JP6180827B2 - Sample introduction device - Google Patents

Sample introduction device Download PDF

Info

Publication number
JP6180827B2
JP6180827B2 JP2013140274A JP2013140274A JP6180827B2 JP 6180827 B2 JP6180827 B2 JP 6180827B2 JP 2013140274 A JP2013140274 A JP 2013140274A JP 2013140274 A JP2013140274 A JP 2013140274A JP 6180827 B2 JP6180827 B2 JP 6180827B2
Authority
JP
Japan
Prior art keywords
flow path
sample
cleaning liquid
switching valve
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013140274A
Other languages
Japanese (ja)
Other versions
JP2015015118A (en
Inventor
絵理 山下
絵理 山下
伊藤 伸也
伸也 伊藤
信二 吉岡
信二 吉岡
吉江 正樹
正樹 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013140274A priority Critical patent/JP6180827B2/en
Publication of JP2015015118A publication Critical patent/JP2015015118A/en
Application granted granted Critical
Publication of JP6180827B2 publication Critical patent/JP6180827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、質量分析計に試料を導入する試料導入装置に関し、特に分離を伴わず試料を質量分析計に導入する試料導入装置における測定中の流路詰まりを低減させる技術に関する。   The present invention relates to a sample introduction apparatus that introduces a sample into a mass spectrometer, and more particularly to a technique for reducing clogging of a channel during measurement in a sample introduction apparatus that introduces a sample into a mass spectrometer without separation.

血液や尿および細胞培養液など多種多様な成分を含む試料溶液から、感度良く目的とする測定対象成分を測定する方法として、高速液体クロマトグラフ質量分析装置やフローインジェクション質量分析装置などが知られている。また固相抽出などの前処理を実施した試料を直接質量分析装置に導入する方法もある。前処理済み試料を直接質量分析装置に導入する方法は、試料前処理の自動化技術の向上などにより、多数の試料を短時間で精度良く測定できる手法として近年注目を浴びている。   High-performance liquid chromatograph mass spectrometers and flow injection mass spectrometers are known as methods for measuring target components with high sensitivity from sample solutions containing various components such as blood, urine, and cell culture media. Yes. There is also a method in which a sample subjected to pretreatment such as solid phase extraction is directly introduced into a mass spectrometer. In recent years, a method of directly introducing a pretreated sample into a mass spectrometer has attracted attention as a technique capable of measuring a large number of samples with high accuracy in a short time due to improvements in automation technology of sample pretreatment.

質量分析装置のイオン化法の一つに、大気圧イオン化法(API;Atomospheric Pressure Ionization) がある。APIは試料溶液を細管に導入し、ガスの導入や電圧の印加等で測定対象成分をイオン化する。高速液体クロマトグラフ質量分析装置やフローインジェクション質量分析装置などのイオン源には主にAPIが用いられる。APIにはエレクトロスプレーイオン化法(ESI;Electrospray Ionization)や、大気圧化学イオン化法(APCI;Atomospheric Pressure Chemical Ionization)等がある。特にESIは、イオン化効率の高さや適用可能測定対象成分の多さから汎用される。   One ionization method of a mass spectrometer is an atmospheric pressure ionization (API). The API introduces a sample solution into a narrow tube and ionizes a measurement target component by introducing a gas or applying a voltage. An API is mainly used for an ion source such as a high performance liquid chromatograph mass spectrometer or a flow injection mass spectrometer. The API includes an electrospray ionization (ESI) method, an atmospheric pressure chemical ionization (APCI) method, and the like. In particular, ESI is widely used because of its high ionization efficiency and the number of applicable measurement target components.

ESIにおいて試料溶液は電圧を印加した細管先端から微細な液滴として噴霧される。液滴は微細であるほどイオン放出効率が良く測定感度が向上する。そのため、高感度分析を目的として、より径の小さい細管の使用が好まれる。しかし一方で、細管の径が小さくなると、試料中の夾雑成分等で流路詰まりが発生しやすくなるという問題が生じる。   In ESI, the sample solution is sprayed as fine droplets from the tip of a thin tube to which a voltage is applied. The finer the droplet, the better the ion emission efficiency and the measurement sensitivity. Therefore, for the purpose of high-sensitivity analysis, it is preferable to use a capillary with a smaller diameter. However, on the other hand, when the diameter of the narrow tube is reduced, there arises a problem that the clogging of the flow path is likely to occur due to contaminant components in the sample.

