JP6175640B2 - A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst. - Google Patents

A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst. Download PDF

Info

Publication number
JP6175640B2
JP6175640B2 JP2013096590A JP2013096590A JP6175640B2 JP 6175640 B2 JP6175640 B2 JP 6175640B2 JP 2013096590 A JP2013096590 A JP 2013096590A JP 2013096590 A JP2013096590 A JP 2013096590A JP 6175640 B2 JP6175640 B2 JP 6175640B2
Authority
JP
Japan
Prior art keywords
catalyst
less
mol
abd
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013096590A
Other languages
Japanese (ja)
Other versions
JP2013252519A (en
Inventor
鈴木 崇
崇 鈴木
恵理 村上
恵理 村上
光 木村
光 木村
創 田島
創 田島
秀和 小松
秀和 小松
紘樹 恩田
紘樹 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2013096590A priority Critical patent/JP6175640B2/en
Publication of JP2013252519A publication Critical patent/JP2013252519A/en
Application granted granted Critical
Publication of JP6175640B2 publication Critical patent/JP6175640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は非化石系原料を用い水素ガスを含む燃料ガスを製造するための触媒組成物およびそれを用いた水素ガスを含む燃料ガスの製造方法に関する。 The present invention relates to a catalyst composition for producing a fuel gas containing hydrogen gas using a non-fossil raw material and a method for producing a fuel gas containing hydrogen gas using the same.

(非化石資系燃料製造の現状)
実質的に二酸化炭素の増加を伴わないゼロエミッションに近いエネルギー資源が注目されている。空気中の二酸化炭素を光合成によって炭素、水素、酸素等からなるバイオマス資源はゼロエミッションに近いエネルギー資源の一つとして利活用方法が検討されてきている。ゼロエミッションに近いエネルギー資源に注力しているのは先進国が中心であることから、発展途上国では農作物の代わりにエネルギー変換することを目的とした耕作が行われる可能性が指摘されている。本来、食糧を生産すべき耕作地でエネルギー獲得を目的とした作物の生産が問題視されている。
(Current status of non-fossil fuel production)
Energy resources close to zero emission that do not substantially increase carbon dioxide are attracting attention. Biomass resources consisting of carbon, hydrogen, oxygen, and the like by photosynthesis of carbon dioxide in the air have been studied as one of energy resources close to zero emissions. Since developed countries mainly focus on energy resources that are close to zero emissions, it has been pointed out that in developing countries, there is a possibility of cultivation aimed at converting energy instead of crops. Originally, the production of crops for the purpose of obtaining energy in cultivated land where food should be produced is regarded as a problem.

(食糧と競合しない非化石系資源として備えるべき条件)
このような背景から食糧と競合しないバイオマス資源の利活用技術の確立が喫緊の課題になっている。このようなバイオマス資源としては家畜排泄物、剪定枝、未利用木材、海藻類などをあげることができる。しかしながら、これらのバイオマス資源には(ア)これらの資源の多くは含水量が高い、すなわちエネルギー密度が低いデメリットがあること、(イ)エネルギー需要の多い人工密集地域と、これらのバイオマスが得られる地域が離れているため中長距離の輸送が必須であること、(ウ)これらのバイオマスが液状ではなく、バルク体であることが多い。このように、これらのバイオマス資源のエネルギー密度が低いことに加えて、バルク体であるために輸送時の空隙率が高く、エネルギー需要地との距離が長いため輸送に伴うエネルギー消費がかさむことなどのために、利用しにくい面がある。
(Conditions to prepare as non-fossil resources that do not compete with food)
Under such circumstances, establishment of technology for utilizing biomass resources that does not compete with food is an urgent issue. Examples of such biomass resources include livestock excrement, pruned branches, unused wood, seaweed and the like. However, these biomass resources are (a) many of these resources have high water content, that is, there is a demerit of low energy density, and (b) artificial dense areas with high energy demand and these biomass can be obtained. It is necessary to transport medium and long distances because the area is remote. (C) These biomasses are often not in liquid form but in bulk. Thus, in addition to the low energy density of these biomass resources, the porosity is high during transportation due to the bulk body, and the energy consumption associated with transportation is increased due to the long distance from the energy demand area, etc. Because of this, it is difficult to use.

(使用済食用油を非化石系資源として用いる利点)
てんぷら油などに使われている植物性油脂の場合、約1リットルで約32MJ(約7800kcal)の発熱量があると考えられる。たとえば、使用済てんぷら油を考えてみると、(ア)都市部ほど収集が容易であること(エネルギー需要の多い地域とバイオマス(油脂)発生地域が近い)、(イ)油脂は発熱量が高く、ほとんどの場合、常温で液体であること(発熱量が高く、かつ輸送時の空隙率が低い)、(ウ)使用済油の場合には食糧との競合がないため、現時点で利用価値の高いバイオマス資源である。
(Advantages of using used cooking oil as a non-fossil resource)
In the case of vegetable oils and fats used in tempura oil, it is considered that about 1 liter has a calorific value of about 32 MJ (about 7800 kcal). For example, when considering spent tempura oil, (a) it is easier to collect in urban areas (regions where there is a lot of energy demand and areas where biomass (oils and fats) are generated); In most cases, it is liquid at room temperature (high calorific value and low porosity during transportation), and (c) used oil does not compete with food. It is a high biomass resource.

(我が国の食用油消費と回収油の現状)
2006年には国内では約237万トンの食用油脂が消費され、その内で回収されたものは約45万トン、約18万トンは未利用といわれている。食用油には不飽和脂肪酸グリセリドを中心とする大豆油、飽和脂肪酸グリセリドを含むパーム油などが含まれる。使用済食用油には調理中に混入した魚油、動物性油脂類など植物性以外の油脂類も含まれている。近年、脂肪酸メチルエステル(FAME、通称バイオディーゼル燃料)が軽油代替燃料として注目されているが、燃料性状の観点から飽和脂肪酸グリセリドを含む油脂類、動物性油脂類の混入は好ましくなく、食用油の有効利用が進まない理由の一つと思われる。
(Current state of edible oil consumption and recovered oil in Japan)
In 2006, about 2.37 million tons of edible fats and oils were consumed in Japan, of which about 450,000 tons were recovered and about 180,000 tons were unused. Edible oils include soybean oil centered on unsaturated fatty acid glycerides, palm oil containing saturated fatty acid glycerides, and the like. The used cooking oil includes non-vegetable oils and fats such as fish oil and animal oils mixed during cooking. In recent years, fatty acid methyl ester (FAME, commonly known as biodiesel fuel) has attracted attention as an alternative to light oil, but from the viewpoint of fuel properties, mixing of fats and oils containing saturated fatty acid glycerides and animal fats and oils is not preferred. This seems to be one reason why effective use does not progress.

(化石系エネルギーとのブレンドによる安定供給)
使用済植物油をバイオマスエネルギーとして利用する場合には、将来普及が期待できる物質に変換することが、普及促進に重要である。また、バイオマスエネルギーに共通する課題として、常に安定した供給が難しいことが指摘されている。この観点からも化石系エネルギーとブレンドして使用できることも重要である。
(Stable supply by blending with fossil energy)
When used vegetable oil is used as biomass energy, it is important for promoting the spread to convert it into a substance that can be expected to spread in the future. In addition, it has been pointed out that a stable supply is always difficult as a problem common to biomass energy. From this point of view, it is also important to be able to use blended with fossil energy.

(水素エネルギーの重要性、使用済油等の資源利用技術に関する課題)
次世代自動車として燃料電池自動車(FC-EV)が期待され、水素ステーションの実証試験も行われ始められ、将来普及が期待できるエネルギー媒体(物質)として水素が注目されている。水素の製造技術には、水の電気分解のほか、アルコール、都市ガス、液化石油ガス(LPG)、ライトナフサ等の軽質石油留分の水蒸気改質がよく知られている。特に、炭素数が5程度までの軽質石油留分の水蒸気改質が最も普及している技術である。水蒸気改質法では、高級炭化水素では素析出などが著しくなることなどのため、取り扱いが困難になることが知られている。
(Importance of hydrogen energy, issues related to resource utilization technology such as used oil)
Fuel cell vehicles (FC-EV) are expected as next-generation vehicles, and hydrogen station demonstration tests have begun. Hydrogen is attracting attention as an energy medium (material) that can be expected to spread in the future. In addition to electrolysis of water, steam reforming of light petroleum fractions such as alcohol, city gas, liquefied petroleum gas (LPG), and light naphtha is well known as a hydrogen production technique. In particular, steam reforming of light petroleum fractions having up to about 5 carbon atoms is the most popular technique. The steam reforming process, a higher hydrocarbon, such as for becoming remarkably like-carbon deposition, it is known that the handling becomes difficult.

たとえば、植物油を構成する脂肪酸として知られているリノール酸はC17H31COOHで表される。これが植物油は脂肪酸のトリグリセリドであるので分子量は878となる。これまで水素製造の原料として用いられてきている炭化水素(炭素数8程度の炭化水素の混合物)に比べて、植物油の分子量は極端に大きい。このような油脂を水蒸気改質で水素を含有するガスに変換することは従来技術(特許文献1)などでは極めて難しいと考えられる。 For example, linoleic acid known as a fatty acid constituting vegetable oil is represented by C 17 H 31 COOH. Since this is a triglyceride of fatty acid, vegetable oil has a molecular weight of 878. Compared to hydrocarbons that have been used as raw materials for hydrogen production (mixtures of hydrocarbons having about 8 carbon atoms), the molecular weight of vegetable oil is extremely large. It is considered that it is extremely difficult to convert such fats and oils into gas containing hydrogen by steam reforming in the prior art (Patent Document 1).

特開2002−160904号公報JP 2002-160904 A

(使用済植物油からの水素含有ガス変換の意義)
植物油を改質して水素を含有するガスに変換できた場合、ナフサなどの化石系原料から得た水素とブレンドして供給することができる。このため、エンドユーザーは水素が非化石系由来なのか、化石系由来なのかを意識せずに燃料電池自動車などの水素燃料を使用する機材を使用することができる。植物油などバイオマス資源から水素含有ガスを得る技術は、エンドユーザーにはバイオマスを由来のエネルギー資源を利用するにあたって、経済的負担を最小限に抑えることができるため、重要性はますます高まるものと考えられる。
(Significance of hydrogen-containing gas conversion from used vegetable oil)
If the vegetable oil can be reformed and converted to a gas containing hydrogen, it can be supplied by blending with hydrogen obtained from a fossil-based raw material such as naphtha. For this reason, the end user can use equipment using hydrogen fuel, such as a fuel cell vehicle, without being aware of whether hydrogen is derived from non-fossil or fossil. Technology that obtains hydrogen-containing gas from biomass resources such as vegetable oil is considered to be increasingly important because it can minimize the economic burden on end users when using biomass-derived energy resources. It is done.

(課題解決に向けた本発明の目的と本発明で解決しようとする具体的な技術課題)
そこで、発明者らは従来の水素製造プロセスに用いられてきている原料のナフサなどに比べ極端に分子量が多植物性油脂から水素を含有するガス変換する技術について鋭意開発研究を行った結果、改質反応に用いる触媒に関し、ホウ素化合物およびアルカリ土類金属化合物と酸化アルミニウムを含有する担体(キャリヤー)にニッケルまたはルテニウムを活性成分として含有する触媒組成物を用い、かつ水蒸気と空気または水蒸気と酸素を供給することによって、長時間安定して植物油を接触改質させ水素を含有することを見出し発明の完成に至った。
(Objective of the present invention for solving the problem and specific technical problem to be solved by the present invention)
Therefore, the result inventors made an intensive research and development technique for converting a gas containing hydrogen from extremely vegetable fats molecular weight is not multi compared to like naphtha feedstock have been used in the conventional hydrogen production process And a catalyst used in the reforming reaction, using a catalyst composition containing nickel or ruthenium as an active ingredient on a carrier containing boron compound and alkaline earth metal compound and aluminum oxide, and water vapor and air or water vapor. By supplying oxygen, it was found that the vegetable oil was stably reformed for a long time and contained hydrogen, and the invention was completed.

すなわち、本発明は(1)アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるニッケル分を金属換算、触媒重量基準で5.0wt.%以上20.0wt.%以下含有する触に、リアクター内圧が0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において、反応温度が630℃以上750℃以下、水蒸気/炭素比が2.0以上2.9以下、O/C比が0.5以上0.85以下、植物油供給量が触媒1.0gに対し1.6×10 -2 C-mol/h以上3.0×10 -2 C-mol/h以下の条件で接触させることを特徴とする水素含有ガスの製造方法であり、(2)アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるルテニウム分を金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下含有する触に、リアクター内圧0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において、反応温度が630℃以上750℃以下、水蒸気/炭素比が1.0以上2.0以下、O/C比が0.5以上0.85以下、植物油供給量が触媒1.0gに対し5.3×10 -2 C-mol/h以上0.4C-mol/h以下の条件で接触させることを特徴とする水素含有ガスの製造方法であり、
(3)アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるルテニウム分を金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下含有する触に、リアクター内圧0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において反応温度が630℃以上750℃以下、水蒸気/炭素比が1.0以上2.0以下、O/C比が0.5以上0.85以下、植物油/白灯油の容積比が0.11以上19.0以下の混合油供給量が触媒1.0gに対し5.3×10 -2 C-mol以上0.4C-mol/h以下の条件で接触させることを特徴とする水素含油ガスの製造方法であり、(4)アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるルテニウム分を金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下含有する触に、リアクター内圧0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において反応温度が630℃以上750℃以下、水蒸気/炭素比が1.0以上2.0以下、O/C比が0.5以上0.85以下、植物油/デカヒドロナフタレンの容積比が0.11以上19.0以下の混合油供給量が触媒1.0gに対し5.3×10 -2 C-mol以上0.4C-mol/h以下の条件で接触させることを特徴とする水素含油ガスの製造方法である。
That is, the present invention (1) alkaline earth metal in terms of oxide, 12 wt.% Or more and 20 wt.% Or less in terms of catalyst weight, boron in terms of sodium tetraborate / decahydrate, 1.0 wt. % To 5.0 wt.% And the balance is made of aluminum oxide, and with respect to physical properties, the support has a specific surface area of 180 m 2 / g to 280 m 2 / g and a pore volume of 0.21 ml / g to 0.31 ml / g. , in terms of metal nickel content is active metal, the catalytic you containing the catalyst weight 5.0 wt.% or more 20.0 wt.% or less, reactor internal pressure of 0.2 kg / cm 2, G or 9.8 kg / cm 2, G In the following, the reaction temperature is 630 ° C. or higher and 750 ° C. or lower, the water vapor / carbon ratio is 2.0 or higher and 2.9 or lower, the O / C ratio is 0.5 or higher and 0.85 or lower, and the vegetable oil supply is 1.6 × 10 −2 C-mol with respect to 1.0 g of catalyst. / h contacting at least 3.0 × 10 -2 C-mol / h following conditions are method for producing a hydrogen-containing gas, wherein, (2) an alkaline earth metal oxide conversion, catalyst 12 wt.% Or more 20 wt.% Or less by weight, boron sodium tetraborate decahydrate terms, the catalyst weight 1.0 wt.% Or more 5.0 wt.% Or less and the balance being aluminum oxide, and with respect to physical properties Is a support having a specific surface area of 180 m 2 / g or more and 280 m 2 / g or less and a pore volume of 0.21 ml / g or more and 0.31 ml / g or less, the ruthenium content as an active metal is converted into metal, 3.0 wt. percent 7.5 wt.% to be that catalysts containing less, in the following reactor pressure 0.2 kg / cm 2, G or 9.8 kg / cm 2, G, reaction temperature 630 ° C. or higher 750 ° C. or less, water vapor / carbon ratio 1.0 2.0 or less, O / C ratio of 0.5 or more and 0.85 or less, vegetable oil supply amount is contacted with 1.0 g of catalyst under conditions of 5.3 × 10 −2 C-mol / h or more and 0.4 C-mol / h or less. A method for producing a hydrogen-containing gas,
(3) Alkaline earth metal converted to oxide, 12 wt.% To 20 wt.% Based on catalyst weight, and boron converted to sodium tetraborate decahydrate, 1.0 wt.% To 5.0 wt. % Or less and the balance is aluminum oxide, and with regard to physical properties, the support has a specific surface area of 180 m 2 / g or more and 280 m 2 / g or less, and a pore volume of 0.21 ml / g or more and 0.31 ml / g or less is an active metal in terms of metal ruthenium component, the catalytic you containing the catalyst weight 3.0 wt.% or more 7.5 wt.% or less, the reaction temperature in the reactor pressure 0.2 kg / cm 2, G or 9.8 kg / cm 2, G or less 630 550 ° C or higher, water vapor / carbon ratio of 1.0 or higher and 2.0 or lower, O / C ratio of 0.5 or higher and 0.85 or lower, vegetable oil / white kerosene volume ratio of 0.11 or higher and 19.0 or lower. × a 10 -2 C-mol or 0.4C-mol / h production method of a hydrogen oil-containing gas comprising contacting the following conditions, oxidation of (4) an alkaline earth metal Terms, the catalyst weight 12 wt.% Or more 20 wt.% Or less, boron sodium tetraborate decahydrate terms, the catalyst weight 1.0 wt.% Or more 5.0 wt.% Or less and the balance being aluminum oxide, As for the physical properties, the ruthenium content as an active metal is converted into metal on a support having a specific surface area of 180 m 2 / g or more and 280 m 2 / g or less and a pore volume of 0.21 ml / g or more and 0.31 ml / g or less, based on the weight of the catalyst. 3.0 wt.% or more 7.5 wt.% to be that catalysts containing less, reactor pressure 0.2 kg / cm 2, G or 9.8 kg / cm 2, G reaction temperature at less 630 ° C. or higher 750 ° C. or less, steam / carbon ratio Is 1.0 to 2.0, O / C ratio is 0.5 to 0.85, and the volume ratio of vegetable oil / decahydronaphthalene is 0.11 to 19.0. The mixed oil supply is 5.3 × 10 -2 C-mol or more to 1.0 g of catalyst. A method for producing a hydrogen-containing oil-containing gas characterized by contacting under conditions of C-mol / h or less.

