JP6181784B2 - Rotor and motor - Google Patents

Rotor and motor Download PDF

Info

Publication number
JP6181784B2
JP6181784B2 JP2016010843A JP2016010843A JP6181784B2 JP 6181784 B2 JP6181784 B2 JP 6181784B2 JP 2016010843 A JP2016010843 A JP 2016010843A JP 2016010843 A JP2016010843 A JP 2016010843A JP 6181784 B2 JP6181784 B2 JP 6181784B2
Authority
JP
Japan
Prior art keywords
magnet
rotor
claw
magnets
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016010843A
Other languages
Japanese (ja)
Other versions
JP2016054647A (en
Inventor
洋次 山田
洋次 山田
智恵 森田
智恵 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2016010843A priority Critical patent/JP6181784B2/en
Publication of JP2016054647A publication Critical patent/JP2016054647A/en
Application granted granted Critical
Publication of JP6181784B2 publication Critical patent/JP6181784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ロータ及びモータに関するものである。   The present invention relates to a rotor and a motor.

モータに使用されるロータとしては、周方向に複数の爪状磁極をそれぞれ有して組み合わされる2つのロータコアと、それらの間に配置された界磁磁石とを備え、各爪状磁極を交互に異なる磁極に機能させるいわゆる永久磁石界磁のランデル型構造のロータが知られている(例えば、特許文献1参照)。   The rotor used in the motor includes two rotor cores combined with each other having a plurality of claw-shaped magnetic poles in the circumferential direction, and a field magnet arranged between them, and each claw-shaped magnetic pole is alternately arranged. A so-called permanent magnet field Landell-type rotor that functions in different magnetic poles is known (see, for example, Patent Document 1).

そして、特許文献1のロータでは、爪状磁極の径方向内側の面に補助磁石が固着されることで、ロータでの漏れ磁束が低減されている。   And in the rotor of patent document 1, the leakage magnetic flux in a rotor is reduced by adhering an auxiliary magnet to the surface inside radial direction of a claw-shaped magnetic pole.

実開平5−43749号公報Japanese Utility Model Publication No. 5-43749

しかしながら、上記のようなロータを使用したモータでは、補助磁石により漏れ磁束が低減されるものの製品化するにあたりロータとして更なる適正化(高耐久性化や、低コスト化や、高出力化等)が求められている。   However, in the motor using the rotor as described above, although the leakage magnetic flux is reduced by the auxiliary magnet, further optimization as a rotor (high durability, low cost, high output, etc.) is achieved when commercializing the product. Is required.

本発明は、上記問題点を解決するためになされたものであって、その目的は、補助磁石を備えつつ更なる適正化を図ることができるロータ及びそのロータを備えたモータを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotor that can be further optimized while including an auxiliary magnet, and a motor including the rotor. is there.

請求項1に記載の発明では、それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成されており、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、前記コアベース同士の軸方向の間に配置されており、前記第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる軸方向に磁化された界磁磁石とを備えたロータであって、前記爪状磁極同士の周方向の間に配置された極間磁石、及び、前記爪状磁極の径方向内側に配置された背面磁石からなる補助磁石が設けられ、前記補助磁石と前記界磁磁石とを異なる特性の磁石より構成しており、前記界磁磁石をフェライト磁石より構成するとともに、前記補助磁石を、SmFeN磁石より構成したことを要旨とする。 In the first aspect of the present invention, a plurality of claw-shaped magnetic poles protrude outward in the radial direction and extend in the axial direction at equal intervals on the outer periphery of the substantially disk-shaped core base. Are arranged between the first and second rotor cores in which claw-shaped magnetic poles are alternately arranged in the circumferential direction while the core bases are opposed to each other, and the claw-like shape of the first rotor core. A rotor including an axially magnetized field magnet that causes the magnetic pole to function as a first magnetic pole and the claw-shaped magnetic pole of the second rotor core to function as a second magnetic pole. An auxiliary magnet comprising an inter-pole magnet arranged between the circumferential direction and a back magnet arranged radially inside the claw-shaped magnetic pole is provided, and the auxiliary magnet and the field magnet have different characteristics. It constitutes than magnet, off the field magnet Together constitute from writing magnet, the auxiliary magnet, and summarized in that constructed from SmFeN magnets.

同構成によれば、爪状磁極同士の周方向の間に配置された極間磁石、及び、爪状磁極の径方向内側に配置された背面磁石からなる補助磁石が設けられるため、ロータでの漏れ磁束を低減することができる。しかも、補助磁石と、コアベース同士の軸方向の間に配置された界磁磁石とは、異なる特性の磁石より構成されるため、例えば、高耐久性化や、低コスト化や、高出力化が可能となる。   According to this configuration, an auxiliary magnet is provided which includes an interpole magnet disposed between the claw-shaped magnetic poles in the circumferential direction and a back magnet disposed radially inward of the claw-shaped magnetic pole. Leakage magnetic flux can be reduced. Moreover, since the auxiliary magnet and the field magnet arranged between the axial directions of the core bases are composed of magnets having different characteristics, for example, high durability, low cost, and high output are achieved. Is possible.

また、界磁磁石をフェライト磁石より構成することで、例えば、容易に低コスト化が可能となる。この構成を適用することで、容易に上記段落[0008]に記載の効果を得ることができる。
また、補助磁石を、SmFeN磁石より構成することで、例えば、ネオジム磁石より構成した場合等と比べて安価としながら、容易に高耐久性化や高出力化が可能となる。この構成を適用することで、容易に上記段落[0008]に記載の効果を得ることができる。
請求項2に記載の発明では、前記補助磁石、前記界磁磁石よりも保磁力大きいことを要旨とする。
同構成によれば、ロータの外周側に設けられ外部の磁界の影響を受け易い極間磁石を含む補助磁石、界磁磁石よりも保磁力大きいため、極間磁石が早期に減磁してしまうことを抑制することができ、耐久性を向上させることができる。又、ロータの内部に設けられ外部の磁界の影響を受け難い(減磁させる磁力が到達し難い)界磁磁石、極間磁石よりも保磁力小さいことで、界磁磁石を極間磁石と同じ保磁力の磁石より構成した場合に比べて、安価とすることができる。これにより、高耐久性化を図りながら低コスト化を図ることができる。
Further, by configuring the field magnet from a ferrite magnet, for example, the cost can be easily reduced. By applying this configuration, the effects described in paragraph [0008] can be easily obtained.
Further, by configuring the auxiliary magnet from the SmFeN magnet, for example, it is possible to easily increase the durability and increase the output while reducing the cost compared to the case of configuring the auxiliary magnet from a neodymium magnet. By applying this configuration, the effects described in paragraph [0008] can be easily obtained.
In the invention described in claim 2, wherein the auxiliary magnet is summarized as the coercive force's go magnitude than the field magnet.
In this structure, the auxiliary magnet containing easily poles between the magnets provided affected by external magnetic fields on the outer peripheral side of the rotor, because had large coercivity than the field magnet, demagnetization early interpolar magnet Can be suppressed, and durability can be improved. Further, provided in the rotor less susceptible to external magnetic fields (hard to reach magnetic force demagnetized) field magnet is de a coercive force's go smaller than interpolar magnets, machining gap a field magnet Compared to a case where the magnet has the same coercive force as that of the magnet, the cost can be reduced. Thereby, cost reduction can be achieved, achieving high durability.

