JP6177298B2 - Metal mask material and metal mask - Google Patents

Metal mask material and metal mask Download PDF

Info

Publication number
JP6177298B2
JP6177298B2 JP2015216848A JP2015216848A JP6177298B2 JP 6177298 B2 JP6177298 B2 JP 6177298B2 JP 2015216848 A JP2015216848 A JP 2015216848A JP 2015216848 A JP2015216848 A JP 2015216848A JP 6177298 B2 JP6177298 B2 JP 6177298B2
Authority
JP
Japan
Prior art keywords
metal mask
rolling
mask material
metal
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015216848A
Other languages
Japanese (ja)
Other versions
JP2017088914A (en
Inventor
近藤 祐幸
祐幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015216848A priority Critical patent/JP6177298B2/en
Priority to TW105129913A priority patent/TWI612160B/en
Priority to KR1020160138223A priority patent/KR101830004B1/en
Priority to CN201610960658.6A priority patent/CN107012421B/en
Publication of JP2017088914A publication Critical patent/JP2017088914A/en
Application granted granted Critical
Publication of JP6177298B2 publication Critical patent/JP6177298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、有機ELディスプレイの製造等で使用されるメタルマスク材料及びメタルマスクに関する。   The present invention relates to a metal mask material and a metal mask used for manufacturing an organic EL display.

フラットパネルディスプレイの中で現在主流の液晶ディスプレイと比較して、有機ELディスプレイは、構造がシンプルなため製品をより薄くでき、動きの速い映像の表示がスムースで、さらに視野角が広いなどの特徴を持つ。この有機ELディスプレイは、携帯端末などの小型機器では既に量産化されており、次世代ディスプレイの本命として、大型ディスプレイでの実用化が進められている。   Compared with the current mainstream liquid crystal display among flat panel displays, the organic EL display has a simple structure that allows the product to be thinner, displays fast moving images smoothly, and has a wider viewing angle. have. This organic EL display has already been mass-produced in small devices such as portable terminals, and is being put to practical use in large displays as a favorite of next-generation displays.

有機ELディスプレイのEL(発光)層を作製する方法としては、大きく分けて蒸着法と印刷法とがある。蒸着法は、真空中で加熱、蒸発させたEL物質を、基板の表面に薄い層として付着させる方法である。また、印刷法は、基板の表面にEL層を印刷により作製する方法である。蒸着法には、さらにRGB(赤緑青)の3色を発光させるタイプとEL層を白色発光させるタイプがある。
蒸着法においては、EL層を基板の所定の位置に所定のパターンで作製するため、蒸着源と基板の間にメタルマスクを設置するカラーパターニング工程がある。メタルマスクは、EL層のパターンに対応する開口部を有する金属製の板または箔からなる。蒸着源から蒸発し真空中に離脱したEL物質はメタルマスクに到達し、メタルマスクの開口部を通過したEL物質が基板に付着して所定のパターンを有するEL層となる。
Methods for producing an EL (light emission) layer of an organic EL display are roughly classified into a vapor deposition method and a printing method. The vapor deposition method is a method in which an EL substance heated and evaporated in a vacuum is attached to the surface of the substrate as a thin layer. The printing method is a method for producing an EL layer on the surface of a substrate by printing. The vapor deposition method further includes a type that emits three colors of RGB (red, green, and blue) and a type that emits white light from the EL layer.
In the vapor deposition method, there is a color patterning process in which a metal mask is placed between the vapor deposition source and the substrate in order to produce the EL layer in a predetermined pattern at a predetermined position on the substrate. The metal mask is made of a metal plate or foil having an opening corresponding to the pattern of the EL layer. The EL material evaporated from the evaporation source and released in vacuum reaches the metal mask, and the EL material that has passed through the opening of the metal mask adheres to the substrate to form an EL layer having a predetermined pattern.

ところで、カラーパターニング工程では、蒸着源からの輻射熱、さらには、メタルマスク表面に温度の高い有機材料が付着することで、メタルマスクの温度が100℃程度にまで上昇する場合があり、基板上の成形位置の精度を保つため、メタルマスクには基板と同程度以下の熱膨張を有する材料を使用する必要がある。特に、RGBの3色を発光させるタイプにおけるEL層のパターンはRGBの3色ごとに形成する必要があるため、メタルマスクの膨張による成形位置のずれを抑制することが重要である。
メタルマスクの厚みはRGBの3色を発光させるタイプでは主に0.02〜0.08mmの箔が用いられ、EL層を白色発光させるタイプでは主として0.08〜0.25mmの板が用いられる。
By the way, in the color patterning process, the temperature of the metal mask may rise to about 100 ° C. due to the radiant heat from the vapor deposition source, and further, the organic material having a high temperature attached to the surface of the metal mask. In order to maintain the accuracy of the forming position, it is necessary to use a material having a thermal expansion equal to or less than that of the substrate for the metal mask. In particular, since the EL layer pattern of the type that emits three colors of RGB needs to be formed for each of the three colors of RGB, it is important to suppress the shift of the molding position due to the expansion of the metal mask.
As for the thickness of the metal mask, a foil of 0.02 to 0.08 mm is mainly used in a type that emits three colors of RGB, and a plate of 0.08 to 0.25 mm is mainly used in a type that emits white light from an EL layer. .

RGBの3色を発光させるタイプにおけるカラーパターニング工程での別の問題として、基板上に成形する有機材料の位置ずれが生じ、映像の色むらなどの不具合が発生する場合がある。この工程では、1点の蒸着源からメタルマスクの開孔部を通過して有機材料が基板上に付着する。このため、メタルマスクが厚い場合、蒸着源から離れた位置で有機材料の入射角が浅くなると開孔部壁が影になり、有機材料のパターン形状が開孔部と異なる形状に成形され、形状精度を保つことが困難となる。これは、シャドウイング効果と呼ばれており、メタルマスクを薄くすることで改善される。
一方、上記問題を回避するためにメタルマスクを薄くすると、ハンドリング時に折れが生じたり、メタルマスクに有機材料が堆積して重量が増加することによりメタルマスクに歪が生じる場合がある。このような不具合を回避するためには、メタルマスクの強度を保つ必要があり、厚みを薄くするには限度がある。
As another problem in the color patterning process in the type of emitting three colors of RGB, there is a case where the organic material to be molded on the substrate is displaced and a problem such as uneven color of the image occurs. In this step, the organic material is deposited on the substrate through a hole in the metal mask from a single deposition source. For this reason, when the metal mask is thick, when the incident angle of the organic material becomes shallow at a position away from the vapor deposition source, the aperture wall becomes a shadow, and the pattern shape of the organic material is formed into a shape different from that of the aperture. It becomes difficult to maintain accuracy. This is called a shadowing effect and can be improved by making the metal mask thinner.
On the other hand, if the metal mask is thinned to avoid the above problem, the metal mask may be distorted during handling, or an organic material may be deposited on the metal mask to increase the weight, thereby causing distortion in the metal mask. In order to avoid such a problem, it is necessary to maintain the strength of the metal mask, and there is a limit to reducing the thickness.