本発明によると、植物油を水蒸気および空気中の酸素によって、ア:水素を主成分とする燃料ガス等を効率的に得ることができる。イ:使用済植物油を使用した場合には、環境調和型の燃料ガス等の供給を実現することができる。 According to the present invention, it is possible to efficiently obtain a fuel gas or the like containing a: hydrogen as a main component from a vegetable oil by steam and oxygen in the air. B: When used vegetable oil is used, it is possible to realize supply of environment-friendly fuel gas and the like.

以下に、本発明について詳細に開示するが、これは本発明を説明するためのものであり、発明の範囲を限定的に捉えることを目的としていない。 Hereinafter, the present invention will be disclosed in detail, but this is for explaining the present invention and is not intended to limit the scope of the invention.

(触媒の基本構成)
本発明で開示する使用済を含む植物油(以下、油脂類と略記)の接触改質に用いる触媒は、担体(キャリヤー)上に活性金属が担持される。担体成分は、アルカリ土類金属分、ホウ素分および酸化アルミニウムから構成される。なお、担体調製の際に添加される離型剤、滑沢剤等の添加は制限されない。
(Basic structure of catalyst)
In the catalyst used for the catalytic reforming of used vegetable oil (hereinafter abbreviated as fats and oils) including the spent as disclosed in the present invention, an active metal is supported on a carrier. The carrier component is composed of an alkaline earth metal component, a boron component and aluminum oxide. In addition, addition of a mold release agent, a lubricant, etc. which are added at the time of carrier preparation is not limited.

(活性金属およびその前駆体)
(ニッケル)
活性金属に関しては、ニッケル、ルテニウムが好ましく、ルテニウムが最も好ましい。これら活性金属の前駆体(precursor)の内、ニッケルに関しては硝酸ニッケル、塩化ニッケル、酢酸ニッケルが好ましく、硝酸ニッケルおよび酢酸ニッケルがより好ましく、酢酸ニッケルが最も好ましい。
(Active metals and their precursors)
(nickel)
Regarding the active metal, nickel and ruthenium are preferable, and ruthenium is most preferable. Of these active metal precursors, nickel nitrate, nickel chloride and nickel acetate are preferred, nickel nitrate and nickel acetate are more preferred, and nickel acetate is most preferred.

(ルテニウム)
ルテニウムの前駆体としては塩化ルテニウム、ルテニウムアセチルアセトナートなどが好ましく、塩化ルテニウムがより好ましい。塩化ルテニウムの中でも塩化ルテニウム無水物、塩化ルテニウム・3水和物、塩化ルテニウム・n水和物が好ましく、塩化ルテニウム・n水和物がより好ましい。塩化ルテニウム・n水和物に関してはルテニウム(Ru)含有量が化合物重要基準で38wt.%以上41wt.%以下が最も好ましい。この理由は、ルテニウム化合物の水に対する溶解性が高く取扱いが容易であることによる。
(ruthenium)
As the ruthenium precursor, ruthenium chloride, ruthenium acetylacetonate and the like are preferable, and ruthenium chloride is more preferable. Of the ruthenium chloride, anhydrous ruthenium chloride, ruthenium chloride trihydrate, and ruthenium chloride n hydrate are preferable, and ruthenium chloride n hydrate is more preferable. With respect to ruthenium chloride n-hydrate, the ruthenium (Ru) content is most preferably 38 wt.% Or more and 41 wt. This is because the ruthenium compound is highly soluble in water and easy to handle.

(活性金属の好適な含有量)
(ニッケル系触媒)
ニッケルを活性金属として選択する場合のニッケル含有量は金属換算、触媒重量基準で5.0wt.%以上20.0wt.%以下が好ましく、10.0wt.%以上20.0wt.%以下がより好ましく、12.0wt.%以上15.0wt.%以下が最も好ましい。この範囲未満では十分な触媒活性が得られない。また範囲超過した場合には触媒性能の向上効果は飽和し、触媒製造における原単位が増加するなど技術的な意義が希薄になる虞がある。
(Suitable content of active metal)
(Nickel catalyst)
When nickel is selected as the active metal, the nickel content is preferably 5.0 wt.% To 20.0 wt.%, More preferably 10.0 wt.% To 20.0 wt.%, More preferably 12.0 wt. % To 15.0 wt.% Is most preferable. If it is less than this range, sufficient catalytic activity cannot be obtained. In addition, when the range is exceeded, the effect of improving the catalyst performance is saturated, and the technical significance may be diminished, such as an increase in the basic unit in catalyst production.

(ルテニウム系触媒)
ルテニウムを活性金属として選択する場合のルテニウム含有量は金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下が好ましく、3.0wt.%以上5.0wt.%以下がより好ましく、3.0wt.% 以上4.0wt.%以下が最も好ましい。この範囲未満では、触媒中のルテニウムをリサイクルする際のコストが嵩む傾向が考えられるなどの課題が生ずる可能性がある。この範囲を超過させた場合には、触媒性能が飽和し始めるためその意義が希薄となる。
(Ruthenium-based catalyst)
In the case of selecting ruthenium as the active metal, the ruthenium content is preferably 3.0 wt.% To 7.5 wt.%, More preferably 3.0 wt.% To 5.0 wt.%, More preferably 3.0 wt. % To 4.0 wt.% Is most preferable. If it is less than this range, there is a possibility that problems such as a tendency to increase the cost for recycling ruthenium in the catalyst may occur. If this range is exceeded, the catalyst performance begins to saturate, and its significance is diminished.

(触媒担体の成分)
油脂から水素を含有するガス変換する技術について鋭意開発研究を行った結果、改質反応に用いる触媒の担体成分としてアルカリ土類金属、ホウ素分および酸化アルミニウムを含有する。
(Catalyst carrier components)
As a result of earnest development research on the technology for converting oils and fats into hydrogen-containing gases, it contains alkaline earth metals, boron and aluminum oxide as carrier components of the catalyst used in the reforming reaction.

(アルカリ土類金属分の好適な含有量)
アルカリ土類金属の含有量はアルカリ土類金属酸化物換算、触媒重量基準で12.0wt.%以上20.0wt.%以下が好ましく、12.0wt.%以上18.0wt.%以下がより好ましく、15.0wt.%以上18.0wt.%以下が最も好ましい。この範囲未満の場合には反応中に触媒床が閉塞する可能性が高まり、範囲を超過すると担体の多孔性が不充分となり、触媒充填量が多くなるなど優位性が失われる傾向がみられる。アルカリ土類金属を含む化合物として酸化マグネシウム、酸化バリウム、酸化カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸カルシウムなどを好ましく選択でき、酸化マグネシウム、酸化カルシウム、および酸化バリウムがより好ましく、酸化カルシウムおよび酸化マグネシウムが最も好ましい。
(Suitable content of alkaline earth metal)
The content of the alkaline earth metal is an alkaline earth metal in terms of oxide, 20.0 wt.% Or less are preferred 12.0 wt.% Or more catalyst weight basis, 12.0 wt.% Or more 18.0 wt.%, More preferably less, 15.0 wt. % To 18.0 wt.% Is most preferable. If the amount is less than this range, the possibility of the catalyst bed becoming clogged increases during the reaction, and if the range is exceeded, the porosity of the support becomes insufficient, and the superiority tends to be lost, for example, the amount of catalyst filling increases. Magnesium oxide, barium oxide, calcium oxide, magnesium carbonate, barium carbonate, calcium carbonate and the like can be preferably selected as the compound containing an alkaline earth metal, magnesium oxide, calcium oxide, and barium oxide are more preferable, and calcium oxide and magnesium oxide are more preferable. Most preferred.

(ホウ素分の好適な含有量)
ホウ素分については四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を用いる。ホウ酸(H3BO3)など他のホウ素化合物に関しては添加効果が希薄であり好ましくない。含有量は四ホウ酸ナトリウム・10水和物換算で1.0wt.%以上5.0wt.%以下が好ましく、2.5wt.%以上5.0wt.%以下がより好ましく、2.5wt.%以上3.0wt.%以下が最も好ましい。この範囲未満では触媒の塩基性のバランスが悪くなり、炭素析出などの抑制効果が低下しやすくなる。また、範囲を超えた場合には添加効果が飽和してくるため実質的な上限は5.0wt.%と考えてよい。
(Suitable content of boron)
For the boron content, sodium tetraborate decahydrate (Na 2 B 4 O 7 · 10H 2 O) is used. With respect to other boron compounds such as boric acid (H 3 BO 3 ), the addition effect is dilute, which is not preferable. The content is preferably 1.0 wt.% Or more and 5.0 wt.% Or less, more preferably 2.5 wt.% Or more and 5.0 wt.% Or less, more preferably 2.5 wt.% Or more and 3.0 wt.% Or less in terms of sodium tetraborate decahydrate. The following are most preferred. If the amount is less than this range, the basic balance of the catalyst is deteriorated, and the suppression effect such as carbon deposition tends to be lowered. Moreover, since the addition effect is saturated when the range is exceeded, the substantial upper limit may be considered to be 5.0 wt.%.

(酸化アルミニウムの好適な含有量と前駆体)
担体は上述のアルカリ土類金属酸化物およびホウ素分および残部は酸化アルミニウムである。酸化アルミニウムの前駆体としては、水酸化アルミニウム、γ−アルミナ、α−アルミナなどを好ましく選択でき、γ−アルミナおよび水酸化アルミニウムがより好ましく、水酸化アルミニウムが最も好ましい。
(Suitable content and precursor of aluminum oxide)
The support is the above-mentioned alkaline earth metal oxide and boron content and the balance is aluminum oxide. As the precursor of aluminum oxide, aluminum hydroxide, γ-alumina, α-alumina and the like can be preferably selected, γ-alumina and aluminum hydroxide are more preferable, and aluminum hydroxide is most preferable.

(触媒担体の物性)
所定の性能を得るためには触媒成分が好適な範囲であることに加え、以下に開示するような担体の物性を備えるべきである。担体の比表面積は180m2/g以上280m2/g以下が好ましく、180m2/g以上240m2/g以下がより好ましく、180m2/g以上220m2以下が最も好ましい。この範囲未満では活性金属の分散が不充分となり、これを超過した場合、細孔径が小さくなる傾向があるため好ましくない。細孔容積は0.21ml/g以上0.31ml/g以下が好ましく、0.23ml/g以上0.31ml/g以下がより好ましい。細孔容積が範囲未満では触媒調製工程が複雑になる。技術的な観点から上限は限定されるものではないが、実質的には0.31ml/gを上限と考えてよい。
(Physical properties of catalyst carrier)
In order to obtain a predetermined performance, in addition to the catalyst components being in a suitable range, the physical properties of the support as disclosed below should be provided. The specific surface area of the support is preferably 180 m 2 / g or more 280 meters 2 / g or less, 180 m 2 / g or more 240m or less, more preferably 2 / g, 180m 2 / g or more 220 m 2 or less is most preferred. If it is less than this range, the dispersion of the active metal becomes insufficient, and if it exceeds this range, the pore diameter tends to be small, such being undesirable. The pore volume is preferably from 0.21 ml / g to 0.31 ml / g, more preferably from 0.23 ml / g to 0.31 ml / g. If the pore volume is less than the range, the catalyst preparation process becomes complicated. Although the upper limit is not limited from a technical point of view, it may be considered that the upper limit is substantially 0.31 ml / g.

(触媒担体の形状)
触媒担体の形状は、粉体状、円柱状、破砕状、球状、紡錘状、四つ葉状、三つ葉状などの公知形状を好ましく選択できる。円柱状、破砕状、球状、三つ葉状がより好ましく、円柱状、破砕状、球状が最も好ましい。
(Catalyst carrier shape)
The shape of the catalyst carrier can be preferably selected from known shapes such as powder, columnar, crushed, spherical, spindle, four-leaf, and three-leaf. A cylindrical shape, a crushed shape, a spherical shape, and a trefoil shape are more preferable, and a cylindrical shape, a crushed shape, and a spherical shape are most preferable.

(触媒調製工程)
本発明の触媒調製は、ア)担体調製工程、イ)活性金属担持工程、ウ)触媒加熱安定化工程からなる。ア)の調製工程には主な工程として、担体成分の混合工程、該混合物の成形工程および成形体焼成工程を含む。イ)の活性金属担持工程では、含浸法、incipient wetness法、湿式混練法、乾式混練法などの公知の方法を好ましく採用できる。ウ)の触媒加熱安定化工程は、触媒を安定して保存するために重要であり、イ)の活性金属担持工程の後で、活性金属が酸化物として安定になる温度において、空気中で焼成を行う工程を指す。なお、ウ)の触媒加熱安定化工程はルテニウム系触媒では省略する。
(Catalyst preparation process)
The catalyst preparation of the present invention comprises a) support preparation step, a) active metal loading step, and c) catalyst heat stabilization step. The preparation step of a) includes, as main steps, a carrier component mixing step, a molding step of the mixture and a molded body firing step. In the active metal supporting step (a), known methods such as impregnation method, incipient wetness method, wet kneading method and dry kneading method can be preferably employed. The catalyst heat stabilization step of c) is important for stably storing the catalyst. After the active metal supporting step of b), the catalyst is calcined in air at a temperature at which the active metal becomes stable as an oxide. The process of performing. Note that the catalyst heat stabilization step of c) is omitted for the ruthenium-based catalyst.

本発明の触媒はア)担体調製工程に次いでイ)活性金属担持工程を経て、ウ)触媒加熱安定化工程を実施する調製工程を経て得られる。なお、ア)の担体調製工程ではa)担体成分の混合工程、b)圧縮成形とシービング(篩分け)、およびc)担体の焼成がa)、b)、c)の順で実施される。担体の焼成は温度600℃以上680℃以下で、空気中3時間以上24時間以下で行われる。 The catalyst of the present invention is obtained after a) a carrier preparation step, a) an active metal supporting step, and c) a preparation step for performing a catalyst heating stabilization step. In the carrier preparation step (a), a) the carrier component mixing step, b) compression molding and sieve (sieving), and c) carrier firing are carried out in the order of a), b) and c). The carrier is calcined at a temperature of 600 ° C. to 680 ° C. in air for 3 hours to 24 hours.

(多孔性向上剤の添加)
ア)担体調製工程では以下に開示するような多孔性向上剤を添加することができる。多孔性向上剤の添加は必須ではないが、触媒の生産性が向上することが期待できるため、触媒調製コストが許す限り添加することが望ましい。
(Addition of porosity improver)
A) In the carrier preparation step, a porosity improver as disclosed below can be added. Although the addition of a porosity improver is not essential, it can be expected to improve the productivity of the catalyst. Therefore, it is desirable to add it as far as the catalyst preparation cost permits.