請求項3に記載の発明では、前記補助磁石、前記界磁磁石よりも残留磁束密度大きいことを要旨とする。
同構成によれば、自身の磁力に基づく磁路長が(界磁磁石等に比べて)短い極間磁石を含む補助磁石、界磁磁石よりも残留磁束密度大きいため、残留磁束密度の大きい磁石を効率的に利用でき、ひいては効率良く高出力化が可能となる。即ち、自身の磁力に基づく磁路長が長い界磁磁石を、残留磁束密度の大きい磁石より構成すると、磁気抵抗及び漏れ磁束が多くなることから、残留磁束密度の大きい磁石を効率的に利用できず、ひいては効率良く高出力化ができないことになるが、これとは逆に残留磁束密度の大きい磁石を効率的に利用でき、効率良く高出力化が可能となる。
In the invention described in claim 3, wherein the auxiliary magnet is summarized as the residual magnetic flux density's go magnitude than the field magnet.
In this structure, the magnetic path length based on its magnetic force (as compared to the field magnet, etc.) auxiliary magnet containing short pole between magnets, because the residual magnetic flux density than the field magnet was large, the residual magnetic flux density A large magnet can be used efficiently, and as a result, high output can be efficiently achieved. That is, if a field magnet having a long magnetic path length based on its own magnetic force is composed of a magnet having a large residual magnetic flux density, the magnetic resistance and the leakage magnetic flux increase, so that a magnet having a large residual magnetic flux density can be used efficiently. As a result, it is impossible to increase the output efficiently, but conversely, a magnet having a large residual magnetic flux density can be used efficiently, and the output can be increased efficiently.

請求項に記載の発明では、請求項1乃至のいずれか1項に記載のロータにおいて、前記補助磁石を、シート状磁石より構成したことを要旨とする。
同構成によれば、補助磁石を、シート状磁石より構成することで、例えば、立方体に焼き固めた専用の極間磁石を製造する場合に比べて、その製造を容易とし、低コスト化を図ることができる。
The gist of the invention according to claim 4 is that, in the rotor according to any one of claims 1 to 3 , the auxiliary magnet is constituted by a sheet-like magnet.
According to the same configuration, the auxiliary magnet is composed of a sheet-like magnet, which makes it easier to manufacture and lowers the cost compared to, for example, manufacturing a dedicated interpolar magnet baked into a cube. be able to.

請求項に記載の発明では、請求項1乃至のいずれか1項に記載のロータを備えたモータを要旨とする。
同構成によれば、モータにおいて、請求項1乃至のいずれか1項に記載の発明の効果を得ることができる。
The invention according to claim 5 is summarized as a motor including the rotor according to any one of claims 1 to 4 .
According to this configuration, the effect of the invention according to any one of claims 1 to 4 can be obtained in the motor.

本発明によれば、補助磁石を備えつつ更なる適正化を図ることができるロータ及びモータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rotor and motor which can aim at the further optimization while providing an auxiliary magnet can be provided.

一実施形態におけるモータの断面図。Sectional drawing of the motor in one Embodiment. 一実施形態におけるロータの斜視図。The perspective view of the rotor in one Embodiment. 一実施形態におけるロータの斜視図。The perspective view of the rotor in one Embodiment. 一実施形態におけるロータの断面図。Sectional drawing of the rotor in one Embodiment. (a)図4におけるa−a断面図。(b)図4におけるb−b断面図。(c)図4におけるc−c断面図。(A) Aa sectional view in FIG. (B) bb sectional drawing in FIG. (C) cc sectional drawing in FIG.

以下、本発明を具体化した一実施形態を図1〜図5に従って説明する。
図1に示すように、モータ1のモータケース2は、有底筒状に形成された筒状ハウジング3と、該筒状ハウジング3のフロント側(図1中、左側)の開口部を閉塞するフロントエンドプレート4とを有している。また、筒状ハウジング3のリア側(図1中、右側)の端部には、回路基板等の電源回路を収容した回路収容ボックス5が取着されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a motor case 2 of a motor 1 closes a cylindrical housing 3 formed in a bottomed cylindrical shape and an opening on the front side (left side in FIG. 1) of the cylindrical housing 3. And a front end plate 4. A circuit housing box 5 that houses a power circuit such as a circuit board is attached to an end of the cylindrical housing 3 on the rear side (right side in FIG. 1).

筒状ハウジング3の内周面にはステータ6が固定されている。ステータ6は、径方向内側に延びる複数のティースを有する電機子コア7と、電機子コア7のティースに巻装されたセグメントコンダクタ(SC)巻線8とを有する。   A stator 6 is fixed to the inner peripheral surface of the cylindrical housing 3. The stator 6 includes an armature core 7 having a plurality of teeth extending radially inward, and a segment conductor (SC) winding 8 wound around the teeth of the armature core 7.

モータ1のロータ11は回転軸12を有し、ステータ6の内側に配置されている。回転軸12は非磁性体の金属シャフトであって、筒状ハウジング3の底部3a及びフロントエンドプレート4に支持された軸受13,14により回転可能に支持されている。   The rotor 11 of the motor 1 has a rotating shaft 12 and is disposed inside the stator 6. The rotating shaft 12 is a non-magnetic metal shaft, and is rotatably supported by bearings 13 and 14 supported by the bottom 3 a of the cylindrical housing 3 and the front end plate 4.

ロータ11は、図2〜図4に示すように、第1及び第2ロータコア21,22と、界磁磁石としての環状磁石23(図4参照)と、補助磁石及び背面磁石としての第1及び第2背面補助磁石24,25と、補助磁石及び極間磁石としての第1及び第2極間磁石26,27とを備える。   2 to 4, the rotor 11 includes first and second rotor cores 21 and 22, an annular magnet 23 (see FIG. 4) as a field magnet, and first and second magnets as an auxiliary magnet and a back magnet. Second backside auxiliary magnets 24, 25 and first and second interpole magnets 26, 27 as auxiliary magnets and interpole magnets are provided.