そこで、メタルマスクの強度と開孔部の形状精度を両立する方法として、部分的に補強金属線を設けて、厚みの薄いメタルマスクのたわみを防止する技術(特許文献1)や、開孔形成層を薄くしつつ、これと別体の支持層を接合して1枚のメタルマスクを作製する技術(特許文献2、3)が開示されている。また、表面粗さを制御し、エッチング加工精度を向上させる技術(特許文献4)が開示されている。   Therefore, as a method of achieving both the strength of the metal mask and the shape accuracy of the opening portion, a technique (Patent Document 1) for preventing the bending of the thin metal mask by partially providing a reinforcing metal wire, or forming the opening portion. Techniques (Patent Documents 2 and 3) are disclosed in which a single metal mask is manufactured by bonding a support layer separate from the support layer while reducing the thickness of the layer. Moreover, the technique (patent document 4) which controls surface roughness and improves an etching process precision is disclosed.

特開平10−50478号公報Japanese Patent Laid-Open No. 10-50478 特許第4126648号公報Japanese Patent No. 4126648 特開2004−039628号公報JP 2004-039628 A 特開2010−214447号公報JP 2010-214447 A

しかしながら、特許文献1に開示された技術の場合、補強金属線の陰になる部分には有機材料が付着しないため、シャドウイング効果と類似した現象が生じ、基板上に形成される有機材料の形状精度が悪くなる。また、特許文献2、3に開示された技術の場合、1枚のメタルマスクを製造するために2枚の金属箔が必要であり、さらにこれらの金属箔を精度よく接合する必要があるため、メタルマスクの成形工程が複雑となり、製造コストの上昇を招く。   However, in the case of the technique disclosed in Patent Document 1, since the organic material does not adhere to the portion behind the reinforcing metal wire, a phenomenon similar to the shadowing effect occurs, and the shape of the organic material formed on the substrate The accuracy becomes worse. In the case of the techniques disclosed in Patent Documents 2 and 3, two metal foils are required to manufacture one metal mask, and these metal foils need to be joined with high accuracy. The metal mask molding process becomes complicated, leading to an increase in manufacturing cost.

そこで、上記した問題の解決策として、強度が保てる程度の厚みを有する材料を用いつつも、開孔部周辺をハーフエッチングで薄くしてから開孔部を成形する方法が知られている。これにより、1枚の金属箔を用いつつも、シャドウイング効果を抑え、さらに材料の強度を確保して有機材料の付着による歪の発生を抑えることができる。また、開孔部をエッチング法で作製することで、所定の開孔部を持つマスク(箔、板)をめっき法で直接作製する場合と比較して製造コストを低減することができる。   Therefore, as a solution to the above-described problem, a method is known in which a hole is formed after the periphery of the hole is thinned by half etching while using a material having a thickness that can maintain strength. Thereby, while using one metal foil, the shadowing effect can be suppressed, and further, the strength of the material can be secured and the occurrence of distortion due to the adhesion of the organic material can be suppressed. In addition, the manufacturing cost can be reduced by manufacturing the opening portion by an etching method as compared with the case of directly manufacturing a mask (foil, plate) having a predetermined opening portion by a plating method.

一方、メタルマスク材料からエッチング等の方法によりメタルマスクを製造する工程では、メタルマスク材料の表面の欠陥の有無を目視又はCCDカメラ等で監視し、欠陥の有るメタルマスク材料を工程から取り除いている。
また、メタルマスクの開口部以外の部位には、基板上に到達せず遮蔽された蒸着物質が堆積するが、洗浄されてメタルマスクとして繰り返し使用される。このように繰り返し使用するメタルマスクの表面の欠陥の有無についても目視又はCCDカメラ等で監視し、欠陥の有るメタルマスクを工程から取り除いている。
On the other hand, in the process of manufacturing a metal mask by a method such as etching from a metal mask material, the presence or absence of defects on the surface of the metal mask material is monitored visually or with a CCD camera or the like, and the defective metal mask material is removed from the process. .
In addition, a shielded vapor deposition material that does not reach the substrate is deposited on the portion other than the opening of the metal mask, but is washed and repeatedly used as a metal mask. The presence or absence of defects on the surface of the metal mask that is repeatedly used is also monitored visually or with a CCD camera or the like, and the defective metal mask is removed from the process.

メタルマスクの欠陥としては、表面に付着した異物、局部的な変色及び光沢不良があげられ、これらの欠陥で目視により確認できない微小なものを、CCDカメラ等により表面を拡大撮影した画像により検査する。欠陥のうちメタルマスク材料と色調の異なる異物及び局部的な変色は、容易に検出することができる。また、メタルマスク材料と色調が同じ異物、例えば金属片は、色調の異なる異物や局部的な変色に比べ検出することが難しくなる。さらに、局部的な光沢不良は、輪郭が不明瞭であり、かつ色調がメタルマスク材料と同じなのでCCDカメラ画像上で識別することがさらに難しくなる。
そのため、メタルマスク材料の表面の凹凸及び模様が目立つと、上述の局部的な光沢不良等の軽微で微弱な欠陥は目視検査では検出されにくく、さらにCCDカメラ画像であっても検出されないおそれがある、この点につき、特許文献4記載の技術は、表面粗さを適度に粗くすることで、エッチング加工精度を向上させるものの、表面の凹凸により、上述の局部的な光沢不良をCCDカメラ画像で精度良く検出するには不十分である。
Metal mask defects include foreign matter adhering to the surface, local discoloration, and poor gloss, and these minute defects that cannot be visually confirmed are inspected with an image obtained by enlarging the surface with a CCD camera or the like. . Of the defects, foreign matter having a color tone different from that of the metal mask material and local discoloration can be easily detected. Further, a foreign matter having the same color tone as that of the metal mask material, for example, a metal piece, is more difficult to detect than a foreign matter having a different color tone or local discoloration. Furthermore, local gloss defects are more difficult to identify on the CCD camera image because the outline is unclear and the tone is the same as the metal mask material.
Therefore, if the surface irregularities and patterns of the metal mask material are conspicuous, minor and weak defects such as the above-mentioned local gloss failure are difficult to detect by visual inspection, and even a CCD camera image may not be detected. In this regard, although the technique described in Patent Document 4 improves the etching processing accuracy by appropriately roughening the surface roughness, the above-described local gloss failure can be accurately detected by the CCD camera image due to the unevenness of the surface. It is not enough to detect well.