このように細管に詰まりが発生した場合、測定が中断するばかりでなく、洗浄および部品交換作業を測定者が自ら行う必要があり、特に多くの試料を自動的に連続測定する場合などは、著しく測定の時間効率を低下させることになる。   When clogging occurs in this way, not only is the measurement interrupted, but the measurer must perform the cleaning and parts replacement work himself, especially when many samples are automatically continuously measured. This will reduce the time efficiency of the measurement.

イオン化部細管の詰まりを回避する方法として、特許文献1ではイオン源内に洗浄瓶を配置し、測定間に細管先端部を移動させて洗浄液に浸す洗浄モードを備えた質量分析装置を提供している。   As a method for avoiding clogging of the ionization section capillary, Patent Document 1 provides a mass spectrometer equipped with a cleaning mode in which a cleaning bottle is arranged in an ion source and the tip of the capillary is moved between measurements and immersed in a cleaning liquid. .

イオン化部細管の詰まりを回避するさらに別の方法として、特許文献2では、流路内に設けた流量計の計測値が一定値以下かつ圧力計の計測値が一定値以になると、測定を中断して洗浄溶液を送液して細管を洗浄する手段を提供している。また、流量計の値が正常値以下一定値以上の間は、イオン検出強度を自動補正することで測定の定量正確さを確保することができるとしている。   As yet another method for avoiding clogging of the ionization section tubule, in Patent Document 2, the measurement is interrupted when the measured value of the flow meter provided in the flow path is less than a certain value and the measured value of the pressure gauge is less than a certain value. Thus, a means for feeding the cleaning solution to clean the capillary is provided. In addition, while the value of the flow meter is below the normal value and above a certain value, the ion detection intensity is automatically corrected to ensure the quantitative accuracy of the measurement.

WO2003/065406号公報WO2003 / 065406 特開2004−127709号公報JP 2004-127709 A

特許文献1の方法では、細管を移動させる専用の駆動部およびイオン源を必要とするため、試料導入部の構成が複雑になる。   In the method of Patent Document 1, a dedicated drive unit and an ion source for moving the thin tube are required, so that the configuration of the sample introduction unit is complicated.

また、特許文献2の方法では、洗浄液の送液により細管内部を洗浄可能であるが、測定とは別に洗浄時間を必要とすることから、測定の時間効率が低下してしまう。   Further, in the method of Patent Document 2, the inside of the thin tube can be cleaned by feeding a cleaning solution, but since the cleaning time is required separately from the measurement, the time efficiency of the measurement is lowered.

本発明の目的は、生体試料を処理した試料液を大気圧イオン化法を用いた質量分析計にて測定する際に、簡単な構成で測定の時間効率を下げることなくイオン化部詰まりの発生を抑制することができる試料導入装置を提供することである。   The object of the present invention is to suppress the occurrence of clogging of ionized parts without reducing the time efficiency of measurement with a simple configuration when measuring a sample solution obtained by treating a biological sample with a mass spectrometer using atmospheric pressure ionization. An object of the present invention is to provide a sample introduction device capable of performing the above.

上記課題を解決するために、本発明の試料導入装置は、溶媒を用いて試料を質量分析計へと導入する試料導入装置であり、溶媒収容部と、溶媒を送液する溶媒送液部と、流路上に試料を導入する試料導入手段と、流路を切り替える第1流路切り替えバルブと、第1流路切り替えバルブに接続されたサンプルループと、洗浄液収容部と、洗浄液を送液する洗浄液送液部と、を備え、第1流路切り替えバルブは、溶媒がサンプルループを介さずに質量分析計側へ送液され、かつ、試料がサンプルループへ送液される第1流路と、溶媒がサンプルループを介して質量分析計側へ送液される第2流路とを切り替えるバルブであり、洗浄液送液部は、第1流路切り替えバルブが、第1流路を形成する時に、洗浄液を質量分析計側へ送液することを特徴とする。   In order to solve the above problems, a sample introduction device of the present invention is a sample introduction device that introduces a sample into a mass spectrometer using a solvent, and includes a solvent storage unit, a solvent solution supply unit that supplies a solvent, Sample introduction means for introducing a sample onto the flow path, a first flow path switching valve for switching the flow path, a sample loop connected to the first flow path switching valve, a cleaning liquid container, and a cleaning liquid for sending the cleaning liquid A first flow path switching valve, wherein the solvent is fed to the mass spectrometer without passing through the sample loop, and the sample is fed to the sample loop; This is a valve that switches between the second flow path through which the solvent is fed to the mass spectrometer via the sample loop, and the cleaning liquid feed section is configured such that when the first flow path switching valve forms the first flow path, It is characterized by sending the cleaning liquid to the mass spectrometer side. That.