第1ロータコア21は、略円板状のコアベースとしての第1コアベース21aの外周部に、等間隔に複数(本実施の形態では7つ)の爪状磁極としての第1爪状磁極21bが径方向外側に突出されるとともに軸方向に延出形成されている。第1爪状磁極21bの周方向端面21c,21dは径方向に延びる(軸方向から見て径方向に対して傾斜していない)平坦面とされ、第1爪状磁極21bは軸直交方向断面が扇形状とされている。又、各第1爪状磁極21bの周方向の幅(角度)、即ち前記周方向端面21c,21dの幅(角度)は、周方向に隣り合う第1爪状磁極21b同士の隙間の幅(角度)より小さく設定されている。   The first rotor core 21 has first claw-shaped magnetic poles 21b as a plurality of claw-shaped magnetic poles (seven in the present embodiment) at regular intervals on the outer periphery of the first core base 21a as a substantially disk-shaped core base. Projecting radially outward and extending in the axial direction. The circumferential end surfaces 21c and 21d of the first claw-shaped magnetic pole 21b are flat surfaces extending in the radial direction (not inclined with respect to the radial direction when viewed from the axial direction), and the first claw-shaped magnetic pole 21b has a cross section perpendicular to the axis. Has a fan shape. The circumferential width (angle) of each first claw-shaped magnetic pole 21b, that is, the width (angle) of the circumferential end faces 21c and 21d is the width of the gap between the first claw-shaped magnetic poles 21b adjacent in the circumferential direction ( (Angle) is set smaller.

又、第2ロータコア22は、第1ロータコア21と同形状であって、略円板状のコアベースとしての第2コアベース22aの外周部に、等間隔に複数(本実施の形態では7つ)の爪状磁極としての第2爪状磁極22bが径方向外側に突出されるとともに軸方向に延出形成されている。又、第2爪状磁極22bの周方向端面22c,22dは径方向に延びる(軸方向から見て径方向に対して傾斜していない)平坦面とされ、第2爪状磁極22bは軸直交方向断面が扇形状とされている。又、各第2爪状磁極22bの周方向の幅(角度)、即ち前記周方向端面22c,22dの幅(角度)は、周方向に隣り合う第2爪状磁極22b同士の隙間の幅(角度)より小さく設定されている。そして、第2ロータコア22は、各第2爪状磁極22bがそれぞれ対応する各第1爪状磁極21b間に(即ち、第1爪状磁極21bと周方向に交互に)配置され、又、図4に示すように、対向する第1コアベース21aと第2コアベース22aとの軸方向の間に環状磁石23が配置(挟持)されるようにして第1ロータコア21に対して組み付けられる。   Further, the second rotor core 22 has the same shape as the first rotor core 21, and a plurality of (seven in this embodiment) are arranged at equal intervals on the outer periphery of the second core base 22a as a substantially disk-shaped core base. The second claw-shaped magnetic pole 22b as a claw-shaped magnetic pole protrudes radially outward and extends in the axial direction. In addition, the circumferential end faces 22c and 22d of the second claw-shaped magnetic pole 22b are flat surfaces extending in the radial direction (not inclined with respect to the radial direction when viewed from the axial direction), and the second claw-shaped magnetic pole 22b is orthogonal to the axis. The direction cross section has a fan shape. Further, the circumferential width (angle) of each second claw-shaped magnetic pole 22b, that is, the width (angle) of the circumferential end faces 22c, 22d is the width of the gap between the second claw-shaped magnetic poles 22b adjacent in the circumferential direction ( (Angle) is set smaller. The second rotor core 22 is disposed between the first claw-shaped magnetic poles 21b corresponding to the second claw-shaped magnetic poles 22b (that is, alternately in the circumferential direction with the first claw-shaped magnetic poles 21b). As shown in FIG. 4, the annular magnet 23 is assembled (attached) to the first rotor core 21 so as to be disposed (sandwiched) between the axial directions of the first core base 21a and the second core base 22a facing each other.

環状磁石23は、その外径が第1及び第2コアベース21a,22aの外径と同じに設定され、第1爪状磁極21bを第1の磁極(本実施の形態ではN極)として機能させ、第2爪状磁極22bを第2の磁極(本実施の形態ではS極)として機能させるように、軸方向に磁化されている。   The outer diameter of the annular magnet 23 is set to be the same as the outer diameters of the first and second core bases 21a and 22a, and the first claw-shaped magnetic pole 21b functions as the first magnetic pole (N pole in the present embodiment). The second claw-shaped magnetic pole 22b is magnetized in the axial direction so as to function as a second magnetic pole (S pole in the present embodiment).

又、図3、図4及び図5(c)に示すように、各第1爪状磁極21bの背面(径方向内側の面)と第2コアベース22aの外周面との間には、第1背面補助磁石24が配置されている。第1背面補助磁石24は、その軸直交方向断面が扇形状とされ、第1爪状磁極21bの背面に当接する側が第1爪状磁極21bと同極のN極に、第2コアベース22aに当接する側が同第2コアベース22aと同極のS極となるように径方向に磁化されている。   Also, as shown in FIGS. 3, 4 and 5C, the first claw-shaped magnetic pole 21b has a back surface (radially inner surface) between the second core base 22a and the outer peripheral surface. 1 A back auxiliary magnet 24 is arranged. The first back auxiliary magnet 24 has a fan-shaped cross section in the axis-perpendicular direction, and the second core base 22a has a side that abuts on the back of the first claw-shaped magnetic pole 21b as an N pole having the same polarity as the first claw-shaped magnetic pole 21b. Is magnetized in the radial direction so that the side in contact with the second core base 22a has the same polarity as that of the second core base 22a.

又、図2、図4及び図5(a)に示すように、各第2爪状磁極22bの背面(径方向内側の面)と第1コアベース21aの外周面との間には、第2背面補助磁石25が配置されている。第2背面補助磁石25は、その軸直交方向断面が扇形状とされ、第2爪状磁極22bの背面に当接する側が第2爪状磁極22bと同極のS極に、第1コアベース21aに当接する側が同第1コアベース21aと同極のN極となるように径方向に磁化されている。   Further, as shown in FIGS. 2, 4 and 5A, the second claw-shaped magnetic pole 22b has a back surface (a radially inner surface) and an outer peripheral surface of the first core base 21a. Two rear auxiliary magnets 25 are arranged. The second back auxiliary magnet 25 has a fan-shaped cross section in the direction perpendicular to the axis, and the first core base 21a has a side that contacts the back surface of the second claw-shaped magnetic pole 22b as the S pole having the same polarity as the second claw-shaped magnetic pole 22b. Is magnetized in the radial direction so that the side in contact with the first core base 21a has the same polarity as that of the first core base 21a.