従って、本発明は、エッチング加工精度を向上させるとともに、自身の欠陥を精度良く検出できるメタルマスク材料及びメタルマスクを提供することを課題とする。   Accordingly, it is an object of the present invention to provide a metal mask material and a metal mask that can improve the etching processing accuracy and can detect defects of itself with high accuracy.

本発明者らが鋭意研究を重ねた結果、60度光沢度G60を所定の範囲に制御することで、エッチング加工精度を向上させるとともに、自身の欠陥を精度良く検出できる適度な表面凹凸を備えることができることを見出した。
すなわち、本発明のメタルマスク材料は、NiとCoとを合計で30〜45質量%、Coを0〜6質量%含有し、残部Fe及び不可避的不純物からなるFe−Ni系合金の圧延箔からなり、厚みtが0.02〜0.08mm、圧延平行方向及び圧延直角方向にJIS−B0601に従って測定した算術平均粗さRaが0.01〜0.20μm、かつ、圧延平行方向及び圧延直角方向にJIS−Z8741に従って測定した60度光沢度G60が200〜600である。
As a result of extensive research by the present inventors, by controlling the 60 degree glossiness G60 within a predetermined range, it is possible to improve the etching processing accuracy and provide appropriate surface irregularities that can accurately detect its own defects. I found out that I can.
That is, the metal mask material of the present invention comprises a rolled foil of an Fe—Ni alloy containing Ni and Co in a total amount of 30 to 45% by mass, Co in an amount of 0 to 6% by mass, and the balance Fe and inevitable impurities. The thickness t is 0.02 to 0.08 mm, the arithmetic average roughness Ra measured in accordance with JIS-B0601 in the rolling parallel direction and the rolling perpendicular direction is 0.01 to 0.20 μm, and the rolling parallel direction and the rolling perpendicular direction. The 60 degree glossiness G60 measured according to JIS-Z8741 is 200 to 600.

又、本発明のメタルマスクは、前記メタルマスク材料を用いてなる。   The metal mask of the present invention is made using the metal mask material.

本発明によれば、エッチング加工精度を向上させるとともに、自身の欠陥を精度良く検出できるメタルマスク材料及びメタルマスクを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while improving an etching process precision, the metal mask material and metal mask which can detect an own defect accurately can be provided.

仕上げ圧延後の結晶粒分断による模様の光学顕微鏡像を示す図である。It is a figure which shows the optical microscope image of the pattern by the crystal grain parting after finish rolling.

以下、本発明の実施形態に係るメタルマスク材料について説明する。なお、特に説明しない限り、「%」は「質量%」を表す。   Hereinafter, a metal mask material according to an embodiment of the present invention will be described. Unless otherwise specified, “%” represents “mass%”.

(合金成分)
有機ELの基板にはガラスが使用されており、基板上に設置するメタルマスクの熱膨張係数がガラスの熱膨張係数10×10−6/℃以下となるように合金成分を調整する必要がある。熱膨張係数は、Feに所定濃度のNi及び/又はCoを添加することで調整が可能であり、NiとCoとを合計で30〜45%とし、かつCoを0〜6%とするFe−Ni系合金とした。NiとCoとの合計濃度及びCoの濃度がこの範囲から外れると、メタルマスクの熱膨張係数がガラスの熱膨張係数より大きくなるため不適である。好ましくはNiとCoを合計34〜38%とし、かつCoを0〜6%とする。
(Alloy components)
Glass is used for the organic EL substrate, and it is necessary to adjust the alloy components so that the thermal expansion coefficient of the metal mask placed on the substrate is 10 × 10 −6 / ° C. or less. . The thermal expansion coefficient can be adjusted by adding a predetermined concentration of Ni and / or Co to Fe, and Fe-- in which Ni and Co are 30 to 45% in total and Co is 0 to 6%. A Ni-based alloy was used. If the total concentration of Ni and Co and the concentration of Co are out of this range, the thermal expansion coefficient of the metal mask becomes larger than the thermal expansion coefficient of the glass, which is not suitable. Preferably, Ni and Co are 34 to 38% in total, and Co is 0 to 6%.

(厚み)
本発明のメタルマスク材料の厚みは0.02〜0.08mmであり、好ましくは、0.02〜0.04mmである。メタルマスク材料の厚みが、0.02mm未満であるとハンドリング性が劣ると共に、有機材料の堆積によりメタルマスクに歪や変形が生じ易くなることで、基板上に形成される有機材料の位置精度が劣る場合がある。メタルマスク材料の厚みが0.08mmを超えるとシャドウイング効果が顕著に生じる場合がある。
(Thickness)
The thickness of the metal mask material of the present invention is 0.02 to 0.08 mm, and preferably 0.02 to 0.04 mm. When the thickness of the metal mask material is less than 0.02 mm, the handling property is inferior, and the organic mask is likely to be distorted or deformed by the deposition of the organic material, so that the positional accuracy of the organic material formed on the substrate is improved. May be inferior. When the thickness of the metal mask material exceeds 0.08 mm, the shadowing effect may be remarkably generated.

(算術平均粗さRa)
本発明のメタルマスク材料の表面を、圧延平行方向及び圧延直角方向にJIS−B0601に従って測定した算術平均粗さRaが0.01〜0.20μmであり、好ましくは、0.01〜0.08μmである。Raを0.01μm未満として過度に表面粗さを低くすると、表面が平滑なため、メタルマスク材料からエッチングによりメタルマスクを製造するラインの材料案内ロール(通箔ロール、通板ロール)で滑りが生じキズが発生しやすくなる。また、Raを0.20μmを超えて過度に表面粗さを粗くすると、輪郭が不明瞭で、かつ色調がメタルマスク材料と同じ局部的な光沢不良を、CCDカメラ画像上で識別することが難しくなる。
(Arithmetic mean roughness Ra)
The arithmetic average roughness Ra measured on the surface of the metal mask material of the present invention according to JIS-B0601 in the rolling parallel direction and the perpendicular direction of rolling is 0.01 to 0.20 μm, preferably 0.01 to 0.08 μm. It is. If Ra is less than 0.01 μm and the surface roughness is excessively reduced, the surface is smooth, and slippage is caused by the material guide rolls (foil passing rolls, thread passing rolls) of the line for producing the metal mask by etching from the metal mask material. Scratches are likely to occur. Also, if Ra exceeds 0.20 μm and the surface roughness is excessively rough, it is difficult to identify a local gloss failure with an unclear outline and the same color tone as the metal mask material on the CCD camera image. Become.

