造方法に関する。本発明者は植物蛋白、魚肉蛋白、動物蛋白及び酵母、又はそれらを含む蛋白質含有素材を原料とする調味料を提供すべく、鋭意検討した。その結果、植物蛋白、魚肉蛋白、動物蛋白及び酵母、又はそれらを含む蛋白質含有素材を調味料原料として耐酸性蛋白分解酵素活性を有する麹を用いてpH2.0から4.5、好ましくはpH2.5から3.5の条件に於いて分解、熟成することで腐敗細菌増殖の危惧無しに薄色の高品質調味料を効率良く製造出来ることを見出し本発明の完成に至ったものである。 Briefly describing the present invention, plant protein, fish protein, animal protein and yeast, or a protein-containing material containing them, as a seasoning material, is decomposed and ripened using a koji having acid-resistant proteolytic enzyme activity, and rot bacteria growth The present invention relates to a seasoning that can be produced without any concern, and a method for producing the same. This inventor earnestly examined in order to provide the seasoning which uses plant protein, fish protein, animal protein, yeast, or the protein containing raw material containing them as a raw material. As a result, plant protein, fish protein, animal protein and yeast, or a protein-containing material containing them is used as a seasoning material, and pH 2.0 to 4.5, preferably pH 2. It has been found that a light-colored high-quality seasoning can be efficiently produced by decomposing and aging under conditions of 5 to 3.5 without fear of the growth of spoilage bacteria, and the present invention has been completed.

本発明により、植物蛋白、魚肉蛋白、動物蛋白および酵母、又はそれらを含有する蛋白質含有素材を調味料原料として耐酸性蛋白分解酵素活性を有する麹を用いてpH2.0から4.5、好ましくはpH2.5から3.5の条件に於いて分解、熟成することで腐敗細菌増殖の危惧無しに調味料を提供出来る。
According to the present invention, plant protein, fish protein, animal protein and yeast, or a protein-containing material containing them is used as a seasoning raw material, and the pH is 2.0 to 4.5, preferably, using koji having acid-resistant protease activity. By seasoning and aging at pH 2.5 to 3.5, a seasoning can be provided without fear of spoilage bacteria growth.

以下、本発明の実施の形態について具体的に説明する。
本発明で用いる植物蛋白、魚肉蛋白、動物蛋白及び酵母、又はそれらを含む蛋白質含有素材とは以下に説明する様な物である。植物蛋白又はそれらを含む蛋白質含有素材とは蛋白質を豊富に含有する豆類、芋類、穀類、又はそれらから部分分離された植物蛋白、又はそれらの加工品で調味料原料となりうるものであれば特別に限定されない。例えば、コーングルテン、小麦グルテン、脱脂大豆、蕎麦粕、菜種粕及びジャガイモ蛋白等が挙げられる。
豆腐、惣菜生産時に副生する煮汁、オカラ等も使用可能である。魚介類蛋白またはそれらを含む蛋白質含有素材とは魚介類およびそれらの加工品で調味料生産原料となりうるものであれば特に限定されない。例えば鰯、鯖、鮭、鱒、鰹、鮪等の魚類、及びアサリ、蛤、牡蠣、帆立等の魚介類及びそれらの加工残渣が挙げられる。また、例えば鰹節、鯖節、鰯節等の乾燥物でも良い。各種魚介類を乾燥した魚粉も使用出来る。出汁生産の過程で副生する抽出残渣も蛋白質を豊富に含有しており本発明の原料として使用出来る。また、節生産、缶詰生産等の際に副生する魚頭、鰓、中骨等の残渣も原料として使用出来る。節、缶詰め生産工程で副生する煮汁も使用可能である。動物蛋白又はそれらを含む蛋白質含有素材とは鳥獣肉又はその加工品由来の、例えば、骨付き、又は骨無しの各種の鳥獣肉又はそれらの出汁抽出残渣等の調味料原料として使用出来るものであれば特に限定されない。骨や内臓を含むものでも、またはそれらを除いた物でも良い。脱脂粉乳、乾燥ホエイ等の乳製品副産物も本発明の調味料原料として使用可能である。酵母又はそれらを含む蛋白質含有素材とは、パン酵母、アルコール酵母、キャンディダ酵母菌体そのものまたはそれらの加工品で調味料生産原料となりうるものであれば特に限定されない。アルコール発酵、焼酎諸味蒸留残渣等の酵母菌体が濃縮されたものも調味料原料となり得る。
本発明で使用する耐酸性蛋白分解酵素活性を有する麹とは耐酸性エンド型蛋白分解酵素である酸性プロテアーゼと耐酸性エキソ型蛋白分解酵素である酸性カルボキシペプチダーゼを豊富に含む麹である。酸性プロテアーゼ、及び酸性カルボキシペプチダーゼは酸性PH領域で酵素自体が安定であると共に基質蛋白質及びペプチドを良く分解する。尚、これら酵素の性質に関してはAmino Acid.Nucleic Acid誌の第27号(1973年)の28頁から32頁に一島等により“Aspergillus属の生産する酸性カルボキシペプチダーゼの性質”と
題して、また1970年出版のMethods in Enzymology,19巻Proteolytic Enzymesの372頁から397頁にJ.SodecとT.Hofmannにより説明されている。
本発明の耐酸性蛋白分解酵素を有する麹製造用の麹菌株としてはエンド型蛋白分解酵素である酸性プロテアーゼ、及びエキソ型蛋白分解酵素である酸性カルボキシぺプチダーゼを良く生産する能力のあるものを使用すれば良い。または、酸性プロテアーゼ高生産菌と酸性カルボキシペプチダーゼ高生産菌の2菌株を混合培養しても良く、又は別別に培養して得られた麹を混合して分解、熟成に使用しても良い。
本発明に使用する麹菌はこれら両酵素、即ち、酸性プロテアーゼ及び酸性カルボキシペプチダーゼを生産する性質を有するものであれば特に限定されないが、例えばアスペルギルス・アワモリ(Aspergillusawamori)、アスペルギルス・フェニシス(Aspergillus phoenicis)、アスペルギルス・タマリ(Aspergillus tamari)、アスペルギルス・ウサミ(Aspergillus usamii)、アスペルギルス・カワチ(Aspergillus kawachi)、アスペルギルス・ニガー(Aspergillus niger)を挙げることが出来る。
耐酸性麹を生産するために上記の麹菌を接種する培地としてはこれらの麹菌が充分生育可能なものであれば特に限定されないが、例えば、一般的な穀類として、米、燕麦、大麦、小麦、大豆、玉蜀黍、粟等が挙げられる。また、これらの穀類に魚粉末、魚残渣、節抽出残渣等を加えても良い。
製麹用の培地は通常、麹菌を接種する前に30分程度蒸し器で過熱する。次いで30℃程度に冷却後に麹菌胞子を加え、混合する(床揉み)、製麹器で培地温度を26℃から35℃に制御して2日から4日の培養を行う。培養途中は培地温度の上昇を防ぐために2から4回の切り返しを行う。
上記の操作で得られた耐酸性蛋白分解酵素活性を有する麹は蛋白質含有素材と共に仕込み水中に分散させたのち、諸味のpHを塩酸、硫酸等で2.0〜4.5、好ましくは2.5〜3.5の範囲に調整する。諸味は15℃〜35℃、好ましくは20℃〜30℃の環境で静置する。寒い期間、つまり秋から冬場を除けば室温放置でも良い。諸味は時々攪拌し、PHを初期設定の範囲に調整する。