本発明によれば、試料測定間に洗浄液を送液することで、連続した測定の時間効率を下げることなく、流路詰まりの発生を低減できる。   According to the present invention, the flow of clogging can be reduced without reducing the time efficiency of continuous measurement by feeding the cleaning liquid between sample measurements.

本発明による試料導入装置と接続された質量分析装置の一実施例である。It is one Example of the mass spectrometer connected with the sample introduction apparatus by this invention. 本発明の実施により質量分析計で観測されるイオンクロマトグラムの概念図である。It is a conceptual diagram of the ion chromatogram observed with a mass spectrometer by implementation of this invention. 夾雑物イオン強度による次測定判断のフローチャートである。It is a flowchart of the next measurement judgment by impurity ionic strength. 標準物質イオン強度による次測定判断のフローチャートである。It is a flowchart of the next measurement judgment by standard substance ionic strength.

以下、本発明の実施例を、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例の主要構成について図1を用いて説明する。具体的には、試料測定間に洗浄液を送液する試料導入部を備えたESI−MSについて説明する。   The main configuration of this embodiment will be described with reference to FIG. Specifically, an ESI-MS provided with a sample introduction unit for feeding a cleaning liquid between sample measurements will be described.

図1のESI−MSは、溶媒収容部1と、溶媒送液ポンプ2と、その流路に接続された六方バルブ3と、六方バルブ3の切り替えにより流路に試料液を導入するサンプルループ4と、サンプルループ4に試料を充填する試料供給部11と、試料液中の目的成分を検出する質量分析計10と、六方バルブ3と質量分析計10の間に配置された四方バルブ5と、四方バルブ5に接続された廃液流路6と、洗浄液収容部9と、洗浄液収容部9から洗浄液を吸引・吐出するシリンジポンプ8と、四方バルブ5とシリンジポンプ8の間に配置され洗浄液吸引時に洗浄液収容部9とシリンジポンプ8を接続する三方バルブ7と、これらを制御しまた質量分析計10で得られたシグナルを記録する制御部12から構成される。   The ESI-MS in FIG. 1 includes a solvent container 1, a solvent feed pump 2, a six-way valve 3 connected to the channel, and a sample loop 4 that introduces a sample solution into the channel by switching the six-way valve 3. A sample supply unit 11 for filling the sample loop 4 with the sample, a mass spectrometer 10 for detecting a target component in the sample liquid, a four-way valve 5 disposed between the hexagonal valve 3 and the mass spectrometer 10, A waste liquid flow path 6 connected to the four-way valve 5, a cleaning liquid container 9, a syringe pump 8 that sucks and discharges the cleaning liquid from the cleaning liquid container 9, and a four-way valve 5 and the syringe pump 8 that are disposed between the four-way valve 5 and the syringe pump 8 The three-way valve 7 that connects the cleaning liquid storage unit 9 and the syringe pump 8 and the control unit 12 that controls these and records the signal obtained by the mass spectrometer 10 are configured.