又、本発明のメタルマスク材料の表面を、圧延平行方向及び圧延直角方向にJIS−B0601に従って測定した最大高さRyが0.1〜2.0μmであることが好ましい。   Moreover, it is preferable that the maximum height Ry which measured the surface of the metal mask material of this invention according to JIS-B0601 in the rolling parallel direction and the rolling orthogonal direction is 0.1-2.0 micrometers.

(60度光沢度G60)
本発明のメタルマスク材料の表面の圧延平行方向及び圧延直角方向にJIS−Z8741に従って測定した60度光沢度G60が200〜600であり、好ましくは、400〜600である。メタルマスク材料のG60が、200未満であると、表面の凹凸及び模様が目立ち、輪郭が不明瞭で、かつ色調がメタルマスク材料と同じ局部的な光沢不良をCCDカメラ画像で検出することが困難になる。メタルマスク材料のG60が600を超えると、表面が平滑になり過ぎるので、表面制御因子(例えば圧延ロールの形状や表面粗さ、圧延油の粘度、圧延ロール表面とメタルマスク材料表面との間に形成される油膜の厚み、および圧延前におけるメタルマスク材料の表面粗さ)のばらつきの影響でG60が大きく変化し、表面の均一性を確保することが難しくなって外観上の品質不良(例えばスジやムラ)が生じやすくなる。
(60 degree gloss G60)
60 degree glossiness G60 measured according to JIS-Z8741 in the rolling parallel direction and rolling perpendicular direction of the surface of the metal mask material of the present invention is 200 to 600, and preferably 400 to 600. If the G60 of the metal mask material is less than 200, the surface unevenness and pattern are conspicuous, the outline is unclear, and it is difficult to detect a local gloss failure with the same color tone as the metal mask material in the CCD camera image. become. If the G60 of the metal mask material exceeds 600, the surface becomes too smooth, so surface control factors (for example, the shape and surface roughness of the rolling roll, the viscosity of the rolling oil, the surface of the rolling roll and the surface of the metal mask material) G60 changes greatly due to variations in the thickness of the oil film to be formed and the surface roughness of the metal mask material before rolling, making it difficult to ensure surface uniformity, resulting in poor quality in appearance (for example, streaks). Or unevenness).

(メタルマスク材料の製造方法)
本発明のメタルマスク材料は、例えば、次のように製造することができるが、以下に示す方法に限定されることを意図しない。
まず溶解炉で原料を溶解し、上記Fe−Ni系合金組成の溶湯を得る。この時、溶湯の酸素濃度が高いと、酸化物などの晶出物の生成量が増えてエッチング不良の原因となる場合があるため、一般的な脱酸方法、例えば炭素を加えて真空誘導溶解などにより溶湯の清浄度を高めてからインゴットに鋳造する。その後、熱間圧延、酸化層の研削除去の後、冷間圧延と焼鈍を繰返して所定の厚みに仕上げる。冷間圧延と焼鈍は、例えば、中間再結晶焼鈍、中間冷間圧延、最終再結晶焼鈍、仕上げ冷間圧延、歪取焼鈍の工程を順次行うことができる。
(Manufacturing method of metal mask material)
The metal mask material of the present invention can be manufactured, for example, as follows, but is not intended to be limited to the following method.
First, the raw material is melted in a melting furnace to obtain a molten metal having the above-mentioned Fe—Ni alloy composition. At this time, if the oxygen concentration of the molten metal is high, the amount of crystallized substances such as oxides may increase, which may cause etching defects. Increase the cleanliness of the molten metal by such methods as casting into an ingot. Then, after hot rolling and grinding and removal of the oxide layer, cold rolling and annealing are repeated to finish to a predetermined thickness. For cold rolling and annealing, for example, intermediate recrystallization annealing, intermediate cold rolling, final recrystallization annealing, finish cold rolling, and strain relief annealing can be sequentially performed.

(中間再結晶焼鈍)
結晶粒度番号GSNO.(JIS G 0551「鋼−結晶粒度の顕微鏡試験方法」に規定する番号)が9.0〜11.0となる再結晶焼鈍を行うことが好ましい。結晶粒度番号GSNO.を大きくすることにより、最終再結晶焼鈍で(200)が配向した金属組織が得られる。最終再結晶焼鈍で(200)が配向した金属組織は、仕上げ冷間圧延において結晶粒の分断模様が生じにくく、60度光沢度G60を確実に200以上にすることができる。結晶粒度番号GSNO.が小さいと、すなわち結晶粒が大きいと最終再結晶焼鈍で(200)が十分に配向した金属組織が得られない場合があるので結晶粒度番号GSNO.の下限を9.0とする。一方、結晶粒度番号GSNO.が大き過ぎると、すなわち結晶粒が小さ過ぎると再結晶組織の中に未再結晶部が分散して生じるようになり最終再結晶焼鈍において不均一な再結晶組織が発生する原因となるので、結晶粒度番号GSNO.の上限を11.0とする。
ここで、中間再結晶焼鈍の温度を高くする、又は時間を長くするとGSNO.は小さくなり、温度を低くする、又は時間を短くするとGSNO.は大きくなる。
(Intermediate recrystallization annealing)
Grain size number GSNO. It is preferable to perform recrystallization annealing (number specified in JIS G 0551 “steel—microscopic test method for crystal grain size”) of 9.0 to 11.0. Grain size number GSNO. By increasing the value, a metal structure in which (200) is oriented is obtained in the final recrystallization annealing. The metal structure in which (200) is oriented in the final recrystallization annealing is unlikely to cause a crystal grain breakage pattern in finish cold rolling, and the 60 degree gloss G60 can be reliably increased to 200 or more. Grain size number GSNO. Is small, that is, when the crystal grains are large, a metal structure in which (200) is sufficiently oriented may not be obtained by final recrystallization annealing. Is set to 9.0. On the other hand, the crystal grain size number GSNO. Is too large, that is, if the crystal grains are too small, unrecrystallized parts are dispersed in the recrystallized structure, which causes non-uniform recrystallized structure in the final recrystallization annealing. Particle size number GSNO. Is set to 11.0.
Here, when the temperature of the intermediate recrystallization annealing is increased or the time is increased, GSNO. When the temperature is decreased or the time is shortened, GSNO. Will grow.