又、第1背面補助磁石24と第2背面補助磁石25とは、図4に示すように、環状磁石23が配置される軸方向位置で互いに軸方向に重なるように、言い換えると環状磁石23が配置される軸方向位置にも配置されるように設定されている。   Further, as shown in FIG. 4, the first back auxiliary magnet 24 and the second back auxiliary magnet 25 overlap each other in the axial direction at the axial position where the annular magnet 23 is arranged. It is set so as to be arranged also at the arranged axial position.

つまり、図2に示すA1の範囲では、図5(a)に示すように、第2背面補助磁石25から矢印に向かって磁束が流れるロータ構造となる。又、図2に示すA2の範囲では、図5(b)に示すように、第1及び第2背面補助磁石24,25によって、通常の(周方向に交互に異なる磁極の永久磁石が配置された)ロータと同様の構造となる。又、図2に示すA3の範囲では、図5(c)に示すように、第1背面補助磁石24から矢印に向かって磁束が流れるロータ構造となる。   That is, in the range of A1 shown in FIG. 2, as shown in FIG. 5A, a rotor structure in which magnetic flux flows from the second back auxiliary magnet 25 toward the arrow is obtained. Further, in the range of A2 shown in FIG. 2, as shown in FIG. 5B, the permanent magnets having different magnetic poles alternately arranged in the circumferential direction are arranged by the first and second back auxiliary magnets 24 and 25. E) It has the same structure as the rotor. Further, in the range of A3 shown in FIG. 2, as shown in FIG. 5C, the rotor structure is such that magnetic flux flows from the first back auxiliary magnet 24 toward the arrow.

又、第1爪状磁極21bと第2爪状磁極22bとの周方向の間には、第1及び第2極間磁石26,27が配置されている。詳しくは、本実施の形態の第1極間磁石26は、第1爪状磁極21bの一方の周方向端面21cと前記第1背面補助磁石24の周方向端面とで形成される平坦面と、第2爪状磁極22bの他方の周方向端面22dと前記第2背面補助磁石25の周方向端面とで形成される平坦面との間に(隙間を全て満たすように)配置されている。又、本実施の形態の第2極間磁石27は、第1爪状磁極21bの他方の周方向端面21dと前記第1背面補助磁石24の周方向端面とで形成される平坦面と、第2爪状磁極22bの一方の周方向端面22cと前記第2背面補助磁石25の周方向端面とで形成される平坦面との間に(隙間を全て満たすように)配置されている。そして、第1及び第2極間磁石26,27は、第1及び第2爪状磁極21b,22bとそれぞれ同じ磁極となるように(第1爪状磁極21b側がN極で、第2爪状磁極22b側がS極となるように)周方向に磁化されている。   In addition, first and second interpole magnets 26 and 27 are arranged between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b in the circumferential direction. Specifically, the first interpole magnet 26 of the present embodiment includes a flat surface formed by one circumferential end surface 21c of the first claw-shaped magnetic pole 21b and the circumferential end surface of the first back auxiliary magnet 24; The other claw-shaped magnetic pole 22b is disposed between the other circumferential end surface 22d and the flat surface formed by the circumferential end surface of the second back auxiliary magnet 25 (so as to fill all gaps). The second interpole magnet 27 of the present embodiment includes a flat surface formed by the other circumferential end surface 21d of the first claw-shaped magnetic pole 21b and the circumferential end surface of the first back auxiliary magnet 24, and The two claw-shaped magnetic poles 22b are arranged between the one circumferential end surface 22c and the flat surface formed by the circumferential end surface of the second back auxiliary magnet 25 (so as to fill all gaps). The first and second interpole magnets 26 and 27 have the same magnetic pole as that of the first and second claw-shaped magnetic poles 21b and 22b (the first claw-shaped magnetic pole 21b side is the N pole, and the second claw-shaped magnet It is magnetized in the circumferential direction (so that the magnetic pole 22b side becomes the S pole).

そして、前記補助磁石(第1及び第2背面補助磁石24,25と、第1及び第2極間磁石26,27)の少なくとも1つと前記環状磁石23とは、異なる特性の磁石より構成されている。   At least one of the auxiliary magnets (first and second backside auxiliary magnets 24 and 25 and first and second interpole magnets 26 and 27) and the annular magnet 23 are composed of magnets having different characteristics. Yes.

詳しくは、本実施の形態の第1及び第2極間磁石26,27は、環状磁石23よりも保磁力及び残留磁束密度(起磁力)の大きい磁石より構成されている。具体的には、環状磁石23はフェライト磁石より構成されている。又、第1及び第2極間磁石26,27は希土類磁石であって、より具体的にはネオジム磁石より構成されている。   Specifically, the first and second interpole magnets 26 and 27 of the present embodiment are composed of magnets having larger coercive force and residual magnetic flux density (magnetomotive force) than the annular magnet 23. Specifically, the annular magnet 23 is composed of a ferrite magnet. The first and second interpole magnets 26 and 27 are rare earth magnets, more specifically, neodymium magnets.

又、本実施の形態の第1及び第2背面補助磁石24,25は、環状磁石23と同じ保磁力及び残留磁束密度のフェライト磁石より構成されている。
次に、上記のように構成されたモータ1の作用について説明する。
Further, the first and second back auxiliary magnets 24 and 25 of the present embodiment are composed of ferrite magnets having the same coercive force and residual magnetic flux density as the annular magnet 23.
Next, the operation of the motor 1 configured as described above will be described.

ロータ11では、補助磁石(第1及び第2背面補助磁石24,25と、第1及び第2極間磁石26,27)が設けられることで、それぞれの配置箇所で漏れ磁束が低減され、ひいては環状磁石23の磁束をモータ1の出力に有効利用することができる。   In the rotor 11, by providing auxiliary magnets (first and second back auxiliary magnets 24, 25 and first and second interpole magnets 26, 27), leakage magnetic flux is reduced at each arrangement location, and consequently The magnetic flux of the annular magnet 23 can be effectively used for the output of the motor 1.