開放系タンクでの作業に於いても諸味中にはこのpH範囲、特に2.5〜3.5の状態では腐敗細菌の増殖は見られない。また調味料原料として使用出来る蛋白質含有素材は多様かつ多種類であり、それらの中には当然ながら細菌類が相当量含まれているものも有る。しかしながら、本発明の実施に於いては原料を最初の段階で加熱殺菌する操作は必須では無い。これは、諸味中のpHが酸性領域に調整されるため、本発明の実施PH条件の諸味中では原料中に含まれていた細菌類も分解の進行途中で死滅するからである。
諸味の分解開始1日〜2日後にかけて酵母の増殖が見られる場合がある。これは、調味料原料として使用される各種の蛋白質含有素材、または使用する麹中に混入している酵母菌のうちpH2.5〜3.5で生育可能な菌種が増殖することに因る。また、麹菌を培養する製麹過程で培地の温度調整のための切り返し等の作業時にどうしても空中浮遊酵母が培地に混入することと、諸味の維持管理が開放系で行う関係上、空中浮遊酵母が諸味中に混入することは避けられない。この酵母発酵により、微量であるがアルコールが生成すると共に、魚介類原料が調味料原料とする場合には原料持ち込みの魚臭成分であるアミン化合物等が酵母代謝で分解除去される。また、蓄肉、家畜内臓等を原料とした場合には生臭さ、畜肉臭を酵母の代謝作用で低減させることが出来る。
他方、鰹節、鰯節等の節臭を最後まで分解無しに保持したい場合がある。その場合には請求項2に記した様に、エタノールを諸味中に2.0容量%〜6.0容量%添加する。2.0容量%未満のアルコール添加では酵母の増殖を抑制することは困難である。また6.0%以上のアルコールを添加した場合には特にエキソ型蛋白分解酵素の反応が阻害される。その結果、遊離アミノ酸の生成が抑制されて得られる調味料の呈味性が良くない結果となる。また、アルコールを多く使用することは製造コストの上昇になり得策でない。2.0容量%以上のアルコールが諸味の分解開始時点で添加された場合には分解、熟成過程に於ける諸味中の酵母増殖は見られず、鰹節等の香気は充分調味液中に保存される結果となる。
本発明に於いて、分解、熟成に際して諸味中に食塩を添加することは任意である。即ち、食塩無添加でも本発明による調味料は腐敗細菌増殖の危惧無しに製造可能である。しかしながら、蛋白質含有素材原料から塩可溶性蛋白質の溶解を促進させる目的で諸味中へ食塩を添加しても良い。また、麹菌の蛋白分解酵素、特にエキソ型蛋白分解酵素の活性は5.0重量%以上の食塩共存では阻害を受けるために諸味中の蛋白原料の分解を制御するために食塩を諸味に添加することは可能である。例えば、蛋白質含有素材からのエンド型蛋白分解酵素による蛋白質の分解、全窒素量の増加、即ちペプチドの生産は諸味分解開始後1日から2日で完了するが、その時点で食塩を適量添加してエキソ型蛋白分解酵素の作用を調整することで、ペプチドの含有率の高い呈味性調味料を得ることが出来る。諸味中の食塩濃度が10重量%以上ではエンド型蛋白分解酵素、エキソ型蛋白分解酵素の反応が共に強く阻害を受けるために、食塩の添加は10重量%以内とする。尚、分解、熟成が終わった後は任意に食塩は添加出来る。例えば、諸味の圧搾濾過処理で得られた調味料のPHを中性領域に調整したのちは保存性を高める目的で食塩濃度を15から18重量%にしても良い。
本発明に於いては、諸味の分解、熟成の温度は15℃〜35℃で良く、好ましくは、20℃〜30℃で行う。通常は冷却、過熱費用を要せずに室温で分解、熟成作業を実施出来るのが本発明の大きな特徴の一つである。冬場に於いても空調を設置した室内であれば分解、熟成作業は室温で実施可能である。諸味の分解、熟成の期間は通常7日(1週間)以上49日(7週間)以下、好ましくは14日(2週間)以上35日(5週間)以下とする。アミノ態窒素、遊離アミノ酸の量、即ち呈味性は7日未満では弱く、7日以降で徐徐に増加する。14日を過ぎると増加速度は徐徐に減速し、35日を過ぎるとさらに低下する。49日を過ぎると増加は殆ど見られなくなる。製造の効率、コストから考えてこれ以上長期に続けることは良くない。
本発明に於ける調味料の生産に於いて、蛋白質含有素材の分解は、先ずエンド型蛋白分解酵素による素材蛋白の可溶化、液中の全窒素量の増加、及びペプチドの生成、次いでエキソ型蛋白分解酵素によるペプチドから遊離アミノ酸の生成、即ちアミノ態窒素量の増加が進行する。本発明に於いては食塩無添加または低食塩濃度の分解であるため、蛋白分解酵素の塩による酵素反応阻害が無いために分解反応は醤油、魚醤油等の諸味に較べると非常に迅速に進行する。
エンド型蛋白分解酵素による酵素分解反応の進行具合を観察するためには諸味中の可溶性粗蛋白量、すなわち全窒素量を測定すれば良い。分析方法としてはキルダール分析が通常実施されるが、より簡便的には糖度計を用いて可溶性固形分値としてBrix(%)を測定することで概要を把握することが可能である。本発明実施に於いて、特に塩無添加での諸味では糖度計でのBrix(%)値への塩の干渉が無いためにかなり明確に粗蛋白量、その値から全窒素(TN)を推測可能である。本発明の実施例に於いては、数種類の蛋白溶液、アミノ酸溶液のBrix(%)測定値を勘案して、全窒素量の数値を求めた。また、エキソ型蛋白分解酵素による遊離アミノ酸の生産量、即ちアミノ態窒素量の数値を測定する方法としてはアミノ酸分析装置によるアミノ酸定量が確実であるが、より簡便にはホルモール滴定、または薄層クロマトグラフィーにより概要を知ることが出来る。
本発明に於いて、エンド型蛋白分解酵素による素材原料蛋白の可溶化及びペプチド生成の進行、即ち全窒素量の増加は諸味を糖度計で分析してBrix(%)値の経時的観測を実施することで推測可能である。即ちBrix(%)値が平衡に達した時点がエンド型蛋白分解酵素反応の終点と看做しうる。また、これは諸味中の素材原料自体の溶解、例えば魚介類の肉質部分が可溶化して骨だけになること、また貝類、例えば帆立の身が完全に溶解して無くなることにより視覚的にも確認が可能である。本発明に於いては通常は2〜3日で当該反応は終了する。
しかしながら、エキソ型蛋白分解酵素の反応はエンド型蛋白分解酵素の反応に較べ更に時間を要する場合が多い。エキソ型蛋白分解酵素の進行具合、即ちアミノ態窒素量の増加はホルモール滴定、または薄層クロマトグラフィーで分析可能である。即ち、経時的に分析を行い分析値の増加が見られなくなり定常値になったところで分解の終点とする。本発明に於いては通常は3週間〜5週間で当該反応は終了する。
本発明に於いては諸味の温度は15℃〜35℃と耐酸性蛋白分解酵素にとって非常に安定性の高い温度条件で実施される。また、諸味のPHも2.0〜4.5であり耐酸性蛋白分解酵素にとって非常に安定性の高いpH条件である。これらの結果、麹由来の蛋白分解酵素は本発明の分解、熟成中も活性を保持された状態を保っている。製麹条件により麹の有する耐酸性蛋白分解酵素活性も増減する場合があるが、麹の酵素活性が弱い場合でも、諸味中の酵素活性が保持されているため、調味料原料の分解が遅い場合には分解時間を延長することで容易に対応可能である。即ち、上記したBrix(%)値、ホルモール滴定値が所期値に達するまで諸味の分解、熟成時間を延長することで対処出来るのである。これまでに報告されている多くの製造方法では、諸味の雑菌汚染を防ぐために、高温反応をする場合が多く結果的に分解途中で蛋白分解酵素が熱変性で活性を失うことが多かった。更に、本発明の実施はこれまで報告されている多くの方法にくらべ、15℃〜35℃と低い温度で行なわれる結果、得られた調味料が良好な香気を示すのが特徴である。40℃以上で分解した場合には得られた調味料に加熱臭、焦げ臭の付着が避けられなかった。
本発明で実施するpH条件では諸味中に汚染細菌の増殖は殆ど見られない。その結果、例えばセレウス菌等による細菌毒素生成の恐れは無い。また、汚染細菌の脱炭酸酵素反応によるヒスチジンからのヒスタミンの生成等の心配も無い。この結果、衛生的に高品質の調味料を製造することが出来る。
本発明に於いては諸味のpHが酸性領域で維持されるため、褐変の原因であるアミノーカルボニル反応が抑制される。そのために非常に薄色の調味料が得られる。この点でこれまで報告されている麹利用調味料が濃口醤油と同等の濃い着色を有するのと非常に異なる特長を有する。
また、麹を用いた発酵生産に於いては酵素分解反応のみでは解析出来ない現象もある。これは、恐らくは、麹菌体の自己消化作用によって活性化された各種の酵素反応等の複合作用によると考えられる。その為に、分解終了後もある程度の期間、熟成を行う場合がある。