(中間冷間圧延)
次式で定義する加工度を85%以上とする冷間圧延を行うことが好ましい。
加工度={(圧延前の板厚−圧延後の板厚)/(圧延前の板厚)}×100(%)
加工度を高くすることにより、最終再結晶焼鈍で(200)が配向した金属組織が得られ、上述のように60度光沢度G60が高くなる。加工度が小さいと最終再結晶焼鈍で(200)が十分に配向した金属組織が得られない場合があるので加工度の下限を85%とする。一方、加工度が高すぎても最終再結晶焼鈍における(200)の配向度がそれ以上に増えず、また、硬度が高くなり生産性が低下するので加工度の上限は90%とする。
(Intermediate cold rolling)
It is preferable to perform cold rolling with a workability defined by the following formula of 85% or more.
Degree of processing = {(sheet thickness before rolling−sheet thickness after rolling) / (sheet thickness before rolling)} × 100 (%)
By increasing the workability, a metal structure in which (200) is oriented is obtained by the final recrystallization annealing, and the 60 ° glossiness G60 is increased as described above. If the degree of work is small, a metal structure in which (200) is sufficiently oriented may not be obtained by final recrystallization annealing, so the lower limit of the degree of work is set to 85%. On the other hand, if the degree of work is too high, the degree of orientation of (200) in the final recrystallization annealing does not increase any more, and the hardness increases and the productivity decreases, so the upper limit of the degree of work is 90%.

(最終再結晶焼鈍)
最終再結晶焼鈍においても、結晶粒度番号GSNO.が9.0〜11.0となる再結晶焼鈍を行うと、中間再結晶焼鈍の場合と同様の理由により、60度光沢度G60を確実に200以上にすることができる。
(Final recrystallization annealing)
Also in the final recrystallization annealing, the grain size number GSNO. When recrystallization annealing is performed at a value of 9.0 to 11.0, the 60 ° gloss G60 can be reliably increased to 200 or more for the same reason as in the case of intermediate recrystallization annealing.

(仕上げ冷間圧延)
メタルマスク材料の表面性状(算術平均粗さRaおよび60度光沢度G60)は、仕上げ冷間圧延で生成される表面凹凸によって変化する。仕上げ冷間圧延では、圧延ロール目が材料に転写されることによって表面凹凸が生じる。また、仕上げ冷間圧延での圧延ロールと材料との間へ圧延油が流入し、オイルピットが生成することによっても表面凹凸が生じる。つまり、圧延ロールと材料との間には油膜が存在し、油膜が局部的に厚い部分では圧延ロールと材料との接触が不十分となり、圧延ロール目が転写されずにピット状の凹凸を呈し、これがオイルピットとなる。圧延油が局部的に厚くなる原因として、圧延ロール表面の凹凸及び材料の加工性のばらつきが挙げられる。特に、表面が平滑になるとばらつきの影響の感受性が高まり、油膜の厚みのばらつきが生じやすくなる。
(Finish cold rolling)
The surface properties (arithmetic average roughness Ra and 60 degree gloss G60) of the metal mask material vary depending on the surface irregularities generated by finish cold rolling. In finish cold rolling, surface irregularities are generated by transferring the rolling rolls to the material. Further, surface irregularities are also generated by the rolling oil flowing between the rolling roll and the material in the finish cold rolling to generate oil pits. In other words, an oil film exists between the rolling roll and the material, and in the part where the oil film is locally thick, the contact between the rolling roll and the material becomes insufficient, and the rolling roll eyes are not transferred and exhibit pit-like irregularities. This is the oil pit. As a cause of locally increasing the rolling oil, there are unevenness on the surface of the rolling roll and variation in workability of the material. In particular, when the surface becomes smooth, the sensitivity of the influence of the variation increases, and the variation in the thickness of the oil film tends to occur.

さらに、仕上げ冷間圧延で結晶粒が分断して模様が生じ、60度光沢度G60に大きく影響する。
図1は、仕上げ冷間圧延後の結晶粒分断による模様の光学顕微鏡像を示す。結晶粒分断による模様は、圧延方向RDに沿って一列に断続して分布し、個々の模様は図1の矢印で指し示したように圧延方向RDと交差する方向に延びる筋状である。なお、図1では、明瞭な模様が圧延方向RDに沿って2つ(2列)生じている。
ここで、図1の符号Gが冷間圧延で圧延方向RDに延ばされた楕円状の1つの結晶粒を示す。分断模様は、この結晶粒Gの内部に生じていることがわかる。
なお、図1においては、光学顕微鏡像の焦点を結晶粒分断模様に合わせているため、結晶粒分断模様と焦点位置が大きく異なるオイルピットや圧延ロール目の転写等の表面凹凸は図1には写っていない。
Further, the crystal grains are divided by finish cold rolling to form a pattern, which greatly affects the 60-degree glossiness G60.
FIG. 1 shows an optical microscope image of a pattern formed by crystal grain division after finish cold rolling. The pattern by the crystal grain division is intermittently distributed in a line along the rolling direction RD, and each pattern is a streak extending in a direction intersecting with the rolling direction RD as indicated by an arrow in FIG. In FIG. 1, two clear patterns (two rows) are generated along the rolling direction RD.
Here, the code | symbol G of FIG. 1 shows one oval crystal grain extended in the rolling direction RD by cold rolling. It can be seen that the division pattern is generated inside the crystal grain G.
In FIG. 1, since the focus of the optical microscope image is adjusted to the crystal grain cutting pattern, surface irregularities such as transfer of oil pits and rolling rolls that are significantly different from the crystal grain cutting pattern are shown in FIG. It is not shown.