六方バルブ3は、6箇所の流路接続部を有し、隣接する2箇所のいずれかと接続するように流路を切り替えることが出来る。六方バルブ3には2種類の流路切り替え位置がある。図1に実線で示す流路がLoadであり、溶媒送液ポンプ2から送られる溶媒収容部1の溶媒は、サンプルループ4を介さずに四方バルブ5に送液される。また、試料供給部11からサンプルループ4へ試料が導入される。一方、図1の点線で示す流路がInjectであり、溶媒送液ポンプ2からの送液は、サンプルループ4を介して質量分析計10へ送られる。   The hexagonal valve 3 has six flow path connecting portions, and can switch the flow path so as to connect to either of two adjacent positions. The six-way valve 3 has two types of flow path switching positions. The flow path indicated by the solid line in FIG. 1 is Load, and the solvent in the solvent storage unit 1 sent from the solvent feed pump 2 is sent to the four-way valve 5 without going through the sample loop 4. A sample is introduced from the sample supply unit 11 into the sample loop 4. On the other hand, the flow path indicated by the dotted line in FIG. 1 is Inject, and the liquid feed from the solvent liquid feed pump 2 is sent to the mass spectrometer 10 via the sample loop 4.

四方バルブ5には、2種類の流路切り替え位置がある。一つは六方バルブ3と質量分析計10を接続し、三方バルブ7と廃液流路6を接続する、図1に実線で示された流路である。もう一つは、六方バルブ3と廃液流路6を接続し、三方バルブ7と質量分析計10を接続する、図1に点線で示された流路である。   The four-way valve 5 has two types of flow path switching positions. One is a flow path indicated by a solid line in FIG. 1, which connects the six-way valve 3 and the mass spectrometer 10 and connects the three-way valve 7 and the waste liquid flow path 6. The other is a flow path indicated by a dotted line in FIG. 1 that connects the six-way valve 3 and the waste liquid flow path 6 and connects the three-way valve 7 and the mass spectrometer 10.

三方バルブ7には、2種類の流路切り替え位置がある。シリンジポンプ8が吸引時は洗浄液収容部9とシリンジポンプ8を接続する図1に点線で示された流路を、吐出時はシリンジポンプ8と四方バルブ5を接続する実線で示された流路位置をとる。   The three-way valve 7 has two types of flow path switching positions. When the syringe pump 8 is aspirated, the flow path indicated by the dotted line in FIG. 1 that connects the cleaning liquid container 9 and the syringe pump 8 is shown, and when discharged, the flow path indicated by the solid line that connects the syringe pump 8 and the four-way valve 5 Take position.

ここで、本実施例における構成要素の動作について図1および図2を用いて説明する。測定準備工程としてサンプルループ4に、試料供給部11から測定対象成分を含む試料液が送られ充填される。この際、六方バルブ3はLoadの流路をとる。この時、溶媒送液ポンプ2は、試料測定に適した組成で予め調製された溶媒収容部1の溶媒を質量分析装置10側へ送液する。四方バルブ5は六方バルブ3と質量分析計10を接続する流路をとる。試料測定工程は、六方バルブ3がLoadからInjectに切替ることで開始される。サンプルループ4内に充填された試料は、送溶媒送液ポンプ1からの送液により質量分析計10に到達し、検出される。試料を連続して測定する場合、この測定準備および測定の動作が繰り返し実施される。   Here, the operation of the components in the present embodiment will be described with reference to FIGS. As a measurement preparation step, a sample liquid containing a measurement target component is sent from the sample supply unit 11 to the sample loop 4 and filled therein. At this time, the six-way valve 3 takes a load flow path. At this time, the solvent feed pump 2 feeds the solvent in the solvent container 1 prepared in advance with a composition suitable for sample measurement to the mass spectrometer 10 side. The four-way valve 5 takes a flow path connecting the six-way valve 3 and the mass spectrometer 10. The sample measurement process starts when the six-way valve 3 is switched from Load to Inject. The sample filled in the sample loop 4 reaches the mass spectrometer 10 by the liquid feeding from the solvent feeding pump 1 and is detected. When the sample is continuously measured, the measurement preparation and measurement operations are repeatedly performed.

連続測定において、一測定終了後、次の測定が開始されるまでには、六方バルブ3がInjectからLoadに切り替わり、サンプルループ4内に次の測定試料が導入される、という測定準備のための時間が必要である。本実施例では、この測定準備工程に流路の洗浄を実施する。   In continuous measurement, after the end of one measurement, until the next measurement is started, the six-way valve 3 is switched from Inject to Load, and the next measurement sample is introduced into the sample loop 4. I need time. In this embodiment, the flow path is cleaned in this measurement preparation step.