次に、上記実施の形態の特徴的な効果を以下に記載する。
(1)ロータ11の外周側に設けられ外部の磁界の影響を受け易い第1及び第2極間磁石26,27を、環状磁石23(フェライト磁石)よりも保磁力の大きい磁石(ネオジム磁石)より構成したため、第1及び第2極間磁石26,27が早期に減磁してしまうことを抑制することができ、耐久性を向上させることができる。又、ロータ11の内部に設けられ外部の磁界の影響を受け難い(減磁させる磁力が到達し難い)環状磁石23を、第1及び第2極間磁石26,27(ネオジム磁石9)よりも保磁力の小さい磁石(フェライト磁石)より構成することで、環状磁石23を第1及び第2極間磁石26,27と同じ保磁力の磁石より構成した場合に比べて、安価とすることができる。これにより、高耐久性化を図りながら低コスト化を図ることができる。
Next, the characteristic effects of the above embodiment will be described below.
(1) The first and second interpole magnets 26 and 27 which are provided on the outer peripheral side of the rotor 11 and are easily affected by an external magnetic field are magnets (neodymium magnets) having a larger coercive force than the annular magnet 23 (ferrite magnet). Since it comprised more, it can suppress that the 1st and 2nd interpole magnets 26 and 27 demagnetize early, and can improve durability. Further, the annular magnet 23 provided inside the rotor 11 and hardly affected by an external magnetic field (a magnetic force for demagnetization is difficult to reach) is made to be more than the first and second interpole magnets 26 and 27 (neodymium magnet 9). By constituting from a magnet having a small coercive force (ferrite magnet), it is possible to reduce the cost compared to the case where the annular magnet 23 is constructed from magnets having the same coercive force as the first and second interpole magnets 26 and 27. . Thereby, cost reduction can be achieved, achieving high durability.

(2)自身の磁力に基づく磁路長が(環状磁石23等に比べて)短い第1及び第2極間磁石26,27を、環状磁石23(フェライト磁石)よりも残留磁束密度の大きい磁石(ネオジム磁石)より構成したため、残留磁束密度の大きい磁石を効率的に利用でき、ひいては効率良く高出力化が可能となる。即ち、自身の磁力に基づく磁路長が長い環状磁石23を、残留磁束密度の大きい磁石より構成すると、磁気抵抗及び漏れ磁束が多くなることから、残留磁束密度の大きい磁石を効率的に利用できず、ひいては効率良く高出力化ができないことになるが、これとは逆に残留磁束密度の大きい磁石を効率的に利用でき、効率良く高出力化が可能となる。   (2) The first and second interpole magnets 26 and 27 having a short magnetic path length based on their own magnetic force (compared to the annular magnet 23 or the like) have a larger residual magnetic flux density than the annular magnet 23 (ferrite magnet). Since it is composed of (neodymium magnet), a magnet having a large residual magnetic flux density can be used efficiently, and as a result, high output can be efficiently achieved. That is, when the annular magnet 23 having a long magnetic path length based on its own magnetic force is configured from a magnet having a large residual magnetic flux density, the magnetic resistance and the leakage magnetic flux increase, so that a magnet having a large residual magnetic flux density can be used efficiently. As a result, it is impossible to increase the output efficiently, but conversely, a magnet having a large residual magnetic flux density can be used efficiently, and the output can be increased efficiently.

(3)第1及び第2背面補助磁石24,25を、第1及び第2極間磁石26,27(ネオジム磁石)よりも保磁力の小さい磁石(フェライト磁石)より構成したため、例えば、第1及び第2背面補助磁石24,25を第1及び第2極間磁石26,27と同じ保磁力の磁石(ネオジム磁石)より構成した場合に比べて、安価とすることができる。   (3) Since the first and second back auxiliary magnets 24 and 25 are composed of magnets (ferrite magnets) having a smaller coercive force than the first and second interpole magnets 26 and 27 (neodymium magnets), for example, the first And compared with the case where the 2nd back auxiliary magnets 24 and 25 are comprised from the magnet (neodymium magnet) of the same coercive force as the 1st and 2nd interpole magnets 26 and 27, it can be made cheap.

上記実施の形態は、以下のように変更してもよい。
・上記実施形態では、環状磁石23と第1及び第2背面補助磁石24,25とを同じ特性の磁石であるフェライト磁石より構成し、第1及び第2極間磁石26,27をネオジム磁石より構成したが、それらを構成する磁石(種類や特性)を変更してもよい。
The above embodiment may be modified as follows.
In the above embodiment, the annular magnet 23 and the first and second back auxiliary magnets 24 and 25 are made of ferrite magnets having the same characteristics, and the first and second interpole magnets 26 and 27 are made of neodymium magnets. Although it comprised, you may change the magnet (type and characteristic) which comprises them.

例えば、上記実施形態の第1及び第2極間磁石26,27をネオジム磁石以外の希土類磁石(例えばサマリウムコバルト系磁石等)より構成してもよい。このようにしても、上記実施形態の効果と同様の効果を得ることができる。   For example, the first and second interpole magnets 26 and 27 of the above-described embodiment may be composed of rare earth magnets other than neodymium magnets (for example, samarium cobalt magnets). Even if it does in this way, the effect similar to the effect of the said embodiment can be acquired.

又、例えば、上記実施形態の第1及び第2極間磁石26,27をSmFeN磁石より構成してもよい。このようにしても、上記実施形態の効果と同様の効果を得ることができる。又、第1及び第2極間磁石26,27をネオジム磁石より構成した場合に比べて、安価とすることができる。   Further, for example, the first and second interpole magnets 26 and 27 of the above-described embodiment may be composed of SmFeN magnets. Even if it does in this way, the effect similar to the effect of the said embodiment can be acquired. Moreover, it can be made cheaper compared with the case where the 1st and 2nd interpole magnets 26 and 27 are comprised from the neodymium magnet.

又、例えば、上記実施形態の第1及び第2極間磁石26,27をシート状磁石より構成してもよい。尚、シート状磁石とは、シート状の所謂ラバーマグネットやマグネットシートであって、重ねることで厚みを増して第1爪状磁極21bと第2爪状磁極22bとの間に配置してもよいし、特に小型のモータ1に具体化した場合等では1枚を第1爪状磁極21bと第2爪状磁極22bとの間に配置してもよい。このようにすると、例えば、立方体に焼き固めた専用の極間磁石(第1及び第2極間磁石26,27)を製造する場合に比べて、その製造を容易とし、低コスト化を図ることができる。   Further, for example, the first and second interpole magnets 26 and 27 of the above-described embodiment may be configured by sheet-like magnets. The sheet-like magnet is a sheet-like so-called rubber magnet or magnet sheet, and may be disposed between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b by increasing the thickness by overlapping. However, in particular when embodied in a small motor 1, one sheet may be disposed between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b. In this case, for example, compared with the case of producing a dedicated interpole magnet (first and second interpole magnets 26 and 27) baked into a cube, the manufacture is facilitated and the cost is reduced. Can do.