本発明の調味料は諸味をそのまま圧搾、濾過、又は遠心分離により固液分離し、滓下げ、冷却保存等で濁り除去し、デカンテーションで油を除くことで清澄な調味料を得ることが出来る。通常は80℃、30分程度の火入れ処理をして製品とする。調味料のpHはそのままでも良いが、PH調整剤を用いて5.0内外のpHに調整しても良い。また、一般的に使用される香料、酸味料、甘味料、呈味剤、増粘剤、食品添加物等を任意に添加しても良い。
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
Hereinafter, embodiments of the present invention will be specifically described.
The plant protein, fish meat protein, animal protein and yeast used in the present invention, or the protein-containing material containing them are as described below. Plant proteins or protein-containing materials containing them are special if they are beans, potatoes, cereals, plant proteins partially separated from them, or processed products thereof that can be used as seasoning ingredients. It is not limited to. Examples include corn gluten, wheat gluten, defatted soybeans, buckwheat straw, rapeseed meal and potato protein.
Tofu, boiled soup that is produced as a by-product during sugar beet production, okara, etc. can also be used. The seafood protein or the protein-containing material containing them is not particularly limited as long as it can be a seasoning production raw material for seafood and processed products thereof. For example, fish such as salmon, salmon, salmon, salmon, salmon, salmon, and seafood such as clams, salmon, oysters, scallops, and processed residues thereof. For example, dried products such as bonito, bonito, and bonito may be used. Fish meal dried from various seafood can also be used. The extraction residue produced as a by-product during the soup production also contains abundant proteins and can be used as a raw material of the present invention. Residues such as fish heads, salmon, and skeletons that are by-produced during knot production and canned production can also be used as raw materials. Boiled soup that is produced as a by-product in canning and canning production processes can also be used. Animal protein or a protein-containing material containing them, if it can be used as a raw material for seasonings such as various meats and bones with or without bones derived from bird and meat or processed products thereof There is no particular limitation. It may include bones or internal organs, or may exclude those. Dairy product by-products such as skim milk powder and dried whey can also be used as the seasoning raw material of the present invention. Yeast or a protein-containing material containing them is not particularly limited as long as it can be used as a seasoning production raw material in baker's yeast, alcohol yeast, Candida yeast itself or a processed product thereof. Concentrated yeast cells such as alcohol fermentation and shochu moromi distillation residue can also be used as a seasoning material.
The cocoon having acid-resistant protease activity used in the present invention is a cocoon rich in acid protease which is acid-resistant endo-type protease and acid carboxypeptidase which is acid-exo-protease. Acidic proteases and acidic carboxypeptidases are stable in the acidic PH region and well degrade substrate proteins and peptides. Regarding the properties of these enzymes, Amino Acid. Nucleic Acid No. 27 (1973), pp. 28-32, entitled “Properties of Acid Carboxypeptidase Produced by Aspergillus” by Ichishima et al., Methods in Enzymology, 1970, Proteolytic Enzymes, pages 372 to 397. Sodec and T.W. Explained by Hofmann.
As the koji mold for producing koji having the acid-resistant protease of the present invention, those having the ability to produce well the acid protease which is an endo-type protease and the acid carboxypeptidase which is an exo-type protease are used. Just do it. Alternatively, two strains of an acid protease high-producing bacterium and an acid carboxypeptidase high-producing bacterium may be mixed and cultured, or the koji obtained by culturing separately may be mixed and used for degradation and aging.