試料測定工程中に、洗浄液送液準備のため、三方バルブ7は洗浄液収容部9とシリンジポンプ8を接続する流路をとり、シリンジポンプ8は必要量の洗浄液を洗浄液収容部9から吸引する。試料測定工程が終了し、測定準備工程になると、三方バルブ7はシリンジポンプ8と四方バルブ5を接続する流路に、また四方バルブ5は三方バルブ7と質量分析計10を接続する流路に切り替わる。それと同期して、シリンジポンプ8が吐出を開始することで、四方バルブ5から質量分析計10の間の流路が洗浄液の送液により洗浄される。   During the sample measurement process, the three-way valve 7 takes a flow path connecting the cleaning liquid container 9 and the syringe pump 8 in order to prepare for feeding the cleaning liquid, and the syringe pump 8 sucks a necessary amount of the cleaning liquid from the cleaning liquid container 9. When the sample measurement process is completed and the measurement preparation process is started, the three-way valve 7 is a flow path connecting the syringe pump 8 and the four-way valve 5, and the four-way valve 5 is a flow path connecting the three-way valve 7 and the mass spectrometer 10. Switch. In synchronism with this, the syringe pump 8 starts discharging, whereby the flow path between the four-way valve 5 and the mass spectrometer 10 is cleaned by feeding the cleaning liquid.

サンプルループ4内へ試料が充填されて測定準備が完了すると、六方バルブ3がLoadからInjectに切り替わる。この六方バルブ3の切り替えと同期して、四方バルブ5が溶媒送液ポンプ2からの送液と質量分析計10を接続する流路に、三方バルブ7は洗浄液収容部9とシリンジポンプ7を接続する流路に切り替わることで、次の測定が開始される。   When the sample is filled into the sample loop 4 and the measurement preparation is completed, the six-way valve 3 is switched from Load to Inject. In synchronization with the switching of the six-way valve 3, the four-way valve 5 connects the flow from the solvent feed pump 2 and the mass spectrometer 10, and the three-way valve 7 connects the cleaning liquid container 9 and the syringe pump 7. The next measurement is started by switching to the flow path.

以上のように、本実施例によれば、測定準備中に洗浄液を送液することで、測定の時間効率を下げることなく、流路細管部の詰まりの発生を低減することができる。   As described above, according to the present embodiment, by supplying the cleaning liquid during measurement preparation, it is possible to reduce the occurrence of clogging of the channel narrow tube portion without reducing the measurement time efficiency.

本発明を用いた別の実施例として、流路洗浄液中の夾雑物イオン強度により次測定の実施もしくは再洗浄の実施を自動で判断する機能を備えた試料導入装置について説明する。   As another embodiment using the present invention, a sample introduction apparatus having a function of automatically determining whether to perform the next measurement or to perform re-washing based on the impurity ion intensity in the channel washing liquid will be described.

本実施例では、実施例1で示す試料導入装置は、洗浄液送液中に観察される夾雑物イオン強度を次測定の実施判断に自動でフィードバックする機能を備える。   In this embodiment, the sample introduction apparatus shown in Embodiment 1 has a function of automatically feeding back the impurity ion intensity observed during the cleaning liquid feeding to the determination of the next measurement.

試料測定後の流路を送液された洗浄液中には、試料由来の夾雑物イオンが含まれる。測定中は試料溶液中の測定対象成分を、測定準備中は洗浄液中の夾雑物イオンを観察することで、制御部12では図2に示すようなイオンクロマトグラムが得られる。   The cleaning liquid sent through the flow path after the sample measurement contains impurity ions derived from the sample. The control unit 12 obtains an ion chromatogram as shown in FIG. 2 by observing the measurement target component in the sample solution during the measurement and observing the contaminant ions in the cleaning solution during the measurement preparation.