箔の冷間圧延は、生産性の観点から高加工度で行われるため、結晶粒が長く延ばされ分断され易くなる。この分断された結晶粒が図1のように表面に模様となって現れ、60度光沢度G60の低下をもたらす。
ここで、結晶粒の分断の起こりやすさは、結晶粒の配向に影響を受け、結晶粒の配向によって分断されやすさが異なる。これは、結晶の変形能が結晶方位により異なることによる。そして、本発明のメタルマスク材料の合金系における主要な回折ピークは、(200)面、(220)面、(311)面及び(111)面であるが、(200)面が最も結晶粒が分断しにくい。従って、上述のように中間再結晶焼鈍および最終再結晶焼鈍で(200)面に配向させることで、仕上げ冷間圧延で結晶粒の分断が起こりにくくなり、60度光沢度G60を200以上にすることができる。
Since the cold rolling of the foil is performed at a high workability from the viewpoint of productivity, the crystal grains are elongated and are easily divided. The fragmented crystal grains appear as a pattern on the surface as shown in FIG. 1, resulting in a decrease in the 60 ° glossiness G60.
Here, the ease with which the crystal grains are divided is affected by the orientation of the crystal grains, and the ease with which the crystal grains are divided differs depending on the orientation of the crystal grains. This is because the deformability of crystals varies depending on the crystal orientation. The main diffraction peaks in the alloy system of the metal mask material of the present invention are the (200) plane, the (220) plane, the (311) plane and the (111) plane, with the (200) plane having the most crystal grains. It is difficult to divide. Therefore, as described above, by orienting in the (200) plane by the intermediate recrystallization annealing and the final recrystallization annealing, it becomes difficult for the crystal grains to be divided in the finish cold rolling, and the 60 degree gloss G60 is set to 200 or more. be able to.

仕上げ冷間圧延の加工度を70%以上とすることが好ましい。加工度が高いほど、圧縮加工の効果により仕上げ冷間圧延で生じる結晶粒の分断模様が小さくなり、60度光沢度G60が高くなる。一方、加工度が高すぎても圧縮加工による結晶粒の分断模様を微弱化する効果が飽和し、また、硬度が高くなり生産性が低下するので加工度の上限は90%とする。
ここで、冷間圧延を、なるべく小径の圧延ロールを用いて行うことで圧延油の巻き込みが少なくなって圧延材の表面が平滑になる。すなわち小径の圧延ロールを用いた方がオイルピットの発生を抑制し、さらに結晶粒の分断模様を小さくすることができる。また、圧延ロール径と同様、圧延速度を低速にすることで圧延油の巻き込みが少なくなって圧延材の表面が平滑になる。すなわち圧延速度を低速にした方がオイルピットの発生を抑制し、さらに結晶粒分断模様を小さくすることができる。
なお、冷間圧延の圧延ロールの径と圧延速度は、製造するメタルマスク材料の厚みや幅に応じて変わり、RaとG60を制御できる範囲で圧延ロールの径と圧延速度を適宜設定すればよいが、圧延速度を60m/分以下とするとよい。
The degree of finish cold rolling is preferably 70% or more. The higher the degree of processing, the smaller the crystal grain division pattern produced by finish cold rolling due to the effect of compression processing, and the 60 ° gloss G60 increases. On the other hand, if the degree of work is too high, the effect of weakening the crystal grain division pattern by compression is saturated, and the hardness is increased and the productivity is lowered, so the upper limit of the degree of work is 90%.
Here, cold rolling is performed using a rolling roll having a small diameter as much as possible, so that the rolling oil is less involved and the surface of the rolled material becomes smooth. That is, the use of a small-diameter rolling roll can suppress the generation of oil pits, and can further reduce the crystal grain division pattern. Further, like the rolling roll diameter, by lowering the rolling speed, rolling oil is less involved and the surface of the rolled material becomes smooth. That is, when the rolling speed is reduced, the generation of oil pits can be suppressed and the crystal grain cutting pattern can be further reduced.
Note that the diameter and rolling speed of the cold rolling roll vary depending on the thickness and width of the metal mask material to be manufactured, and the diameter and rolling speed of the rolling roll may be appropriately set within a range in which Ra and G60 can be controlled. However, the rolling speed is preferably 60 m / min or less.

なお、オイルピットと結晶粒分断模様とは、それぞれ異なる因子によって生じるので、オイルピット及び結晶粒分断模様の発生状況を確認しながら、両者を抑制できる製造条件を設定することが好ましい。   Since the oil pit and the crystal grain cutting pattern are caused by different factors, it is preferable to set production conditions that can suppress both of the oil pit and the crystal grain cutting pattern while confirming the occurrence of the oil pit and the crystal grain cutting pattern.

(歪取焼鈍)
さらに、最後に200〜400℃で歪取焼鈍を行うことが好ましい。歪取焼鈍の時間は、例えば1〜24時間とすることができる。
(Strain relief annealing)
Furthermore, it is preferable to finally perform strain relief annealing at 200 to 400 ° C. The time for strain relief annealing can be, for example, 1 to 24 hours.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
(1)メタルマスク材料の製造
Feに36質量%のNiを加えた原料を真空誘導溶解にて溶製し、厚み50mmのインゴットを鋳造した。これを8mmまで熱間圧延し、表面の酸化膜を研削除去した後、冷間圧延と焼鈍を繰返して冷間圧延材とし、その後、表1に示す条件で中間再結晶焼鈍、中間冷間圧延、最終再結晶焼鈍、仕上げ冷間圧延の工程を順次行い、表1の実施例1〜8、比較例1〜4の製品厚みのメタルマスク材料に仕上げた。さらに、歪取焼鈍を300℃で12時間行った。また、Feに31質量%のNi及び5質量%のCoを加えた組成のものを実施例9として製造した。実施例9の製造工程は他の実施例と同様である。
なお、中間再結晶焼鈍における結晶粒度番号GSNO.を10.0とした。又、製品表面の算術平均粗さRaが0.07〜0.08(0.065〜0.084)になるよう、実施例ごとに圧延ロールの表面粗さを調整した。
歪取焼鈍後の各実施例及び比較例のメタルマスク材料につき、以下の評価を行った。
EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.
(1) Production of metal mask material A raw material obtained by adding 36% by mass of Ni to Fe was melted by vacuum induction melting to cast an ingot having a thickness of 50 mm. This is hot rolled to 8 mm, and the surface oxide film is ground and removed, and then cold rolling and annealing are repeated to obtain a cold rolled material. Thereafter, intermediate recrystallization annealing and intermediate cold rolling are performed under the conditions shown in Table 1. The steps of final recrystallization annealing and finish cold rolling were sequentially performed to finish the metal mask materials having the product thicknesses of Examples 1 to 8 and Comparative Examples 1 to 4 in Table 1. Further, strain relief annealing was performed at 300 ° C. for 12 hours. In addition, a composition having Fe added with 31 mass% Ni and 5 mass% Co was manufactured as Example 9. The manufacturing process of Example 9 is the same as the other examples.
Note that the grain size number GSNO. Was set to 10.0. Moreover, the surface roughness of the rolling roll was adjusted for each Example so that the arithmetic average roughness Ra of the product surface was 0.07 to 0.08 (0.065 to 0.084).
The following evaluation was performed about the metal mask material of each Example after a strain relief annealing, and a comparative example.