例えば、マグネシウム分、ホウ素分、残部酸化アルミニウムからなる担体を調製する工程を例示すると、酸化マグネシウム(MgO)と、四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を混合し、これに酸化アルミニウム前駆体の所定量を加えさらに混合するが、この際に、担体の多孔性向上剤を添加することができる。多孔性向上剤の添加は必須ではない。アルカリ土類金属分、ホウ素分を比較的多く含む場合には添加することにより、担体調製にあたっての多孔性のばらつきが少なくなるなど触媒の生産性が高まることが期待できる。 For example, a process for preparing a carrier composed of magnesium, boron and the balance aluminum oxide is exemplified. Magnesium oxide (MgO) and sodium tetraborate decahydrate (Na 2 B 4 O 7 · 10H 2 O) And a predetermined amount of the aluminum oxide precursor is added thereto and further mixed. At this time, a porosity improver for the carrier can be added. The addition of a porosity improver is not essential. When a relatively large amount of alkaline earth metal and boron are contained, it can be expected that the productivity of the catalyst is increased by adding it, for example, the variation in porosity in preparing the carrier is reduced.

(多孔性向上剤)
多孔性向上剤としては、酒石酸、クエン酸、ポリビニルアルコール、部分鹸化ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、およびカルボキシメチルセルロースなどを好ましく使用でき、酒石酸、クエン酸、ステアリン酸、ポリビニルアルコール、およびカルボキシメチルセルロースなどがより好ましく、ステアリン酸、酒石酸、ポリビニルアルコールおよびカルボキシメチルセルロースが最も好ましい。多孔性向上剤は1種単独でもよいし2種以上を任意の割合で混合して使用することができる。
(Porosity improver)
As the porosity improver, tartaric acid, citric acid, polyvinyl alcohol, partially saponified polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, and carboxymethyl cellulose can be preferably used. Tartaric acid, citric acid, stearic acid, polyvinyl alcohol, and carboxymethyl cellulose And stearic acid, tartaric acid, polyvinyl alcohol and carboxymethylcellulose are most preferred. The porosity improver may be used singly or in combination of two or more in any proportion.

(多孔性向上剤の添加量)
多孔性向上剤の添加量としては担体前駆体の合計重量基準1wt.%以上10wt.%以下が好ましく、3wt.%以上7wt.%以下がより好ましく、5wt.%以上7wt.%以下が最も好ましい。この範囲未満では多孔性向上効果が不充分であり、添加する技術的な意義が希薄になり好ましくない。この範囲を超過した場合には多孔性向上効果が飽和する傾向が見られること、および触媒の形状によっては押圧強度(side crush strength (SCS))が低下する虞があるため好ましくない。
(Amount of addition of porosity improver)
The addition amount of the porosity improver is preferably 1 wt.% Or more and 10 wt.% Or less based on the total weight of the carrier precursor, more preferably 3 wt.% Or more and 7 wt.% Or less, and most preferably 5 wt.% Or more and 7 wt.% Or less. . If it is less than this range, the effect of improving the porosity is insufficient, and the technical significance of the addition becomes dilute, which is not preferable. When this range is exceeded, there is a tendency that the effect of improving the porosity is saturated, and the crush strength (SCS) may be lowered depending on the shape of the catalyst.

上述の多孔性向上剤は担体の焼成時に燃焼されることにより除去される。その際に発生するガスまたは多孔性向上剤が占有していた箇所が空隙となることにより多孔性が向上するものと考えられる。 The above-mentioned porosity improver is removed by being burned when the carrier is fired. It is considered that the porosity is improved when the gas occupied at that time or the portion occupied by the porosity improver becomes a void.

(触媒加熱安定化工程)
触媒加熱安定化工程は、ニッケル系触媒に関し600℃以上680℃以下の温度で空気中において3時間以上24時間以下の範囲で焼成することによって行われる。これはニッケルを安定な酸化物にすることによって触媒変化を防ぐことが目的である。ルテニウム系触媒に関してはRu4+などの昇華性物質が生成する虞があるため60℃程度の温度で乾燥処理され、ニッケル系触媒のような高温域での触媒加熱安定化工程は行わない。
(Catalyst heat stabilization process)
The catalyst heat stabilization step is performed by calcining the nickel-based catalyst at a temperature of 600 ° C. or higher and 680 ° C. or lower in the air for 3 hours or longer and 24 hours or shorter. The purpose is to prevent catalyst changes by making nickel a stable oxide. Since ruthenium-based catalysts may produce sublimable substances such as Ru 4+ , they are dried at a temperature of about 60 ° C., and the catalyst heat stabilization process in a high temperature range such as nickel-based catalysts is not performed.

(活性金属担持工程)
この工程では、含浸法、incipient wetness法、湿式混練法、乾式混練法などの公知方法を好ましく選択することができる。原材料、設備、工程などに応じて公知方法を選択すれば良い。
(Active metal loading process)
In this step, a known method such as an impregnation method, an incipient wetness method, a wet kneading method, or a dry kneading method can be preferably selected. What is necessary is just to select a well-known method according to a raw material, an installation, a process, etc.

(水素含有ガスの製造方法)
(触媒の反応器への充填方法)
本発明の触媒は縦型固定床反応器、横型固定床反応器、およびU字型固定床反応器に充填することが好ましい。充填に際しては、球状、破砕状、リング状、中空状などの化学的に安定かつ耐熱性を有する無機材料(希釈材)を用いて希釈充填する。これは、局部発熱を避け均熱ゾーンを保つために必須である。充填に際しては触媒と希釈材を容積比で1:3乃至1:1の範囲で十分混合することが望ましい。
(Method for producing hydrogen-containing gas)
(Method of filling catalyst into reactor)
The catalyst of the present invention is preferably packed in a vertical fixed bed reactor, a horizontal fixed bed reactor, and a U-shaped fixed bed reactor. In filling, dilution filling is performed using a chemically stable and heat-resistant inorganic material (diluent) such as a spherical shape, a crushed shape, a ring shape, and a hollow shape. This is essential for avoiding local heat generation and maintaining a soaking zone. At the time of filling, it is desirable that the catalyst and diluent are sufficiently mixed in a volume ratio of 1: 3 to 1: 1.

(希釈材と触媒と希釈剤の比率)
希釈材として用いる無機材料としては、触媒の見かけ上の嵩密度(ABD、apparent bulk density)を揃えることが均一に充填しやすくなる。触媒のABD(ABD(C))と希釈材のABD(ABD(D))に関しては ABD(D)/ABD(C)比が0.8以上1.2以下が好ましく、0.85以上1.15以下がより好ましく、0.93以上1.08以下が最も好ましい。この範囲をはずれた場合、充填時および反応中に触媒と希釈材の分布が不均一になり、その結果として触媒床を温度分布が広くなり水素収率を損なう虞がある。
(Ratio of diluent / catalyst / diluent)
As an inorganic material used as a diluent, it is easy to uniformly fill the catalyst with an apparent bulk density (ABD). Regarding the ABD of the catalyst (ABD (C)) and the ABD (ABD (D)) of the diluent, the ABD (D) / ABD (C) ratio is preferably 0.8 or more and 1.2 or less, more preferably 0.85 or more and 1.15 or less, and 0.93 or more Most preferred is 1.08 or less. If it is out of this range, the distribution of the catalyst and the diluent becomes non-uniform during filling and during the reaction, and as a result, the temperature distribution of the catalyst bed becomes wide and the hydrogen yield may be impaired.

(希釈剤の素材)
希釈剤としては酸化アルミニウム、シリカ−アルミナ、酸化ジルコニウム、二酸化ケイ素、酸化亜鉛、二酸化チタンの他にゼオライト、セピオライト、ベントナイトなどの鉱物(人工鉱物を含む)などを好ましく用いることができる。酸化アルミニウム、シリカ−アルミナ、酸化ジルコニウム、酸化亜鉛、セピオライト、ゼオライトが好ましく、酸化アルミニウム、シリカ−アルミナ、酸化ジルコニウム、酸化亜鉛、ゼオライトがより好ましく、酸化アルミニウムおよびシリカ−アルミナが最も好ましい。これらは1種単独でもよいし、2種以上混合することは妨げない。
(Diluent material)
As the diluent, in addition to aluminum oxide, silica-alumina, zirconium oxide, silicon dioxide, zinc oxide and titanium dioxide, minerals (including artificial minerals) such as zeolite, sepiolite and bentonite can be preferably used. Aluminum oxide, silica-alumina, zirconium oxide, zinc oxide, sepiolite and zeolite are preferred, aluminum oxide, silica-alumina, zirconium oxide, zinc oxide and zeolite are more preferred, and aluminum oxide and silica-alumina are most preferred. These may be used alone or as a mixture of two or more.

(原料油)
主原料には未使用の食用油(新油)の他に使用済食用油を好ましく利用できる。なお、使用済食用油には、食品屑などの固形分が含まれているため金網などを用いて取り除くことが望ましい。使用済食用油に関しては、植物油が好ましい。食品等から移行した動物性油脂、魚油、バター、マーガリン等の油脂および水分のほかにも、加水分解によって生じた脂肪酸、グリセリン、さらにはメタノール、グリコールなどの1価、2価のアルコール類が混入していても、常温から50℃で液体状を呈している場合には好ましく使用できる。また、使用済油の呈色には影響されない。
(Raw oil)
In addition to unused cooking oil (new oil), used cooking oil can be preferably used as the main raw material. In addition, since used cooking oil contains solid content, such as food waste, it is desirable to remove using a wire mesh. As for the used cooking oil, vegetable oil is preferred. In addition to fats and water such as animal fats and oils, fish oil, butter, margarine, etc. that have been transferred from foods, etc., fatty acids generated by hydrolysis, glycerin, and mono- and dihydric alcohols such as methanol and glycol are mixed. However, it can be preferably used when it is in a liquid state from room temperature to 50 ° C. Moreover, it is not influenced by the coloration of used oil.

(主原料以外の油脂等の含有制限値)
植物油中に占める動物性油脂、魚油、バター、マーガリン等の油脂、脂肪酸、グリセリン、アルコール類合計の含有量について、上限値は20vol.%以下が好ましく、10vol.%以下がよりこの好ましく、5vol.%以下が最も好ましい。これらの合計含有量が好ましい範囲を超過しても、常温から50℃で液体状を呈していれば、本発明の改質反応を阻害するものではないが、原料油組成が変動することは水素製造プロセスの管理が難しくなるなど実用の観点から上述の範囲内に収めることが望ましい。
(Containment limit value of fats and oils other than main raw materials)
The upper limit is preferably 20 vol.% Or less, more preferably 10 vol.% Or less, more preferably 5 vol., For the total fat, fatty acid, glycerin, and alcohol content of animal fats and oils, fish oil, butter, margarine, etc. in the vegetable oil. % Or less is most preferable. Even if the total content exceeds the preferable range, it does not inhibit the reforming reaction of the present invention as long as it is in a liquid state at room temperature to 50 ° C. From the viewpoint of practical use such as difficult management of the manufacturing process, it is desirable to keep within the above range.

(原料油に添加できる石油系炭化水素と好適な添加量)
上述の原料油に好ましく添加できる石油系炭化水素は白灯油(JIS−1号灯油)、デカヒドロナフタレン(デカリン)、深度脱硫処理した白灯油、ライトナフサ、およびヘビーナフサである。白灯油、デカヒドロナフタレン、深度脱硫処理した白灯油が本発明の水素製造における原料供給操作に関し容易であるためより好ましい。白灯油を添加する場合の使用済食用油/白灯油容積比は0.11以上19.0以下が好ましく、0.25以上19.0以下がより好ましく2.3以上19.0以下が最も好ましい。この範囲外でも操業上の問題はない。しかし、使用済食用油からの水素含有ガス製造の観点および石油系炭化水素を配合する観点から実質的な範囲は上述のとおりである。デカリンを添加する場合の使用済食用油/デカリン容積比は0.11以上19.0以下が好ましく、0.25以上19.0以下がより好ましく2.3以上19.0以下が最も好ましい。この範囲外でも操業上の問題はない。しかし、使用済食用油からの水素含有ガス製造の観点および石油系炭化水素を配合する観点から実質的な範囲は上述のとおりである。
(Petroleum hydrocarbons that can be added to feedstock and suitable addition amount)
Petroleum hydrocarbons that can be preferably added to the above-mentioned feedstock oil are white kerosene (JIS-1 kerosene), decahydronaphthalene (decalin), deep desulfurized white kerosene, light naphtha, and heavy naphtha. White kerosene, decahydronaphthalene, and deep kerosene-treated white kerosene are more preferred because they are easy for the raw material supply operation in the hydrogen production of the present invention. When white kerosene is added, the used edible oil / white kerosene volume ratio is preferably 0.11 to 19.0, more preferably 0.25 to 19.0, and most preferably 2.3 to 19.0. There are no operational problems outside this range. However, the substantial range is as described above from the viewpoint of producing a hydrogen-containing gas from used cooking oil and from the viewpoint of blending petroleum hydrocarbons. When adding decalin, the used cooking oil / decalin volume ratio is preferably from 0.11 to 19.0, more preferably from 0.25 to 19.0, and most preferably from 2.3 to 19.0. There are no operational problems outside this range. However, the substantial range is as described above from the viewpoint of producing a hydrogen-containing gas from used cooking oil and from the viewpoint of blending petroleum hydrocarbons.

(改質剤)
改質剤には水(水蒸気)と酸素を用いる。酸素に関しては酸素含有量が15%以上含んでいるガスを好ましく使用でき、空気、希釈酸素、および純酸素を好ましく使用できる。このように、空気、純酸素は勿論のこと、酸素以外に二酸化炭素、一酸化炭素、窒素、希ガスなどを含有していても、酸素含有量が15%以上含んだガスを好ましく用いることができる。
(Modifier)
Water (steam) and oxygen are used as the modifier. Regarding oxygen, a gas containing 15% or more of oxygen can be preferably used, and air, diluted oxygen, and pure oxygen can be preferably used. Thus, it is preferable to use a gas containing 15% or more of oxygen even if it contains not only air and pure oxygen but also carbon dioxide, carbon monoxide, nitrogen, rare gas, etc. in addition to oxygen. it can.

(触媒床温度と圧力)
触媒床温度(反応温度)は630℃以上750℃以下が好ましく、630℃以上720℃以下がより好ましく、630℃以上680℃以下がさらに好ましく、630℃以上650℃以下が最も好ましい。この範囲未満では水素収量が低下する場合が考えられる。上限は特に限定されるものではないが、この範囲内で十分な収量が得られるため、この範囲を超過する技術的な意義は少なくなる。よって750℃が実質的に上限と考えてよい。系内圧力は0.1kg/cm2,G(ゲージ圧)以上9.8kg/cm2,G以下が好ましく、0.1kg/cm2、G以上5kg/cm2,G以下がより好ましく、0.2kg/cm2,G以上5kg/cm2,G以下が最も好ましい。圧力範囲が所定未満の場合には水素製造量が制限される可能性があり、超過した場合には機器コストが高くなる可能性がある。
(Catalyst bed temperature and pressure)
The catalyst bed temperature (reaction temperature) is preferably from 630 ° C to 750 ° C, more preferably from 630 ° C to 720 ° C, further preferably from 630 ° C to 680 ° C, and most preferably from 630 ° C to 650 ° C. Below this range, the hydrogen yield may be reduced. The upper limit is not particularly limited, but since a sufficient yield can be obtained within this range, the technical significance of exceeding this range is reduced. Therefore, 750 ° C. may be considered as the upper limit substantially. The pressure in the system is preferably 0.1 kg / cm 2 , G (gauge pressure) to 9.8 kg / cm 2 , G or less, more preferably 0.1 kg / cm 2 , G to 5 kg / cm 2 , G or less, 0.2 kg / cm 2 to 5 kg / cm 2 and G to most is most preferable. When the pressure range is less than a predetermined value, the hydrogen production amount may be limited. When the pressure range is exceeded, the equipment cost may increase.

(ニッケル系触媒における植物油供給)
触媒重量に対する供給量に関し、ニッケル系触媒では触媒重量1gに対し、植物油供給量は炭素基準で1.6×10-2C-mol/h以上3×10-2C-mol/h以下が好ましく、2.0×10-2C-mol/h以上3×10-2C-mol/h以下がより好ましく、2.0×10-2C-mol/h以上2.4×10-2C-mol/h 以下が最も好ましい。この範囲未満でもプロセス運転は可能であるが、水素製造量が少なくなる。この範囲を超過すると改質が十分に行われない可能性があり、技術的な優位性が希薄になる傾向が見られる。特に、大幅に範囲超過した場合には不充分な改質により液状成分(変質油脂)が下流側に至る能性があり好ましくない。
(Supplying vegetable oil in nickel-based catalysts)
Regarding the supply amount relative to the catalyst weight, the supply amount of vegetable oil is preferably 1.6 × 10 −2 C-mol / h or more and 3 × 10 −2 C-mol / h or less on a carbon basis with respect to 1 g of the catalyst weight in the case of nickel catalyst, More preferably × 10 -2 C-mol / h or more and 3 × 10 -2 C-mol / h or less, and most preferably 2.0 × 10 -2 C-mol / h or more and 2.4 × 10 -2 C-mol / h or less . Process operation is possible even below this range, but the amount of hydrogen production decreases. If this range is exceeded, there is a possibility that the reforming may not be carried out sufficiently, and there is a tendency that the technical superiority is diluted. In particular, when the range is greatly exceeded, liquid components (modified oils and fats) have the ability to reach the downstream side due to insufficient modification, which is not preferable.