図3を用いて、次測定の実施を判断する処理の概要を説明する。測定準備中に観察される夾雑物イオン強度が、所定の値以下の場合、制御部12は次の試料測定の実施を判断する。夾雑物イオン強度が、所定の値以上である場合、洗浄が不十分として再度の洗浄液送液の実施を判断する。夾雑部イオン強度が所定の値以下になるまでこれを繰り返す。もしくは洗浄回数の上限を予め設定しておいてもよい。   With reference to FIG. 3, an outline of processing for determining execution of the next measurement will be described. When the impurity ion intensity observed during the measurement preparation is equal to or less than a predetermined value, the control unit 12 determines to perform the next sample measurement. When the impurity ion intensity is equal to or higher than a predetermined value, it is determined that the cleaning liquid feeding is performed again because the cleaning is insufficient. This is repeated until the ionic strength of the contamination portion becomes a predetermined value or less. Or you may set the upper limit of the frequency | count of washing | cleaning previously.

以上のように、本実施例によれば、洗浄液中の夾雑物イオン強度をモニタリングすることで、流路の詰まりを低減すると同時に、洗浄効果および装置状態を自動管理することができる。   As described above, according to the present embodiment, by monitoring the impurity ion intensity in the cleaning liquid, the clogging of the flow path can be reduced, and at the same time, the cleaning effect and the apparatus state can be automatically managed.

本発明を用いた別の実施例として、標準物質を添加した洗浄液を用い、流路洗浄液中の標準物質イオン強度により次測定の実施もしくは再洗浄の実施を自動で判断する機能を備えた試料導入装置について説明する。   As another embodiment using the present invention, a sample introduction having a function of automatically determining whether the next measurement or re-washing is performed based on the ionic strength of the standard substance in the flow path washing liquid using a washing liquid added with a standard substance. The apparatus will be described.

本実施例では、実施例1で示す試料導入装置は、洗浄液送液中に観察される標準物質イオン強度を次測定の実施判断に自動でフィードバックする機能を備える。   In the present embodiment, the sample introduction apparatus shown in the first embodiment has a function of automatically feeding back the standard substance ion intensity observed during the feeding of the cleaning liquid to the execution determination of the next measurement.

測定中は試料溶液中の測定対象成分を、測定準備中は洗浄液中の標準物質イオンを観察することで、制御部12では図2に示すようなイオンクロマトグラムが得られる。   The control unit 12 obtains an ion chromatogram as shown in FIG. 2 by observing the measurement target component in the sample solution during the measurement and observing the standard substance ions in the cleaning liquid during the measurement preparation.

図4を用いて、次測定の実施を判断する処理の概要を説明する。測定準備中に観察される標準物質イオン強度が、所定の値以上の場合、測定感度が確保できているとして、制御部12は次の試料測定の実施を判断する。標準物質イオン強度が、所定の値以下である場合、洗浄が不十分として再度の洗浄液送液の実施を判断する。標準物質イオン強度が所定の値以上になるまでこれを繰り返す。もしくは洗浄回数の上限を予め設定しておいてもよい。   The outline of the process for determining whether or not to perform the next measurement will be described with reference to FIG. When the standard substance ionic strength observed during the measurement preparation is equal to or higher than a predetermined value, the control unit 12 determines that the next sample measurement is performed, assuming that the measurement sensitivity is secured. When the standard substance ionic strength is equal to or lower than a predetermined value, it is determined that cleaning is not performed sufficiently and cleaning liquid feeding is performed again. This is repeated until the standard substance ionic strength reaches a predetermined value or more. Or you may set the upper limit of the frequency | count of washing | cleaning previously.

以上のように、本実施例によれば、洗浄液中の標準物質イオン強度をモニタリングすることで、流路の詰まりを低減すると同時に、洗浄効果および装置状態を自動管理することができる。   As described above, according to the present embodiment, by monitoring the standard substance ionic strength in the cleaning liquid, it is possible to reduce clogging of the flow path and simultaneously manage the cleaning effect and the apparatus state.