(1)算術平均粗さRa
上述の通り測定した。測定は、接触式表面粗さ計(小坂研究所製 SE-3400)を用い、n≧3で測定した平均値を求めた。
(2)60度光沢度G60
上述の通り測定した。測定は、日本電色工業株式会社製のハンディー型光沢度計PG-1を用い、n≧3で測定した平均値を求めた。
(1) Arithmetic mean roughness Ra
Measured as described above. For the measurement, a contact type surface roughness meter (SE-3400 manufactured by Kosaka Laboratory) was used, and an average value measured with n ≧ 3 was obtained.
(2) 60 degree gloss G60
Measured as described above. The average value measured by n> = 3 was calculated using a handy gloss meter PG-1 manufactured by Nippon Denshoku Industries Co., Ltd.

(3)表面欠陥の誤測定の有無
各実施例および比較例のメタルマスク材ごとに、5段階の表面欠陥を故意に作成し、CCDカメラで表面欠陥を測定した。
具体的には、各メタルマスク材の表面に50mm×50mmの耐酸テープを貼り、その中央に10mm×10mmの開口部を設けて表面を部分的に露出させた。この露出部に、下記の5種類の濃度のエッチング液を塗布して表面凹凸を形成させ、表面欠陥とした。この露出部は、周囲に比べて目視で曇った状態が確認できるので、基準となる表面欠陥であるとみなした。
エッチング液は、47ボーメの塩化第二鉄水溶液を、そのままとしたもの、水でそれぞれ2倍、4倍、8倍、16倍に希釈した合計5種類とし、エッチング液をしみこませた脱脂綿をピンセットで支持し、露出部を脱脂綿で15秒こすってエッチングを行った。エッチング後、水をしみこませた布でエッチング液をふき取り耐酸テープをはがし、作業を終了した。なお、塩化第二鉄水溶液を希釈せずにエッチングに用いたものは、露出部の金属光沢が完全に喪失し白色を呈し、希釈率が高くなるにつれて露出部の曇りが弱くなった。また、希釈率が32倍の場合、露出部の曇りが目視で確認できなかったので、表面欠陥が形成されなかったものとみなし、希釈率が16倍までのものを用いた。従って、上述の5種類のエッチング液によるエッチングでは、目視で確認できた表面欠陥が形成され、メタルマスク材料の表面凹凸による影響を受けなければ、本来はCCDで表面欠陥として検出されるはずのものである。
次に、上述の5種類の表面欠陥につき、CCDカメラにより256諧調(±128)の画素データを撮影した。ここで、反射光を遮断した状態を最暗の反射としてこれを明るさ−128に設定し、メタルマスク材の表面において定常部(露出部の周囲の部位)からの反射を±0に設定した。そして、明るさ±20の範囲に収まる反射を定常部における正常な反射と定義し、明るさ±20の範囲を逸脱する反射を表面欠陥における異常な反射と定義し、露出部でこの異常は反射が検出できるか否かを確認した。
各実施例および比較例のメタルマスク材につき、上述の5種類の表面欠陥がすべて検出できた場合を「表面欠陥の誤測定が無い」と判定し、5種類のうち1種類以上の表面欠陥を検出できなかった場合を「表面欠陥の誤測定有」と判定した。
(3) Presence or absence of erroneous measurement of surface defects For each metal mask material of each example and comparative example, five levels of surface defects were intentionally created, and the surface defects were measured with a CCD camera.
Specifically, a 50 mm × 50 mm acid-resistant tape was applied to the surface of each metal mask material, and an opening of 10 mm × 10 mm was provided at the center to partially expose the surface. An etching solution having the following five concentrations was applied to the exposed portion to form surface irregularities, thereby forming surface defects. Since this exposed part can be visually confirmed as being cloudy as compared with the surrounding area, it was regarded as a reference surface defect.
Etching solution is 47 baume ferric chloride aqueous solution as it is, 5 types diluted with water 2 times, 4 times, 8 times and 16 times respectively, and tweezers with absorbent cotton soaked with etching solution The exposed portion was rubbed with absorbent cotton for 15 seconds and etched. After etching, the etching solution was wiped off with a cloth soaked in water, and the acid-resistant tape was peeled off. In the case where the ferric chloride aqueous solution was used for etching without diluting, the metallic luster of the exposed portion was completely lost and white, and the fogging of the exposed portion became weaker as the dilution rate increased. In addition, when the dilution rate was 32 times, the fogging of the exposed portion could not be visually confirmed, so it was considered that no surface defects were formed, and those with a dilution rate of up to 16 times were used. Therefore, in the etching with the above five kinds of etching solutions, surface defects that can be visually confirmed are formed, and should not be affected by surface irregularities of the metal mask material, but should be detected as surface defects by the CCD. It is.
Next, pixel data of 256 gradations (± 128) was taken with a CCD camera for the five types of surface defects described above. Here, the state where the reflected light is blocked is the darkest reflection, and this is set to -128, and the reflection from the stationary part (part around the exposed part) is set to ± 0 on the surface of the metal mask material. . Then, a reflection that falls within the range of brightness ± 20 is defined as a normal reflection at the stationary part, and a reflection that deviates from the range of brightness ± 20 is defined as an abnormal reflection at the surface defect, and this abnormality is reflected at the exposed part. It was confirmed whether or not can be detected.
Regarding the metal mask materials of each of the examples and comparative examples, when all of the five types of surface defects described above were detected, it was determined that “there was no erroneous measurement of surface defects”, and one or more types of surface defects were selected from the five types. When it was not detected, it was determined that “the surface defect was erroneously measured”.

表1から明らかなように、Raが0.01〜0.20μm、G60が200〜600である各実施例の場合、表面欠陥の誤測定が生じなかった。   As is apparent from Table 1, in the case of each Example in which Ra is 0.01 to 0.20 μm and G60 is 200 to 600, no erroneous measurement of surface defects occurred.

一方、仕上げ冷間圧延の加工度が70%未満の比較例1、及び仕上げ冷間圧延の圧延速度が60m/分を超えた比較例2の場合、G60が200未満となり、表面欠陥の誤測定が生じた。
最終再結晶焼鈍の結晶粒径(GSNo.)が9.0未満となる条件で最終再結晶焼鈍を行った比較例3の場合、及び中間冷間圧延の加工度を85%未満とした比較例4の場合も、G60が200未満となり、表面欠陥の誤測定が生じた。
On the other hand, in the case of Comparative Example 1 in which the workability of finish cold rolling is less than 70% and Comparative Example 2 in which the rolling speed of finish cold rolling exceeds 60 m / min, G60 is less than 200, and surface defects are erroneously measured. Occurred.
In the case of Comparative Example 3 in which the final recrystallization annealing was performed under the condition that the crystal grain size (GSNo.) Of the final recrystallization annealing was less than 9.0, and the comparative example in which the workability of the intermediate cold rolling was less than 85% In the case of 4, G60 was less than 200, and the surface defect was erroneously measured.