(ニッケル系触媒における改質剤供給)
改質剤として用いる水蒸気および酸素含有ガスまたは純酸素は供給される植物油のC-mol量に対する比で定義される。水蒸気のmol量(S)と植物油のC-mol量(C)の比(S/C比)については、2以上2.9以下が好ましく2.5以上2.9以下がより好ましい。酸素含有ガスまたは純酸素中のO-mol量(O2ではなくO換算値)と植物油のC-mol量(C)の比(O/C比)については、0.5以上0.85以下が好ましく、0.6以上0.85以下がより好ましく、0.6以上0.8以下が最も好ましい。この範囲未満では、植物油の改質が不充分になる傾向および炭素析出が起こりやすくなる傾向が見られるため好ましくない。この範囲を超過した場合、プロセスの運転には支障はないが水素収量が減少する虞があるため好ましくない。
(Supplying modifier for nickel catalyst)
Water vapor and oxygen-containing gas or pure oxygen used as a modifier is defined as a ratio to the amount of C-mol of vegetable oil supplied. The ratio (S / C ratio) between the mol amount of water vapor (S) and the C-mol amount (C) of vegetable oil is preferably 2 or more and 2.9 or less, more preferably 2.5 or more and 2.9 or less. The ratio (O / C ratio) between the O-mol amount in oxygen-containing gas or pure oxygen (O-converted value instead of O 2 ) and the C-mol amount (C) of vegetable oil is preferably 0.5 or more and 0.85 or less, 0.6 It is more preferably 0.85 or less, and most preferably 0.6 or more and 0.8 or less. If it is less than this range, there is a tendency for the modification of the vegetable oil to be insufficient and a tendency for carbon deposition to occur, which is not preferable. When this range is exceeded, there is no problem in the operation of the process, but it is not preferable because the hydrogen yield may be reduced.

(ルテニウム系触媒における植物油供給)
触媒重量に対する供給量に関し、ルテニウム系触媒では触媒重量1gに対し、植物油供給量は炭素基準で5.3×10-2C-mol/h以上0.4C-mol/h以下が好ましく、5.3×10-2C-mol/h 以上0.36C-mol/h以下がより好ましく、8.3×10-2C-mol/h以上0.36C-mol/h以下が最も好ましい。この範囲未満でもプロセス運転はできるが、水素製造に係る原単位が高くなる可能性がある。この範囲を超過すると改質が十分に行われない可能性がある。
(Supplying vegetable oil in ruthenium-based catalysts)
Regarding the supply amount relative to the catalyst weight, the supply amount of vegetable oil is preferably 5.3 × 10 −2 C-mol / h or more and 0.4 C-mol / h or less on a carbon basis with respect to 1 g of catalyst weight in the case of a ruthenium catalyst, and 5.3 × 10 −2 C-mol / h or more and 0.36 C-mol / h or less is more preferable, and 8.3 × 10 −2 C-mol / h or more and 0.36 C-mol / h or less is most preferable. Although the process operation can be carried out even below this range, the basic unit for hydrogen production may be high. If this range is exceeded, reforming may not be performed sufficiently.

(ルテニウム系触媒における改質剤供給)
改質剤として用いる水蒸気および酸素含有ガスまたは純酸素は供給される植物油のC-mol量に対する比で定義される。水蒸気のmol量(S)と植物油のC-mol量(C)の比(S/C比)については、1.0以上2.0以下が好ましく1.2以上1.9以下がより好ましく、1.3以上1.9以下がさらに好ましく、1.3以上1.5以下が最も好ましい。酸素含有ガスまたは純酸素中のO-mol量と植物油のC-mol量(C)の比(O/C比)については、0.5以上0.85以下が好ましく、0.6以上0.83以下がより好ましく、0.6以上0.8以下が最も好ましい。この範囲未満では、植物油の改質が不充分になる傾向および炭素析出が起こりやすくなる傾向が見られるため好ましくない。この範囲を超過した場合、プロセスの運転には支障はないが水素収量が減少する虞があるため好ましくない。
(Supplying modifier for ruthenium catalyst)
Water vapor and oxygen-containing gas or pure oxygen used as a modifier is defined as a ratio to the amount of C-mol of vegetable oil supplied. About the ratio (S / C ratio) of mol amount (S) of water vapor and C-mol amount (C) of vegetable oil, 1.0 or more and 2.0 or less are preferable, 1.2 or more and 1.9 or less are more preferable, 1.3 or more and 1.9 or less are more preferable, 1.3 to 1.5 is most preferable. About ratio (O / C ratio) of O-mol amount in oxygen-containing gas or pure oxygen and C-mol amount (C) of vegetable oil is preferably 0.5 or more and 0.85 or less, more preferably 0.6 or more and 0.83 or less, and more than 0.6 Most preferred is 0.8 or less. If it is less than this range, there is a tendency for the modification of the vegetable oil to be insufficient and a tendency for carbon deposition to occur, which is not preferable. When this range is exceeded, there is no problem in the operation of the process, but it is not preferable because the hydrogen yield may be reduced.

(実施例)
以下に実施例を示し本発明の実施態様を具体的に開示する。これは、本発明の説明をより分かりやすくするためのものであり、範囲を限定的に捉えることを目的としていない。
(Example)
Examples are given below to specifically disclose embodiments of the present invention. This is to make the description of the present invention easier to understand and is not intended to limit the scope.

(実施例1)
(担体調製工程)
(担体成分の混合)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化マグネシウム(MgO)を3.8g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.19g秤量し、MgO(3.8g)と自動乳鉢で30分間混合した。得られた混合物に水酸化アルミニウム粉末の所定量を加えさらに自動乳鉢で30分間混合した。
Example 1
(Carrier preparation process)
(Mixing of carrier components)
In advance, 3.8 g of magnesium oxide (MgO) cooled to 40 ° C. or lower after weighing at 680 ° C. for 3 hours was weighed. Separately, 0.19 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with MgO (3.8 g) in an automatic mortar for 30 minutes. A predetermined amount of aluminum hydroxide powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar.

(圧縮成形とシービング)
こうして得た担体前駆体混合物に対しステアリン酸を5wt.%添加し、自動乳鉢で30分間混合後、その一部を直径16mmのシリンダーに充填し1.5ton/cm2でプレスし5分間保持した後、圧力を開放して円柱状の成形体を得た。円柱状成形体を、粉砕した。粉砕体をJIS Z 8801の篩によって、目の開き(aperture)2.80mm、線径(wire diameter)1.12mmの篩を通過し、目の開き1.40mm、線径0.71mmの篩を通過しなかった範囲の粒子を取り出し篩分けした。
(Compression molding and sheaving)
5 wt.% Of stearic acid was added to the carrier precursor mixture thus obtained, mixed for 30 minutes in an automatic mortar, a portion was filled in a cylinder with a diameter of 16 mm, pressed at 1.5 ton / cm 2 and held for 5 minutes. Then, the pressure was released to obtain a cylindrical shaped body. The columnar shaped body was pulverized. The crushed material was passed through a sieve with an aperture of 2.80 mm and a wire diameter of 1.12 mm, and did not pass through a sieve with an aperture of 1.40 mm and a wire diameter of 0.71 mm, using a sieve of JIS Z 8801. A range of particles was removed and sieved.

(担体の焼成)
篩分けした粒子を磁製皿に移し、マッフル炉(FO300型、ヤマト科学製)を用いて680℃で空気中3時間焼成した。得られた担体の比表面積は180m2/g、細孔容積は0.21mL/gだった。
(Carrier firing)
The sieved particles were transferred to a porcelain dish and baked in air at 680 ° C. for 3 hours using a muffle furnace (FO300 type, manufactured by Yamato Kagaku). The obtained support had a specific surface area of 180 m 2 / g and a pore volume of 0.21 mL / g.

(活性金属担持工程)
酢酸ニッケル(II)・4水和物(試薬特級、関東化学製)に純水を加えて濃度212g/Lの水溶液を調製した。この担体19.0gに対し酢酸ニッケル水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、60℃で水分を除去した。
(Active metal loading process)
Pure water was added to nickel (II) acetate tetrahydrate (special reagent grade, manufactured by Kanto Chemical Co., Ltd.) to prepare an aqueous solution having a concentration of 212 g / L. 20 mL of nickel acetate aqueous solution was added to 19.0 g of this carrier and stirred, and then transferred to a rotary evaporator to remove moisture at 60 ° C. under reduced pressure.

(触媒加熱安定化工程)
こうして得た触媒前駆体をマッフル炉を使用して空気中600℃で3時間焼成してニッケル分を金属換算、触媒重量基準5.0wt.%、マグネシウム分を金属酸化物換算、触媒重量基準20.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準1.0wt.%、および残部酸化アルミニウムからなる触媒101を得た。
(Catalyst heat stabilization process)
The catalyst precursor thus obtained was calcined in air at 600 ° C. for 3 hours using a muffle furnace, the nickel content was converted to metal, the catalyst weight was 5.0 wt.%, The magnesium content was converted to metal oxide, and the catalyst weight was 20.0 wt. The catalyst 101 which consists of 0.1%, boron content in terms of sodium tetraborate decahydrate, 1.0 wt.% Based on the catalyst weight, and the balance aluminum oxide was obtained.

(触媒の充填と活性化)
触媒101を5.0g秤量し、10mLのメスシリンダーに充填し嵩密度(ABD(C))を求めた。この時のABD(C)は1.17だった。触媒に対し同量のシリカ−アルミナ(ABD(D)0.94)を加えて希釈した。この時のABD(D)/ABD(C)は0.8だった。希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Catalyst filling and activation)
5.0 g of catalyst 101 was weighed and filled into a 10 mL graduated cylinder to determine the bulk density (ABD (C)). The ABD (C) at this time was 1.17. The catalyst was diluted by adding the same amount of silica-alumina (ABD (D) 0.94). At this time, ABD (D) / ABD (C) was 0.8. The diluted catalyst was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while passing hydrogen at 100 mL / min (STP: standard state conversion).

(使用済食用油の改質)
アルゴンに切り替え20mL/min(STP)で通気しながら680℃まで昇温し、同温度で保持した。植物油(日清サラダ油、日清オイリオ製)を実際に調理に使用(以下使用済植物油)したものを大豆油と見做し0.08C-mol/h(触媒1gあたり1.6×10-2C-mol/h)、S/C比2.0、O/C比0.5の条件で触媒床上に導入した。反応温度は70℃上昇し750℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。
(Modification of used cooking oil)
It switched to argon, heated up to 680 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. 0.08C-mol / h (1.6 × 10 -2 C-mol per 1g of catalyst) assuming vegetable oil (Nisshin Salad Oil, made by Nisshin Oillio) for cooking (hereinafter used vegetable oil) is regarded as soybean oil / h), S / C ratio was 2.0, and O / C ratio was 0.5. The reaction temperature increased by 70 ° C to 750 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure).

(生成ガスの組成と転化率)
この条件で得られた生成ガスの代表的な組成は水素60.2%、一酸化炭素22.5%、二酸化炭素13.5%、メタン3.2%、および炭素数2以上の炭化水素(C2+)0.6%だった。なお、生成ガス組成には水(水蒸気)、窒素および未燃焼酸素分を除いたモル%で示す。これ以降に示す実施例においても同じ取扱いとする。また、式1で定義されるガス化転化率は1時間目90.2%、6時間目91.5%を示し、総合評価は適だった。
(Product gas composition and conversion)
The typical composition of the product gas obtained under these conditions was 60.2% hydrogen, 22.5% carbon monoxide, 13.5% carbon dioxide, 3.2% methane, and 0.6% hydrocarbons with 2 or more carbons (C2 + ). . The product gas composition is expressed as mol% excluding water (water vapor), nitrogen and unburned oxygen. The same applies to the embodiments described below. The gasification conversion rate defined by Equation 1 was 90.2% at the first hour and 91.5% at the sixth hour, and the overall evaluation was appropriate.

式1Formula 1

(実施例2)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化カルシウム(CaO)を3.2g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.45g秤量し、CaO(3.2g)と自動乳鉢で30分間混合した。得られた混合物に水酸化アルミニウム粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準で酒石酸を7wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 2)
After calcining at 680 ° C. for 3 hours in advance, 3.2 g of calcium oxide (CaO) cooled to 40 ° C. or lower was weighed. Separately, 0.45 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with CaO (3.2 g) in an automatic mortar for 30 minutes. A predetermined amount of aluminum hydroxide powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 7 wt.% Tartaric acid was added based on the total weight of the carrier precursor mixture thus obtained, mixed in an automatic mortar for 30 minutes, and then compression molded and sieved by the method described in Example 1.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて600℃で空気中5時間焼成した。得られた担体の比表面積は200m2/g、細孔容積は0.23mL/gだった。酢酸ニッケル(II)・4水和物に純水を加えて濃度212g/Lの水溶液を調製した。この担体18.0gに対し酢酸ニッケル水溶液を40mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、60℃で水分を除去した。こうして得た触媒前駆体をマッフル炉内で空気中680℃、3時間焼成してニッケル分を金属換算、触媒重量基準10.0wt.%、カルシウム分を金属酸化物換算、触媒重量基準18.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準2.5wt.%、および残部酸化アルミニウムからなる触媒102を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 600 ° C. for 5 hours using a muffle furnace. The obtained support had a specific surface area of 200 m 2 / g and a pore volume of 0.23 mL / g. Pure water was added to nickel (II) acetate tetrahydrate to prepare an aqueous solution having a concentration of 212 g / L. 40 mL of nickel acetate aqueous solution was added to 18.0 g of this carrier and stirred, and then transferred to a rotary evaporator to remove moisture at 60 ° C. under reduced pressure. The catalyst precursor thus obtained was calcined in a muffle furnace in air at 680 ° C. for 3 hours to convert the nickel content into metal, catalyst weight basis 10.0 wt.%, Calcium content into metal oxide, catalyst weight basis 18.0 wt.% Then, a catalyst 102 comprising a boron content in terms of sodium tetraborate decahydrate, 2.5 wt.% Based on the catalyst weight, and the remaining aluminum oxide was obtained.

触媒102を5.0g秤量し、10mLのメスシリンダーに充填し嵩密度(ABD(C))を求めた。この時のABD(C)は1.02だった。触媒に対し同量のアルミナ(ABD(D)1.1)を加えて希釈した。この時のABD(D)/ABD(C)は1.08だった。希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 102 was weighed and filled into a 10 mL graduated cylinder to determine the bulk density (ABD (C)). The ABD (C) at this time was 1.02. The catalyst was diluted by adding the same amount of alumina (ABD (D) 1.1). The ABD (D) / ABD (C) at this time was 1.08. The diluted catalyst was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while passing hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら640℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.1C-mol/h(触媒1gあたり2.0×10-2C-mol/h)、S/C比2.0、O/C比0.6の条件で触媒床上に導入した。反応温度は80℃上昇し720℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.5%、一酸化炭素19.9%、二酸化炭素14.5%、メタン3.5%、およびC2+ 0.6%だった。また、式1で定義されるガス化転化率は1時間目90.8%、6時間目91.3%を示し、総合評価は適だった。 The temperature was raised to 640 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. Assuming that used vegetable oil is soybean oil, 0.1C-mol / h (2.0 × 10 -2 C-mol / h per 1g of catalyst), S / C ratio of 2.0, O / C ratio of 0.6 introduced on the catalyst bed did. The reaction temperature increased by 80 ° C to 720 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.5% hydrogen, 19.9% carbon monoxide, 14.5% carbon dioxide, 3.5% methane, and 0.6% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 90.8% at the first hour and 91.3% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例3)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化バリウム(BaO)を2.64g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.53g秤量し、BaO(2.64g)と自動乳鉢で30分間混合した。得られた混合物にγ-アルミナ粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準でポリビニルアルコール(PVA)の粉末を1wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 3)
2.64 g of barium oxide (BaO) cooled to 40 ° C. or lower after weighing at 680 ° C. for 3 hours in advance was weighed. Separately, 0.53 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with BaO (2.64 g) in an automatic mortar for 30 minutes. A predetermined amount of γ-alumina powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 1 wt.% Of polyvinyl alcohol (PVA) powder was added based on the total weight of the carrier precursor mixture thus obtained, mixed in an automatic mortar for 30 minutes, and then compression molded and sieved by the method described in Example 1.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて650℃で空気中6時間焼成した。得られた担体の比表面積は240m2/g、細孔容積は0.25mL/gだった。硝酸ニッケル(II)・6水和物に純水を加えて濃度595g/Lの水溶液を調製した。この担体17.6gに対し硝酸ニッケル水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、60℃で水分を除去した。こうして得た触媒前駆体をマッフル炉内で空気中650℃、6時間焼成してニッケル分を金属換算、触媒重量基準12.0wt.%、バリウム分を金属酸化物換算、触媒重量基準15.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準3.0wt.%、および残部酸化アルミニウムからなる触媒103を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 650 ° C. for 6 hours using a muffle furnace. The obtained support had a specific surface area of 240 m 2 / g and a pore volume of 0.25 mL / g. Pure water was added to nickel (II) nitrate hexahydrate to prepare an aqueous solution with a concentration of 595 g / L. 20 mL of nickel nitrate aqueous solution was added to 17.6 g of this carrier and stirred, and then transferred to a rotary evaporator to remove water at 60 ° C. under reduced pressure. The catalyst precursor thus obtained was calcined in air at 650 ° C. for 6 hours in a muffle furnace, the nickel content was converted to metal, the catalyst weight was 12.0 wt.%, The barium content was converted to metal oxide, and the catalyst weight was 15.0 wt.%. Then, a catalyst 103 was obtained comprising the boron content in terms of sodium tetraborate decahydrate, 3.0 wt.% Based on the catalyst weight, and the balance aluminum oxide.