The koji mold used in the present invention is not particularly limited as long as it has the property of producing both of these enzymes, ie, acid protease and acid carboxypeptidase. Aspergillus tamari, Aspergillus usamii, Aspergillus kawachi, Aspergillus niger can be cited. Aspergillus niger (Aspergillus niger)
The medium for inoculating the above koji molds to produce acid-resistant koji is not particularly limited as long as these koji molds can sufficiently grow. For example, as general cereals, rice, oats, barley, wheat, Examples include soybeans, onions and strawberries. Moreover, you may add fish powder, a fish residue, a knot extraction residue, etc. to these cereals.
The medium for making koji is usually heated in a steamer for about 30 minutes before inoculating the koji mold. Next, gonococcal spores are added after cooling to about 30 ° C. and mixed (flooring), and the medium temperature is controlled from 26 ° C. to 35 ° C. with a koji making apparatus, and culture is performed for 2 to 4 days. In the middle of culturing, inversion is performed 2 to 4 times to prevent an increase in the medium temperature.
The koji having acid-resistant proteolytic enzyme activity obtained by the above operation is charged with a protein-containing material and dispersed in water, and then the pH of each taste is 2.0 to 4.5, preferably 2. Adjust to the range of 5-3.5. Moromi is allowed to stand in an environment of 15 ° C to 35 ° C, preferably 20 ° C to 30 ° C. It can be left at room temperature during the cold period, that is, from winter to autumn. Stir the moromi from time to time and adjust the PH to the default range.
Even when working in an open tank, spoilage bacteria do not grow in the moromi in this pH range, particularly 2.5-3.5. In addition, there are a wide variety of protein-containing materials that can be used as seasoning materials, and some of them contain a substantial amount of bacteria. However, in the practice of the present invention, the operation of heat sterilizing the raw material in the first stage is not essential. This is because the pH in the moromi is adjusted to the acidic region, and therefore the bacteria contained in the raw material are killed during the progress of the decomposition in the moromi under the PH conditions of the present invention.
Yeast growth may be observed 1 to 2 days after the start of moromi degradation. This is due to the growth of various protein-containing materials used as seasoning raw materials or yeast species mixed in the koji used to grow at pH 2.5 to 3.5. . In addition, because airborne yeast is inevitably mixed into the medium during work such as turning over to adjust the temperature of the medium during the koji-making process for culturing koji mold, and the maintenance of moromi is performed in an open system, It is inevitable to mix in the moromi. This yeast fermentation produces a small amount of alcohol but also decomposes and removes amine compounds and the like, which are fish odor components brought into the raw material, when the seafood raw material is used as a seasoning raw material. Moreover, when meat storage, livestock internal organs, etc. are used as raw materials, raw odor and livestock meat odor can be reduced by the metabolic action of yeast.
On the other hand, there is a case where it is desired to keep odor saving such as bonito and bonito without decomposition. In that case, as described in claim 2, ethanol is added in an amount of 2.0% by volume to 6.0% by volume in the moromi. It is difficult to suppress the growth of yeast with addition of less than 2.0% by volume of alcohol. In addition, when 6.0% or more of alcohol is added, the reaction of exo-type proteolytic enzyme is particularly inhibited. As a result, the taste of the seasoning obtained by suppressing the production of free amino acids is not good. In addition, using a large amount of alcohol increases the manufacturing cost and is not a good idea. When 2.0% by volume or more of alcohol is added at the start of decomposition of moromi, yeast growth in the moromi during decomposition and ripening is not observed, and flavors such as bonito are preserved in the seasoning liquid. Result.
In the present invention, it is optional to add salt to the moromi during decomposition and aging. That is, even without adding salt, the seasoning according to the present invention can be produced without fear of spoilage bacteria growth. However, salt may be added to the moromi for the purpose of promoting dissolution of the salt-soluble protein from the protein-containing raw material. In addition, salt activity is added to moromi to control the degradation of protein ingredients in moromi because the activity of gonococcal proteolytic enzymes, especially exo-type proteolytic enzymes, is inhibited in the presence of 5.0% by weight or more of salt. It is possible. For example, protein degradation from protein-containing materials by endo-protease, increase in total nitrogen amount, ie, peptide production is completed in 1 to 2 days after the start of moromi degradation, but at that time, an appropriate amount of salt is added. By adjusting the action of exo-type proteolytic enzyme, it is possible to obtain a seasoning seasoning having a high peptide content. When the salt concentration in the moromi is 10% by weight or more, both endo-type and exo-type proteolytic reactions are strongly inhibited. In addition, salt can be arbitrarily added after decomposition | disassembly and ageing | ripening. For example, after adjusting the pH of the seasoning obtained by squeezing and filtering the moromi to the neutral range, the salt concentration may be 15 to 18% by weight for the purpose of enhancing the storage stability.
In the present invention, the decomposition and aging temperature of moromi may be 15 ° C to 35 ° C, preferably 20 ° C to 30 ° C. One of the major features of the present invention is that the decomposition and aging operations can be carried out at room temperature without requiring cooling and heating costs. Even in winter, disassembly and aging can be performed at room temperature if the room is equipped with air conditioning. The period of decomposition and aging of moromi is usually 7 days (1 week) to 49 days (7 weeks), preferably 14 days (2 weeks) to 35 days (5 weeks). The amount of amino nitrogen and free amino acid, ie, taste, is weak at less than 7 days and gradually increases after 7 days. After 14 days, the rate of increase gradually slows down and after 35 days it further decreases. After 49 days, there is almost no increase. Considering production efficiency and cost, it is not good to continue for a longer time.
In the production of the seasoning in the present invention, the decomposition of the protein-containing material is performed by first solubilizing the material protein with an endo-type proteolytic enzyme, increasing the total nitrogen amount in the liquid, and generating a peptide, and then exo-type. Production of free amino acids from peptides by proteolytic enzymes, that is, increase in the amount of amino nitrogen proceeds. In the present invention, no salt is added or the salt is decomposed at a low salt concentration, so that there is no inhibition of the enzyme reaction by the salt of the proteolytic enzyme, so the decomposition reaction proceeds very quickly compared to the taste of soy sauce, fish soy sauce, etc. To do.
In order to observe the progress of the enzymatic degradation reaction by the endo-type proteolytic enzyme, the amount of soluble crude protein in moromi, that is, the total nitrogen amount may be measured. As an analysis method, Kildar analysis is usually performed, but more simply, it is possible to grasp the outline by measuring Brix (%) as a soluble solid content value using a saccharimeter. In the practice of the present invention, especially in the case of moromi without addition of salt, there is no interference with the Brix (%) value in the saccharimeter, so the amount of crude protein and the total nitrogen (TN) are estimated from the value fairly clearly. Is possible. In the examples of the present invention, the total nitrogen amount was determined in consideration of Brix (%) measurement values of several types of protein solutions and amino acid solutions. In addition, as a method for measuring the amount of free amino acid produced by exo-protease, that is, the amount of amino nitrogen, amino acid quantification with an amino acid analyzer is reliable, but more simply formol titration or thin layer chromatography. The outline can be known by the graph.