又、例えば、上記実施形態の第1及び第2背面補助磁石24,25を、環状磁石23よりも残留磁束密度の大きい磁石より構成してもよい。具体的には、第1及び第2背面補助磁石24,25を、例えば、環状磁石23よりも残留磁束密度の大きい(グレードの高い)フェライト磁石より構成してもよいし、希土類磁石(ネオジム磁石やサマリウムコバルト系磁石やSmFeN磁石等)より構成してもよい。このようにすると、例えば、第1及び第2背面補助磁石24,25を環状磁石23と同じ残留磁束密度の磁石より構成した場合(上記実施形態)に比べて、高出力とすることができる。   Further, for example, the first and second back auxiliary magnets 24, 25 of the above embodiment may be constituted by magnets having a larger residual magnetic flux density than the annular magnet 23. Specifically, the first and second back auxiliary magnets 24 and 25 may be composed of, for example, a ferrite magnet having a higher residual magnetic flux density (higher grade) than the annular magnet 23, or a rare earth magnet (neodymium magnet). Or a samarium-cobalt magnet or a SmFeN magnet). If it does in this way, it can be set as a high output compared with the case where the 1st and 2nd back auxiliary magnets 24 and 25 are comprised from the magnet of the same residual magnetic flux density as the annular magnet 23 (the said embodiment), for example.

又、例えば、上記各実施形態の第1及び第2背面補助磁石24,25を、第1及び第2極間磁石26,27(ネオジム磁石やサマリウムコバルト系磁石やSmFeN磁石等)と同じ特性の磁石より構成してもよい。   In addition, for example, the first and second back auxiliary magnets 24 and 25 of the above-described embodiments have the same characteristics as the first and second interpole magnets 26 and 27 (neodymium magnet, samarium cobalt-based magnet, SmFeN magnet, etc.). You may comprise from a magnet.

又、例えば、第1及び第2極間磁石26,27と環状磁石23とを同じ特性の磁石より構成するとともに、第1及び第2背面補助磁石24,25のみを、異なる特性の磁石より構成してもよい。   Further, for example, the first and second interpole magnets 26 and 27 and the annular magnet 23 are made of magnets having the same characteristics, and only the first and second back auxiliary magnets 24 and 25 are made of magnets having different characteristics. May be.

又、例えば、上記各実施形態の環状磁石23を、フェライト磁石以外の磁石より構成してもよい。例えば、第1及び第2極間磁石26,27(ネオジム磁石)よりも保磁力や残留磁束密度の小さい(グレードの低い)ネオジム磁石より構成してもよい。   For example, you may comprise the annular magnet 23 of said each embodiment from magnets other than a ferrite magnet. For example, you may comprise from the neodymium magnet whose coercive force and residual magnetic flux density are smaller (low grade) than the 1st and 2nd interpole magnets 26 and 27 (neodymium magnet).

又、上記各実施形態(上記実施形態及び別例)の組み合わせに限らず、目的(例えば、望まれるコストと出力のバランス)に応じて、環状磁石23、第1及び第2背面補助磁石24,25、第1及び第2極間磁石26,27の少なくとも1つを構成する磁石を異なる特性のものに変更して実施してもよい。   In addition to the combination of the above embodiments (the above embodiment and other examples), the annular magnet 23, the first and second back auxiliary magnets 24, depending on the purpose (for example, the desired balance between cost and output), 25, the magnet constituting at least one of the first and second interpole magnets 26, 27 may be changed to one having different characteristics.

・上記実施の形態では、補助磁石として、背面磁石(第1及び第2背面補助磁石24,25)と極間磁石(第1及び第2極間磁石26,27)とを備えるロータ11としたが、これに限定されず、背面磁石と極間磁石のいずれか一方のみを備えたロータに変更してもよい。尚、勿論、この場合、その補助磁石(背面磁石又は極間磁石)と環状磁石23とを異なる特性の磁石より構成する。   In the above embodiment, the rotor 11 includes the back magnet (first and second back auxiliary magnets 24 and 25) and the interpole magnets (first and second interpole magnets 26 and 27) as the auxiliary magnets. However, the present invention is not limited to this, and the rotor may be changed to one having only one of the back magnet and the interpole magnet. Of course, in this case, the auxiliary magnet (back magnet or inter-pole magnet) and the annular magnet 23 are composed of magnets having different characteristics.

上記実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
(イ)前記爪状磁極の径方向内側に設けられた前記補助磁石としての背面磁石を、前記極間磁石よりも保磁力の小さい磁石より構成したことを特徴とする。
The technical idea that can be grasped from the above embodiment will be described below together with the effects thereof.
(A) The back magnet as the auxiliary magnet provided on the radially inner side of the claw-shaped magnetic pole is composed of a magnet having a smaller coercive force than the interpolar magnet.

同構成によれば、爪状磁極の径方向内側に設けられた補助磁石としての背面磁石を、前記極間磁石よりも保磁力の小さい磁石より構成したため、例えば、背面磁石を極間磁石と同じ保磁力の磁石より構成した場合に比べて、安価とすることができる。   According to the same configuration, the back magnet as an auxiliary magnet provided on the radially inner side of the claw-shaped magnetic pole is formed of a magnet having a smaller coercive force than the interpole magnet. For example, the back magnet is the same as the interpole magnet. Compared to the case of a coercive magnet, the cost can be reduced.

(ロ)前記爪状磁極の径方向内側に設けられた前記補助磁石としての背面磁石を、前記界磁磁石よりも残留磁束密度の大きい磁石より構成したことを特徴とする。
同構成によれば、爪状磁極の径方向内側に設けられた補助磁石としての背面磁石を、前記界磁磁石よりも残留磁束密度の大きい磁石より構成したため、例えば、背面磁石を界磁磁石と同じ残留磁束密度の磁石より構成した場合に比べて、高出力とすることができる。
(B) The back magnet as the auxiliary magnet provided on the radially inner side of the claw-shaped magnetic pole is composed of a magnet having a larger residual magnetic flux density than the field magnet.
According to the same configuration, the back magnet as the auxiliary magnet provided on the radially inner side of the claw-shaped magnetic pole is composed of a magnet having a larger residual magnetic flux density than the field magnet. Compared with the case where the magnets have the same residual magnetic flux density, the output can be increased.

・それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる界磁磁石とを備えたロータであって、前記爪状磁極同士の周方向の間には、補助磁石としての極間磁石が設けられ、前記極間磁石を、前記界磁磁石よりも保磁力の大きい磁石より構成したことを要旨とする。   A plurality of claw-shaped magnetic poles projecting radially outward and extending in the axial direction on the outer periphery of each substantially disk-shaped core base, and extending in the axial direction, with the claw-shaped magnetic poles facing each other. Are arranged between the first and second rotor cores arranged alternately in the circumferential direction and the axial directions of the core bases, and are magnetized in the axial direction, so that the claw-shaped magnetic poles of the first rotor core are And a field magnet that allows the claw-shaped magnetic pole of the second rotor core to function as the second magnetic pole, and the auxiliary magnet is interposed between the claw-shaped magnetic poles in the circumferential direction. The gist is that an interpole magnet is provided as a magnet, and the interpole magnet is formed of a magnet having a larger coercive force than the field magnet.

同構成によれば、爪状磁極同士の周方向の間には、補助磁石(極間磁石)が設けられるため、ロータでの漏れ磁束を低減することができる。しかも、極間磁石と、コアベース同士の軸方向の間に配置された界磁磁石とは、異なる特性の磁石より構成されるため、例えば、高耐久性化や、低コスト化や、高出力化が可能となる。   According to this configuration, since the auxiliary magnet (interpolar magnet) is provided between the circumferential directions of the claw-shaped magnetic poles, the leakage magnetic flux in the rotor can be reduced. Moreover, since the interpole magnet and the field magnet arranged between the axial directions of the core bases are composed of magnets having different characteristics, for example, high durability, low cost, and high output are achieved. Can be realized.

同構成によれば、ロータの外周側に設けられ外部の磁界の影響を受け易い極間磁石を、界磁磁石よりも保磁力の大きい磁石より構成したため、極間磁石が早期に減磁してしまうことを抑制することができ、耐久性を向上させることができる。又、ロータの内部に設けられ外部の磁界の影響を受け難い(減磁させる磁力が到達し難い)界磁磁石を、極間磁石よりも保磁力の小さい磁石より構成することで、界磁磁石を極間磁石と同じ保磁力の磁石より構成した場合に比べて、安価とすることができる。これにより、高耐久性化を図りながら低コスト化を図ることができる。   According to this configuration, the interpole magnet provided on the outer peripheral side of the rotor and susceptible to the influence of an external magnetic field is composed of a magnet having a coercive force larger than that of the field magnet. Can be suppressed, and durability can be improved. In addition, a field magnet that is provided inside the rotor and is not easily affected by an external magnetic field (a magnetic force for demagnetization is difficult to reach) is composed of a magnet having a smaller coercive force than an interpole magnet. Can be made cheaper than the case where is made of a magnet having the same coercive force as that of the interpole magnet. Thereby, cost reduction can be achieved, achieving high durability.

・それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる界磁磁石とを備えたロータであって、前記爪状磁極同士の周方向の間には、補助磁石としての極間磁石が設けられ、前記極間磁石を、前記界磁磁石よりも残留磁束密度の大きい磁石より構成したことを要旨とする。   A plurality of claw-shaped magnetic poles projecting radially outward and extending in the axial direction on the outer periphery of each substantially disk-shaped core base, and extending in the axial direction, with the claw-shaped magnetic poles facing each other. Are arranged between the first and second rotor cores arranged alternately in the circumferential direction and the axial directions of the core bases, and are magnetized in the axial direction, so that the claw-shaped magnetic poles of the first rotor core are And a field magnet that allows the claw-shaped magnetic pole of the second rotor core to function as the second magnetic pole, and the auxiliary magnet is interposed between the claw-shaped magnetic poles in the circumferential direction. The gist is that an interpole magnet is provided as a magnet, and the interpole magnet is formed of a magnet having a larger residual magnetic flux density than the field magnet.

同構成によれば、爪状磁極同士の周方向の間には、補助磁石(極間磁石)が設けられるため、ロータでの漏れ磁束を低減することができる。しかも、極間磁石と、コアベース同士の軸方向の間に配置された界磁磁石とは、異なる特性の磁石より構成されるため、例えば、高耐久性化や、低コスト化や、高出力化が可能となる。   According to this configuration, since the auxiliary magnet (interpolar magnet) is provided between the circumferential directions of the claw-shaped magnetic poles, the leakage magnetic flux in the rotor can be reduced. Moreover, since the interpole magnet and the field magnet arranged between the axial directions of the core bases are composed of magnets having different characteristics, for example, high durability, low cost, and high output are achieved. Can be realized.

同構成によれば、自身の磁力に基づく磁路長が(界磁磁石等に比べて)短い極間磁石を、界磁磁石よりも残留磁束密度の大きい磁石より構成したため、残留磁束密度の大きい磁石を効率的に利用でき、ひいては効率良く高出力化が可能となる。即ち、自身の磁力に基づく磁路長が長い界磁磁石を、残留磁束密度の大きい磁石より構成すると、磁気抵抗及び漏れ磁束が多くなることから、残留磁束密度の大きい磁石を効率的に利用できず、ひいては効率良く高出力化ができないことになるが、これとは逆に残留磁束密度の大きい磁石を効率的に利用でき、効率良く高出力化が可能となる。   According to this configuration, the interpole magnet having a short magnetic path length (compared to a field magnet or the like) based on its own magnetic force is composed of a magnet having a higher residual magnetic flux density than the field magnet. Magnets can be used efficiently, and as a result, high output can be efficiently achieved. That is, if a field magnet having a long magnetic path length based on its own magnetic force is composed of a magnet having a large residual magnetic flux density, the magnetic resistance and the leakage magnetic flux increase, so that a magnet having a large residual magnetic flux density can be used efficiently. As a result, it is impossible to increase the output efficiently, but conversely, a magnet having a large residual magnetic flux density can be used efficiently, and the output can be increased efficiently.

・前記爪状磁極の径方向内側には、補助磁石としての背面補助磁石が設けられ、前記背面補助磁石を、前記極間磁石と同じ特性の磁石より構成したことを要旨とする。   A back auxiliary magnet as an auxiliary magnet is provided on the radially inner side of the claw-shaped magnetic pole, and the back auxiliary magnet is composed of a magnet having the same characteristics as the interpole magnet.