触媒103を5.0g秤量し、10mLのメスシリンダーに充填し嵩密度(ABD(C))を求めた。この時のABD(C)は1.1だった。触媒に対し同量のアルミナ(ABD(D)1.02)を加えて希釈した。この時のABD(D)/ABD(C)は0.93だった。希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 103 was weighed and filled into a 10 mL graduated cylinder to determine the bulk density (ABD (C)). The ABD (C) at this time was 1.1. The catalyst was diluted by adding the same amount of alumina (ABD (D) 1.02). At this time, ABD (D) / ABD (C) was 0.93. The diluted catalyst was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while passing hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら605℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.12C-mol/h(触媒1gあたり2.4×10-2C-mol/h)、S/C比2.5、O/C比0.7の条件で触媒床上に導入した。反応温度は75℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.8%、一酸化炭素19.5%、二酸化炭素15.3%、メタン3.6%、およびC2+ 0.8%だった。また、式1で定義されるガス化転化率は1時間目92.1%、6時間目91.8%を示し、総合評価は適だった。 It switched to argon, heated up to 605 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Assuming used vegetable oil as soybean oil, 0.12 C-mol / h (2.4 × 10 -2 C-mol / h per 1 g of catalyst), S / C ratio of 2.5, and O / C ratio of 0.7 introduced on the catalyst bed did. The reaction temperature increased by 75 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 60.8% hydrogen, 19.5% carbon monoxide, 15.3% carbon dioxide, 3.6% methane, and C 2+ 0.8%. Moreover, the gasification conversion rate defined by Formula 1 was 92.1% at the first hour and 91.8% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例4)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化マグネシウム(MgO)を2.55g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.85g秤量し、MgO(2.55g)と自動乳鉢で30分間混合した。得られた混合物にγ-アルミナ粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準でカルボキシメチルセルロース(CMC)の粉末を10wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
Example 4
In advance, after calcination at 680 ° C. for 3 hours, 2.55 g of magnesium oxide (MgO) cooled to 40 ° C. or less was weighed. Separately, 0.85 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with MgO (2.55 g) in an automatic mortar for 30 minutes. A predetermined amount of γ-alumina powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 10 wt.% Of carboxymethyl cellulose (CMC) powder was added based on the total weight of the carrier precursor mixture thus obtained, mixed for 30 minutes in an automatic mortar, and then compression molded and sieved by the method described in Example 1.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて680℃で空気中12時間焼成した。得られた担体の比表面積は220m2/g、細孔容積は0.24L/gだった。塩化ニッケル(II)・6水和物に純水を加えて濃度608g/Lの水溶液を調製した。この担体17.0gに対し塩化ニッケル水溶液を20.0mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、60℃で水分を除去した。こうして得た触媒前駆体をマッフル炉内で空気中680℃、12時間焼成してニッケル分を金属換算、触媒重量基準15.0wt.%、マグネシウム分を金属酸化物換算、触媒重量基準15.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準5.0wt.%、および残部酸化アルミニウムからなる触媒104を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 680 ° C. for 12 hours using a muffle furnace. The obtained support had a specific surface area of 220 m 2 / g and a pore volume of 0.24 L / g. Pure water was added to nickel (II) chloride hexahydrate to prepare an aqueous solution with a concentration of 608 g / L. After adding 20.0 mL of nickel chloride aqueous solution to 17.0 g of this carrier and stirring, it was transferred to a rotary evaporator to remove water at 60 ° C. under reduced pressure. The catalyst precursor thus obtained was calcined in air at 680 ° C. for 12 hours in a muffle furnace, the nickel content was converted to metal, the catalyst weight was 15.0 wt.%, The magnesium content was converted to metal oxide, and the catalyst weight was 15.0 wt.%. Then, a catalyst 104 comprising a boron content in terms of sodium tetraborate decahydrate, 5.0 wt.% Based on the catalyst weight, and the balance aluminum oxide was obtained.

触媒104を5.0g秤量し、10mLのメスシリンダーに充填し嵩密度(ABD(C))を求めた。この時のABD(C)は1.3だった。触媒に対し同量のアルミナ(ABD(D)1.56)を加えて希釈した。この時のABD(D)/ABD(C)は1.2だった。希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of the catalyst 104 was weighed and filled into a 10 mL graduated cylinder to determine the bulk density (ABD (C)). The ABD (C) at this time was 1.3. The catalyst was diluted by adding the same amount of alumina (ABD (D) 1.56). At this time, ABD (D) / ABD (C) was 1.2. The diluted catalyst was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while passing hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら590℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.12C-mol/h(触媒1gあたり2.4×10-2C-mol/h)、S/C比2.9、O/C比0.85の条件で触媒床上に導入した。反応温度は60℃上昇し650℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.5%、一酸化炭素18.3%、二酸化炭素16.0%、メタン3.5%、およびC2+ 1.7%だった。また、式1で定義されるガス化転化率は1時間目93.5%、6時間目92.2%を示し、総合評価は適だった。 The temperature was raised to 590 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the temperature was maintained. Assuming used vegetable oil as soybean oil, 0.12 C-mol / h (2.4 × 10 -2 C-mol / h per 1 g of catalyst), S / C ratio of 2.9, O / C ratio of 0.85 introduced on the catalyst bed did. The reaction temperature increased by 60 ° C to 650 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 60.5% hydrogen, 18.3% carbon monoxide, 16.0% carbon dioxide, 3.5% methane, and 1.7% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 93.5% in the first hour and 92.2% in the sixth hour, and the comprehensive evaluation was appropriate.

(実施例5)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化カルシウム(CaO)を1.92g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.8g秤量し、CaO(1.92g)と自動乳鉢で30分間混合した。得られた混合物に水酸化アルミニウム粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準で酒石酸とステアリン酸が重量比1:2である粉末を3wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 5)
In advance, after firing at 680 ° C. for 3 hours, 1.92 g of calcium oxide (CaO) cooled to 40 ° C. or less was weighed. Separately, 0.8 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with CaO (1.92 g) in an automatic mortar for 30 minutes. A predetermined amount of aluminum hydroxide powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 3 wt.% Of a powder having a weight ratio of tartaric acid and stearic acid of 1: 2 based on the total weight of the carrier precursor mixture thus obtained was added and mixed for 30 minutes in an automatic mortar, followed by compression molding by the method described in Example 1. Sieving was performed.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて680℃で空気中24時間焼成した。得られた担体の比表面積は280m2/g、細孔容積は0.31L/gだった。硝酸ニッケル(II)・6水和物に純水を加えて濃度850g/Lの水溶液を調製した。この担体16.0gに対し硝酸ニッケル水溶液を20.0mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、60℃で水分を除去した。こうして得た触媒前駆体をマッフル炉内で空気中670℃、24時間焼成してニッケル分を金属換算、触媒重量基準20.0wt.%、カルシウム分を金属酸化物換算、触媒重量基準12.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準5.0wt.%、および残部酸化アルミニウムからなる触媒105を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 680 ° C. for 24 hours using a muffle furnace. The obtained support had a specific surface area of 280 m 2 / g and a pore volume of 0.31 L / g. Pure water was added to nickel (II) nitrate hexahydrate to prepare an aqueous solution with a concentration of 850 g / L. After adding 20.0 mL of nickel nitrate aqueous solution to 16.0 g of this carrier and stirring, it was transferred to a rotary evaporator to remove water at 60 ° C. under reduced pressure. The catalyst precursor thus obtained was calcined in air at 670 ° C. for 24 hours in a muffle furnace, the nickel content was converted to metal, the catalyst weight was 20.0 wt.%, The calcium content was converted to metal oxide, and the catalyst weight was 12.0 wt.%. Then, a catalyst 105 consisting of sodium tetraborate · decahydrate in terms of boron content, 5.0 wt.% Based on the catalyst weight and the balance aluminum oxide was obtained.

触媒105を5.0g秤量し、10mLのメスシリンダーに充填し嵩密度(ABD(C))を求めた。この時のABD(C)は1.2だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.15だった。希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of the catalyst 105 was weighed and filled into a 10 mL graduated cylinder to determine the bulk density (ABD (C)). The ABD (C) at this time was 1.2. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.15. The diluted catalyst was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while passing hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら580℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.15C-mol/h(触媒1gあたり3.0×10-2C-mol/h)、S/C比2.9、O/C比0.8の条件で触媒床上に導入した。反応温度は50℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.3%、一酸化炭素18.3%、二酸化炭素15.8%、メタン4.2%、およびC2+ 0.4%だった。また、式1で定義されるガス化転化率は1時間目91.3%、6時間目90.5%を示し、総合評価は適だった。 The temperature was raised to 580 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the temperature was maintained. Assuming used vegetable oil as soybean oil, 0.15 C-mol / h (3.0 x 10 -2 C-mol / h per gram of catalyst), S / C ratio of 2.9, O / C ratio of 0.8, introduced onto the catalyst bed did. The reaction temperature increased by 50 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.3% hydrogen, 18.3% carbon monoxide, 15.8% carbon dioxide, 4.2% methane, and 0.4% C 2+ . The gasification conversion rate defined by Equation 1 was 91.3% at the first hour and 90.5% at the sixth hour, and the overall evaluation was appropriate.

(実施例6)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化マグネシウム(MgO)を3.88g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.19g秤量し、MgO(3.88g)と自動乳鉢で30分間混合した。得られた混合物にγ-アルミナ粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準でステアリン酸とポリビニルアルコールが重量比1:1である粉末を7wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 6)
In advance, after calcination at 680 ° C. for 3 hours, 3.88 g of magnesium oxide (MgO) cooled to 40 ° C. or less was weighed. Separately, 0.19 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with MgO (3.88 g) in an automatic mortar for 30 minutes. A predetermined amount of γ-alumina powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 7 wt.% Of a powder having a 1: 1 weight ratio of stearic acid and polyvinyl alcohol based on the total weight of the carrier precursor mixture thus obtained was added, mixed for 30 minutes in an automatic mortar, and then compression molded by the method described in Example 1. And sieved.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて680℃で空気中3時間焼成した。得られた担体の比表面積は180m2/g、細孔容積は0.21L/gだった。塩化ルテニウム・n水和物(n=1、Ru含有量(assay)39%に純水を加えて濃度77g/Lの水溶液を調製した。この担体19.4gに対し塩化ルテニウム水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、内圧をU字型水銀マノメーターで測定し、内圧が約50mmHgになるまで60℃で水分を除去した。このようにしてルテニウム分を金属換算、触媒重量基準3.0wt.%、マグネシウム分を金属酸化物換算、触媒重量基準20.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準1.0wt.%、および残部酸化アルミニウムからなる触媒206を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 680 ° C. for 3 hours using a muffle furnace. The obtained support had a specific surface area of 180 m 2 / g and a pore volume of 0.21 L / g. Ruthenium chloride n-hydrate (n = 1, Ru content 39%) was added pure water to prepare a 77 g / L aqueous solution. 20 mL of ruthenium chloride aqueous solution was added to 19.4 g of this carrier and stirred. After that, it was transferred to a rotary evaporator and the internal pressure was measured with a U-shaped mercury manometer under reduced pressure, and water was removed at 60 ° C. until the internal pressure reached about 50 mmHg. Catalyst 206 consisting of wt.%, magnesium content in terms of metal oxide, catalyst weight basis 20.0 wt.%, boron content in terms of sodium tetraborate decahydrate, catalyst weight basis 1.0 wt.%, and the balance aluminum oxide 206 Got.

触媒206を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.62だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.85だった。触媒206を1.5g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 206 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.62. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At that time, ABD (D) / ABD (C) was 0.85. A catalyst diluted to contain 1.5 g of catalyst 206 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら670℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し8.0×10-2C-mol/h(触媒1gあたり5.3×10-2C-mol/h、S/C比1.0、O/C比0.5の条件で触媒床上に導入した。反応温度は80℃上昇し750℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.1%、一酸化炭素17.5%、二酸化炭素16.1%、メタン4.5%、およびC2+ 1.8%だった。また、式1で定義されるガス化転化率は1時間目99.5%、6時間目99.4%を示し、総合評価は適だった。 It switched to argon, heated up to 670 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Assuming that the used vegetable oil is soybean oil, 8.0 × 10 -2 C-mol / h (5.3 × 10 -2 C-mol / h per gram of catalyst, S / C ratio 1.0, O / C ratio 0.5) The reaction temperature was increased by 80 ° C. to 750 ° C. The pressure inside the reactor was kept at 0.2 kg / cm 2 and G (gauge pressure), and the typical composition of the product gas obtained under these conditions Was 60.1% hydrogen, 17.5% carbon monoxide, 16.1% carbon dioxide, 4.5% methane, and 1.8% C 2+ , and the gasification conversion rate defined by Equation 1 was 99.5% for the first hour, 6 hours. An overall rating of 99.4% was appropriate.

(実施例7)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化カルシウム(CaO)を2.33g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.54g秤量し、CaO(2.33g)と自動乳鉢で30分間混合した。得られた混合物に水酸化アルミニウム粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準で酒石酸5wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 7)
In advance, after baking at 680 ° C. for 3 hours, 2.33 g of calcium oxide (CaO) cooled to 40 ° C. or less was weighed. Separately, 0.54 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with CaO (2.33 g) in an automatic mortar for 30 minutes. A predetermined amount of aluminum hydroxide powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 5 wt.% Tartaric acid was added based on the total weight of the carrier precursor mixture thus obtained, mixed in an automatic mortar for 30 minutes, and then compression molded and sieved by the method described in Example 1.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて650℃で空気中24時間焼成した。得られた担体の比表面積は280m2/g、細孔容積は0.31L/gだった。塩化ルテニウム・n水和物(n=1、Ru含有量(assay)39%に純水を加えて濃度77g/Lの水溶液を調製した。この担体19.4gに対し塩化ルテニウム水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、内圧をU字型水銀マノメーターで測定し、内圧が約50mmHgになるまで60℃で水分を除去した。このようにしてルテニウム分を金属換算、触媒重量基準3.0wt.%、カルシウム分を金属酸化物換算、触媒重量基準12.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準2.8wt.%、および残部酸化アルミニウムからなる触媒207を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 650 ° C. for 24 hours using a muffle furnace. The obtained support had a specific surface area of 280 m 2 / g and a pore volume of 0.31 L / g. Ruthenium chloride n-hydrate (n = 1, Ru content 39%) was added pure water to prepare a 77 g / L aqueous solution. 20 mL of ruthenium chloride aqueous solution was added to 19.4 g of this carrier and stirred. After that, it was transferred to a rotary evaporator and the internal pressure was measured with a U-shaped mercury manometer under reduced pressure, and water was removed at 60 ° C. until the internal pressure reached about 50 mmHg. Catalyst 207 consisting of wt.%, calcium content in terms of metal oxide, catalyst weight basis 12.0 wt.%, boron content in terms of sodium tetraborate decahydrate, catalyst weight basis 2.8 wt.%, and the balance aluminum oxide 207 Got.