1 溶媒収容部
2 溶媒送液ポンプ
3 六方バルブ
4 サンプルループ
5 四方バルブ
6 廃液流路
7 三方バルブ
8 シリンジポンプ
9 洗浄液収容部
10 質量分析計
11 試料供給部
12 制御部
DESCRIPTION OF SYMBOLS 1 Solvent accommodating part 2 Solvent delivery pump 3 Six-way valve 4 Sample loop 5 Four-way valve 6 Waste liquid flow path 7 Three-way valve 8 Syringe pump 9 Cleaning liquid accommodating part 10 Mass spectrometer 11 Sample supply part 12 Control part

Claims (5)

溶媒を用いて試料を質量分析計へと導入する試料導入装置であり、
溶媒収容部と、溶媒を送液する溶媒送液部と、流路上に試料を導入する試料導入手段と、流路を切り替える第1流路切り替えバルブおよび第2流路切り替えバルブと、第1流路切り替えバルブに接続されたサンプルループと、洗浄液収容部と、洗浄液を送液する洗浄液送液部と、を備え、
第1流路切り替えバルブは、溶媒がサンプルループを介さずに質量分析計側へ送液され、かつ、試料がサンプルループへ送液される第1流路と、溶媒がサンプルループを介して質量分析計側へ送液される第2流路とを切り替えるバルブであり、
第2流路切り替えバルブは第1流路切り替えバルブよりも質量分析計側に配置され、第1流路切り替えバルブと質量分析計が接続される第3流路と、洗浄液送液部と質量分析計が接続される第4流路とを切り替えるバルブであり、
洗浄液送液部は、第1流路切り替えバルブが第1流路を形成し、第2流路切り替えバルブが第4流路を形成する時に、洗浄液を質量分析計側へ送液することを特徴とする、試料導入装置。
A sample introduction device that introduces a sample into a mass spectrometer using a solvent,
A solvent accommodating portion; a solvent feeding portion for feeding a solvent; sample introduction means for introducing a sample onto the flow passage; a first flow passage switching valve and a second flow passage switching valve for switching the flow passage; A sample loop connected to the path switching valve, a cleaning liquid storage section, and a cleaning liquid feeding section for feeding the cleaning liquid,
The first channel switching valve has a first channel through which the solvent is fed to the mass spectrometer without passing through the sample loop, and the sample is fed into the sample loop, and the mass of the solvent through the sample loop. It is a valve that switches between the second flow path sent to the analyzer side,
The second flow path switching valve is disposed on the mass spectrometer side with respect to the first flow path switching valve, the third flow path to which the first flow path switching valve and the mass spectrometer are connected, the cleaning liquid feeding section, and the mass analysis A valve that switches between the fourth flow path to which the meter is connected,
The cleaning liquid supply unit supplies the cleaning liquid to the mass spectrometer when the first flow path switching valve forms the first flow path and the second flow path switching valve forms the fourth flow path. A sample introduction device.
請求項1において、In claim 1,
第2流路切り替えバルブと洗浄液送液部との間に第3流路切り替えバルブを備えており、A third flow path switching valve is provided between the second flow path switching valve and the cleaning liquid feeding section;
洗浄液送液部はシリンジポンプであり、The cleaning liquid feeding part is a syringe pump,
第3流路切り替えバルブは、洗浄液送液部と第2流路切り替えバルブとの接続と、洗浄液収容部と第2流路切り替えバルブとの接続を切り替えることを特徴とする、試料導入装置。The third flow path switching valve switches the connection between the cleaning liquid feeding section and the second flow path switching valve and the connection between the cleaning liquid storage section and the second flow path switching valve.
請求項1において、In claim 1,
第1流路切り替えバルブが第2流路を形成する時、第2流路切り替えバルブは第3流路を形成することを特徴とする、試料導入装置。The sample introduction device, wherein when the first channel switching valve forms the second channel, the second channel switching valve forms the third channel.
請求項1において、In claim 1,
上記洗浄液送液中に質量分析計において取得されたデータに基づき、検出される試料由来夾雑物のイオン強度が所定の強度以下の場合は次測定の実施を、検出される試料由来夾雑物のイオン強度が所定の強度以上の場合は再度の洗浄実施行うことを特徴とする、試料導入装置。Based on the data obtained in the mass spectrometer during the cleaning liquid feeding, if the ionic strength of the sample-derived contaminant to be detected is less than or equal to a predetermined strength, the next measurement is performed, and the sample-derived contaminant ion is detected. A sample introduction apparatus, wherein the cleaning is performed again when the strength is a predetermined strength or more.
請求項1において、In claim 1,
洗浄液中に標準物質を添加されていること、上記洗浄液送液中に質量分析計において取得されたデータに基づき、検出される標準物質のイオン強度が所定の強度以上の場合は次測定の実施を、検出される標準物質のイオン強度が所定の強度以下の場合は再度の洗浄実施を行うことを特徴とする、試料導入装置。Based on the fact that the standard substance has been added to the cleaning liquid and the ionic strength of the standard substance to be detected is greater than or equal to the predetermined intensity based on the data acquired by the mass spectrometer during the cleaning liquid feed, the next measurement should be performed. The sample introduction apparatus is characterized in that the cleaning is performed again when the ionic strength of the detected standard substance is equal to or lower than a predetermined strength.
JP2013140274A 2013-07-04 2013-07-04 Sample introduction device Active JP6180827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140274A JP6180827B2 (en) 2013-07-04 2013-07-04 Sample introduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140274A JP6180827B2 (en) 2013-07-04 2013-07-04 Sample introduction device