In the present invention, the solubilization of the raw material protein by the endo-protease and the progress of peptide production, that is, the increase of the total nitrogen amount, the mash is analyzed with a saccharimeter and the Brix (%) value is observed over time. Can be guessed. In other words, the point in time when the Brix (%) value reaches equilibrium can be regarded as the end point of the endo-protease reaction. This is also due to the dissolution of the raw materials themselves in the moromi, such as the fact that the meat part of the seafood is solubilized to become only bones, and the shellfish such as scallops are completely dissolved and lost. Can also be confirmed. In the present invention, the reaction is usually completed in 2 to 3 days.
However, the exo-protease reaction often requires more time than the endo-protease reaction. The progress of the exo-type proteolytic enzyme, that is, the increase in the amount of amino nitrogen can be analyzed by formol titration or thin layer chromatography. That is, analysis is performed over time, and when the analysis value does not increase and reaches a steady value, the end point of decomposition is determined. In the present invention, the reaction is usually completed in 3 to 5 weeks.
In the present invention, the moromi temperature is 15 ° C. to 35 ° C., which is carried out under a temperature condition that is very stable for acid-resistant protease. Moreover, the moromi PH is 2.0 to 4.5, which is a pH condition that is very stable for acid-resistant protease. As a result, the proteolytic enzyme derived from koji maintains a state where the activity is maintained during the degradation and aging of the present invention. Depending on the koji-making conditions, the acid-resistant proteolytic enzyme activity of koji may increase or decrease, but even if the koji enzyme activity is weak, the enzyme activity in the moromi is retained, so the seasoning ingredients are slow to decompose Can be easily handled by extending the decomposition time. In other words, it can be dealt with by extending the decomposition time and aging time of moromi until the above-mentioned Brix (%) value and formol titration value reach the expected values. In many production methods reported so far, in order to prevent miscellaneous miscellaneous contamination, a high temperature reaction is often performed, and as a result, the proteolytic enzyme often loses its activity due to heat denaturation during the degradation. Furthermore, the practice of the present invention is characterized by the fact that the seasonings obtained show a good aroma as a result of being carried out at temperatures as low as 15 ° C. to 35 ° C., compared to many methods reported so far. When it decomposed | disassembled at 40 degreeC or more, adhesion of a heating odor and a burning odor was inevitable to the obtained seasoning.
Under the pH conditions used in the present invention, there is almost no growth of contaminating bacteria in the moromi. As a result, there is no risk of bacterial toxin production by, for example, Bacillus cereus. Moreover, there is no concern about the production of histamine from histidine due to decarboxylase reaction of contaminating bacteria. As a result, a sanitary high-quality seasoning can be produced.
In the present invention, the pH of the moromi is maintained in the acidic region, so that the amino-carbonyl reaction that causes browning is suppressed. Therefore, a very light seasoning is obtained. In this respect, the koji seasoning reported so far has a feature that is very different from that of having a dark color equivalent to that of thick soy sauce.
In addition, in fermentation production using straw, there is a phenomenon that cannot be analyzed only by enzymatic degradation. This is probably due to the combined action of various enzyme reactions and the like activated by the self-digestion action of Aspergillus. For this reason, aging may be carried out for a certain period after the completion of the decomposition.
As for the seasoning of this invention, a clear seasoning can be obtained by solid-liquid separation by squeezing, filtering, or centrifuging as it is, removing turbidity by dripping, cooling storage, etc., and removing oil by decantation. . Usually, the product is fired at 80 ° C. for about 30 minutes. The pH of the seasoning may be as it is, but it may be adjusted to a pH of 5.0 or outside using a pH adjuster. Moreover, generally used flavorings, acidulants, sweeteners, flavoring agents, thickeners, food additives and the like may be optionally added.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.

小麦麩4kgに水2800mlを散水して良く混ぜたのち、蒸し器で30分蒸煮した。蒸された小麦麩が30℃程度に冷えたところで、予めフラスコで純粋培養して得たアスペルギルス・フェニシスAspergillus phoenisis RIB−2621の種麹を種付け後、恒温状態の製麹室に運び、盛りのあと麹蓋に約5cmの厚みに均一に載せて製麹を行なった。胞子が発芽して成育旺盛となる迄は培地の温度は32℃程度にその後は28℃程度になるように管理した。温度調整、通気促進のために時々攪拌を行った。3日間の培養で充分に耐酸性蛋白分解酵素、すなわち酸性プロテアーゼ及び酸性カルボキシペプチダーゼ活性を有する麹を得ることが出来、出麹とした。得られた麹はフリーザーに冷凍保存することで適時、各種蛋白質含有素材の分解、熟成試験に使用した。
脱脂大豆2.4kgと上記したアスペルギルス・フェニシスの麹1.6kgを16Lの水に分散させ、ついで塩酸でpHを3.0に調整した。諸味を入れた容器を28℃の恒温室に置いて分解、熟成作業を開始した。諸味のpHが2.5から3.5の範囲になるように必要に応じて塩酸又はカセイソーダを添加した。比較例として諸味のpHを1.2から1.8の範囲に調整したもの、及びpHを4.7から5.3の範囲に設定する以外は同様の方法で分解、熟成を行った。
本発明の条件に於いては、分解開始後、全窒素の指標であるBrix(%)は時間の経過につれて増加した。1日経過後にその増加程度はゆるやかとなり、3日後にその値は一定値となった。他方、アミノ態窒素の指標であるホルモール滴定値、及び薄層クロマト分析では3週間後にそれらの測定値が一定となった。これらの結果、3週間で諸味の分解を終了した。その後、諸味を圧搾濾過して調味料を得た。
全窒素は約1.5重量%、アミノ態窒素は0.7重量%であった。諸味中の一般細菌数は分解終了時で1g諸味当たり1000CFU以下であり、殆んど細菌の汚染は見られなかった。
pHを4.8に調整して80℃、30分間火入れ処理を行い品質の評価を行った。呈味性の高い、薄色の調味料が得られた。尚、諸味には分解開始2日頃から酵母の増殖が観察された。酵母により糖分がアルコールに代謝されることでアミノカルボニル反応による着色化が抑制されたと考えられる。
比較例として諸味pHを4.7から5.3に調整した場合には分解開始2日目から異臭が発生し腐敗細菌の増殖が見られたのでその時点で分解を終了させた。比較例として諸味pHを1.2から1.8に調整した諸味ではBrix(%)、アミノ態窒素共に上昇は遅く、3週間後に得られた調味液の全窒素は約0.6重量%、アミノ態窒素は0.3重量%であった。
After 4800 kg of wheat straw was sprinkled with 2800 ml of water and mixed well, it was cooked in a steamer for 30 minutes. When the steamed wheat bran has cooled to about 30 ° C., the seeds of Aspergillus phoensis RIB-2621 obtained by pure culture in a flask in advance are seeded and then transported to a constant temperature brewing room. The cocoon was placed on a lid with a thickness of about 5 cm uniformly. The temperature of the medium was controlled to about 32 ° C. until the spore germinated and grew vigorously, and then to about 28 ° C. Stirring was sometimes performed to adjust the temperature and promote ventilation. It was possible to obtain acid-resistant proteolytic enzymes, that is, cocoons having acid protease and acid carboxypeptidase activities, after culturing for 3 days, and were considered to be fermented. The obtained koji was stored frozen in a freezer and used for decomposition and aging tests of various protein-containing materials in a timely manner.