触媒207を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.2だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.15だった。触媒207を1.2g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 207 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.2. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.15. A catalyst diluted to contain 1.2 g of catalyst 207 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら660℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.1 C-mol/h(触媒1gあたり8.3×10-2C-mol/h、S/C比1.2、O/C比0.6の条件で触媒床上に導入した。反応温度は60℃上昇し720℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.2%、一酸化炭素17.3%、二酸化炭素16.2%、メタン4.2%、およびC2+ 1.1%だった。また、式1で定義されるガス化転化率は1時間目99.2%、6時間目98.8%を示し、総合評価は適だった。 It switched to argon, heated up to 660 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Assuming that used vegetable oil is soybean oil, 0.1 C-mol / h (8.3 × 10 -2 C-mol / h per gram of catalyst, S / C ratio of 1.2, O / C ratio of 0.6 was introduced onto the catalyst bed. The reaction temperature increased by 60 ° C. to 720 ° C. The reactor internal pressure was maintained at 0.2 kg / cm 2 and G (gauge pressure), and the typical composition of the product gas obtained under these conditions was 61.2% hydrogen. , Carbon monoxide 17.3%, carbon dioxide 16.2%, methane 4.2%, and C 2+ 1.1%, and the gasification conversion rate defined by Equation 1 is 99.2% in the first hour and 98.8% in the sixth hour. The overall evaluation was good.

(実施例8)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化バリウム(BaO)を2.88g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.58g秤量し、BaO(2.88g)と自動乳鉢で30分間混合した。得られた混合物に水酸化アルミニウム粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準で酒石酸とステアリン酸とポリビニルアルコールが重量比1:1:1である粉末を10wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 8)
2.88 g of barium oxide (BaO) cooled to 40 ° C. or lower after weighing at 680 ° C. for 3 hours in advance was weighed. Separately, 0.58 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with BaO (2.88 g) in an automatic mortar for 30 minutes. A predetermined amount of aluminum hydroxide powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 10 wt.% Of a powder having a weight ratio of 1: 1: 1 of tartaric acid, stearic acid and polyvinyl alcohol based on the total weight of the carrier precursor mixture thus obtained was added and mixed in an automatic mortar for 30 minutes. Compression molding and sieving were performed by the method.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて600℃で空気中12時間焼成した。得られた担体の比表面積は240m2/g、細孔容積は0.25mL/gだった。塩化ルテニウム・n水和物(n=1、Ru含有量(assay)39%に純水を加えて濃度103g/Lの水溶液を調製した。この担体19.2gに対し塩化ルテニウム水溶液を19.9mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、内圧をU字型水銀マノメーターで測定し、内圧が約50mmHgになるまで60℃で水分を除去した。このようにしてルテニウム分を金属換算、触媒重量基準4.0wt.%、バリウム分を金属酸化物換算、触媒重量基準15.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準3.0wt.%、および残部酸化アルミニウムからなる触媒208を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 600 ° C. for 12 hours using a muffle furnace. The obtained support had a specific surface area of 240 m 2 / g and a pore volume of 0.25 mL / g. Ruthenium chloride n-hydrate (n = 1, Ru content (assay) 39% pure water was added to prepare 103 g / L aqueous solution. 19.2 mL of ruthenium chloride aqueous solution was added to 19.2 g of this carrier. After stirring, transfer to a rotary evaporator, measure the internal pressure with a U-shaped mercury manometer under reduced pressure, and remove water at 60 ° C until the internal pressure reaches about 50 mmHg. A catalyst consisting of 4.0 wt.%, Barium content in terms of metal oxide, catalyst weight basis 15.0 wt.%, Boron content in terms of sodium tetraborate / decahydrate, catalyst weight basis 3.0 wt.%, And the balance aluminum oxide Obtained 208.

触媒208を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.15だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.2だった。触媒208を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of the catalyst 208 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.15. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At this time, ABD (D) / ABD (C) was 1.2. The catalyst diluted to contain 1.0 g of catalyst 208 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.12 C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.7%、一酸化炭素16.6%、二酸化炭素16.3%、メタン4.2%、およびC2+ 1.2%だった。また、式1で定義されるガス化転化率は1時間目98.1%、6時間目99.3%を示し、総合評価は適だった。 The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. Spent vegetable oil was regarded as soybean oil and introduced onto the catalyst bed under the conditions of 0.12 C-mol / h (0.12 C-mol / h per gram of catalyst), S / C ratio of 1.3, and O / C ratio of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.7% hydrogen, 16.6% carbon monoxide, 16.3% carbon dioxide, 4.2% methane, and 1.2% C 2+ . The gasification conversion rate defined by Equation 1 was 98.1% at the first hour and 99.3% at the sixth hour, and the overall evaluation was appropriate.

(実施例9)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化マグネシウム(MgO)を2.72g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.97g秤量し、MgO(2.72g)と自動乳鉢で30分間混合した。得られた混合物にγ−アルミナ粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準で酒石酸とステアリン酸が重量比1:3である粉末7wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
Example 9
2.72 g of magnesium oxide (MgO) cooled in advance to 40 ° C. or lower after weighing at 680 ° C. for 3 hours in advance was weighed. Separately, 0.97 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with MgO (2.72 g) in an automatic mortar for 30 minutes. A predetermined amount of γ-alumina powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. After adding 7 wt.% Of a powder having a weight ratio of tartaric acid and stearic acid of 1: 3 based on the total weight of the carrier precursor mixture thus obtained, mixing in an automatic mortar for 30 minutes, compression molding and sieving by the method described in Example 1 Divided.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて650℃で空気中6時間焼成した。得られた担体の比表面積は220m2/g、細孔容積は0.24mL/gだった。塩化ルテニウム・n水和物(n=1、Ru含有量(assay)39%に純水を加えて濃度77g/Lの水溶液を調製した。この担体19.4gに対し塩化ルテニウム水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、内圧をU字型水銀マノメーターで測定し、内圧が約50mmHgになるまで60℃で水分を除去した。このようにしてルテニウム分を金属換算、触媒重量基準3.0wt.%、マグネシウム分を金属酸化物換算、触媒重量基準14.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準5.0wt.%、および残部酸化アルミニウムからなる触媒209を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 650 ° C. for 6 hours using a muffle furnace. The obtained support had a specific surface area of 220 m 2 / g and a pore volume of 0.24 mL / g. Ruthenium chloride n-hydrate (n = 1, Ru content 39%) was added pure water to prepare a 77 g / L aqueous solution. 20 mL of ruthenium chloride aqueous solution was added to 19.4 g of this carrier and stirred. After that, it was transferred to a rotary evaporator and the internal pressure was measured with a U-shaped mercury manometer under reduced pressure, and water was removed at 60 ° C. until the internal pressure reached about 50 mmHg. Catalyst 209 consisting of wt.%, magnesium content in terms of metal oxide, catalyst weight basis 14.0 wt.%, boron content in terms of sodium tetraborate decahydrate, catalyst weight basis 5.0 wt.%, and the balance aluminum oxide 209 Got.

触媒209を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.28だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.08だった。触媒209を0.8g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 209 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.28. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.08. A catalyst diluted to contain 0.8 g of catalyst 209 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら590℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.15 C-mol/h(触媒1gあたり0.188C-mol/h)、S/C比1.5、O/C比0.83の条件で触媒床上に導入した。反応温度は60℃上昇し650℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素62.5%、一酸化炭素15.5%、二酸化炭素16.3%、メタン4.1%、およびC2+ 1.6%だった。また、式1で定義されるガス化転化率は1時間目98.5%、6時間目99.1%を示し、総合評価は適だった。 The temperature was raised to 590 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the temperature was maintained. Spent vegetable oil was regarded as soybean oil and introduced onto the catalyst bed under the conditions of 0.15 C-mol / h (0.188 C-mol / h per 1 g of catalyst), S / C ratio of 1.5, and O / C ratio of 0.83. The reaction temperature increased by 60 ° C to 650 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 62.5% hydrogen, 15.5% carbon monoxide, 16.3% carbon dioxide, 4.1% methane, and 1.6% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 98.5% in the first hour and 99.1% in the sixth hour, and the comprehensive evaluation was appropriate.

(実施例10)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化カルシウム(CaO)を3.8g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.48g秤量し、CaO(3.8g)と自動乳鉢で30分間混合した。得られた混合物に水酸化アルミニウム粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準でポリビニルアルコールとカルボキシメチルセルロースが重量比で1:1である粉末を7wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 10)
Calcium oxide (CaO) cooled to 40 ° C. or lower after calcination at 680 ° C. for 3 hours in advance was weighed. Separately, 0.48 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with CaO (3.8 g) in an automatic mortar for 30 minutes. A predetermined amount of aluminum hydroxide powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 7 wt.% Of a powder having a 1: 1 weight ratio of polyvinyl alcohol and carboxymethylcellulose based on the total weight of the carrier precursor mixture thus obtained was added, mixed in an automatic mortar for 30 minutes, and then compressed by the method described in Example 1. Molding and sieving were performed.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて630℃で空気中4時間焼成した。得られた担体の比表面積は180m2/g、細孔容積は0.21mL/gだった。塩化ルテニウム・n水和物(n=1、Ru含有量(assay)39%に純水を加えて濃度128g/Lの水溶液を調製した。この担体19gに対し塩化ルテニウム水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、内圧をU字型水銀マノメーターで測定し、内圧が約50mmHgになるまで60℃で水分を除去した。このようにしてルテニウム分を金属換算、触媒重量基準5.0wt.%、カルシウム分を金属酸化物換算、触媒重量基準20.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準2.5wt.%、および残部酸化アルミニウムからなる触媒210を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 630 ° C. for 4 hours using a muffle furnace. The obtained support had a specific surface area of 180 m 2 / g and a pore volume of 0.21 mL / g. Ruthenium chloride n-hydrate (n = 1, Ru content (assay) 39% pure water was added to prepare a 128 g / L aqueous solution. 20 mL of ruthenium chloride aqueous solution was added to 19 g of this carrier and stirred. , Moved to a rotary evaporator, and under reduced pressure, the internal pressure was measured with a U-shaped mercury manometer, and water was removed at 60 ° C. until the internal pressure reached about 50 mmHg. Catalyst 210 consisting of.%, Calcium content in terms of metal oxide, 20.0 wt.% Based on catalyst weight, boron content in terms of sodium tetraborate / decahydrate, 2.5 wt.% Based on catalyst weight, and the balance aluminum oxide Obtained.

触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を0.5g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 0.5 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら570℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.2 C-mol/h(触媒1gあたり0.4C-mol/h)、S/C比1.9、O/C比0.85の条件で触媒床上に導入した。反応温度は60℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素63.5%、一酸化炭素15.3%、二酸化炭素15.9%、メタン4.5%、およびC2+ 0.8%だった。また、式1で定義されるガス化転化率は1時間目93.6%、6時間目93.1%を示し、総合評価は適だった。 It switched to argon, heated up to 570 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Spent vegetable oil was regarded as soybean oil and introduced onto the catalyst bed under the conditions of 0.2 C-mol / h (0.4 C-mol / h per 1 g of catalyst), S / C ratio of 1.9 and O / C ratio of 0.85. The reaction temperature increased by 60 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 63.5% hydrogen, 15.3% carbon monoxide, 15.9% carbon dioxide, 4.5% methane, and C 2+ 0.8%. The gasification conversion rate defined by Equation 1 was 93.6% in the first hour and 93.1% in the sixth hour, and the overall evaluation was appropriate.

(実施例11)
予め、680℃で3時間焼成後、40℃以下に冷却した酸化バリウム(BaO)を3.33g秤量した。別に四ホウ酸ナトリウム・10水和物(Na2B4O7・10H2O)を0.93g秤量し、BaO(3.33g)と自動乳鉢で30分間混合した。得られた混合物にγ−アルミナ粉末の所定量を加えさらに自動乳鉢で30分間混合した。こうして得た担体前駆体混合物の全重量基準で酒石酸とカルボキシメチルセルロースが重量比で2:5である粉末を3wt.%添加し、自動乳鉢で30分間混合後、実施例1記載の方法で圧縮成形と篩分けを行った。
(Example 11)
In advance, after baking at 680 ° C. for 3 hours, 3.33 g of barium oxide (BaO) cooled to 40 ° C. or less was weighed. Separately, 0.93 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O) was weighed and mixed with BaO (3.33 g) in an automatic mortar for 30 minutes. A predetermined amount of γ-alumina powder was added to the resulting mixture and further mixed for 30 minutes in an automatic mortar. 3 wt.% Of a powder having a weight ratio of tartaric acid and carboxymethylcellulose of 2: 5 based on the total weight of the carrier precursor mixture thus obtained was added, mixed in an automatic mortar for 30 minutes, and then compression molded by the method described in Example 1. And sieved.

篩分けした粒子を磁製皿に移し、マッフル炉を用いて680℃で空気中3時間焼成した。得られた担体の比表面積は200m2/g、細孔容積は0.23mL/gだった。塩化ルテニウム・n水和物(n=1、Ru含有量(assay)39%に純水を加えて濃度192g/Lの水溶液を調製した。この担体18.5gに対し塩化ルテニウム水溶液を20mL加えて撹拌後、ロータリーエバポレーターに移して減圧下、内圧をU字型水銀マノメーターで測定し、内圧が約50mmHgになるまで60℃で水分を除去した。このようにしてルテニウム分を金属換算、触媒重量基準7.5wt.%、バリウム分を金属酸化物換算、触媒重量基準18.0wt.%、ホウ素分を四ホウ酸ナトリウム・10水和物換算、触媒重量基準5.0wt.%、および残部酸化アルミニウムからなる触媒211を得た。 The sieved particles were transferred to a porcelain dish and baked in air at 680 ° C. for 3 hours using a muffle furnace. The obtained support had a specific surface area of 200 m 2 / g and a pore volume of 0.23 mL / g. Ruthenium chloride n-hydrate (n = 1, Ru content 39%) was added pure water to prepare an aqueous solution with a concentration of 192 g / L. 20 mL of ruthenium chloride aqueous solution was added to 18.5 g of this carrier and stirred. After that, it was transferred to a rotary evaporator, the internal pressure was measured with a U-shaped mercury manometer under reduced pressure, and water was removed at 60 ° C. until the internal pressure reached about 50 mmHg. Catalyst 211 consisting of wt.%, barium content in terms of metal oxide, catalyst weight basis 18.0 wt.%, boron content in terms of sodium tetraborate decahydrate, catalyst weight basis 5.0 wt.%, and the balance aluminum oxide 211 Got.

触媒211を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.725だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.8だった。触媒211を0.7g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。 5.0 g of catalyst 211 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.725. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At this time, ABD (D) / ABD (C) was 0.8. The catalyst diluted to contain 0.7 g of the catalyst 211 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら570℃まで昇温し、同温度で保持した。使用済植物油を大豆油と見做し0.25 C-mol/h(触媒1gあたり0.357C-mol/h)、S/C比2.0、O/C比0.8の条件で触媒床上に導入した。反応温度は60℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素63.1%、一酸化炭素15.8%、二酸化炭素15.8%、メタン4.3%、およびC2+ 1.0%だった。また、式1で定義されるガス化転化率は1時間目94.2%、6時間目93.6%を示し、総合評価は適だった。 It switched to argon, heated up to 570 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Spent vegetable oil was regarded as soybean oil and introduced onto the catalyst bed under the conditions of 0.25 C-mol / h (0.357 C-mol / h per 1 g of catalyst), S / C ratio of 2.0, and O / C ratio of 0.8. The reaction temperature increased by 60 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 63.1% hydrogen, 15.8% carbon monoxide, 15.8% carbon dioxide, 4.3% methane, and C 2+ 1.0%. Moreover, the gasification conversion rate defined by Formula 1 was 94.2% at the first hour and 93.6% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例101)
触媒206を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.62だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.85だった。触媒206を1.5g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 101)
5.0 g of catalyst 206 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.62. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At that time, ABD (D) / ABD (C) was 0.85. A catalyst diluted to contain 1.5 g of catalyst 206 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら670℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比0.11(植物油1容、灯油9容)の混合油を8.0×10-2C-mol/h(触媒1gあたり5.3×10-2C-mol/h、S/C比1.0、O/C比0.5の条件で触媒床上に導入した。反応温度は80℃上昇し750℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.2%、一酸化炭素18.1%、二酸化炭素16.7%、メタン4.7%、およびC2+ 0.3%だった。また、式1で定義されるガス化転化率は1時間目99.5%、6時間目99.4%を示し、総合評価は適だった。 It switched to argon, heated up to 670 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. 8.0 × 10 -2 C-mol / h (5.3 × 10 -2 C-mol / h per 1 g of catalyst, S) mixed oil of used vegetable oil and JIS No. 1 kerosene in volume ratio of 0.11 (1 volume of vegetable oil, 9 volumes of kerosene) The catalyst was introduced onto the catalyst bed under the conditions of 1.0 / C ratio and 0.5 O / C ratio, the reaction temperature increased by 80 ° C. to 750 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 60.2% hydrogen, 18.1% carbon monoxide, 16.7% carbon dioxide, 4.7% methane, and 0.3% C 2+ , defined by Equation 1. The gasification conversion rate was 99.5% in the first hour and 99.4% in the sixth hour, and the overall evaluation was appropriate.