11…ロータ、21…第1ロータコア、21a…第1コアベース(コアベース)、21b…第1爪状磁極(爪状磁極)、22…第2ロータコア、22a…第2コアベース(コアベース)、22b…第2爪状磁極(爪状磁極)、23…環状磁石(界磁磁石)、24…第1背面補助磁石(補助磁石)、25…第2背面補助磁石(補助磁石)、26…第1極間磁石(補助磁石及び極間磁石)、27…第2極間磁石(補助磁石及び極間磁石)。   DESCRIPTION OF SYMBOLS 11 ... Rotor, 21 ... 1st rotor core, 21a ... 1st core base (core base), 21b ... 1st claw-shaped magnetic pole (claw-shaped magnetic pole), 22 ... 2nd rotor core, 22a ... 2nd core base (core base) 22b ... second claw-shaped magnetic pole (claw-shaped magnetic pole), 23 ... annular magnet (field magnet), 24 ... first back auxiliary magnet (auxiliary magnet), 25 ... second back auxiliary magnet (auxiliary magnet), 26 ... First interpolar magnet (auxiliary magnet and interpolar magnet), 27 ... second interpolar magnet (auxiliary magnet and interpolar magnet).

Claims (5)

それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成されており、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、
前記コアベース同士の軸方向の間に配置されており、前記第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる軸方向に磁化された界磁磁石と
を備えたロータであって、
前記爪状磁極同士の周方向の間に配置された極間磁石、及び、前記爪状磁極の径方向内側に配置された背面磁石からなる補助磁石が設けられ、
前記補助磁石と前記界磁磁石とを異なる特性の磁石より構成しており、
前記界磁磁石をフェライト磁石より構成するとともに、前記補助磁石を、SmFeN磁石より構成したことを特徴とするロータ。
A plurality of claw-shaped magnetic poles are projected radially outward at equal intervals on the outer peripheral portion of the substantially disk-shaped core base, and are formed in a claw shape with the core bases facing each other. First and second rotor cores in which magnetic poles are alternately arranged in the circumferential direction;
Arranged between the axial directions of the core bases, the claw-shaped magnetic pole of the first rotor core functions as a first magnetic pole, and the claw-shaped magnetic pole of the second rotor core functions as a second magnetic pole. A rotor comprising a field magnet magnetized in the axial direction,
An interpole magnet disposed between the claw-shaped magnetic poles in the circumferential direction, and an auxiliary magnet composed of a back magnet disposed on the radial inner side of the claw-shaped magnetic pole,
The auxiliary magnet and the field magnet are composed of magnets having different characteristics ,
A rotor characterized in that the field magnet is composed of a ferrite magnet, and the auxiliary magnet is composed of an SmFeN magnet .
請求項1に記載のロータにおいて、
前記補助磁石、前記界磁磁石よりも保磁力大きいことを特徴とするロータ。
The rotor according to claim 1, wherein
The auxiliary magnet rotor characterized by the coercive force's go magnitude than the field magnet.
請求項1又は2に記載のロータにおいて、
前記補助磁石、前記界磁磁石よりも残留磁束密度大きいことを特徴とするロータ。
The rotor according to claim 1 or 2,
The auxiliary magnet rotor characterized by the residual magnetic flux density's go magnitude than the field magnet.
請求項1乃至のいずれか1項に記載のロータにおいて、
前記補助磁石を、シート状磁石より構成したことを特徴とするロータ。
The rotor according to any one of claims 1 to 3 ,
A rotor characterized in that the auxiliary magnet is composed of a sheet magnet.
請求項1乃至のいずれか1項に記載のロータを備えたことを特徴とするモータ。 Motor comprising the rotor according to any one of claims 1 to 4.
JP2016010843A 2016-01-22 2016-01-22 Rotor and motor Active JP6181784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010843A JP6181784B2 (en) 2016-01-22 2016-01-22 Rotor and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010843A JP6181784B2 (en) 2016-01-22 2016-01-22 Rotor and motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011239507A Division JP2013099096A (en) 2010-11-19 2011-10-31 Rotor and motor

Publications (2)

Publication Number Publication Date
JP2016054647A JP2016054647A (en) 2016-04-14
JP6181784B2 true JP6181784B2 (en) 2017-08-16

Family

ID=55745426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010843A Active JP6181784B2 (en) 2016-01-22 2016-01-22 Rotor and motor

Country Status (1)

Country Link
JP (1) JP6181784B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116610A (en) * 1978-03-03 1979-09-11 Hitachi Ltd Hook shaped magnetic pole generator
JPH0543749U (en) * 1991-11-14 1993-06-11 アスモ株式会社 Rotor of rotating magnetic field type motor
JP2674556B2 (en) * 1995-04-12 1997-11-12 株式会社デンソー Vehicle alternator
JP3974315B2 (en) * 2000-07-25 2007-09-12 三菱電機株式会社 AC generator
JP4300702B2 (en) * 2000-10-25 2009-07-22 株式会社デンソー AC generator field rotor
JP4043932B2 (en) * 2002-12-12 2008-02-06 三菱電機株式会社 Rotating electrical machine rotor
JP2006304539A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Rotor structure of axial gap rotating electric machine
JP5347587B2 (en) * 2009-03-10 2013-11-20 株式会社デンソー Claw pole type motor

Also Published As

Publication number Publication date
JP2016054647A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
JP2017011995A (en) Rotor and motor
JP2013099096A (en) Rotor and motor
JP5964679B2 (en) Rotor and motor
CN103095015A (en) Rotor and motor
JP6001379B2 (en) Rotor and motor
US10177613B2 (en) Rotor and motor
JP5826596B2 (en) Rotor and motor
JP5869306B2 (en) Rotor and motor
JP5801693B2 (en) motor
JP5944683B2 (en) Rotor and motor
JP2013005627A (en) Rotor and motor
JP5855903B2 (en) Rotor and motor
JP5852418B2 (en) Rotor and motor
JP6181784B2 (en) Rotor and motor
JP5814160B2 (en) Rotor and motor
JP6062991B2 (en) Rotor and motor
JP2013169073A (en) Rotor and motor
JP2013118802A (en) Rotor and motor
JP5848097B2 (en) Rotor and motor
JP6686310B2 (en) motor
JP2017046386A (en) Permanent magnet electric motor
JP2014220879A (en) Permanent magnet rotary electric machine
JP6001380B2 (en) Rotor and motor
JP7401737B2 (en) rotor, motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170720

R150 Certificate of patent or registration of utility model

Ref document number: 6181784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250