2.4 kg of defatted soybeans and 1.6 kg of Aspergillus phensis koji described above were dispersed in 16 L of water, and then the pH was adjusted to 3.0 with hydrochloric acid. The container containing the moromi was placed in a constant temperature room at 28 ° C., and decomposition and aging were started. Hydrochloric acid or caustic soda was added as necessary so that the pH of the moromi was in the range of 2.5 to 3.5. As comparative examples, decomposition and aging were performed in the same manner except that the moromi pH was adjusted to a range of 1.2 to 1.8 and the pH was set to a range of 4.7 to 5.3.
Under the conditions of the present invention, after the start of decomposition, Brix (%), which is an indicator of total nitrogen, increased with time. After 1 day, the increase was moderate, and after 3 days, the value became constant. On the other hand, the formol titration value, which is an indicator of amino nitrogen, and the thin layer chromatography analysis showed that the measured values became constant after 3 weeks. As a result, the decomposition of moromi was completed in 3 weeks. Thereafter, the moromi was squeezed and filtered to obtain a seasoning.
Total nitrogen was about 1.5% by weight and amino nitrogen was 0.7% by weight. The number of general bacteria in moromi was 1000 CFU or less per gram of moromi at the end of decomposition, and almost no bacterial contamination was observed.
The quality was evaluated by adjusting the pH to 4.8 and subjecting it to a heating treatment at 80 ° C. for 30 minutes. A light-colored seasoning with high taste was obtained. In addition, the growth of yeast was observed in the moromi from around 2 days after the start of decomposition. It is considered that coloring due to aminocarbonyl reaction was suppressed by the metabolism of sugar to alcohol by yeast.
As a comparative example, when the moromi pH was adjusted from 4.7 to 5.3, a strange odor was generated on the second day from the start of decomposition, and the growth of spoilage bacteria was observed. Therefore, the decomposition was terminated at that point. As a comparative example, in the moromi in which the moromi pH was adjusted from 1.2 to 1.8, the rise of both Brix (%) and amino nitrogen was slow, and the total nitrogen of the seasoning liquid obtained after 3 weeks was about 0.6% by weight, The amino nitrogen was 0.3% by weight.

雑節(鰯と鯖の混合節)490gと実施例1で示したアスペルギルス・フェニシスの麹300gを3Lの水に分散させ、ついで塩酸でpH3.0に調整した。諸味を入れた容器を28℃の恒温室に置いて分解、熟成作業を開始した。諸味のpHが2.5から3.5の範囲になるように必要に応じて塩酸又はカセイソーダを添加した。分解開始時の諸味中へのエタノール無添加の試験区1(0%)とエタノールを3容量%添加の試験区2(3%)で分解、熟成試験を行なった。試験区1(0%)、試験区2(3%)はエタノールが無添加、添加以外は全く同様の条件で実施した。両試験区共に、分解開始後に、全窒素の指標であるBrix(%)は時間の経過と共に増加した。2日後にその増加程度は緩やかになり、3日後にBrix(%)の値は両試験区共に一定となった。一方、アミノ態窒素の指標であるホルモール滴定の結果は両試験区共に3週間後に一定となった。試験区1(0%)に於いては分解開始2日後から諸味中に酵母の増殖が見られた。他方エタノールが諸味中に3%添加された試験区2(3%)では分解、熟成期間中の酵母の増殖は見られなかった。。この結果両試験区共に3週間で諸味の分解を終了させた。諸味を圧搾濾過して調味料を得た。試験区1(0%)の全窒素は約1.4重量%、アミノ態窒素は0.6重量%であった。試験区2(3%)のの全窒素は約1.5重量%、アミノ態窒素は0.7重量%であった。諸味中の一般細菌数は両試験区共に、分解終了時で1g諸味当たり1000CFU以下であり、殆んど細菌の汚染は見られなかった。
pHを4.9に調整して80℃、30分の火入れ処理をおこない品質の評価を行なった。両試験区共に、呈味性の高い調味料であった。試験区1(0%)に於いては高級感のある調味料であるが節臭が薄い様に感じられた。試験区2(3%)では節臭が充分残っており、薄色で高級感と共にコク味の強い調味料であった。これらの差は諸味中に増殖した酵母による節臭成分の分解代謝の有無に起因すると思われる。
490 g of miscellaneous knots (mixed knot of koji and koji) and 300 g of Aspergillus phenissis koji shown in Example 1 were dispersed in 3 L of water, and then adjusted to pH 3.0 with hydrochloric acid. The container containing the moromi was placed in a constant temperature room at 28 ° C., and decomposition and aging were started. Hydrochloric acid or caustic soda was added as necessary so that the pH of the moromi was in the range of 2.5 to 3.5. Decomposition and maturation tests were conducted in test group 1 (0%) in which no ethanol was added to the moromi at the start of decomposition and test group 2 (3%) in which 3% by volume of ethanol was added. Test Group 1 (0%) and Test Group 2 (3%) were carried out under the same conditions except that ethanol was not added. In both test plots, Brix (%), which is an indicator of total nitrogen, increased with time after the start of decomposition. After 2 days, the increase was moderate, and after 3 days, the value of Brix (%) was constant in both test sections. On the other hand, the results of formol titration, which is an indicator of amino nitrogen, became constant after 3 weeks in both test sections. In test group 1 (0%), yeast growth was observed in the moromi from 2 days after the start of decomposition. On the other hand, in the test group 2 (3%) in which 3% of ethanol was added to the moromi, no growth of yeast during degradation and aging was observed. . As a result, the decomposition of moromi was completed in 3 weeks in both test sections. Moromi was squeezed and filtered to obtain a seasoning. Total nitrogen in test group 1 (0%) was about 1.4% by weight, and amino nitrogen was 0.6% by weight. The total nitrogen of test group 2 (3%) was about 1.5% by weight, and amino nitrogen was 0.7% by weight. The number of general bacteria in moromi was 1000 CFU or less per gram of moromi in both test sections at the end of decomposition, and almost no bacterial contamination was observed.