(実施例102)
触媒207を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.2だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.15だった。触媒207を1.2g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 102)
5.0 g of catalyst 207 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.2. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.15. A catalyst diluted to contain 1.2 g of catalyst 207 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら660℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比0.25(植物油2容、灯油8容)の混合油を0.1 C-mol/h(触媒1gあたり8.3×10-2C-mol/h、S/C比1.2、O/C比0.6の条件で触媒床上に導入した。反応温度は60℃上昇し720℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.0%、一酸化炭素18.0%、二酸化炭素16.8%、メタン4.8%、およびC2+ 0.4%だった。また、式1で定義されるガス化転化率は1時間目99.2%、6時間目98.8%を示し、総合評価は適だった。 It switched to argon, heated up to 660 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. 0.1 C-mol / h (8.3 x 10 -2 C-mol / h per 1 g of catalyst, S / C ratio of 1.2) mixed oil of used vegetable oil and JIS No. 1 kerosene volume ratio of 0.25 (2 volumes of vegetable oil, 8 volumes of kerosene) The reaction temperature was increased by 60 ° C. to reach 720 ° C. The reactor internal pressure was maintained at 0.2 kg / cm 2 and G (gauge pressure) under the conditions of O / C ratio of 0.6. The typical composition of the resulting product gas was 60.0% hydrogen, 18.0% carbon monoxide, 16.8% carbon dioxide, 4.8% methane, and 0.4% C 2+ , and the gasification conversion defined by Equation 1. The rate was 99.2% at the first hour and 98.8% at the sixth hour, and the overall evaluation was appropriate.

(実施例103)
触媒208を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.15だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.2だった。触媒208を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 103)
5.0 g of the catalyst 208 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.15. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At this time, ABD (D) / ABD (C) was 1.2. The catalyst diluted to contain 1.0 g of catalyst 208 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比0.67(植物油4容、灯油6容)の混合油を0.12 C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素62.1%、一酸化炭素16.8%、二酸化炭素16.1%、メタン4.2%、およびC2+ 0.8%だった。また、式1で定義されるガス化転化率は1時間目98.1%、6時間目99.3%を示し、総合評価は適だった。 The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. 0.12 C-mol / h (0.12 C-mol / h per gram of catalyst), S / C ratio of 1.3, O / O of mixed oil of used vegetable oil and JIS No. 1 kerosene volume ratio of 0.67 (4 volumes of vegetable oil, 6 volumes of kerosene) The catalyst was introduced onto the catalyst bed under the condition of a C ratio of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 62.1% hydrogen, 16.8% carbon monoxide, 16.1% carbon dioxide, 4.2% methane, and 0.8% C 2+ . The gasification conversion rate defined by Equation 1 was 98.1% at the first hour and 99.3% at the sixth hour, and the overall evaluation was appropriate.

(実施例104)
触媒209を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.28だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.08だった。触媒209を0.8g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 104)
5.0 g of catalyst 209 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.28. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.08. A catalyst diluted to contain 0.8 g of catalyst 209 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら590℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比1(植物油、灯油の等容積混合油)の混合油を0.15 C-mol/h(触媒1gあたり0.188C-mol/h)、S/C比1.5、O/C比0.83の条件で触媒床上に導入した。反応温度は60℃上昇し650℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素62.0%、一酸化炭素16.8%、二酸化炭素16.3%、メタン4.1%、およびC2+ 0.8%だった。また、式1で定義されるガス化転化率は1時間目98.5%、6時間目99.1%を示し、総合評価は適だった。 The temperature was raised to 590 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the temperature was maintained. 0.15 C-mol / h (0.188 C-mol / h per 1 g of catalyst), S / C ratio 1.5, mixed oil of used vegetable oil and JIS 1 kerosene volume ratio 1 (equal volume mixed oil of vegetable oil and kerosene) The catalyst was introduced on the catalyst bed under the condition of 0.83 / C ratio. The reaction temperature increased by 60 ° C to 650 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 62.0% hydrogen, 16.8% carbon monoxide, 16.3% carbon dioxide, 4.1% methane, and C 2+ 0.8%. Moreover, the gasification conversion rate defined by Formula 1 was 98.5% in the first hour and 99.1% in the sixth hour, and the comprehensive evaluation was appropriate.

(実施例105)
触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を0.5g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 105)
5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 0.5 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら570℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比1.5(植物油6容、灯油4容)の混合油0.2 C-mol/h(触媒1gあたり0.4C-mol/h)、S/C比1.9、O/C比0.85の条件で触媒床上に導入した。反応温度は60℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.9%、一酸化炭素16.6%、二酸化炭素16.2%、メタン4.4%、およびC2+ 0.9%だった。また、式1で定義されるガス化転化率は1時間目96.0%、6時間目93.1%を示し、総合評価は適だった。 It switched to argon, heated up to 570 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Mixed oil of used vegetable oil and JIS No.1 kerosene volume ratio 1.5 (vegetable oil 6 volume, kerosene 4 volume) 0.2 C-mol / h (0.4 C-mol / h per 1 g of catalyst), S / C ratio 1.9, O / C The catalyst was introduced on the catalyst bed at a ratio of 0.85. The reaction temperature increased by 60 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.9% hydrogen, 16.6% carbon monoxide, 16.2% carbon dioxide, 4.4% methane, and 0.9% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 96.0% in the first hour and 93.1% in the sixth hour, and the comprehensive evaluation was appropriate.

(実施例106)
触媒211を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.725だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.8だった。触媒211を0.7g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 106)
5.0 g of catalyst 211 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.725. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At this time, ABD (D) / ABD (C) was 0.8. The catalyst diluted to contain 0.7 g of the catalyst 211 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら570℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比2.33(植物油7容、灯油3容)の混合油0.25 C-mol/h(触媒1gあたり0.357C-mol/h)、S/C比2.0、O/C比0.8の条件で触媒床上に導入した。反応温度は60℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.4%、一酸化炭素17.9%、二酸化炭素16.8%、メタン4.3%、およびC2+ 0.6%だった。また、式1で定義されるガス化転化率は1時間目96.1%、6時間目93.6%を示し、総合評価は適だった。 It switched to argon, heated up to 570 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Mixed oil of used vegetable oil and JIS No. 1 kerosene volume ratio 2.33 (vegetable oil 7 volume, kerosene 3 volume) 0.25 C-mol / h (0.357 C-mol / h per 1 g of catalyst), S / C ratio 2.0, O / C It was introduced onto the catalyst bed at a ratio of 0.8. The reaction temperature increased by 60 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 60.4% hydrogen, 17.9% carbon monoxide, 16.8% carbon dioxide, 4.3% methane, and 0.6% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 96.1% in the first hour and 93.6% in the sixth hour, and the comprehensive evaluation was appropriate.

(実施例107)
触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 107)
5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 1.0 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating 100 mL / min (STP: standard state conversion) of hydrogen.

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比4(植物油8容、灯油2容)の混合油を0.12 C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.3%、一酸化炭素17.3%、二酸化炭素16.5%、メタン4.2%、およびC2+ 0.7%だった。また、式1で定義されるガス化転化率は1時間目92.5%、6時間目92.1%を示し、総合評価は適だった。 The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. 0.12 C-mol / h (0.12 C-mol / h per gram of catalyst), S / C ratio of 1.3, O / The catalyst was introduced onto the catalyst bed under the condition of a C ratio of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.3% hydrogen, 17.3% carbon monoxide, 16.5% carbon dioxide, 4.2% methane, and 0.7% C2 + . Moreover, the gasification conversion rate defined by Formula 1 was 92.5% at the first hour and 92.1% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例108)
触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 108)
5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 1.0 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating 100 mL / min (STP: standard state conversion) of hydrogen.

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油とJIS1号灯油の容積比19(植物油95容、灯油5容)の混合油を0.12 C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素63.4%、一酸化炭素15.3%、二酸化炭素15.9%、メタン4.5%、およびC2+ 0.9%だった。また、式1で定義されるガス化転化率は1時間目91.3%、6時間目90.5%を示し、総合評価は適だった。 The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. 0.12 C-mol / h (0.12 C-mol / h per 1 g of catalyst), S / C ratio of 1.3, O / of mixed oil of used vegetable oil and JIS No. 1 kerosene volume ratio 19 (95 volumes of vegetable oil, 5 volumes of kerosene) The catalyst was introduced onto the catalyst bed under the condition of a C ratio of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 63.4% hydrogen, 15.3% carbon monoxide, 15.9% carbon dioxide, 4.5% methane, and C 2+ 0.9%. The gasification conversion rate defined by Equation 1 was 91.3% at the first hour and 90.5% at the sixth hour, and the overall evaluation was appropriate.

(実施例201)
触媒206を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.62だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.85だった。触媒206を1.5g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 201)
5.0 g of catalyst 206 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.62. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At that time, ABD (D) / ABD (C) was 0.85. A catalyst diluted to contain 1.5 g of catalyst 206 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら670℃まで昇温し、同温度で保持した。使用済植物油とデカヒドロナフタレン(デカリン(東京化成工業(株) 試薬1級))の容積比0.11(植物油1容、デカリン9容)の混合油を8.0×10-2C-mol/h(触媒1gあたり5.3×10-2C-mol/h、S/C比1.0、O/C比0.5の条件で触媒床上に導入した。反応温度は80℃上昇し750℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素63.4%、一酸化炭素18.1%、二酸化炭素15.8%、メタン2.6%、およびC2+ 0.1%だった。また、式1で定義されるガス化転化率は1時間目98.5%、6時間目99.2%を示し、総合評価は適だった。 It switched to argon, heated up to 670 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. 8.0 × 10 -2 C-mol / h (catalyst) of 0.11 volume ratio of used vegetable oil and decahydronaphthalene (decalin (Tokyo Chemical Industry Co., Ltd., reagent grade 1)) volume ratio 0.11 (1 vegetable oil, 9 decalin) It was introduced onto the catalyst bed under the conditions of 5.3 × 10 -2 C-mol / h, S / C ratio of 1.0, and O / C ratio of 0.5 per gram, the reaction temperature increased by 80 ° C to 750 ° C. 0.2 kg / cm 2 , kept at G (gauge pressure) The typical composition of the product gas obtained under these conditions is 63.4% hydrogen, 18.1% carbon monoxide, 15.8% carbon dioxide, 2.6% methane, and C The gasification conversion rate defined by Formula 1 was 98.5% at the first hour and 99.2% at the sixth hour, and the overall evaluation was appropriate.

(実施例202)
触媒207を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.2だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.15だった。触媒207を1.2g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 202)
5.0 g of catalyst 207 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.2. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.15. A catalyst diluted to contain 1.2 g of catalyst 207 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら660℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比0.25(植物油2容、デカリン8容)の混合油を0.1 C-mol/h(触媒1gあたり8.3×10-2C-mol/h、S/C比1.2、O/C比0.6の条件で触媒床上に導入した。反応温度は60℃上昇し720℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素63.1%、一酸化炭素18.1%、二酸化炭素16.0%、メタン2.6%、およびC2+ 0.2%だった。また、式1で定義されるガス化転化率は1時間目99.2%、6時間目98.9%を示し、総合評価は適だった。 It switched to argon, heated up to 660 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. 0.1 C-mol / h (8.3 x 10 -2 C-mol / h per 1 g of catalyst, S / C ratio of 1.2, O) of mixed oil with a volume ratio of used vegetable oil and decalin of 0.25 (2 volumes of vegetable oil, 8 volumes of decalin) The reaction temperature was increased by 60 ° C. to reach 720 ° C. The reactor internal pressure was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas was 63.1% hydrogen, 18.1% carbon monoxide, 16.0% carbon dioxide, 2.6% methane, and 0.2% C 2+ , and the gasification conversion rate defined by Equation 1 is It was 99.2% at the first hour and 98.9% at the sixth hour.

(実施例203)
触媒208を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.15だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.2だった。触媒208を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 203)
5.0 g of the catalyst 208 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.15. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At this time, ABD (D) / ABD (C) was 1.2. The catalyst diluted to contain 1.0 g of catalyst 208 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比0.67(植物油4容、デカリン6容)の混合油を0.12 C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素62.6%、一酸化炭素18.0%、二酸化炭素16.2%、メタン2.8%、およびC2+ 0.4%だった。また、式1で定義されるガス化転化率は1時間目98.7%、6時間目98.5%を示し、総合評価は適だった。 The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. 0.12 C-mol / h (0.12 C-mol / h per 1 g of catalyst), S / C ratio 1.3, O / C ratio of mixed oil of used vegetable oil and decalin in volume ratio of 0.67 (4 volumes of vegetable oil, 6 volumes of decalin) It was introduced onto the catalyst bed at a condition of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of product gas obtained under these conditions was 62.6% hydrogen, 18.0% carbon monoxide, 16.2% carbon dioxide, 2.8% methane, and 0.4% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 98.7% at the first hour and 98.5% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例204)
触媒209を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.28だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は1.08だった。触媒209を0.8g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 204)
5.0 g of catalyst 209 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.28. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 1.08. A catalyst diluted to contain 0.8 g of catalyst 209 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら590℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比1(植物油、デカリンの等容積混合油)の混合油を0.15 C-mol/h(触媒1gあたり0.188C-mol/h)、S/C比1.5、O/C比0.83の条件で触媒床上に導入した。反応温度は60℃上昇し650℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.9%、一酸化炭素16.8%、二酸化炭素16.4%、メタン4.3%、およびC2+ 0.6%だった。また、式1で定義されるガス化転化率は1時間目96.7%、6時間目96.5%を示し、総合評価は適だった。 The temperature was raised to 590 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the temperature was maintained. 0.15 C-mol / h (0.188 C-mol / h per 1 g of catalyst), S / C ratio 1.5, O / C mixed oil with a volume ratio of 1 used vegetable oil and decalin (equal volume mixed oil of vegetable oil and decalin) The catalyst was introduced onto the catalyst bed at a ratio of 0.83. The reaction temperature increased by 60 ° C to 650 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.9% hydrogen, 16.8% carbon monoxide, 16.4% carbon dioxide, 4.3% methane, and 0.6% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 96.7% at the first hour and 96.5% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例205)
触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を0.5g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 205)
5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 0.5 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while venting 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら570℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比1.5(植物油6容、デカリン4容)の混合油0.2 C-mol/h(触媒1gあたり0.4C-mol/h)、S/C比1.9、O/C比0.85の条件で触媒床上に導入した。反応温度は60℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素61.4%、一酸化炭素17.3%、二酸化炭素16.6%、メタン4.1%、およびC2+ 0.6%だった。また、式1で定義されるガス化転化率は1時間目97.0%、6時間目95.3%を示し、総合評価は適だった。 It switched to argon, heated up to 570 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Mixed oil with a volume ratio of used vegetable oil to decalin of 1.5 (6 volumes of vegetable oil, 4 volumes of decalin) 0.2 C-mol / h (0.4 C-mol / h per 1 g of catalyst), S / C ratio 1.9, O / C ratio 0.85 Was introduced onto the catalyst bed under the following conditions. The reaction temperature increased by 60 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 61.4% hydrogen, 17.3% carbon monoxide, 16.6% carbon dioxide, 4.1% methane, and 0.6% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 97.0% at the first hour and 95.3% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例206)
触媒211を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.725だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.8だった。触媒211を0.7g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
Example 206
5.0 g of catalyst 211 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.725. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). At this time, ABD (D) / ABD (C) was 0.8. The catalyst diluted to contain 0.7 g of the catalyst 211 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating hydrogen at 100 mL / min (STP: standard state conversion).