Claims (2)

NiとCoとを合計で30〜45質量%、Coを0〜6質量%含有し、残部Fe及び不可避的不純物からなるFe−Ni系合金の圧延箔からなり、
厚みtが0.02〜0.08mm、
圧延平行方向及び圧延直角方向にJIS−B0601に従って測定した算術平均粗さRaが0.01〜0.20μm、
かつ、圧延平行方向及び圧延直角方向にJIS−Z8741に従って測定した60度光沢度G60が200〜600である、メタルマスク材料。
Containing 30 to 45% by mass of Ni and Co, 0 to 6% by mass of Co, and comprising a rolled foil of an Fe-Ni alloy composed of the balance Fe and inevitable impurities,
Thickness t is 0.02 to 0.08 mm,
An arithmetic average roughness Ra measured in accordance with JIS-B0601 in the rolling parallel direction and the perpendicular direction of rolling is 0.01 to 0.20 μm,
And the metal mask material whose 60 degree glossiness G60 measured according to JIS-Z8741 in the rolling parallel direction and the rolling right angle direction is 200-600.
請求項1に記載のメタルマスク材料を用いたメタルマスク。   A metal mask using the metal mask material according to claim 1.
JP2015216848A 2015-11-04 2015-11-04 Metal mask material and metal mask Active JP6177298B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015216848A JP6177298B2 (en) 2015-11-04 2015-11-04 Metal mask material and metal mask
TW105129913A TWI612160B (en) 2015-11-04 2016-09-14 Metal mask material and metal mask
KR1020160138223A KR101830004B1 (en) 2015-11-04 2016-10-24 Metal mask material and metal mask
CN201610960658.6A CN107012421B (en) 2015-11-04 2016-11-04 Metal mask material and metal mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015216848A JP6177298B2 (en) 2015-11-04 2015-11-04 Metal mask material and metal mask

Publications (2)

Publication Number Publication Date
JP2017088914A JP2017088914A (en) 2017-05-25
JP6177298B2 true JP6177298B2 (en) 2017-08-09

Family

ID=58740589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015216848A Active JP6177298B2 (en) 2015-11-04 2015-11-04 Metal mask material and metal mask

Country Status (4)

Country Link
JP (1) JP6177298B2 (en)
KR (1) KR101830004B1 (en)
CN (1) CN107012421B (en)
TW (1) TWI612160B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883514A (en) * 2017-09-07 2022-08-09 Lg伊诺特有限公司 Deposition mask
JPWO2019098168A1 (en) 2017-11-14 2019-11-14 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, metal plate inspection method, metal plate production method, vapor deposition mask, vapor deposition mask device, and vapor deposition mask production method
WO2020067537A1 (en) * 2018-09-27 2020-04-02 日鉄ケミカル&マテリアル株式会社 Metal mask material, method for producing same, and metal mask
DE202019006014U1 (en) * 2018-11-13 2024-01-25 Dai Nippon Printing Co., Ltd. Metal plate for making vapor phase deposition masks
JP2020138115A (en) * 2019-02-27 2020-09-03 信越ポリマー株式会社 Adhesive surface regeneration method of part holding jig
CN112322993A (en) * 2020-11-19 2021-02-05 苏州钿汇金属材料有限公司 Ultrathin iron-nickel alloy material and manufacturing method thereof
TWI772066B (en) * 2021-06-16 2022-07-21 達運精密工業股份有限公司 Method of preparing metal mask substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590626B2 (en) * 1990-03-22 1997-03-12 日本鋼管株式会社 Fe-Ni alloy cold rolled sheet excellent in cleanliness and etching piercing properties and method for producing the same
WO2000077269A1 (en) * 1999-06-10 2000-12-21 Nippon Yakin Kogyo Co., Ltd. Fe-Ni BASED MATERIAL FOR SHADOW MASK
JP2001254147A (en) * 2000-03-10 2001-09-18 Nisshin Steel Co Ltd Fe-Ni SERIES ALLOY SHEET FOR SHADOW MASK WITH SUPPRESSED STRIPE-LIKE UNEVENNESS AND ITS PRODUCING METHOD
JP5294072B2 (en) * 2009-03-18 2013-09-18 日立金属株式会社 Etching material manufacturing method and etching material
JP4883432B2 (en) * 2010-05-31 2012-02-22 東洋紡績株式会社 Flexible metal-clad laminate
CN103205700A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A mask plate for effectively improving vapor deposition quality and a production process thereof
CN103205698B (en) * 2012-01-16 2015-06-10 昆山允升吉光电科技有限公司 A mask plate for vapor deposition
JP5721691B2 (en) * 2012-11-20 2015-05-20 Jx日鉱日石金属株式会社 Metal mask material and metal mask

Also Published As

Publication number Publication date
CN107012421A (en) 2017-08-04
CN107012421B (en) 2019-08-02
TW201723204A (en) 2017-07-01
JP2017088914A (en) 2017-05-25
KR101830004B1 (en) 2018-02-19
KR20170052468A (en) 2017-05-12
TWI612160B (en) 2018-01-21

Similar Documents

Publication Publication Date Title
JP6177299B2 (en) Metal mask material and metal mask
JP6177298B2 (en) Metal mask material and metal mask
JP6814420B2 (en) Metal plate for manufacturing vapor deposition mask, inspection method of metal plate, manufacturing method of metal plate, vapor deposition mask, vapor deposition mask device and manufacturing method of vapor deposition mask
JP5455099B1 (en) Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
JP5626491B1 (en) Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5721691B2 (en) Metal mask material and metal mask
JP2015078401A (en) Metal plate, production method of metal plate, and method of producing vapor deposition mask by using metal plate
JP2015168884A (en) Metal plate, manufacturing method for the same and method for manufacturing vapor-deposition mask using the same
TW201506209A (en) Copper strip, electroplated copper strip, and lead frame
JP2018111879A (en) Metal plate, production method of metal plate, production method of mask, and production method of mask device
US20200149139A1 (en) Metal plate for producing vapor deposition masks, production method for metal plates, vapor deposition mask, production method for vapor deposition mask, and vapor deposition mask device comprising vapor deposition mask
JP2015098650A (en) Metal mask material and metal mask

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250