The quality was evaluated by adjusting the pH to 4.9 and subjecting it to a heating treatment at 80 ° C. for 30 minutes. Both test zones were seasonings with high taste. In Test Zone 1 (0%), although it was a high-quality seasoning, it was felt that the odor saving was thin. In Test Zone 2 (3%), sufficient odor saving remained, and it was a light-colored and high-quality seasoning with a strong body. These differences may be attributed to the presence or absence of decomposition metabolism of odor-saving components by yeast grown in moromi.

鰯の煮汁(Brix(%) = 6.5)800mlに実施例1の方法で得た耐酸性蛋白分解酵素活性を有する麹60gと大きさ12cmから16cmの生の鰯12尾(300g)を加えて、分解諸味とした。諸味のpHは塩酸で3.0に調整した。28℃の恒温室で時々攪拌すると共に諸味pHを2.5から3.5の範囲になるように調整した。鰯は時間と共に溶解し、1日後には骨だけとなった.諸味の全窒素濃度の指標であるBrix(%)は分解開始後、時間の経過につれて増加した。1日経過後、その増加はゆるやかとなり、2日後にその値は一定値となった。これらの結果、エンド型蛋白分解酵素による鰯蛋白の可溶化及びペプチドへの分解は分解2日で完了することが推察された。分解開始2日以降に諸味中に酵母の増殖があり、その結果、炭酸ガスの発泡が見られた。他方、アミノ態窒素生産の指標であるホルモール滴定値、及び薄層クロマトグラフィーでの測定値は3週間後に測定値が一定となった。これらの結果、3週間で諸味の分解を終了させた。その後、諸味を圧搾濾過して調味料を得た。全窒素は約1.4重量%、アミノ態窒素は0.7重量%であった。諸味中の一般細菌数は分解終了時点で1g諸味当たり1000CFU以下であり、分解作業中の細菌の汚染は殆んど見られなかった。pHを5.0に調整して80℃、30分火入れ処理を行い品質の評価を行なった。呈味性の高い、コク味のある、薄色で高級感のある調味料が得られた。分解開始2日以降に起きる酵母の増殖により、魚臭が分解代謝されるため、殆んど魚臭が感じられない呈味性の高い薄色調味料が得られた。 To 800 ml of boiled salmon broth (Brix (%) = 6.5), 60 g of salmon having acid-resistant protease activity obtained by the method of Example 1 and 12 tails (300 g) of raw salmon with a size of 12 cm to 16 cm were added. Decomposed moromi. The pH of the moromi was adjusted to 3.0 with hydrochloric acid. While stirring occasionally in a constant temperature room at 28 ° C., the moromi pH was adjusted to be in the range of 2.5 to 3.5. The sputum dissolved over time and became only bone after one day. Brix (%), which is an index of the total nitrogen concentration of moromi, increased with the passage of time after the start of decomposition. After 1 day, the increase was gradual, and after 2 days the value was constant. As a result, it was inferred that the solubilization of the sputum protein by the endo-type proteolytic enzyme and the degradation to the peptide were completed in 2 days. After 2 days from the start of decomposition, yeast grew in the moromi, and as a result, foaming of carbon dioxide gas was observed. On the other hand, the formol titration value, which is an index of amino nitrogen production, and the measurement value by thin layer chromatography became constant after 3 weeks. As a result, the decomposition of moromi was completed in 3 weeks. Thereafter, the moromi was squeezed and filtered to obtain a seasoning. Total nitrogen was about 1.4% by weight and amino nitrogen was 0.7% by weight. The number of general bacteria in moromi was 1000 CFU or less per gram of moromi at the end of decomposition, and there was almost no contamination of bacteria during decomposition. The quality was evaluated by adjusting the pH to 5.0 and subjecting to a heating treatment at 80 ° C. for 30 minutes. A seasoning with high taste, richness, light color and high quality was obtained. Since the fish odor was decomposed and metabolized by the yeast growth occurring after 2 days from the start of the decomposition, a light-colored seasoning with high taste that hardly felt the fish odor was obtained.

牛乳からチーズを生産する際の副産物である乾燥ホエイ3kgと実施例1に記載の方法で作成した耐酸性蛋白分解酵素活性の高い麹2kgを20Lの水に分散させ、次いでその諸味PHを塩酸で3.0に調整した。諸味を入れた容器を28℃の恒温室に入れて分解、熟成を開始した。諸味のpHが2.5から3.5の範囲に維持される様に、必要に応じて塩酸、又はカセイソーダを用いてpH調整を行なった。分解開始後に諸味の全窒素量の指標であるBrix(%)値は徐徐に増加し、1日経過後にその増加程度はゆるやかになり、3日後にその値は一定値となった。他方、アミノ態窒素の指標であるホルモール滴定の値も分解開始後、時間の経過につれて増加したが、2週間後の値の増加はゆるやかとなり、4週間後にその値は一定となった。その後1週間諸味を熟成させた。分解開始2日目以降に諸味中に酵母の生育が見られ、その結果炭酸ガスの発泡が観察された。これらの結果、5週間で諸味の分解、熟成を終了した。その後、諸味を圧搾濾過して調味料を得た。調味料の全窒素は約1.6重量%、アミノ態窒素は0.8重量%であった。諸味中の一般細菌数は分解、熟成の終了時点で諸味1g当たり1000CFU以下であり、殆んど汚染細菌は見られなかった。pHを4.9に調整して80℃、30分間の火入れ処理後に品質評価を行なった。風味が良く、呈味性、コク味の強い薄色の高級感のある調味料が得られた。
(実施例5)
アルコール酵母が濃縮された状態である米焼酎蒸留粕2Lに実施例1で示した方法で調製したアスペルギルス・フェニシスの麹200gを分散させ、諸味のpHを塩酸で3.0に調整した。諸味を入れた容器を28℃の恒温室に置いて分解、熟成を行なった。諸味のpHが2.5から3.5の範囲に維持されるように、時々pH調整を行なった。分解開始時点から酵母の増殖が見られ、炭酸ガスの発生が観察された。分解開始後に、全窒素濃度の指標であるBrix(%)値は時間の経過と共に増加して、1日目にその増加はゆるやかになり、2日目にその値は一定値となった。他方、遊離アミノ酸の指標であるホルモール滴定の値は1周間後にその増加はゆるやかとなり、2週間後にその値は一定値となった。その後に更に2週間の熟成を行なった後に分解、熟成作業を終了させた。諸味中の一般細菌数は分解、熟成の終了時点で諸味1g当たり1000CFU以下であり、諸味中の汚染細菌は殆んど見られなかった。pHを5.1に調整して80℃、30分の火入れ処理を行なった後に品質の評価を行なった。得られた調味液の全窒素は約0.9重量%、アミノ態窒素は0.5重量%であった。調味液は薄色の高級感、発酵食品の風味を強く感じさせると共に良好な香味、コク味を呈した。
Disperse 3 kg of dry whey, which is a by-product when producing cheese from milk, and 2 kg of koji with high acid-protease activity made by the method described in Example 1 in 20 L of water, and then add the moromi PH with hydrochloric acid. Adjusted to 3.0. The container containing the moromi was put in a constant temperature room at 28 ° C., and decomposition and aging were started. The pH was adjusted as necessary using hydrochloric acid or caustic soda so that the pH of the moromi was maintained in the range of 2.5 to 3.5. The Brix (%) value, which is an index of the total amount of nitrogen in the moromi, gradually increased after the start of decomposition, and the increase gradually decreased after 1 day, and the value became constant after 3 days. On the other hand, the value of formol titration, which is an indicator of amino nitrogen, also increased with the lapse of time after the start of decomposition, but the increase after 2 weeks became gradual, and the value became constant after 4 weeks. After that, moromi was aged for one week. Yeast growth was observed in the moromi from the second day after the start of decomposition, and as a result, foaming of carbon dioxide gas was observed. As a result, the decomposition and aging of moromi were completed in 5 weeks. Thereafter, the moromi was squeezed and filtered to obtain a seasoning. The total nitrogen of the seasoning was about 1.6% by weight, and the amino nitrogen was 0.8% by weight. The number of general bacteria in moromi was 1000 CFU or less per gram of moromi at the end of decomposition and ripening, and almost no contaminating bacteria were found. The pH was adjusted to 4.9, and quality evaluation was performed after a 30 minute heating treatment at 80 ° C. A light-colored high-quality seasoning with a good flavor, taste and richness was obtained.