アルゴンに切り替え20mL/min(STP)で通気しながら570℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比2.33(植物油7容、デカリン3容)の混合油0.25 C-mol/h(触媒1gあたり0.357C-mol/h)、S/C比2.0、O/C比0.8の条件で触媒床上に導入した。反応温度は60℃上昇し630℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素63.4%、一酸化炭素15.3%、二酸化炭素15.9%、メタン4.6%、およびC2+ 0.8%だった。また、式1で定義されるガス化転化率は1時間目96.1%、6時間目93.6%を示し、総合評価は適だった。 It switched to argon, heated up to 570 degreeC, venting at 20 mL / min (STP), and hold | maintained at the same temperature. Mixed oil 0.25 C-mol / h (0.357 C-mol / h per 1 g of catalyst), S / C ratio 2.0, O / C ratio 0.8, used oil / decalin volume ratio 2.33 (7 parts vegetable oil, 3 parts decalin) Was introduced onto the catalyst bed under the following conditions. The reaction temperature increased by 60 ° C to 630 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 63.4% hydrogen, 15.3% carbon monoxide, 15.9% carbon dioxide, 4.6% methane, and 0.8% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 96.1% in the first hour and 93.6% in the sixth hour, and the comprehensive evaluation was appropriate.

(実施例207)
触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 207)
5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 1.0 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating 100 mL / min (STP: standard state conversion) of hydrogen.

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比4(植物油8容、デカリン2容)の混合油を0.12
C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.8%、一酸化炭素18.5%、二酸化炭素15.3%、メタン3.6%、およびC2+ 1.8%だった。また、式1で定義されるガス化転化率は1時間目92.7%、6時間目92.1%を示し、総合評価は適だった。
The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. 0.12 mixed oil with a volume ratio of 4 used vegetable oil to decalin (8 volumes vegetable oil, 2 volumes decalin)
The catalyst was introduced onto the catalyst bed under the conditions of C-mol / h (0.12 C-mol / h per gram of catalyst), S / C ratio of 1.3, and O / C ratio of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 60.8% hydrogen, 18.5% carbon monoxide, 15.3% carbon dioxide, 3.6% methane, and 1.8% C 2+ . Moreover, the gasification conversion rate defined by Formula 1 was 92.7% at the first hour and 92.1% at the sixth hour, and the comprehensive evaluation was appropriate.

(実施例208)
触媒210を5.0g秤量し10mlのメスシリンダーを使用して嵩密度(ABD(C))を求めた。この時のABD(C)は1.5だった。触媒に対し同量のゼオライト(ABD(D)1.38)を加えて希釈した。この時のABD(D)/ABD(C)は0.92だった。触媒210を1.0g含有するように希釈した触媒を固定床反応装置に取り付け、水素を100mL/min(STP:標準状態換算)通気しながら500℃で30分加熱して還元した。
(Example 208)
5.0 g of catalyst 210 was weighed and the bulk density (ABD (C)) was determined using a 10 ml graduated cylinder. The ABD (C) at this time was 1.5. The catalyst was diluted by adding the same amount of zeolite (ABD (D) 1.38). The ABD (D) / ABD (C) at this time was 0.92. A catalyst diluted to contain 1.0 g of catalyst 210 was attached to a fixed bed reactor, and reduced by heating at 500 ° C. for 30 minutes while ventilating 100 mL / min (STP: standard state conversion) of hydrogen.

アルゴンに切り替え20mL/min(STP)で通気しながら620℃まで昇温し、同温度で保持した。使用済植物油とデカリンの容積比19(植物油95容、デカリン5容)の混合油を0.12
C-mol/h(触媒1gあたり0.12C-mol/h)、S/C比1.3、O/C比0.7の条件で触媒床上に導入した。反応温度は60℃上昇し680℃に至った。反応器内圧は0.2kg/cm2、G(ゲージ圧)に保った。この条件で得られた生成ガスの代表的な組成は水素60.5%、一酸化炭素18.3%、二酸化炭素16.0%、メタン3.5%、およびC2+ 1.7%だった。また、式1で定義されるガス化転化率は1時間目92.5%、6時間目91.8%を示し、総合評価は適だった。
The temperature was raised to 620 ° C. while aeration was performed at 20 mL / min (STP) by switching to argon, and the same temperature was maintained. 0.12 mixed oil of volume ratio 19 of used vegetable oil and decalin (95 volumes of vegetable oil, 5 volumes of decalin)
The catalyst was introduced onto the catalyst bed under the conditions of C-mol / h (0.12 C-mol / h per gram of catalyst), S / C ratio of 1.3, and O / C ratio of 0.7. The reaction temperature increased by 60 ° C to 680 ° C. The internal pressure of the reactor was maintained at 0.2 kg / cm 2 and G (gauge pressure). The typical composition of the product gas obtained under these conditions was 60.5% hydrogen, 18.3% carbon monoxide, 16.0% carbon dioxide, 3.5% methane, and 1.7% C 2+ . The gasification conversion rate defined by Equation 1 was 92.5% at the first hour and 91.8% at the sixth hour, and the overall evaluation was appropriate.

以上の実施例に関し、実施例1〜11までを表1に、実施例101〜108までを表2に、実施例201〜208までを表3にまとめて示す。 Regarding the above examples, Examples 1 to 11 are shown in Table 1, Examples 101 to 108 are shown in Table 2, and Examples 201 to 208 are shown in Table 3.

本発明により植物油などから水素含有ガスを得る技術は、エンドユーザーにはバイオマスを由来のエネルギー資源を利用するにあたって、経済的負担を最小限に抑えることが出来るため、産業界における重要性はますます高まる。










The technology for obtaining hydrogen-containing gas from vegetable oils and the like according to the present invention is of increasing importance in the industry because it can minimize the economic burden on end users when using energy resources derived from biomass. Rise.










Claims (4)

アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるニッケル分を金属換算、触媒重量基準で5.0wt.%以上20.0wt.%以下含有する触に、リアクター内圧が0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において、反応温度が630℃以上750℃以下、水蒸気/炭素比が2.0以上2.9以下、O/C比が0.5以上0.85以下、植物油供給量が触媒1.0gに対し1.6×10 -2 C-mol/h以上3.0×10 -2 C-mol/h以下の条件で接触させることを特徴とする水素含有ガスの製造方法。 Alkaline earth metal in terms of oxide, 12 wt.% To 20 wt.% Based on catalyst weight, boron in terms of sodium tetraborate decahydrate, 1.0 wt.% To 5.0 wt.% Based on catalyst weight, and The balance is made of aluminum oxide, and regarding the physical properties, the support having a specific surface area of 180 m 2 / g or more and 280 m 2 / g or less and a pore volume of 0.21 ml / g or more and 0.31 ml / g or less is coated with nickel as an active metal. in terms of metal, the catalyst weight 5.0 wt.% or more 20.0 wt.% to be that catalysts containing less, in a reactor pressure less 0.2 kg / cm 2, G or 9.8 kg / cm 2, G, reaction temperature 630 ° C. 750 ° C. or less, water vapor / carbon ratio of 2.0 or more and 2.9 or less, O / C ratio of 0.5 or more and 0.85 or less, and vegetable oil supply amount is 1.6 × 10 −2 C-mol / h or more and 3.0 × 10 −2 for 1.0 g of catalyst. A method for producing a hydrogen-containing gas, comprising contacting under conditions of C-mol / h or less. アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるルテニウム分を金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下含有する触に、リアクター内圧0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において、反応温度が630℃以上750℃以下、水蒸気/炭素比が1.0以上2.0以下、O/C比が0.5以上0.85以下、植物油供給量が触媒1.0gに対し5.3×10 -2 C-mol/h以上0.4C-mol/h以下の条件で接触させることを特徴とする水素含有ガスの製造方法。 Alkaline earth metal in terms of oxide, 12 wt.% To 20 wt.% Based on catalyst weight, boron in terms of sodium tetraborate decahydrate, 1.0 wt.% To 5.0 wt.% Based on catalyst weight, and With respect to the physical properties, the balance is made of aluminum oxide and the specific surface area is 180 m 2 / g to 280 m 2 / g and the pore volume is 0.21 ml / g to 0.31 ml / g. terms of metal, to 3.0 wt.% or more 7.5 wt.% or less touching you-containing medium with a catalyst weight basis, the following reactor pressure 0.2 kg / cm 2, G or 9.8 kg / cm 2, G, reaction temperature 630 ° C. or higher 750 ° C or less, water vapor / carbon ratio of 1.0 or more and 2.0 or less, O / C ratio of 0.5 or more and 0.85 or less, and vegetable oil supply rate of 5.3 × 10 -2 C-mol / h or more and 0.4C-mol / h for 1.0 g of catalyst A method for producing a hydrogen-containing gas, comprising contacting under the following conditions. アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるルテニウム分を金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下含有する触に、リアクター内圧0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において反応温度が630℃以上750℃以下、水蒸気/炭素比が1.0以上2.0以下、O/C比が0.5以上0.85以下、植物油/白灯油の容積比が0.11以上19.0以下の混合油供給量が触媒1.0gに対し5.3×10 -2 C-mol以上0.4C-mol/h以下の条件で接触させることを特徴とする水素含油ガスの製造方法。 Alkaline earth metal in terms of oxide, 12 wt.% To 20 wt.% Based on catalyst weight, boron in terms of sodium tetraborate decahydrate, 1.0 wt.% To 5.0 wt.% Based on catalyst weight, and With respect to the physical properties, the balance is made of aluminum oxide and the specific surface area is 180 m 2 / g to 280 m 2 / g and the pore volume is 0.21 ml / g to 0.31 ml / g. terms of metal, to 3.0 wt.% or more 7.5 wt.% or less touching you-containing medium in the catalyst weight, the reactor inner pressure 0.2 kg / cm 2, G or 9.8 kg / cm 2, G reaction temperature at less 630 ° C. to 750 ℃ or less, steam / carbon ratio is 1.0 or more and 2.0 or less, O / C ratio of 0.5 to 0.85, vegetable oil / oil mixture supply rate volume ratio is 0.11 or more 19.0 or less white kerosene to the catalyst 1.0 g 5.3 × 10 - 2. A method for producing a hydrogen-containing oil gas, characterized by contacting under a condition of 2 C-mol or more and 0.4 C-mol / h or less. アルカリ土類金属を酸化物換算、触媒重量基準で12wt.%以上20wt.%以下、ホウ素を四ホウ酸ナトリウム・10水和物換算、触媒重量基準で1.0wt.%以上5.0wt.%以下および残部が酸化アルミニウムからなり、かつ物性に関しては、比表面積180m2/g以上280m2/g以下、細孔容積0.21ml/g以上0.31ml/g以下である担体に、活性金属であるルテニウム分を金属換算、触媒重量基準で3.0wt.%以上7.5wt.%以下含有する触に、リアクター内圧0.2kg/cm 2 ,G以上9.8kg/cm 2 ,G以下において反応温度が630℃以上750℃以下、水蒸気/炭素比が1.0以上2.0以下、O/C比が0.5以上0.85以下、植物油/デカヒドロナフタレンの容積比が0.11以上19.0以下の混合油供給量が触媒1.0gに対し5.3×10 -2 C-mol以上0.4C-mol/h以下の条件で接触させることを特徴とする水素含油ガスの製造方法。 Alkaline earth metal in terms of oxide, 12 wt.% To 20 wt.% Based on catalyst weight, boron in terms of sodium tetraborate decahydrate, 1.0 wt.% To 5.0 wt.% Based on catalyst weight, and With respect to the physical properties, the balance is made of aluminum oxide and the specific surface area is 180 m 2 / g to 280 m 2 / g and the pore volume is 0.21 ml / g to 0.31 ml / g. terms of metal, to 3.0 wt.% or more 7.5 wt.% or less touching you-containing medium in the catalyst weight, the reactor inner pressure 0.2 kg / cm 2, G or 9.8 kg / cm 2, G reaction temperature at less 630 ° C. to 750 The mixed oil supply amount is 5.3 × 10 with respect to 1.0 g of catalyst at a temperature of ℃ or less, a water vapor / carbon ratio of 1.0 to 2.0, an O / C ratio of 0.5 to 0.85, and a volume ratio of vegetable oil / decahydronaphthalene of 0.11 to 19.0. -2 A method for producing a hydrogen-containing oil gas characterized by contacting under conditions of C-mol or more and 0.4 C-mol / h or less.
JP2013096590A 2012-05-08 2013-05-01 A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst. Active JP6175640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096590A JP6175640B2 (en) 2012-05-08 2013-05-01 A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012106800 2012-05-08
JP2012106800 2012-05-08
JP2013096590A JP6175640B2 (en) 2012-05-08 2013-05-01 A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst.

Publications (2)

Publication Number Publication Date
JP2013252519A JP2013252519A (en) 2013-12-19
JP6175640B2 true JP6175640B2 (en) 2017-08-09

Family

ID=49950490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096590A Active JP6175640B2 (en) 2012-05-08 2013-05-01 A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst.

Country Status (1)

Country Link
JP (1) JP6175640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650840B2 (en) * 2016-06-24 2020-02-19 国立大学法人 大分大学 Method for producing MgO-supported catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473040B1 (en) * 1996-11-07 2005-03-07 앵스띠뛰 프랑세 뒤 뻬뜨롤 Catalyst having at least one element of group viib and its use in hydro-treating
WO2002038268A1 (en) * 2000-11-08 2002-05-16 Idemitsu Kosan Co., Ltd. Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2004230312A (en) * 2003-01-31 2004-08-19 Idemitsu Kosan Co Ltd Hydrocarbon reforming catalyst
US8461373B2 (en) * 2007-08-13 2013-06-11 Asahi Kasei Chemicals Corporation Catalyst for producing carboxylic acid esters, process for producing same and process for producing carboxylic acid esters
JP2009255026A (en) * 2008-03-27 2009-11-05 Idemitsu Kosan Co Ltd Method of preparing hydrocarbon reformation catalyst, and method of reforming hydrocarbon
CN102239002B (en) * 2008-10-06 2013-10-30 联合碳化化学品及塑料技术公司 Low metal loaded, alumina supported, catalyst compositions and amination process
JP5629917B2 (en) * 2010-03-17 2014-11-26 群馬県 Inorganic chemical composition for fuel gas production from non-petroleum-based raw materials and fuel gas production method using the same
AU2011329937B2 (en) * 2010-11-16 2017-02-02 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Catalyst for hydrogen production

Also Published As

Publication number Publication date
JP2013252519A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
Hebbar et al. Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil
Joshi et al. Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides
Yusuff et al. Yusuff, AS, Adeniyi, OD, Olutoye, MA, and Akpan, UG (2017). A review on application of heterogeneous catalyst in the production of biodiesel from vegetable oil, Journal of Applied Science and Process Engineering, 4 (2), 142-157 ISSN 2289 7771 http://www. jaspe. unimas. my/index. php/volume? layout= edit&id= 42
Di Serio et al. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts
Iriondo et al. Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina
Sulaiman et al. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification
Endalew et al. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils
Abdul Mutalib et al. SiO 2-Rich sugar cane bagasse ash catalyst for transesterification of palm oil
Yadav et al. Transesterification of used vegetable oil using BaAl2O4 spinel as heterogeneous base catalyst
Cruz et al. Pt and Ni supported catalysts on SBA-15 and SBA-16 for the synthesis of biodiesel
Khalit et al. Catalytic deoxygenation of waste cooking oil utilizing nickel oxide catalysts over various supports to produce renewable diesel fuel
Yusuff et al. Optimization of biodiesel production from waste frying oil over alumina supported chicken eggshell catalyst using experimental design tool
Dai et al. Applications of M2ZrO2 (M= Li, Na, K) composite as a catalyst for biodiesel production
Raut et al. Catalytic decarboxylation of non-edible oils over three-dimensional, mesoporous silica-supported Pd
Valizadeh et al. Production of H2-and CO-rich syngas from the CO2 gasification of cow manure over (Sr/Mg)-promoted-Ni/Al2O3 catalysts
JP6004378B2 (en) Catalytic cracking catalyst
JP2015113405A (en) Fuel oil base and method of producing the same, and fuel oil composition
Chantara-Arpornchai et al. Biodiesel production from palm oil using heterogeneous base catalyst
CN103159587A (en) Application for catalyst in hydrocracking for biological polyol
JP6175640B2 (en) A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst.
Lee Catalysing sustainable fuel and chemical synthesis
CN106867561A (en) The method of F- T synthesis diesel oil distillate
Ning et al. Characterization of dolomite promoted by NaAlO2 and application as catalyst in transesterification by response surface methodology
Imai et al. Direct synthesis of methane from glycerol by using silica-modified nickel catalyst
Maina et al. An Investigation of the Potential of a Bifunctional Catalyst in Biodiesel Production from Low-Cost Feedstocks

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6175640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250