Publications (2)

Publication Number Publication Date
JP2015015118A JP2015015118A (en) 2015-01-22
JP6180827B2 true JP6180827B2 (en) 2017-08-16

Family

ID=52436728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140274A Active JP6180827B2 (en) 2013-07-04 2013-07-04 Sample introduction device

Country Status (1)

Country Link
JP (1) JP6180827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101710859B1 (en) * 2016-06-16 2017-03-02 주식회사 위드텍 Apparatus and method for measuring the ionic contaminant of the wafer surface
CN108845056A (en) * 2018-08-02 2018-11-20 山东省农业科学院农业质量标准与检测技术研究所 A kind of on-line automatic pretreating device of aflatoxin based on flow path switching
CN110376272B (en) * 2019-06-12 2022-02-08 中国科学院微电子研究所 On-line measuring device and method for gas partial pressure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW534990B (en) * 2002-08-27 2003-06-01 Inst Of Occupational Safety & Health Council Of Labor Affairs Automatic mass spectrometer analysis system for detecting human body organic toxin exposure amount
JP4498186B2 (en) * 2005-03-24 2010-07-07 株式会社日立ハイテクノロジーズ Liquid chromatographic analysis method and apparatus
JP4946647B2 (en) * 2007-06-14 2012-06-06 株式会社島津製作所 Sample pretreatment device and liquid chromatograph device
JP5202272B2 (en) * 2008-12-15 2013-06-05 株式会社日立ハイテクノロジーズ Liquid chromatograph, liquid chromatograph feed pump, and liquid chromatograph cleaning method

Also Published As

Publication number Publication date
JP2015015118A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6035603B2 (en) Sample introduction device
US10309928B2 (en) Apparatus and method for ion mobility spectrometry and sample introduction
JP5520841B2 (en) Biological sample pretreatment device and mass spectrometer equipped with the same
JP6002802B2 (en) Ionizer
US20170236699A1 (en) Mass spectrometer
JP2011503548A (en) Apparatus and method for coupling a mass spectrometer to a chromatography system
JP7354140B2 (en) System for collecting and transporting liquid samples over distance while maintaining liquid sample segments
CN108351333B (en) Gas chromatograph and sample injection method
JP6180827B2 (en) Sample introduction device
CN114127551A (en) Liquid chromatography mass spectrometry device
JP2016044988A (en) Automatic analyzer and analytic method of substrate spot
JP5707264B2 (en) Sample introduction device
JP2014106213A (en) Liquid chromatograph auto-sampler
JP5948630B2 (en) Quantitative analysis method and apparatus using mass spectrometry
US9964558B2 (en) Automatic analyzer
JP2008058127A (en) Autoanalyzer
JP2006284469A (en) Liquid chromatograph analyzer
CN112640032A (en) Open port probe interface
JP5220647B2 (en) Automatic analyzer
US11567044B2 (en) Analysis device having a liquid chromatograph and method for analyzing a liquid chromatograph
JP4996991B2 (en) Sample introduction method and apparatus for chromatographic apparatus
JP2020109382A (en) Pretreatment device
US20240038518A1 (en) Dynamic ejection delay time for acoustic ejection mass spectrometry
US20240136168A1 (en) Methods and Apparatus for Washing Sampling Probe for Use in Mass Spectrometry Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

R150 Certificate of patent or registration of utility model

Ref document number: 6180827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350