(Example 5)
200 g of Aspergillus phenissis prepared by the method shown in Example 1 was dispersed in 2 L of rice shochu distilled rice cake in a state where alcoholic yeast was concentrated, and the pH of each taste was adjusted to 3.0 with hydrochloric acid. The container containing the moromi was placed in a constant temperature room at 28 ° C. and decomposed and aged. The pH was occasionally adjusted so that the moromi pH was maintained in the range of 2.5 to 3.5. Yeast growth was observed from the start of decomposition, and generation of carbon dioxide gas was observed. After the start of decomposition, the Brix (%) value, which is an indicator of the total nitrogen concentration, increased with the passage of time, and the increase was gentle on the first day, and the value was constant on the second day. On the other hand, the formol titration value, which is an index of free amino acid, gradually increased after one week and became constant after two weeks. Thereafter, after further aging for 2 weeks, the decomposition and aging work was terminated. The number of general bacteria in moromi was 1000 CFU or less per gram of moromi at the end of decomposition and ripening, and there were almost no contaminating bacteria in moromi. The quality was evaluated after adjusting the pH to 5.1 and performing a heating treatment at 80 ° C. for 30 minutes. The total nitrogen of the obtained seasoning liquid was about 0.9% by weight, and amino nitrogen was 0.5% by weight. The seasoning liquid gave a light-colored high-class feeling and a strong flavor of fermented foods, as well as good flavor and richness.

Claims (1)

植物蛋白、魚肉蛋白、動物蛋白及び酵母、又はそれらを含む蛋白質含有素材を調味料原料として耐酸性蛋白分解酵素活性を有する穀物麹でpH2.5から3.5の条件に於いて、15℃〜35℃の範囲に於いて、14日〜35日間、食塩無添加で、分解、熟成することで腐敗細菌増殖の危惧無しに調味料を製造する方法。 15 to 35 ° C at pH 2.5 to 3.5 in cereal meal with acid-resistant protease activity using plant protein, fish protein, animal protein and yeast, or protein-containing materials containing them as seasoning materials In the range of 14 to 35 days without adding salt, decomposing and aging to produce seasonings without fear of spoilage bacteria growth .
JP2013020241A 2013-02-05 2013-02-05 Seasoning and method for producing the same Expired - Fee Related JP6182694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020241A JP6182694B2 (en) 2013-02-05 2013-02-05 Seasoning and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020241A JP6182694B2 (en) 2013-02-05 2013-02-05 Seasoning and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014150729A JP2014150729A (en) 2014-08-25
JP6182694B2 true JP6182694B2 (en) 2017-08-16

Family

ID=51573254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020241A Expired - Fee Related JP6182694B2 (en) 2013-02-05 2013-02-05 Seasoning and method for producing the same

Country Status (1)

Country Link
JP (1) JP6182694B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239965A (en) * 1986-04-10 1987-10-20 Kibun Kk Production of seasoning solution
JP3054079B2 (en) * 1996-07-03 2000-06-19 常盤薬品工業株式会社 Method for producing sesame extract mainly containing water-soluble protein containing trace metals in high concentration
JP4023581B2 (en) * 1999-11-24 2007-12-19 宝ホールディングス株式会社 seasoning
MXPA02001730A (en) * 2000-10-30 2004-02-26 Ajinomoto Kk Method for producing protein hydrolysate.
JP2009207363A (en) * 2008-02-29 2009-09-17 Yamaki Co Ltd Malted rice low in contamination of general contaminated bacteria and high in protease activity and method for producing the same, and fish condiment using the malted rice made by the method and method for producing the same

Also Published As

Publication number Publication date
JP2014150729A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5576265B2 (en) Fermentation ingredients
CA2776669A1 (en) Method for preparing a proteinaceous vegetable flavor enhancer
CN106820065A (en) Enzyme method
US4772480A (en) Method of controllingly aging edible material
KR20090053350A (en) Msg-substitute seasonings using salt-fermented anchovy sauce concentrates and a preparation method thereof
US8728552B2 (en) Process for the preparation of a hydrolysate
JP6283810B2 (en) New fermented seasoning
JP2005304493A (en) Method for production of raw material for food
EP2883460A1 (en) Pulse fermentation
RU2577133C2 (en) Protein substrate hydrolysate and method of preparation thereof
JP3834774B2 (en) Fermented seasoning made from seafood
JP4901235B2 (en) Beverage vinegar
JP5041276B2 (en) Soy sauce, its production method, and processed soy sauce product.
JP6182694B2 (en) Seasoning and method for producing the same
KR101817226B1 (en) Flat fish sikhae containing high GABA and method for preparing thereof
RU2448526C2 (en) Soya bean sauce production method
HU220453B1 (en) Process for the production of seasoning sauce
JP4063473B2 (en) Kokumi seasoning and its manufacturing method
JP3227893B2 (en) Seasoning and its manufacturing method
JP7335295B2 (en) Shio-koji and its production method
JP2013252068A (en) Method for producing enzyme-treated fish-and-shellfish extract
JP5215518B2 (en) Enzymatic degradation product and production method thereof
WO2023208970A1 (en) Fermented umami-containing enzymatically active biomass, umami concentrate, umami paste, solid umami product, salt-free or low-salt umami extract, low-salt umami product, and methods for producing the same
JPH05980B2 (en)
JPH11178540A (en) Production of seasoning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6182694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees