JP6175381B2 - Bending gear system - Google Patents

Bending gear system Download PDF

Info

Publication number
JP6175381B2
JP6175381B2 JP2014032350A JP2014032350A JP6175381B2 JP 6175381 B2 JP6175381 B2 JP 6175381B2 JP 2014032350 A JP2014032350 A JP 2014032350A JP 2014032350 A JP2014032350 A JP 2014032350A JP 6175381 B2 JP6175381 B2 JP 6175381B2
Authority
JP
Japan
Prior art keywords
internal gear
gear
joint member
output
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014032350A
Other languages
Japanese (ja)
Other versions
JP2015158218A (en
Inventor
安藤 学
学 安藤
真司 吉田
真司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2014032350A priority Critical patent/JP6175381B2/en
Priority to TW103137432A priority patent/TWI614427B/en
Priority to CN201410609304.8A priority patent/CN104864037B/en
Priority to KR1020140150285A priority patent/KR101681247B1/en
Priority to DE102014017530.8A priority patent/DE102014017530A1/en
Publication of JP2015158218A publication Critical patent/JP2015158218A/en
Application granted granted Critical
Publication of JP6175381B2 publication Critical patent/JP6175381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Description

本発明は、撓み噛合い式歯車装置に関する。   The present invention relates to a flexure meshing gear device.

特許文献1に、起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置が開示されている。この撓み噛合い式歯車装置では、オルダムカップリングと呼ばれる継手部材で駆動軸と起振体とを連結することで、芯出し作業を軽減している。なお、オルダムカップリングは、組み立て時の駆動軸と内歯歯車との間に芯ずれ(内歯歯車の軸心の芯ずれという)が存在してもそれを許容して性能及び寿命の低下を防止可能としている。   Patent Document 1 discloses a flexibly meshing gear device that includes a vibrator, an external gear that is flexibly deformed by rotation of the vibrator, and an internal gear that is internally meshed with the external gear. It is disclosed. In this flexure meshing gear device, the centering operation is reduced by connecting the drive shaft and the vibration generator with a joint member called Oldham coupling. In addition, Oldham coupling allows a misalignment between the drive shaft and the internal gear at the time of assembly (referred to as a misalignment of the shaft center of the internal gear) and allows it to deteriorate in performance and life. It can be prevented.

特開昭60−241550公報JP 60-241550 A

しかしながら、特許文献1で示す撓み噛合い式歯車装置では、内歯歯車を固定するためのボルト孔を設けている。このため、撓み噛合い式歯車装置の径方向寸法が大きくならざるを得なかった。   However, the flexure meshing gear device disclosed in Patent Document 1 is provided with a bolt hole for fixing the internal gear. For this reason, the radial dimension of the flexure meshing gear device has to be increased.

そこで、本発明は、前記問題点を解決するべくなされたもので、撓み噛合い式歯車装置の内歯歯車の軸心の芯ずれを許容しながら、径方向寸法の増大を抑制することが可能な撓み噛合い式歯車装置を提供することを課題とする。   Therefore, the present invention has been made to solve the above-described problems, and it is possible to suppress an increase in the radial dimension while allowing a misalignment of the axis of the internal gear of the flexure meshing gear device. It is an object to provide a flexible meshing gear device.

本発明は、起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置において、前記内歯歯車と、該内歯歯車が連結される支持部材とは、該内歯歯車の軸心の径方向の変位を許容する継手部材によって連結され、前記継手部材は、前記内歯歯車及び前記支持部材とは別部材であり、前記継手部材と前記内歯歯車とは、径方向の第1方向に相対変位可能に連結され、前記継手部材と前記支持部材とは、前記第1方向と直交する径方向の第2方向に相対変位可能に連結されることにより、前記課題を解決したものである。
あるいは、本発明は、起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置において、前記内歯歯車と、該内歯歯車が連結される支持部材とは、該内歯歯車の軸心の径方向の変位を許容する継手部材によって連結され、前記内歯歯車として第1内歯歯車および第2内歯歯車を有する筒型の撓み噛合い式歯車装置であって、前記支持部材は、前記第1内歯歯車が連結される第1支持部材と、前記第2内歯歯車が連結される第2支持部材と、を有し、前記継手部材は、前記第1内歯歯車と前記第1支持部材とを、該第1内歯歯車の軸心の径方向の変位を許容して連結する第1継手部材と、前記第2内歯歯車と前記第2支持部材とを、該第2内歯歯車の軸心の径方向の変位を許容して連結する第2継手部材と、を有することにより、同様に前記課題を解決したものである。
あるいは、本発明は、起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置において、前記内歯歯車と、該内歯歯車が連結される支持部材とは、該内歯歯車の軸心の径方向の変位を許容する継手部材によって連結され、前記外歯歯車の軸方向側部に配置され、該外歯歯車の軸方向移動を規制する規制部材を有し、該規制部材は、前記継手部材と一体的に形成されることにより、同様に前記課題を解決したものである。
The present invention relates to a flexure meshing gear device comprising a vibrator, an external gear that is flexibly deformed by rotation of the vibrator, and an internal gear that is internally meshed with the external gear. The internal gear and the support member to which the internal gear is connected are connected by a joint member that allows a radial displacement of the axial center of the internal gear, and the joint member includes the internal gear and the internal gear. The support member is a separate member, and the joint member and the internal gear are coupled so as to be relatively displaceable in a first radial direction, and the joint member and the support member are connected to the first direction. the Rukoto is relatively displaceably coupled to a second direction orthogonal to the radial direction, it is obtained by solving the above problems.
Alternatively, the present invention provides a flexibly meshing gear device comprising a vibrator, an external gear that is flexibly deformed by the rotation of the vibrator, and an internal gear that is internally meshed with the external gear. The internal gear and the support member to which the internal gear is connected are connected by a joint member that allows a radial displacement of the axis of the internal gear, and the first internal gear is used as the internal gear. A cylindrical flexure meshing gear device having a tooth gear and a second internal gear, wherein the support member includes a first support member to which the first internal gear is coupled, and the second internal gear. And the joint member allows the first internal gear and the first support member to be displaced in the radial direction of the axis of the first internal gear. The first joint member, the second internal gear, and the second support member that are connected together in the radial direction of the axial center of the second internal gear. A second coupling member for coupling to permit position by having, is obtained by solving the above problems as well.
Alternatively, the present invention provides a flexibly meshing gear device comprising a vibrator, an external gear that is flexibly deformed by the rotation of the vibrator, and an internal gear that is internally meshed with the external gear. The internal gear and the support member to which the internal gear is coupled are coupled by a joint member that allows a radial displacement of the axial center of the internal gear, and the axial side of the external gear. And a regulating member that regulates the axial movement of the external gear, and the regulating member is formed integrally with the joint member to solve the above-mentioned problem in the same manner. .

本発明では、内歯歯車と支持部材とは継手部材によって連結されているので、内歯歯車の軸心の径方向の変位を許容することが可能となる。しかも、内歯歯車と支持部材とを継手部材で連結しているので、径方向寸法の増大を抑制できる。   In the present invention, since the internal gear and the support member are connected by the joint member, the radial displacement of the axial center of the internal gear can be allowed. Moreover, since the internal gear and the support member are connected by the joint member, an increase in the radial dimension can be suppressed.

本発明によれば、撓み噛合い式歯車装置の内歯歯車の軸心の芯ずれを許容しながら、径方向寸法の増大を抑制することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to suppress the increase in a radial direction dimension, accept | permitting the center shift | offset | difference of the axial center of the internal gear of a bending meshing type gear apparatus.

本発明の第1実施形態に係る撓み噛合い式歯車装置を含む全体構成の一例を示す断面図Sectional drawing which shows an example of the whole structure containing the bending meshing type gear apparatus which concerns on 1st Embodiment of this invention. 図1の撓み噛合い式歯車装置の近傍のみを示す断面図Sectional drawing which shows only the vicinity of the flexure meshing type gear apparatus of FIG. 図2の撓み噛合い式歯車装置と継手部材とを示す斜視図The perspective view which shows the flexible meshing gear apparatus and coupling member of FIG. 図1における内歯歯車近傍の部材を示す分解断面図1 is an exploded sectional view showing members in the vicinity of the internal gear in FIG. 図4の減速用内歯歯車を示す斜視図(A)と正面図(B)The perspective view (A) and front view (B) which show the internal gear for deceleration of FIG. 図4の第1継手部材を示す斜視図(A)と正面図(B)The perspective view (A) and front view (B) which show the 1st coupling member of FIG. 図4の駆動軸ケーシングを示す斜視図(A)と正面図(B)The perspective view (A) and front view (B) which show the drive-shaft casing of FIG. 図4の第1出力部材を示す斜視図(A)と正面図(B)A perspective view (A) and a front view (B) showing the first output member of FIG. 本発明の第2実施形態に係る撓み噛合い式歯車装置を含む全体構成の一例を示す断面図Sectional drawing which shows an example of the whole structure containing the bending meshing type gear apparatus which concerns on 2nd Embodiment of this invention. 図9の撓み噛合い式歯車装置の近傍のみを示す断面図Sectional drawing which shows only the vicinity of the flexible meshing gear device of FIG. 図9における内歯歯車近傍の部材を示す分解断面図FIG. 9 is an exploded sectional view showing members in the vicinity of the internal gear in FIG. 図11の第1継手部材を示す斜視図(A)と正面図(B)The perspective view (A) and front view (B) which show the 1st coupling member of FIG. 図11の駆動軸ケーシングを示す斜視図(A)と正面図(B)The perspective view (A) and front view (B) which show the drive-shaft casing of FIG. 図11の第1出力部材を示す斜視図(A)と正面図(B)The perspective view (A) and front view (B) which show the 1st output member of Drawing 11 本発明の第3実施形態に係る撓み噛合い式歯車装置の一例を示す断面図Sectional drawing which shows an example of the bending meshing type gear apparatus which concerns on 3rd Embodiment of this invention. 本実施形態に対しての比較例となる撓み噛合い式歯車装置を示す断面図Sectional drawing which shows the bending meshing type gear apparatus used as the comparative example with respect to this embodiment

以下、図1〜図8を参照して、本発明の第1実施形態を詳細に説明する。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS.

最初に、本実施形態の全体構成について、概略的に説明する。   First, the overall configuration of the present embodiment will be schematically described.

撓み噛合い式歯車装置100の概略構成は、図1、図2に示す如く、起振体106の回転により撓み変形される外歯歯車120と、起振体106と外歯歯車120との間に配置される起振体軸受110と、外歯歯車120が内接噛合する内歯歯車130と、を備える。撓み噛合い式歯車装置100は、内歯歯車130として減速用内歯歯車(第1内歯歯車)130Aと出力用内歯歯車(第2内歯歯車)130Bとを有する筒型とされている。撓み噛合い式歯車装置100は、図1に示す如く、固定側部材136に支持されて、駆動軸101によって回転駆動され出力を出力側部材152に伝達する構成となっている。なお、駆動軸101は、駆動源である図示せぬモータから伸びるモータ軸などである。駆動軸101は、図2に示す如く、起振体106の一端側から挿入され、止め部材102で軸方向Oへの移動が規制されている。   As shown in FIG. 1 and FIG. 2, the schematic configuration of the flexure meshing gear device 100 includes an external gear 120 that is flexibly deformed by the rotation of the vibration generator 106, and between the vibration generator 106 and the external gear 120. And the internal gear 130 with which the external gear 120 meshes internally. The flexure meshing gear device 100 has a cylindrical shape having a reduction internal gear (first internal gear) 130A and an output internal gear (second internal gear) 130B as internal gears 130. . As shown in FIG. 1, the flexure meshing gear device 100 is supported by a fixed-side member 136 and is rotationally driven by a drive shaft 101 to transmit an output to an output-side member 152. The drive shaft 101 is a motor shaft extending from a motor (not shown) that is a drive source. As shown in FIG. 2, the drive shaft 101 is inserted from one end side of the vibrating body 106, and movement in the axial direction O is restricted by the stopper member 102.

次に、固定側部材136と出力側部材152とについて説明する。   Next, the fixed side member 136 and the output side member 152 will be described.

前記固定側部材136は、図1に示す如く、補助ケーシング138と、駆動軸ケーシング(第1支持部材)140と、第1固定部材142と、第2固定部材144と、第3固定部材146と、を有する。補助ケーシング138は、円筒形状である。補助ケーシング138は、駆動軸101が嵌入されるオイルシールOs1を支持し、駆動軸ケーシング140に接続されている。駆動軸ケーシング140は、円筒形状の円筒部140Bと、その円筒部140Bの一端側を構成するフランジ部140Aと、を有する。円筒部140Bは、その貫通孔140C内側(図4)で2つの軸受Brを介して駆動軸101を支持している。また、フランジ部140Aは、第1継手部材134Aを介して減速用内歯歯車130Aを支持している(フランジ部140Aと減速用内歯歯車130Aとの連結構造については後述する)。また、フランジ部140Aの第1継手部材134Aが支持されている位置の径方向外側には、第1固定部材142が固定されている。逆に、フランジ部140Aの第1継手部材134Aが支持されている位置の径方向内側には、円環形状の当て部材(規制部材)148が存在する。   As shown in FIG. 1, the fixed side member 136 includes an auxiliary casing 138, a drive shaft casing (first support member) 140, a first fixing member 142, a second fixing member 144, and a third fixing member 146. Have. The auxiliary casing 138 has a cylindrical shape. The auxiliary casing 138 supports an oil seal Os1 into which the drive shaft 101 is inserted, and is connected to the drive shaft casing 140. The drive shaft casing 140 includes a cylindrical portion 140B having a cylindrical shape, and a flange portion 140A that constitutes one end side of the cylindrical portion 140B. The cylindrical portion 140B supports the drive shaft 101 via two bearings Br inside the through hole 140C (FIG. 4). In addition, the flange portion 140A supports the reduction internal gear 130A via the first joint member 134A (the connection structure between the flange portion 140A and the reduction internal gear 130A will be described later). Further, the first fixing member 142 is fixed on the radially outer side of the position where the first joint member 134A of the flange portion 140A is supported. On the other hand, an annular contact member (regulating member) 148 exists on the radially inner side of the position where the first joint member 134A of the flange portion 140A is supported.

当て部材148は、図1、図2に示す如く、外歯歯車120及び起振体軸受110の端面に対向するように、撓み噛合い式歯車装置100とフランジ部140Aとの間に配置されている。つまり、当て部材148は、外歯歯車120及び起振体軸受110の軸方向O側部に配置され外歯歯車120及び起振体軸受110の軸方向O移動を規制している。当て部材148は、例えば摺動性の高い材料から形成されている。同時に、当て部材148は、フランジ部140Aよりも硬度が高く(例えばHRC35以上)されている。   As shown in FIGS. 1 and 2, the abutting member 148 is disposed between the flexure meshing gear device 100 and the flange portion 140 </ b> A so as to face the end surfaces of the external gear 120 and the vibration body bearing 110. Yes. That is, the abutting member 148 is disposed on the side of the external gear 120 and the vibration body bearing 110 in the axial direction O and restricts the movement of the external gear 120 and the vibration body bearing 110 in the axial direction O. The contact member 148 is made of, for example, a material having high slidability. At the same time, the abutting member 148 has a higher hardness (for example, HRC35 or higher) than the flange portion 140A.

第1固定部材142には、図1に示す如く、第2固定部材144が固定されている。第1固定部材142と第2固定部材144とはともに、円環形状であり、出力側部材152の径方向外側に配置されている。第1固定部材142は、その外周で第3固定部材146に固定されている。第3固定部材146は、図示せぬ固定壁と一体化されている。   As shown in FIG. 1, a second fixing member 144 is fixed to the first fixing member 142. Both the first fixing member 142 and the second fixing member 144 have an annular shape and are arranged on the radially outer side of the output side member 152. The first fixing member 142 is fixed to the third fixing member 146 on the outer periphery thereof. The third fixing member 146 is integrated with a fixing wall (not shown).

前記出力側部材152は、図1に示す如く、第1出力部材(第2支持部材)154と、第2出力部材156と、第3出力部材158と、を有する。第1出力部材154は、円環形状であり、第2継手部材134Bを介して出力用内歯歯車130Bを支持している(第1出力部材154と出力用内歯歯車130Bとの連結構造についても後述する)。第1出力部材154の第2継手部材134Bが連結されている部分の径方向内側には、円環形状の当て部材(規制部材)150が存在する。当て部材150は、外歯歯車120及び起振体軸受110の端面に対向するように、撓み噛合い式歯車装置100と第1出力部材154との間に配置されている(当て部材150は、当て部材148と同一形状とされ且つ同一の材質とされている)。第1出力部材154と第1固定部材142との間には、主軸受Mb(クロスローラリング、アンギュラ玉軸受、テーパーローラ軸受など)が配置されている。第2出力部材156は、円板形状であり、第1出力部材154に固定されている。第2出力部材156と第2固定部材144との間には、第2固定部材144に支持されるオイルシールOs2が配置されている。第3出力部材158も、円板形状であり、第2出力部材156に固定されている。第3出力部材158は、図示せぬ機械装置に接続される。   As shown in FIG. 1, the output side member 152 has a first output member (second support member) 154, a second output member 156, and a third output member 158. The first output member 154 has an annular shape and supports the output internal gear 130B via the second joint member 134B (about the connection structure of the first output member 154 and the output internal gear 130B). Will also be described later). An annular contact member (regulating member) 150 exists on the radially inner side of the portion where the second joint member 134B of the first output member 154 is connected. The abutting member 150 is disposed between the flexure meshing gear device 100 and the first output member 154 so as to face the end surfaces of the external gear 120 and the vibration body bearing 110 (the abutting member 150 includes: The same shape and the same material as the abutting member 148). A main bearing Mb (a cross roller ring, an angular ball bearing, a tapered roller bearing, etc.) is disposed between the first output member 154 and the first fixing member 142. The second output member 156 has a disk shape and is fixed to the first output member 154. An oil seal Os2 supported by the second fixing member 144 is disposed between the second output member 156 and the second fixing member 144. The third output member 158 also has a disk shape and is fixed to the second output member 156. The third output member 158 is connected to a mechanical device (not shown).

次に、撓み噛合い式歯車装置100の各構成要素について説明を行う。なお、本実施形態では、起振体106の軸方向Oに垂直な断面が略楕円形状である。このため、本実施形態では、その軸心から起振体106の外周までの距離が最大となる位置を長軸位置と呼び、2つの長軸位置を結ぶ直線が延びる方向を長軸方向と呼ぶ。同時に、本実施形態では、軸心から起振体106の外周までの距離が最小となる位置を短軸位置と呼び、2つの短軸位置を結ぶ直線が延びる方向を短軸方向と呼ぶ。   Next, each component of the flexure meshing gear device 100 will be described. In the present embodiment, the cross section of the vibrator 106 perpendicular to the axial direction O is substantially elliptical. For this reason, in this embodiment, the position where the distance from the axial center to the outer periphery of the vibrating body 106 is the maximum is called the long axis position, and the direction in which the straight line connecting the two long axis positions extends is called the long axis direction. . At the same time, in the present embodiment, the position where the distance from the axial center to the outer periphery of the vibrator 106 is minimum is called the short axis position, and the direction in which the straight line connecting the two short axis positions extends is called the short axis direction.

起振体106は、図2、図3に示す如く、軸方向Oに垂直な断面が略楕円形の円筒形状とされている。そして、起振体106の中心には、駆動軸101が挿入される貫通孔106Aが設けられている。また、起振体106が駆動軸101と一体で回転するように、貫通孔106Aにはキー溝106Bが設けられ、起振体106と駆動軸101とはキー101Aで連結されている。ここで、短軸位置における軸心から起振体106の外周までの距離は、長軸位置における軸心から起振体106の外周までの距離よりも短くされている。即ち、短軸位置では、外歯歯車120と減速用内歯歯車130Aとの間に隙間が生じることで、非噛合状態が実現される。一方で、長軸位置の付近では、外歯歯車120と減速用内歯歯車130Aとの噛合状態が実現される。   As shown in FIGS. 2 and 3, the vibration generator 106 has a cylindrical shape whose cross section perpendicular to the axial direction O is substantially elliptical. A through hole 106A into which the drive shaft 101 is inserted is provided at the center of the vibrator 106. In addition, a key groove 106B is provided in the through hole 106A so that the vibration generator 106 rotates integrally with the drive shaft 101, and the vibration generator 106 and the drive shaft 101 are connected by the key 101A. Here, the distance from the shaft center at the short axis position to the outer periphery of the vibration body 106 is shorter than the distance from the shaft center at the long axis position to the outer periphery of the vibration body 106. That is, at the short axis position, a gap is generated between the external gear 120 and the reduction internal gear 130A, thereby realizing a non-meshing state. On the other hand, in the vicinity of the long axis position, the meshing state between the external gear 120 and the reduction internal gear 130A is realized.

起振体軸受110(110A、110B)は、図2に示す如く、減速用内歯歯車130A、出力用内歯歯車130Bに対応して、軸方向Oに2つ並べて配置されている。起振体軸受110A、110Bはともに、同一の構成である。このため、以下、起振体軸受110Aについて説明し、起振体軸受110Bについての説明は基本的に省略する。   As shown in FIG. 2, two vibrator bearings 110 (110A, 110B) are arranged side by side in the axial direction O corresponding to the reduction internal gear 130A and the output internal gear 130B. The vibration body bearings 110A and 110B have the same configuration. For this reason, below, the vibration body bearing 110A is demonstrated and description about the vibration body bearing 110B is abbreviate | omitted fundamentally.

起振体軸受110Aは、図2に示す如く、内輪112と、リテーナ114Aと、転動体としてのころ116Aと、外輪118Aと、から構成される。   As shown in FIG. 2, the vibration body bearing 110A includes an inner ring 112, a retainer 114A, rollers 116A as rolling elements, and an outer ring 118A.

内輪112は、図2に示す如く、起振体軸受110Bと共通であり、可撓性の素材で形成されている。内輪112は起振体106側に配置されている。そして、内輪112の内周面は起振体106と当接して、内輪112は起振体106と一体で回転する。リテーナ114Aは、ころ116Aを収容し、ころ116Aの周方向における位置及び姿勢を規制する。ころ116Aは、円柱形状(ニードル形状を含む)である。このため、転動体が球である場合に比べて、ころ116Aが内輪112及び外輪118Aと接触する部分を増加させている。つまり、ころ116Aを用いることにより、起振体軸受110Aの伝達トルクを増大させ、かつ長寿命化させることができる。外輪118Aは、ころ116A及びリテーナ114Aの外周に配置される。外輪118Aも、可撓性の素材で形成されている。外輪118Aは、その外周に配置される外歯歯車120とともに起振体106の回転により撓み変形する。   As shown in FIG. 2, the inner ring 112 is common to the vibration body bearing 110B and is formed of a flexible material. The inner ring 112 is disposed on the vibration generator 106 side. Then, the inner peripheral surface of the inner ring 112 is in contact with the vibration generator 106, and the inner ring 112 rotates integrally with the vibration generator 106. The retainer 114A accommodates the roller 116A and regulates the position and posture in the circumferential direction of the roller 116A. The roller 116A has a cylindrical shape (including a needle shape). For this reason, compared with the case where a rolling element is a ball | bowl, the part which the roller 116A contacts with the inner ring | wheel 112 and the outer ring | wheel 118A is increased. That is, by using the rollers 116A, the transmission torque of the vibration body bearing 110A can be increased and the life can be extended. The outer ring 118A is disposed on the outer periphery of the roller 116A and the retainer 114A. The outer ring 118A is also formed of a flexible material. The outer ring 118 </ b> A is bent and deformed by the rotation of the vibration generator 106 together with the external gear 120 disposed on the outer periphery thereof.

外歯歯車120は、図2に示す如く、減速用内歯歯車130A、出力用内歯歯車130Bに対応して軸方向Oに並設された外歯歯車120A、120Bで構成されている。外歯歯車120Aは、減速用内歯歯車130Aと内接噛合する。外歯歯車120Aは、図示せぬ基部材及び外歯で構成される。基部材は、外歯を支持する可撓性を有した筒状部材であり、外歯歯車120Bの基部材と共通とされている。そして、外歯歯車120Aは、起振体軸受110Aの外周に配置され起振体106の回転により撓み変形する。外歯は、理論噛合を実現するようにトロコイド曲線に基づいて歯形が決定されている。   As shown in FIG. 2, the external gear 120 includes external gears 120 </ b> A and 120 </ b> B arranged in parallel in the axial direction O corresponding to the reduction internal gear 130 </ b> A and the output internal gear 130 </ b> B. The external gear 120A is in mesh with the reduction internal gear 130A. The external gear 120A includes a base member and external teeth not shown. The base member is a flexible cylindrical member that supports the external teeth, and is common to the base member of the external gear 120B. The external gear 120A is arranged on the outer periphery of the vibration body bearing 110A and is bent and deformed by the rotation of the vibration body 106. The tooth profile of the external teeth is determined based on the trochoid curve so as to realize theoretical meshing.

外歯歯車120Bは、図2に示す如く、出力用内歯歯車130Bと内接噛合する。そして、外歯歯車120Bは、外歯歯車120Aと同様に、基部材及び外歯で構成される。外歯歯車120Bの外歯は、外歯歯車120Aの外歯とは軸方向Oで分離されているものの、同一の数、同一の形状で構成されている。   As shown in FIG. 2, the external gear 120B is in mesh with the output internal gear 130B. And the external gear 120B is comprised with a base member and an external tooth similarly to the external gear 120A. Although the external teeth of the external gear 120B are separated from the external teeth of the external gear 120A in the axial direction O, they have the same number and the same shape.

内歯歯車130を構成する減速用内歯歯車130A、出力用内歯歯車130Bは、ほぼ同一の外径Dd(図5(B))であり、図2に示す如く、軸方向Oに並設されている。内歯歯車130は剛性を有した部材で形成されている。減速用内歯歯車130Aは、外歯歯車120Aの外歯の歯数よりもi(iは2以上)多い歯数の内歯128Aを備える。内歯128Aは、トロコイド曲線に基づいた外歯に理論噛合するように形成されている(出力用内歯歯車130Bの内歯128Bも同様)。減速用内歯歯車130Aは、外歯歯車120Aと噛合することによって、起振体106の回転を減速する。なお、減速用内歯歯車130Aと第1継手部材134Aとの連結構造については後述する(出力用内歯歯車130Bについても同様)。   The internal gear 130A for reduction and the internal gear 130B for output constituting the internal gear 130 have substantially the same outer diameter Dd (FIG. 5B), and are arranged in parallel in the axial direction O as shown in FIG. Has been. The internal gear 130 is formed of a rigid member. The reduction internal gear 130A includes internal teeth 128A whose number of teeth is i (i is 2 or more) larger than the number of external teeth of the external gear 120A. The internal teeth 128A are formed so as to theoretically mesh with external teeth based on the trochoid curve (the internal teeth 128B of the output internal gear 130B are also the same). The reduction internal gear 130A meshes with the external gear 120A to reduce the rotation of the vibration generator 106. The connection structure between the reduction internal gear 130A and the first joint member 134A will be described later (the same applies to the output internal gear 130B).

一方、出力用内歯歯車130Bは、外歯歯車120Bの外歯の歯数と同一の歯数の内歯128Bを備える。出力用内歯歯車130Bからは、外歯歯車120Bの自転と同一の回転が外部に出力される。   On the other hand, the output internal gear 130B includes internal teeth 128B having the same number of teeth as the external teeth of the external gear 120B. From the output internal gear 130B, the same rotation as the rotation of the external gear 120B is output to the outside.

なお、撓み噛合い式歯車装置100には、潤滑剤が封入されている。そして、その潤滑剤は、外歯歯車120と内歯歯車130とが噛合う部分などを潤滑している。   Note that the flexure meshing gear device 100 is filled with a lubricant. The lubricant lubricates a portion where the external gear 120 and the internal gear 130 mesh with each other.

次に、第1継手部材134A、第2継手部材134B、内歯歯車130を含む駆動軸ケーシング140から第1出力部材154までの間の構造について、主に図3〜図8を用いて説明する。   Next, the structure from the drive shaft casing 140 including the first joint member 134A, the second joint member 134B, and the internal gear 130 to the first output member 154 will be mainly described with reference to FIGS. .

図3、図4に示す如く、減速用内歯歯車130Aと駆動軸ケーシング140とは、減速用内歯歯車130Aの軸心の径方向の変位を許容する第1継手部材134Aによって連結されている。同時に、出力用内歯歯車130Bと第1出力部材154とは、出力用内歯歯車130Bの軸心の径方向の変位を許容する第2継手部材134Bによって連結されている。つまり、本実施形態では、減速用内歯歯車130Aと駆動軸ケーシング140との連結構造と、出力用内歯歯車130Bと第1出力部材154との連結構造と、が同一のオルダムカップリング機構で構成されている。ここで、減速用内歯歯車130Aと出力用内歯歯車130Bとは歯数が異なるものの、減速用内歯歯車130Aと出力用内歯歯車130Bとは同様の連結構造を有する。また、第1継手部材134Aと第2継手部材134Bとは同一形状である。このため、以下、減速用内歯歯車130Aと駆動軸ケーシング140との連結構造について説明を行い、出力用内歯歯車130Bと第1出力部材154との連結構造についての説明は基本的に省略する。なお、継手部材134は第1継手部材134Aと第2継手部材134Bとを有し、支持部材は駆動軸ケーシング140と第1出力部材154とを有する。このため、内歯歯車130と支持部材とは、内歯歯車130の軸心の径方向の変位を許容する継手部材134によって連結されているといえる。   As shown in FIGS. 3 and 4, the reduction internal gear 130 </ b> A and the drive shaft casing 140 are connected by a first joint member 134 </ b> A that allows a radial displacement of the shaft center of the reduction internal gear 130 </ b> A. . At the same time, the output internal gear 130B and the first output member 154 are connected by a second joint member 134B that allows the radial displacement of the shaft center of the output internal gear 130B. In other words, in the present embodiment, the connection structure between the reduction internal gear 130A and the drive shaft casing 140 and the connection structure between the output internal gear 130B and the first output member 154 are the same Oldham coupling mechanism. It is configured. Here, although the reduction internal gear 130A and the output internal gear 130B have different numbers of teeth, the reduction internal gear 130A and the output internal gear 130B have the same connection structure. Further, the first joint member 134A and the second joint member 134B have the same shape. For this reason, hereinafter, the connection structure between the internal gear 130A for reduction and the drive shaft casing 140 will be described, and the description about the connection structure between the internal gear 130B for output and the first output member 154 will be basically omitted. . The joint member 134 includes a first joint member 134A and a second joint member 134B, and the support member includes a drive shaft casing 140 and a first output member 154. For this reason, it can be said that the internal gear 130 and the support member are connected by the joint member 134 that allows the radial displacement of the axial center of the internal gear 130.

以下、上記連結構造を実現している各要素の形状を説明する。   Hereinafter, the shape of each element realizing the above connection structure will be described.

まず、減速用内歯歯車130A(外径Dd)の第1継手部材134A側の側面130ACには、図4、図5(A)、(B)に示す如く、2つの凹部130AAが設けられている。2つの凹部130AAが設けられている位置は、減速用内歯歯車130Aの外周に沿った位置で内歯128Aの外側の位置とされ、且つ減速用内歯歯車130Aの中心に対して互いに180度位相のずれた位置とされている。即ち、2つの凹部130AAの周方向における中心線は、図5(B)に示す如く、一直線に繋がり、その方向をX方向とする。そして、凹部130AAの周方向に対向する側面130AAAはそれぞれ、X方向と平行とされている。なお、符号Ldは、凹部130AAにおける側面130AAA間の距離(凹部130AAの周方向幅)である。また、符号Lgは、2つの凹部130AAの底面130AABの間の距離である。   First, as shown in FIGS. 4, 5A, and 5B, two concave portions 130AA are provided on the side surface 130AC of the reduction internal gear 130A (outer diameter Dd) on the first joint member 134A side. Yes. The position where the two recesses 130AA are provided is a position along the outer periphery of the internal gear 130A for reduction and outside the internal tooth 128A, and 180 degrees with respect to the center of the internal gear 130A for reduction. The position is out of phase. That is, the center line in the circumferential direction of the two recesses 130AA is connected in a straight line as shown in FIG. The side surfaces 130AAA that face the circumferential direction of the recess 130AA are parallel to the X direction. In addition, the code | symbol Ld is the distance (the circumferential direction width | variety of recessed part 130AA) between side surface 130AAA in recessed part 130AA. Reference sign Lg is the distance between the bottom surfaces 130AAB of the two recesses 130AA.

なお、減速用内歯歯車130Aの出力用内歯歯車130Bと対向する対向面130ABには、低摩擦処理が施されている。つまり、本実施形態では、対向面130ABと出力用内歯歯車130Bの対向面130BBとの間の摩擦係数μ0は、低摩擦処理が施されていない場合の対向面130ABと対向面130BBとの間の摩擦係数μ1よりも小さくされている(μ0<μ1)。低摩擦処理の具体例としては、表面粗さを従来よりも低減させる表面の研磨加工でもよい。あるいは、摩擦係数を低減可能な潤滑性の高い材料(二硫化モリブデン、グラファイト、DLC、PTFEなどのふっ素系樹脂など)を主成分とした膜を対向面130ABに形成してもよい。なお、このような低摩擦処理は、出力用内歯歯車130Bの対向面130BBに同時に施してもよい(あるいは、出力用内歯歯車の対向面に低摩擦処理を施す場合には、減速用内歯歯車の対向面には低摩擦処理を施さなくてもよい)。   Note that a low friction process is performed on the facing surface 130AB of the reduction internal gear 130A that faces the output internal gear 130B. That is, in the present embodiment, the friction coefficient μ0 between the facing surface 130AB and the facing surface 130BB of the output internal gear 130B is between the facing surface 130AB and the facing surface 130BB when the low friction treatment is not performed. Is smaller than the friction coefficient μ1 (μ0 <μ1). As a specific example of the low friction treatment, surface polishing that reduces the surface roughness as compared with the conventional surface may be used. Alternatively, a film whose main component is a highly lubricious material (such as molybdenum disulfide, graphite, DLC, or PTFE) can be formed on the opposing surface 130AB. Such low friction processing may be performed simultaneously on the opposing surface 130BB of the output internal gear 130B (or when low friction processing is applied to the opposing surface of the output internal gear 130B, the internal speed reduction gear The opposing surface of the toothed gear does not need to be subjected to a low friction treatment).

第1継手部材134Aは、図3、図4、図6(A)、(B)に示す如く、中心に貫通孔134ACを有する円環形状(外径Dj)とされている。第1継手部材134Aの軸方向Oの両側面134AE、134AFにはそれぞれ、2つの凸部134AAと2つの凸部134ABとが設けられている。凸部134AA(134AB)の内周面134AAC(134ABC)の位置と外周面134AAB(134ABB)の位置はそれぞれ、径方向で第1継手部材134A自体の内周面の位置と外周面の位置と同一とされている。このため、直径Lbで規定される貫通孔134ACの大きさは、減速用内歯歯車130Aの軸心の芯ずれが最大となり減速用内歯歯車130Aが径方向に相対変位しても、第1継手部材134Aの2つの凸部134AAの内周面134AACが減速用内歯歯車130Aの2つの凹部130AAの底面130AABと接触しない大きさとされている。   As shown in FIGS. 3, 4, 6A and 6B, the first joint member 134A has an annular shape (outer diameter Dj) having a through hole 134AC in the center. On both side surfaces 134AE and 134AF in the axial direction O of the first joint member 134A, two convex portions 134AA and two convex portions 134AB are provided, respectively. The positions of the inner peripheral surface 134AAC (134ABC) and the outer peripheral surface 134AAB (134ABB) of the convex portion 134AA (134AB) are the same as the positions of the inner peripheral surface and the outer peripheral surface of the first joint member 134A themselves in the radial direction. It is said that. For this reason, the size of the through hole 134AC defined by the diameter Lb is the same even if the axial misalignment of the internal gear 130A for reduction is at a maximum and the internal gear 130A for reduction is relatively displaced in the radial direction. The inner peripheral surface 134AAC of the two convex portions 134AA of the joint member 134A is sized so as not to contact the bottom surface 130AAB of the two concave portions 130AA of the reduction internal gear 130A.

一方の側面134AEにおいて、図6(A)、(B)に示す如く、2つの凸部134AAの設けられている位置は、第1継手部材134Aの中心に対して互いに180度位相のずれた位置とされている。即ち、2つの凸部134AAの周方向における中心線は、図6(B)に示す如く、一直線に繋がりX方向と一致する(このため、貫通孔134ACの直径Lbは、2つの凸部134AAの内周面134AACの間の距離となる。また、外径Djは、2つの凸部134AAの外周面134AABの間の距離となる)。そして、凸部134AAの周方向に対向する側面134AAAはそれぞれ、X方向と平行とされている。なお、符号Ljyは、凸部134AAにおける側面134AAA間の距離(凸部134AAの周方向幅)である。   On one side surface 134AE, as shown in FIGS. 6A and 6B, the positions where the two convex portions 134AA are provided are positions that are 180 degrees out of phase with respect to the center of the first joint member 134A. It is said that. That is, the center line in the circumferential direction of the two convex portions 134AA is connected in a straight line and coincides with the X direction as shown in FIG. 6B (for this reason, the diameter Lb of the through hole 134AC is equal to that of the two convex portions 134AA. This is the distance between the inner peripheral surface 134AAC and the outer diameter Dj is the distance between the outer peripheral surfaces 134AAB of the two convex portions 134AA). The side surfaces 134AAA facing the circumferential direction of the convex portion 134AA are parallel to the X direction. In addition, the code | symbol Lji is the distance (the circumferential direction width | variety of convex part 134AA) between side surface 134AAA in convex part 134AA.

他方の側面134AFにおいて、図6(A)、(B)に示す如く、2つの凸部134ABの設けられている位置も、第1継手部材134Aの中心に対して互いに180度位相のずれた位置とされている。即ち、2つの凸部134ABの周方向における中心線は、図6(B)に示す如く、一直線に繋がり、その方向をY方向とする(このため、貫通孔134ACの直径Lbは、2つの凸部134ABの内周面134ABCの間の距離となる。また、外径Djは、2つの凸部134ABの外周面134ABBの間の距離となる)。なお、Y方向はX方向と直行する。そして、凸部134ABの周方向に対向する側面134ABAはそれぞれ、Y方向と平行とされている。なお、符号Ljxは、凸部134ABにおける側面134ABA間の距離(凸部134ABの周方向幅)である。   On the other side surface 134AF, as shown in FIGS. 6A and 6B, the positions where the two convex portions 134AB are provided are also positions that are 180 degrees out of phase with respect to the center of the first joint member 134A. It is said that. That is, the center line in the circumferential direction of the two protrusions 134AB is connected in a straight line as shown in FIG. 6B, and the direction is the Y direction (therefore, the diameter Lb of the through hole 134AC is two protrusions). The distance between the inner peripheral surface 134ABC of the portion 134AB and the outer diameter Dj is the distance between the outer peripheral surfaces 134ABB of the two convex portions 134AB). The Y direction is perpendicular to the X direction. The side surfaces 134ABA facing the circumferential direction of the convex portion 134AB are parallel to the Y direction. Note that the symbol Ljx is the distance between the side surfaces 134ABA of the convex portion 134AB (the circumferential width of the convex portion 134AB).

ここで、凸部134AAと凸部134ABとは同一形状で、凸部134AAの周方向幅Ljyと凸部134ABの周方向幅Ljxとは同一である(Ljy=Ljx)。つまり、側面134AEと側面134AFとは、位相が90度ずれているものの、形状は同一とされている。また、凸部134AA(凸部134AB)の軸方向O高さは、凹部130AAの軸方向O深さより小さくされている。そして、凸部134AAの周方向幅Ljyは、凹部130AAの周方向幅Ldよりも若干狭くされている(Ljy<Ld)。そして、外径Djと外径Ddとはほぼ同一とされている(Dj≒Dd)。そして、2つの凸部134AAの内周面134AACの間の距離Lbは、2つの凹部130AAの底面130AABの間の距離Lgよりも相応に大きくされている(Lb>Lg+α、α>0)。   Here, the convex part 134AA and the convex part 134AB have the same shape, and the circumferential width Ljy of the convex part 134AA and the circumferential width Ljx of the convex part 134AB are the same (Lji = Ljx). That is, although the side surface 134AE and the side surface 134AF are out of phase by 90 degrees, the shape is the same. Moreover, the axial direction O height of convex part 134AA (convex part 134AB) is made smaller than the axial direction O depth of recessed part 130AA. The circumferential width Lji of the convex portion 134AA is slightly narrower than the circumferential width Ld of the concave portion 130AA (Lji <Ld). The outer diameter Dj and the outer diameter Dd are substantially the same (Dj≈Dd). The distance Lb between the inner peripheral surfaces 134AAC of the two convex portions 134AA is correspondingly larger than the distance Lg between the bottom surfaces 130AAB of the two concave portions 130AA (Lb> Lg + α, α> 0).

このため、2つの凸部134AAはそれぞれ、2つの凹部130AAに嵌合可能となっている。このとき、図6(B)において、2つの凸部134AAの配置(2つの凹部130AAの配置)により、減速用内歯歯車130Aに対する第1継手部材134AのY方向への相対移動は規制される。しかしながら、減速用内歯歯車130Aに対する第1継手部材134AのX方向への相対移動は許容されることとなる(例えば1mm以下)。即ち、減速用内歯歯車130Aと第1継手部材134Aとは、軸方向Oに対向し、径方向の一方向(図6(B)のX方向)に相対変位可能に連結されていることとなる。このように、2つの凸部134AAと2つの凹部130AAの嵌合により、減速用内歯歯車130Aと第1継手部材134Aとは周方向に一体的に連結される。   For this reason, each of the two convex portions 134AA can be fitted into the two concave portions 130AA. At this time, in FIG. 6B, the relative movement in the Y direction of the first joint member 134A with respect to the internal gear for deceleration 130A is restricted by the arrangement of the two convex portions 134AA (the arrangement of the two concave portions 130AA). . However, relative movement in the X direction of the first joint member 134A with respect to the internal gear 130A for reduction is allowed (for example, 1 mm or less). That is, the internal gear 130A for deceleration and the first joint member 134A are opposed to each other in the axial direction O and are coupled so as to be relatively displaceable in one radial direction (X direction in FIG. 6B). Become. Thus, the internal gear for reduction 130A and the first joint member 134A are integrally connected in the circumferential direction by fitting the two convex portions 134AA and the two concave portions 130AA.

なお、出力用内歯歯車130Bと第2継手部材134Bも同様に連結される。また、凸部134AAや凹部130AAの形状は、特に限定されず、内歯歯車130(減速用内歯歯車130A、出力用内歯歯車130B)と継手部材134(第1継手部材134A、第2継手部材134B)とが径方向に相対変位可能、且つ周方向に一体的に連結される形状であればよい。   The output internal gear 130B and the second joint member 134B are similarly connected. Moreover, the shape of convex part 134AA and recessed part 130AA is not specifically limited, Internal gear 130 (Internal gear 130A for deceleration, Internal gear 130B for output) and joint member 134 (1st joint member 134A, 2nd joint) Any shape may be used as long as the member 134B) is relatively displaceable in the radial direction and is integrally connected in the circumferential direction.

駆動軸ケーシング140は、図4、図7(A)、(B)に示す如く、フランジ部140Aと円筒部140Bとを有する。フランジ部140Aは、図7(A)、(B)に示す如く、中心に貫通孔140Cを有している。そして、フランジ部140Aの側面140Dには、同心円状に内周凹部140ACと、外周凹部140ABと、が形成されている。内周凹部140ACの最大内径Lsは、当て部材148の外径よりも大きくされている。同時に、軸方向Oで、内周凹部140ACの底面から仕切りPtの先端までの高さは、当て部材148の軸方向O厚みよりも僅かに大きくされている。このため、内周凹部140ACは、当て部材148全体を収容することができる。   The drive shaft casing 140 has a flange portion 140A and a cylindrical portion 140B as shown in FIGS. 4, 7A, and 7B. As shown in FIGS. 7A and 7B, the flange portion 140A has a through hole 140C at the center. An inner circumferential recess 140AC and an outer circumferential recess 140AB are concentrically formed on the side surface 140D of the flange portion 140A. The maximum inner diameter Ls of the inner circumferential recess 140AC is made larger than the outer diameter of the abutting member 148. At the same time, in the axial direction O, the height from the bottom surface of the inner circumferential recess 140AC to the tip of the partition Pt is slightly larger than the axial direction O thickness of the abutting member 148. For this reason, the inner peripheral recess 140AC can accommodate the entire abutting member 148.

外周凹部140ABは、図7(A)、(B)に示す如く、仕切りPtを隔てて、内周凹部140ACの外側に形成されている。外周凹部140ABは、最小内径Lpと最大内径Dwとで規定されている。最小内径Lpは第1継手部材134Aの貫通孔134ACの直径Lbよりも小さく(Lp<Lb)、最大内径Dwは第1継手部材134Aの外径Djよりも大きくされている(Dw>Dj)。外周凹部140ABには、軸方向Oに更に2つの凹部140AAが設けられている。凹部140AAの内側内周面140AACの位置と外側内周面140AABの位置はそれぞれ、径方向で最小内径Lpの位置と最大内径Dwの位置と同一とされている。2つの凹部140AAの設けられている位置は、フランジ部140Aの中心に対して互いに180度位相のずれた位置とされている。即ち、2つの凹部140AAの周方向における中心線は、図7(B)に示す如く、一直線に繋がりY方向と一致する(このため、最小内径Lpは、2つの凹部140AAの内側内周面140AACの間の距離となる。また、最大内径Dwは、2つの凹部140AAの外側内周面140AABの間の距離となる)。そして、凹部140AAの周方向に対向する側面140AAAはそれぞれ、Y方向と平行とされている。なお、符号Lwは、凹部140AAにおける側面140AAA間の距離(凹部140AAの周方向幅)である。   As shown in FIGS. 7A and 7B, the outer peripheral recess 140AB is formed outside the inner peripheral recess 140AC with the partition Pt therebetween. The outer circumferential recess 140AB is defined by a minimum inner diameter Lp and a maximum inner diameter Dw. The minimum inner diameter Lp is smaller than the diameter Lb of the through hole 134AC of the first joint member 134A (Lp <Lb), and the maximum inner diameter Dw is larger than the outer diameter Dj of the first joint member 134A (Dw> Dj). The outer circumferential recess 140AB is further provided with two recesses 140AA in the axial direction O. The position of the inner inner peripheral surface 140AAC and the position of the outer inner peripheral surface 140AAB of the recess 140AA are respectively the same as the position of the minimum inner diameter Lp and the position of the maximum inner diameter Dw in the radial direction. The positions where the two concave portions 140AA are provided are positions that are 180 degrees out of phase with respect to the center of the flange portion 140A. That is, the center line in the circumferential direction of the two recesses 140AA is connected in a straight line and coincides with the Y direction as shown in FIG. 7B (for this reason, the minimum inner diameter Lp is the inner inner circumferential surface 140AAC of the two recesses 140AA). Also, the maximum inner diameter Dw is the distance between the outer inner peripheral surfaces 140AAB of the two recesses 140AA). The side surfaces 140AAA facing the circumferential direction of the recess 140AA are parallel to the Y direction. In addition, the code | symbol Lw is the distance (the circumferential direction width | variety of recessed part 140AA) between side surface 140AAA in recessed part 140AA.

ここで、外周凹部140ABの最小内径Lpは、減速用内歯歯車130Aの軸心の芯ずれが最大となり減速用内歯歯車130Aと第1継手部材134Aとが径方向に相対変位しても、フランジ部140Aの仕切りPtが第1継手部材134Aと接触しない大きさとされている。つまり、外周凹部140ABの最小内径Lpは、第1継手部材134Aの貫通孔134ACの直径Lbよりも相応に小さくされている。言い換えれば、2つの凸部134ABの内周面134ABCの間の距離Lbよりも、2つの凹部140AAの内側内周面140AACの間の距離Lpは、相応に小さくされている(Lb>Lp+β、β>0)。また、外周凹部140ABの最大内径Dwは、減速用内歯歯車130Aの軸心の芯ずれが最大となり減速用内歯歯車130Aと第1継手部材134Aとが径方向に相対変位しても、外周凹部140ABの内周面140ABBが第1継手部材134Aの外周及び減速用内歯歯車130Aの外周と接触しない大きさとされている。つまり、外周凹部140ABの最大内径Dwは、外径Dd、外径Djよりも相応に大きくされている。言い換えれば、2つの凸部134ABの外周面134ABBの間の距離Djよりも、2つの凹部140AAの外側内周面140AABの間の距離Dwは、相応に大きくされている(Dw>Dj(Dd)+β、β>0)。また、凸部134AB(凸部134AA)の軸方向O高さは、凹部140AAの軸方向O深さより小さくされている。そして、凸部134ABの周方向幅Ljxは、凹部140AAの周方向幅Lwよりも若干狭くされている(Ljx<Lw)。   Here, the minimum inner diameter Lp of the outer circumferential recess 140AB is such that the center misalignment of the center axis of the reduction internal gear 130A becomes the maximum and the reduction internal gear 130A and the first joint member 134A are relatively displaced in the radial direction. The size of the partition Pt of the flange portion 140A is not in contact with the first joint member 134A. That is, the minimum inner diameter Lp of the outer circumferential recess 140AB is appropriately smaller than the diameter Lb of the through hole 134AC of the first joint member 134A. In other words, the distance Lp between the inner inner peripheral surfaces 140AAC of the two concave portions 140AA is made correspondingly smaller than the distance Lb between the inner peripheral surfaces 134ABC of the two convex portions 134AB (Lb> Lp + β, β > 0). In addition, the maximum inner diameter Dw of the outer peripheral recess 140AB is such that the center misalignment of the shaft of the internal gear for reduction 130A is maximized, and the outer peripheral gear 140A and the first joint member 134A are displaced relative to each other in the radial direction. The inner peripheral surface 140ABB of the recess 140AB is set to a size that does not contact the outer periphery of the first joint member 134A and the outer periphery of the internal gear 130A for reduction. In other words, the maximum inner diameter Dw of the outer peripheral recess 140AB is appropriately larger than the outer diameter Dd and the outer diameter Dj. In other words, the distance Dw between the outer inner peripheral surfaces 140AAB of the two concave portions 140AA is correspondingly larger than the distance Dj between the outer peripheral surfaces 134ABB of the two convex portions 134AB (Dw> Dj (Dd)). + Β, β> 0). Moreover, the axial direction O height of convex part 134AB (convex part 134AA) is made smaller than the axial direction O depth of recessed part 140AA. The circumferential width Ljx of the convex portion 134AB is slightly narrower than the circumferential width Lw of the concave portion 140AA (Ljx <Lw).

このため、2つの凸部134ABはそれぞれ、2つの凹部140AAに嵌合可能である。このとき、図7(B)において、2つの凹部140AAの配置(2つの凸部134ABの配置)により、駆動軸ケーシング140に対する第1継手部材134AのX方向への相対移動は規制される。しかしながら、駆動軸ケーシング140に対する第1継手部材134AのY方向への相対移動は許容されることとなる(例えば1mm以下)。即ち、駆動軸ケーシング140と第1継手部材134Aとは、軸方向Oに対向し、径方向の一方向(図7(B)のY方向)に相対変位可能に連結されていることとなる。このように、2つの凸部134ABと2つの凹部140AAの嵌合により、駆動軸ケーシング140と第1継手部材134Aとは周方向に一体的に連結される。なお、図7(A)、(B)で、符号Ogは、Oリング溝を示している。   For this reason, each of the two convex portions 134AB can be fitted into the two concave portions 140AA. At this time, in FIG. 7B, the relative movement in the X direction of the first joint member 134A with respect to the drive shaft casing 140 is restricted by the arrangement of the two concave portions 140AA (the arrangement of the two convex portions 134AB). However, relative movement in the Y direction of the first joint member 134A with respect to the drive shaft casing 140 is allowed (for example, 1 mm or less). That is, the drive shaft casing 140 and the first joint member 134A are opposed to each other in the axial direction O and are connected so as to be capable of relative displacement in one radial direction (Y direction in FIG. 7B). Thus, the drive shaft casing 140 and the first joint member 134A are integrally connected in the circumferential direction by fitting the two convex portions 134AB and the two concave portions 140AA. In FIGS. 7A and 7B, the symbol Og indicates an O-ring groove.

第1出力部材154の側面154Eは、図8(A)、(B)に示す如く、図7(A)、(B)に示す駆動軸ケーシング140の側面140Dの第1継手部材134Aとの連結に関わる部分及び当て部材148の配置される部分と同一形状を備えている。即ち、側面154Eは、貫通孔154Dの径方向外側に、順に内周凹部154C、仕切りPt、外周凹部154Bを備えている。そして、互いの内周凹部154C、仕切りPt、外周凹部154Bは、形状も配置も等しくされている(Do=Dw、Lr=Ls、Lq=Lp)。そして、外周凹部154Bに設けられた2つの凹部154Aはそれぞれ、形状も外周凹部154B上の配置も2つの凹部140AAと同一とされている(Lo=Lw)。   As shown in FIGS. 8A and 8B, the side surface 154E of the first output member 154 is connected to the first joint member 134A of the side surface 140D of the drive shaft casing 140 shown in FIGS. 7A and 7B. And the portion where the abutting member 148 is disposed have the same shape. That is, the side surface 154E includes an inner circumferential recess 154C, a partition Pt, and an outer circumferential recess 154B in this order on the radially outer side of the through hole 154D. The inner peripheral recess 154C, the partition Pt, and the outer peripheral recess 154B are equal in shape and arrangement (Do = Dw, Lr = Ls, Lq = Lp). The two recesses 154A provided in the outer periphery recess 154B have the same shape and the arrangement on the outer periphery recess 154B as the two recesses 140AA (Lo = Lw).

なお、上述の如く、第1継手部材134Aと第2継手部材134Bとは同一形状である。即ち、第2継手部材134Bも図4に示す如く、中心に貫通孔134BCを有する円環形状とされている。つまり、貫通孔134BCの直径は直径Lbとされ、第2継手部材134Bの外径は外径Djとされている。そして、第2継手部材134Bの軸方向Oの両側面に設けられた2つの凸部134BAと2つの凸部134BBはそれぞれ、形状も第2継手部材134B上の配置も、2つの凸部134AAと2つの凸部134ABと同一とされている。   As described above, the first joint member 134A and the second joint member 134B have the same shape. That is, as shown in FIG. 4, the second joint member 134B has an annular shape having a through hole 134BC in the center. That is, the diameter of the through hole 134BC is the diameter Lb, and the outer diameter of the second joint member 134B is the outer diameter Dj. The two convex portions 134BA and the two convex portions 134BB provided on both side surfaces in the axial direction O of the second joint member 134B are both shaped and arranged on the second joint member 134B, and the two convex portions 134AA. It is the same as the two convex portions 134AB.

このため、図4に示す如く、2つの凸部134BBはそれぞれ、2つの凹部154Aに嵌合可能である。このとき、図8(B)において、2つの凹部154Aの配置(2つの凸部134BBの配置)により、第1出力部材154に対する第2継手部材134BのX方向への相対移動は規制される。しかしながら、第1出力部材154に対する第2継手部材134BのY方向への相対移動は許容されることとなる(例えば1mm以下)。即ち、第1出力部材154と第2継手部材134Bとは、軸方向Oに対向し、径方向の一方向(図8(B)のY方向)に相対変位可能に連結されていることとなる。このように、2つの凸部134BBと2つの凹部154Aの嵌合により、第1出力部材154と第2継手部材134Bとは周方向に一体的に連結される。   Therefore, as shown in FIG. 4, the two convex portions 134BB can be fitted into the two concave portions 154A. At this time, in FIG. 8B, the relative movement in the X direction of the second joint member 134B relative to the first output member 154 is restricted by the arrangement of the two concave portions 154A (the arrangement of the two convex portions 134BB). However, relative movement in the Y direction of the second joint member 134B with respect to the first output member 154 is allowed (for example, 1 mm or less). That is, the first output member 154 and the second joint member 134B are opposed to each other in the axial direction O, and are connected so as to be relatively displaceable in one radial direction (Y direction in FIG. 8B). . In this manner, the first output member 154 and the second joint member 134B are integrally connected in the circumferential direction by fitting the two convex portions 134BB and the two concave portions 154A.

なお、凸部134AB、134BBや凹部140AA、154Aの形状は、特に限定されず、支持部材(駆動軸ケーシング140、第1出力部材154)と継手部材134(134A、134B)とが径方向に相対変位可能、且つ周方向に一体的に連結される形状であればよい。   The shapes of the convex portions 134AB, 134BB and the concave portions 140AA, 154A are not particularly limited, and the support member (drive shaft casing 140, first output member 154) and the joint member 134 (134A, 134B) are relatively relative to each other in the radial direction. Any shape that can be displaced and that is integrally connected in the circumferential direction may be used.

次に、撓み噛合い式歯車装置100の動作について、主に図1、図2を用いて説明する。   Next, the operation of the flexibly meshing gear device 100 will be described mainly with reference to FIGS.

駆動軸101の回転により、起振体106が回転すると、その回転状態に応じて、起振体軸受110Aを介して、外歯歯車120Aが撓み変形する。このとき、外歯歯車120Bも、起振体軸受110Bを介して、外歯歯車120Aと同位相で撓み変形する。   When the vibration generator 106 is rotated by the rotation of the drive shaft 101, the external gear 120A is bent and deformed via the vibration generator bearing 110A according to the rotation state. At this time, the external gear 120B is also bent and deformed in the same phase as the external gear 120A via the vibration body bearing 110B.

外歯歯車120A、120Bが起振体106で撓み変形することにより、外歯歯車120Aの外歯が減速用内歯歯車130Aの内歯128Aに噛合する。同様に、外歯歯車120Bの外歯が出力用内歯歯車130Bの内歯128Bに噛合する。   When the external gears 120A and 120B are bent and deformed by the vibrator 106, the external teeth of the external gear 120A mesh with the internal teeth 128A of the reduction internal gear 130A. Similarly, the external teeth of the external gear 120B mesh with the internal teeth 128B of the output internal gear 130B.

外歯歯車120Aと減速用内歯歯車130Aとの噛合位置は、起振体106の長軸位置の移動に伴い、回転移動する。ここで、起振体106が1回転すると、外歯歯車120Aは減速用内歯歯車130Aとの歯数差だけ、回転位相が遅れる。つまり、減速用内歯歯車130Aによる減速比は((外歯歯車120Aの歯数−減速用内歯歯車130Aの歯数)/外歯歯車120Aの歯数)で求めることができる。具体的な数値による減速比は((100−102)/100=−1/50)となる。ここで、「−」は入出力が逆回転の関係となることを示している。   The meshing position between the external gear 120 </ b> A and the reduction internal gear 130 </ b> A rotates as the major axis position of the vibration generator 106 moves. Here, when the vibrating body 106 makes one rotation, the rotation speed of the external gear 120A is delayed by the difference in the number of teeth from the internal gear 130A for deceleration. That is, the reduction ratio by the internal gear 130A for reduction can be obtained by ((number of teeth of external gear 120A−number of teeth of internal gear 130A for reduction) / number of teeth of external gear 120A). The specific reduction ratio is ((100−102) / 100 = −1 / 50). Here, “−” indicates that the input / output is in a reverse rotation relationship.

外歯歯車120Bと出力用内歯歯車130Bとはともに歯数が同一であるので、外歯歯車120Bと出力用内歯歯車130Bとは互いに噛合する部分が移動することなく、同一の歯同士で噛合することとなる。このため、出力用内歯歯車130Bから外歯歯車120Bの自転と同一の回転が出力される。結果として、出力用内歯歯車130Bからは起振体106の回転を(−1/50)に減速した出力を取り出すことができる。即ち、駆動軸101の回転が(−1/50)に減速され、その出力を出力側部材152で取り出すことが可能となる。   Since both the external gear 120B and the output internal gear 130B have the same number of teeth, the external gear 120B and the output internal gear 130B do not move, and the same teeth Will be engaged. For this reason, the same rotation as the rotation of the external gear 120B is output from the output internal gear 130B. As a result, an output obtained by reducing the rotation of the vibrating body 106 to (−1/50) can be extracted from the output internal gear 130B. That is, the rotation of the drive shaft 101 is decelerated to (−1/50), and the output can be taken out by the output side member 152.

なお、駆動軸101が減速用内歯歯車130A(出力用内歯歯車130B)の軸心からY方向に所定の量だけずれている場合には、減速用内歯歯車130Aと第1継手部材134Aとが一体(出力用内歯歯車130Bと第2継手部材134Bとが一体)となって、駆動軸ケーシング140(第1出力部材154)に対してY方向に当該所定の量だけ変位する。駆動軸101が減速用内歯歯車130A(出力用内歯歯車130B)の軸心からX方向に所定の量だけずれている場合には、減速用内歯歯車130A(出力用内歯歯車130B)が第1継手部材134A及び駆動軸ケーシング140(第2継手部材134B及び第1出力部材154)に対してX方向に当該所定の量だけ変位する。これにより、継手部材134は、減速用内歯歯車130A、出力用内歯歯車130Bそれぞれの軸心の径方向への変位を独立して許容することができる。よって、継手部材134により、撓み噛合い式歯車装置100の組み立て時の芯出し作業を軽減することができる。   When the drive shaft 101 is deviated by a predetermined amount in the Y direction from the axis of the reduction internal gear 130A (output internal gear 130B), the reduction internal gear 130A and the first joint member 134A. Are integrated (the output internal gear 130B and the second joint member 134B are integrated), and are displaced by the predetermined amount in the Y direction with respect to the drive shaft casing 140 (first output member 154). When the drive shaft 101 is shifted by a predetermined amount in the X direction from the axis of the reduction internal gear 130A (output internal gear 130B), the reduction internal gear 130A (output internal gear 130B). Is displaced by the predetermined amount in the X direction with respect to the first joint member 134A and the drive shaft casing 140 (second joint member 134B and first output member 154). As a result, the joint member 134 can independently permit displacement in the radial direction of the axis of each of the reduction internal gear 130A and the output internal gear 130B. Therefore, the joint member 134 can reduce the centering work at the time of assembling the flexure meshing gear device 100.

なお、本実施形態で示すような筒型の撓み噛合い式歯車装置において、駆動軸と起振体とを継手部材で連結すると、2つの内歯歯車に対応して起振体が独立して変位可能な2つの部分で構成されることなる。つまり、その場合には、2つの内歯歯車のそれぞれに対応する外歯歯車の部分が互いに異なる方向に変位することで外歯歯車に段差が生じ、外歯歯車にせん断応力が生じてしまうこととなる。   In the cylindrical flexure meshing gear device as shown in the present embodiment, when the drive shaft and the vibration generator are connected by a joint member, the vibration generator is independent of the two internal gears. It consists of two parts that can be displaced. That is, in this case, the external gear portions corresponding to the two internal gears are displaced in different directions, resulting in a step in the external gear and shear stress in the external gear. It becomes.

しかしながら、本実施形態では、駆動軸101に継手部材134を組み込んでいない。このため、本実施形態では、外歯歯車120に上述したせん断応力が生じることなく、芯ずれを許容しながら外歯歯車120の長寿命化が可能となる。そして、本実施形態では、起振体106と駆動軸101との連結を単純な構成で実現することが可能となる。   However, in this embodiment, the joint member 134 is not incorporated in the drive shaft 101. For this reason, in the present embodiment, the above-described shear stress is not generated in the external gear 120, and the life of the external gear 120 can be extended while allowing misalignment. And in this embodiment, it becomes possible to implement | achieve connection with the vibration body 106 and the drive shaft 101 with a simple structure.

また、本実施形態では、内歯歯車130を支持部材(駆動軸ケーシング140、第1出力部材154)にリジッドに固定することが不要である。即ち、本実施形態では、内歯歯車130を駆動軸ケーシング140、第1出力部材154に固定するためのボルト孔などの構成を不要とすることができ、内歯歯車130の径方向厚みを必要最小限とすることが可能となる。   In the present embodiment, it is not necessary to rigidly fix the internal gear 130 to the support member (the drive shaft casing 140, the first output member 154). That is, in this embodiment, it is possible to eliminate the configuration of a bolt hole or the like for fixing the internal gear 130 to the drive shaft casing 140 and the first output member 154, and the radial thickness of the internal gear 130 is necessary. It can be minimized.

また、本実施形態では、減速用内歯歯車130Aと出力用内歯歯車130Bとが、固定されていないので軸方向Oに変位可能とされている。しかし、減速用内歯歯車130Aと出力用内歯歯車130Bとの対向面130AB、130BBに低摩擦処理が施されている。このため、減速用内歯歯車130Aと出力用内歯歯車130Bとが軸方向Oで変位して互いに接触して、減速用内歯歯車130Aと出力用内歯歯車130Bとの速度差で摩擦が生じても、その摩擦ロスを低減することができる。   In the present embodiment, the reduction internal gear 130A and the output internal gear 130B are not fixed, so that they can be displaced in the axial direction O. However, low friction processing is performed on the opposing surfaces 130AB and 130BB of the internal gear 130A for reduction and the internal gear 130B for output. Therefore, the reduction internal gear 130A and the output internal gear 130B are displaced in the axial direction O and come into contact with each other, and friction is generated due to the speed difference between the reduction internal gear 130A and the output internal gear 130B. Even if it occurs, the friction loss can be reduced.

また、本実施形態では、当て部材148、150が、フランジ部140Aよりも硬度が高くされ、且つ摺動性の高い材料から形成されている。このため、外歯歯車120及び起振体軸受110の端面が当て部材148、150に接触しても、摩耗粉が生じにくく、摩耗による効率の低下及び摩耗紛による潤滑油の汚染を防止することができる。同時に、当て部材148、150は、外歯歯車120及び起振体軸受110の軸方向O移動も規制することができる。なお、これに限らず、当て部材は単に樹脂(摺動抵抗が低く耐熱性高分子樹脂のPEEK材、ナイロン、ふっ素系樹脂など)でできていてもよい。   In the present embodiment, the contact members 148 and 150 are made of a material having higher hardness and higher slidability than the flange portion 140A. For this reason, even if the end surfaces of the external gear 120 and the vibrator bearing 110 come into contact with the contact members 148 and 150, wear powder is not easily generated, and efficiency deterioration due to wear and contamination of the lubricating oil due to wear dust are prevented. Can do. At the same time, the abutting members 148 and 150 can also restrict the movement of the external gear 120 and the vibration body bearing 110 in the axial direction O. However, the present invention is not limited to this, and the contact member may be simply made of a resin (a PEEK material having a low sliding resistance, a heat-resistant polymer resin, nylon, a fluorine-based resin, or the like).

また、本実施形態では、第1継手部材134Aと第2継手部材134Bが同一形状である。即ち、共通の部材の割合を多くできるので部材管理が容易であるとともに、部材の低コスト化を進めることも可能である。加えて、第1継手部材134Aと第2継手部材134Bには方向性がない。このため、第1継手部材134Aと第2継手部材134Bの向きを気にせず、第1継手部材134A、第2継手部材134Bの内歯歯車130への組み込みを容易に行うことが可能となる。   In the present embodiment, the first joint member 134A and the second joint member 134B have the same shape. That is, since the ratio of the common members can be increased, the member management is easy and the cost of the members can be reduced. In addition, the first joint member 134A and the second joint member 134B have no directionality. For this reason, it becomes possible to easily incorporate the first joint member 134A and the second joint member 134B into the internal gear 130 without worrying about the orientation of the first joint member 134A and the second joint member 134B.

従って、本実施形態においては、撓み噛合い式歯車装置100の内歯歯車130の軸心の芯ずれを許容しながら、撓み噛合い式歯車装置100の径方向寸法の増大を抑制することが可能となる。   Therefore, in the present embodiment, it is possible to suppress an increase in the radial dimension of the flexure meshing gear device 100 while allowing misalignment of the axis of the internal gear 130 of the flexure meshing gear device 100. It becomes.

第1実施形態では、継手部材134と当て部材148、150とが別体であったが、本発明はこれに限らず、図9〜図14に示す第2実施形態の如くであってもよい。なお、図9は本発明の第2実施形態に係る撓み噛合い式歯車装置を含む全体構成の一例を示す断面図、図10は図9の撓み噛合い式歯車装置の近傍のみを示す断面図、図11は図9における内歯歯車近傍の部材を示す分解断面図、図12は図11の第1継手部材を示す斜視図(A)と正面図(B)、図13は図11の駆動軸ケーシングを示す斜視図(A)と正面図(B)、図14は図11の第1出力部材を示す斜視図(A)と正面図(B)を、それぞれ示す。   In the first embodiment, the joint member 134 and the abutting members 148 and 150 are separate bodies, but the present invention is not limited to this, and may be as in the second embodiment shown in FIGS. 9 to 14. . FIG. 9 is a cross-sectional view showing an example of the entire configuration including a flexure meshing gear device according to a second embodiment of the present invention, and FIG. 10 is a cross-sectional view showing only the vicinity of the flexure meshing gear device of FIG. 11 is an exploded sectional view showing members in the vicinity of the internal gear in FIG. 9, FIG. 12 is a perspective view (A) and a front view (B) showing the first joint member in FIG. 11, and FIG. 13 is a drive of FIG. A perspective view (A) and a front view (B) showing the shaft casing, and FIG. 14 are a perspective view (A) and a front view (B) showing the first output member of FIG. 11, respectively.

第2実施形態の撓み噛合い式歯車装置200は、第1実施形態と同様に筒型とされ、第1継手部材234A、第2継手部材234Bが当て部材に相当する延在部234AD、234BDを備える。つまり、当て部材と継手部材とが一体的に形成されている。このため、第1実施形態の撓み噛合い式歯車装置100と同様の構成要素や動作については、符号の下二桁を同一として、説明を省略する。   The flexure meshing gear device 200 of the second embodiment has a cylindrical shape as in the first embodiment, and the first joint member 234A and the second joint member 234B have extended portions 234AD and 234BD corresponding to the contact members. Prepare. That is, the contact member and the joint member are integrally formed. For this reason, about the component and operation | movement similar to the bending meshing type gear apparatus 100 of 1st Embodiment, the last two digits of a code | symbol are made the same and description is abbreviate | omitted.

本実施形態においても、図10、図11に示す如く、減速用内歯歯車230Aと駆動軸ケーシング240とは、減速用内歯歯車230Aの軸心の径方向の変位を許容する第1継手部材234Aによって連結されている。同時に、出力用内歯歯車230Bと第1出力部材254とは、出力用内歯歯車230Bの軸心の径方向の変位を許容する第2継手部材234Bによって連結されている。つまり、本実施形態でも、減速用内歯歯車230Aと駆動軸ケーシング240との連結構造、出力用内歯歯車230Bと第1出力部材254との連結構造、それぞれがオルダムカップリングを構成している。そこで、以下に上記連結構造を実現している各要素の形状を説明する。なお、以下では基本的に、上記実施形態とは異なる減速用内歯歯車230Aと駆動軸ケーシング240との連結構造の部分を説明し、出力用内歯歯車230Bと第1出力部材254との連結構造や他の機能や構成については、符号の下二桁を共通とするだけで重複する説明は省略する。   Also in the present embodiment, as shown in FIGS. 10 and 11, the reduction internal gear 230 </ b> A and the drive shaft casing 240 are the first joint members that allow the radial displacement of the shaft center of the reduction internal gear 230 </ b> A. 234A. At the same time, the output internal gear 230B and the first output member 254 are connected by a second joint member 234B that allows the radial displacement of the shaft center of the output internal gear 230B. That is, also in the present embodiment, the connection structure between the reduction internal gear 230A and the drive shaft casing 240 and the connection structure between the output internal gear 230B and the first output member 254 constitute an Oldham coupling. . Therefore, the shape of each element realizing the above connection structure will be described below. In the following description, a portion of the connection structure between the reduction internal gear 230 </ b> A and the drive shaft casing 240 that is different from that of the above embodiment will be described, and the connection between the output internal gear 230 </ b> B and the first output member 254. Regarding the structure and other functions and configurations, only the last two digits of the reference numerals are common, and redundant description is omitted.

まず、減速用内歯歯車230Aの第1継手部材234A側の側面230ACには、図11に示す如く、2つの凹部230AAが設けられている。側面230ACの構成は第1実施形態と同一なので、説明は省略する。ただし、減速用内歯歯車230Aの出力用内歯歯車230Bに対向する対向面230ABには、第1実施形態とは異なり、出力用内歯歯車230Bと接触した際の摩擦ロスを低減可能な低摩擦処理が施されていない。代わりに、本実施形態では、図11に示す如く、減速用内歯歯車230Aの対向面230ABの大部分を覆うような円環形状の低摩擦部材232が、減速用内歯歯車230Aと出力用内歯歯車230Bとの間に配置されている。   First, as shown in FIG. 11, two concave portions 230AA are provided on the side surface 230AC of the internal gear 230A for reduction on the first joint member 234A side. Since the configuration of the side surface 230AC is the same as that of the first embodiment, description thereof is omitted. However, unlike the first embodiment, the opposing surface 230AB of the reduction internal gear 230A that faces the output internal gear 230B is low in friction loss when it comes into contact with the output internal gear 230B. Friction treatment is not applied. Instead, in the present embodiment, as shown in FIG. 11, an annular low friction member 232 that covers most of the opposing surface 230AB of the internal gear 230A for speed reduction is connected to the internal gear 230A for output and the output gear. It arrange | positions between the internal gears 230B.

低摩擦部材232においては、減速用内歯歯車230Aの対向面230ABと低摩擦部材232の側面232Aとの間の摩擦係数μ2が、減速用内歯歯車230Aの対向面230ABと出力用内歯歯車230Bの対向面230BBとの間の摩擦係数μ3よりも小さくされている(μ2<μ3)。即ち、側面232Aには、第1実施形態と同様の低摩擦処理が施されている。つまり、側面232Aに対しては、表面粗さを従来よりも低減させる表面の研磨加工をするようにしてもよい。あるいは、摩擦係数を低減可能な潤滑性の高い材料(二硫化モリブデン、グラファイト、DLC、PTFEなどのふっ素系樹脂など)を主成分とした膜を側面232Aに形成してもよい。なお、このような低摩擦処理は、出力用内歯歯車230Bに対向する側面232Bに同時に施してもよい(あるいは、出力用内歯歯車の対向面に低摩擦処理を施す場合には、減速用内歯歯車に対向面には低摩擦処理を施さなくてもよい)。勿論、低摩擦部材232自体を、摩擦係数を低減可能な潤滑性の高い上記材料等を主成分として形成してもよい。   In the low friction member 232, the friction coefficient μ2 between the opposing surface 230AB of the reduction internal gear 230A and the side surface 232A of the low friction member 232 is equal to the opposing surface 230AB of the reduction internal gear 230A and the output internal gear. The coefficient of friction between the opposing surface 230BB of 230B is smaller than μ3 (μ2 <μ3). That is, the side surface 232A is subjected to the same low friction treatment as in the first embodiment. That is, the side surface 232A may be subjected to surface polishing that reduces the surface roughness as compared with the conventional case. Alternatively, a film whose main component is a highly lubricious material (such as molybdenum disulfide, graphite, DLC, or PTFE) that can reduce the friction coefficient may be formed on the side surface 232A. Note that such low friction processing may be performed simultaneously on the side surface 232B facing the output internal gear 230B (or when the low friction processing is performed on the opposing surface of the output internal gear 230B, the speed reduction processing is performed. The surface facing the internal gear need not be subjected to low friction treatment). Of course, the low friction member 232 itself may be formed using the above-described material having high lubricity and the like that can reduce the friction coefficient as a main component.

このため、第1実施形態と同様に、減速用内歯歯車230Aに対する出力用内歯歯車230Bの回転によって生じる摩擦ロスを低減することができる。同時に、対向面230ABの低摩擦処理により、減速用内歯歯車230Aの歯車精度を悪化させるおそれもない。また、低摩擦部材232を減速用内歯歯車230Aとは別に形成できるので、撓み噛み合い式歯車装置200の製造サイクルを短くでき、かつ、減速用内歯歯車230Aの良品率を向上させることができる。   For this reason, similarly to the first embodiment, it is possible to reduce the friction loss caused by the rotation of the output internal gear 230B with respect to the reduction internal gear 230A. At the same time, there is no possibility of deteriorating the gear accuracy of the internal gear 230A for deceleration due to the low friction treatment of the facing surface 230AB. Further, since the low friction member 232 can be formed separately from the reduction internal gear 230A, the manufacturing cycle of the flexure meshing gear device 200 can be shortened, and the yield rate of the reduction internal gear 230A can be improved. .

第1継手部材234Aは、図11、図12(A)、(B)に示す如く、中心に貫通孔234ACを有する円環形状(外径Dj)とされている。第1継手部材234Aの軸方向Oの両側面234AE、234AFにはそれぞれ、第1実施形態と同様に、2つの凸部234AAと2つの凸部234ABとが設けられている。2つの凸部234AAと2つの凸部234ABの形状や機能は、実質的に第1実施形態と同一なので、これらの説明は省略する。ただし、本実施形態では、第1実施形態の第1継手部材134Aとは異なり、第1継手部材234Aの2つの凸部234AA(2つの凸部234AB)の径方向内側に、円環形状に延在する延在部234ADが一体的に設けられている。この延在部234ADは、第1実施形態の当て部材148に相当している。即ち、第1継手部材234Aは、外歯歯車220及び起振体軸受210の軸方向O側部に配置され外歯歯車220及び起振体軸受210の軸方向O移動を規制している。延在部234AD(第1継手部材234A全体でもよいし、延在部234ADの表面だけでもよい)は、フランジ部240Aよりも硬度が高く(例えばHRC35以上)されている。このため、外歯歯車220及び起振体軸受210の端面が接触しても、摩耗粉が生じにくく、摩耗による効率の低下及び摩耗紛による潤滑油の汚染を防止することができる。この場合には、単に材料の硬化処理だけでなく例えば材料としてタングステンを用いたり、DLCなどを適用したりすることもできる。また、延在部234AD(第1継手部材234A全体でもよいし、延在部234ADの表面だけでもよい)は、例えば摺動性の高い材料(前述の摩擦係数を低減可能な潤滑性の高い材料を含む)から形成されていてもよい。その場合には、外歯歯車220及び起振体軸受210の端面で生じる摩擦ロスを低減することができる。なお、延在部234ADの径方向内側に設けられている貫通孔234AC(直径Di)は、外歯歯車220の最小直径よりも小さくされ、且つ減速用内歯歯車230Aの軸心の芯ずれが最大となり減速用内歯歯車230Aが径方向に相対変位しても、駆動軸201と接触しない大きさとされている。   The first joint member 234A has an annular shape (outer diameter Dj) having a through hole 234AC at the center, as shown in FIGS. 11, 12A, and 12B. Similar to the first embodiment, two convex portions 234AA and two convex portions 234AB are provided on both side surfaces 234AE and 234AF in the axial direction O of the first joint member 234A. Since the shapes and functions of the two convex portions 234AA and the two convex portions 234AB are substantially the same as those in the first embodiment, their descriptions are omitted. However, in the present embodiment, unlike the first joint member 134A of the first embodiment, the two joints 234AA (two convex parts 234AB) of the first joint member 234A extend in an annular shape radially inward. The existing extending part 234AD is provided integrally. This extending portion 234AD corresponds to the abutting member 148 of the first embodiment. That is, the first joint member 234 </ b> A is disposed on the side of the external gear 220 and the vibration body bearing 210 in the axial direction O, and restricts the movement of the external gear 220 and the vibration body bearing 210 in the axial direction O. The extending portion 234AD (the entire first joint member 234A or only the surface of the extending portion 234AD) may have a higher hardness (for example, HRC35 or higher) than the flange portion 240A. For this reason, even if the external gear 220 and the end face of the vibration body bearing 210 are in contact with each other, wear powder is not easily generated, and it is possible to prevent a decrease in efficiency due to wear and contamination of the lubricating oil due to wear powder. In this case, not only the curing treatment of the material but also tungsten, for example, DLC or the like can be applied. Further, the extending portion 234AD (the entire first joint member 234A or only the surface of the extending portion 234AD may be) is, for example, a highly slidable material (a material having high lubricity that can reduce the above-described friction coefficient). May be formed. In that case, the friction loss which arises in the end surface of the external gear 220 and the vibration body bearing 210 can be reduced. Note that the through hole 234AC (diameter Di) provided on the radially inner side of the extending portion 234AD is smaller than the minimum diameter of the external gear 220, and the center misalignment of the axis of the internal gear 230A for reduction is small. Even when the internal gear 230A for deceleration is relatively displaced in the radial direction, the size is set so as not to contact the drive shaft 201.

なお、駆動軸ケーシング240、第1出力部材254は、図13(A)、(B)、図14(A)、(B)それぞれに示す如く、第1実施形態の駆動軸ケーシング140、第1出力部材154とほぼ同一の構成となっている。しかし、第1継手部材234Aにいわば当て部材が一体化されたことで、仕切りPtの有無だけが違いとなっている。このため、駆動軸ケーシング240と第1出力部材254の説明も省略する。   In addition, the drive shaft casing 240 and the first output member 254 are the drive shaft casing 140 and the first output member 254 of the first embodiment, as shown in FIGS. 13 (A), (B), FIGS. 14 (A) and (B), respectively. The output member 154 has almost the same configuration. However, since the contact member is integrated with the first joint member 234A, only the presence or absence of the partition Pt is different. For this reason, description of the drive shaft casing 240 and the first output member 254 is also omitted.

なお、本実施形態とは異なり、いわば当て部材と内歯歯車とを一体化するということも考えられる。しかし、内歯歯車はピニオンカッタなど刃具で歯切りされて歯形が形成される。このため、ピニオンカッタなどの刃具の逃げを考慮すると、当て部材の形状はその刃具の制約を受ける。つまり、この場合には、当て部材と内歯歯車とを一体化しても、軸方向Oにコンパクト化することが困難となる。あるいは、当て部材と起振体(あるいは駆動軸)を一体化するということも考えられる。しかし、その場合には、起振体(あるいは駆動軸)は高速に回転するので当て部材が高速回転することとなる。つまり、当て部材が一体化された起振体(あるいは駆動軸)は外歯歯車や起振体軸受とは回転速度が大きく異なるので、摩擦による効率低下や外歯歯車や起振体軸受の摩耗を増大させてしまうこととなる。   In addition, unlike this embodiment, it can be considered that the contact member and the internal gear are integrated. However, the internal gear is cut by a cutting tool such as a pinion cutter to form a tooth profile. For this reason, when the escape of a cutting tool such as a pinion cutter is considered, the shape of the contact member is restricted by the cutting tool. That is, in this case, even if the contact member and the internal gear are integrated, it is difficult to reduce the size in the axial direction O. Alternatively, it is also conceivable to integrate the contact member and the vibrator (or drive shaft). However, in that case, the vibrator (or drive shaft) rotates at a high speed, so that the contact member rotates at a high speed. In other words, the vibrator (or drive shaft) integrated with the abutment member has a rotational speed that is significantly different from that of the external gear and the vibrator bearing, so that the efficiency decreases due to friction and the wear of the external gear and the vibrator bearing. Will be increased.

これに対して、本実施形態は、継手部材234がいわば当て部材と一体化されている。このため、当て部材が単体で存在しないので、部品点数が少なく、部品管理が容易である。また、仕切りPtがないので、駆動軸ケーシング240と第1出力部材254の加工も容易となる。そして、継手部材234と外歯歯車220及び起振体軸受210との速度差も、起振体206と継手部材234との速度差に比べれば大きくない。このため、継手部材234と外歯歯車220及び起振体軸受210の接触による摩擦ロスと摩耗紛の発生を低減することが可能となる。   On the other hand, in this embodiment, the joint member 234 is integrated with the contact member. For this reason, since the contact member does not exist alone, the number of parts is small, and parts management is easy. Further, since there is no partition Pt, the processing of the drive shaft casing 240 and the first output member 254 is facilitated. The speed difference between the joint member 234 and the external gear 220 and the vibration body bearing 210 is not as large as the speed difference between the vibration body 206 and the joint member 234. For this reason, it becomes possible to reduce the friction loss and the generation | occurrence | production of the abrasion powder by the contact of the coupling member 234, the external gear 220, and the vibration body bearing 210.

上記実施形態では、撓み噛合い式歯車装置がともに、減速用内歯歯車と出力用内歯歯車の2つを備える筒型とされていたが、本発明はこれに限定されず、図15に示す第3実施形態の如くであってもよい。図15は、本発明の第3実施形態に係る撓み噛合い式歯車装置の一例を示す断面図である。なお、図16は、本実施形態に対しての比較例となる撓み噛合い式歯車装置を示す断面図を示す。   In the above-described embodiment, both of the flexure meshing gear devices are cylindrical with two internal gears for reduction and output, but the present invention is not limited to this, and FIG. It may be as shown in the third embodiment. FIG. 15 is a cross-sectional view illustrating an example of a flexure meshing gear device according to a third embodiment of the present invention. FIG. 16 is a cross-sectional view showing a flexure meshing gear device that is a comparative example for the present embodiment.

第3実施形態の撓み噛合い式歯車装置300は、第1、第2実施形態とは異なり、1つの内歯歯車330を備えるカップ型(あるいはシルクハット型)とされている。外歯歯車320は、フランジ部321と円筒部322と外歯324とを備えている。また、外歯歯車320のフランジ部321には出力側部材352が接続され、外歯歯車320の回転を出力として取り出すことができる。そして、外歯歯車320は、内歯歯車330の歯数とは異なる歯数を備えている。つまり、内歯歯車330は、第1、第2実施形態で示された減速用内歯歯車と同じ機能を備えている。このため、本実施形態では、上記実施形態の撓み噛合い式歯車装置と同様の構成要素や動作については、符号の下二桁を同一として、説明を省略する。   Unlike the first and second embodiments, the flexibly meshing gear device 300 of the third embodiment is a cup type (or top hat type) including one internal gear 330. The external gear 320 includes a flange portion 321, a cylindrical portion 322, and external teeth 324. Further, the output side member 352 is connected to the flange portion 321 of the external gear 320, and the rotation of the external gear 320 can be taken out as an output. The external gear 320 has a number of teeth different from the number of teeth of the internal gear 330. That is, the internal gear 330 has the same function as the speed reduction internal gear shown in the first and second embodiments. For this reason, in this embodiment, about the component and operation | movement similar to the bending meshing type gear apparatus of the said embodiment, the last two digits of a code | symbol are made the same, and description is abbreviate | omitted.

本実施形態では、図15に示す如く、内歯歯車330と、内歯歯車330が連結される第1固定部材342とが、継手部材334によって連結されている。その継手部材334による連結構造は、上記実施形態とほぼ同一である。ただし、本実施形態では、継手部材334に連結されるのは第1固定部材342となっている。つまり、継手部材334に連結される第1固定部材342の軸方向Oの側面342Aの形状は、上記実施形態で示された駆動軸ケーシングのフランジ部の軸方向Oの側面の形状とほぼ同様の構成となっている。なお、本実施形態では、駆動軸ケーシング340の軸方向Oの側面340Dは、内歯歯車330の軸方向Oへの移動を規制しているだけである。このため、本実施形態では、上記実施形態で示した内歯歯車の側面の低摩擦処理や低摩擦部材の内歯歯車の間への配置を不要とすることができる。   In the present embodiment, as shown in FIG. 15, the internal gear 330 and the first fixing member 342 to which the internal gear 330 is connected are connected by a joint member 334. The connection structure by the joint member 334 is substantially the same as that in the above embodiment. However, in the present embodiment, the first fixing member 342 is connected to the joint member 334. That is, the shape of the side surface 342A in the axial direction O of the first fixing member 342 connected to the joint member 334 is substantially the same as the shape of the side surface in the axial direction O of the flange portion of the drive shaft casing shown in the above embodiment. It has a configuration. In the present embodiment, the side surface 340D of the drive shaft casing 340 in the axial direction O only restricts the movement of the internal gear 330 in the axial direction O. For this reason, in this embodiment, the low friction process of the side surface of the internal gear shown in the said embodiment, and arrangement | positioning between the internal gears of a low friction member can be made unnecessary.

なお、図16に、本実施形態と同じタイプの撓み噛合い式歯車装置50に対して継手部材32で駆動軸1と起振体6とを連結した比較例を示す。ここでは、継手部材32が、駆動軸1に連結される駆動部材33と駆動部材33に連結される中間部材34とから構成されている。このため、この比較例でも、駆動軸1と内歯歯車30との間の芯ずれを許容できる。しかしながら、この比較例では、継手部材32が駆動部材33と中間部材34の2つの部材から構成されているので、駆動軸1と起振体6との連結構造が複雑となっている。また、内歯歯車30を第1固定部材42に固定するためのボルト孔31と必要としているので、内歯歯車30自体が径方向に大きくなっている。   In addition, in FIG. 16, the comparative example which connected the drive shaft 1 and the vibration body 6 with the joint member 32 with respect to the flexure meshing type gear apparatus 50 of the same type as this embodiment is shown. Here, the joint member 32 includes a drive member 33 connected to the drive shaft 1 and an intermediate member 34 connected to the drive member 33. For this reason, even in this comparative example, misalignment between the drive shaft 1 and the internal gear 30 can be allowed. However, in this comparative example, since the joint member 32 is composed of two members, the drive member 33 and the intermediate member 34, the connection structure between the drive shaft 1 and the vibration generator 6 is complicated. Moreover, since the internal gear 30 and the bolt hole 31 for fixing to the 1st fixing member 42 are required, the internal gear 30 itself is large in radial direction.

これに対して、本実施形態では、上記実施形態と同様に、図15に示す如く、内歯歯車330にボルト孔を設ける必要がなく、且つ径方向において内歯歯車330を必要最小限の大きさとすることができる。つまり、本実施形態においても、図16に示す比較例よりも、撓み噛合い式歯車装置300の径方向寸法を小さくすることが可能となる。また、駆動軸301の芯ずれが生じていても、部品点数の増加を伴うことなく、簡単に駆動軸301と起振体306とを連結することができる。   On the other hand, in this embodiment, as in the above embodiment, as shown in FIG. 15, it is not necessary to provide a bolt hole in the internal gear 330, and the internal gear 330 is made to have a minimum size in the radial direction. It can be. That is, also in this embodiment, it is possible to make the radial dimension of the flexure meshing gear device 300 smaller than in the comparative example shown in FIG. Further, even if the drive shaft 301 is misaligned, the drive shaft 301 and the vibrator 306 can be easily connected without increasing the number of components.

本発明について上記実施形態を挙げて説明したが、本発明は上記実施形態に限定されるものではない。即ち、本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことは言うまでも無い。   Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment. That is, it goes without saying that improvements and design changes can be made without departing from the scope of the present invention.

上記実施形態においては、起振体軸受が内輪及び外輪を有していたが、本発明はこれに限定されず、起振体の外周部分が内輪とされていてもよい。また、外輪を有する必要もなく、例えば、ころが直接的に外歯歯車を回転可能に支持して外歯歯車の内周部分が外輪とされていてもよい。また、筒型の撓み噛合い式歯車装置において、転動体はころではなく、玉であってもよい。   In the said embodiment, the vibration body bearing had the inner ring | wheel and the outer ring | wheel, However, this invention is not limited to this, The outer peripheral part of the vibration body may be made into the inner ring | wheel. Further, there is no need to have an outer ring. For example, the roller may directly support the external gear so as to be rotatable, and the inner peripheral portion of the external gear may be an outer ring. Further, in the cylindrical flexure meshing gear device, the rolling elements may be balls instead of rollers.

また、上記実施形態においては、外歯をトロコイド曲線に基づいた歯形としたが、本発明はこれに限定されない。外歯は、円弧歯形でもよいし、その他の歯形を用いてもよい。内歯についても同様に、歯形は特に限定されず、種々の歯形を採用できる。   Moreover, in the said embodiment, although the external tooth was made into the tooth profile based on the trochoid curve, this invention is not limited to this. The external teeth may be arc teeth or other teeth. Similarly, for the internal teeth, the tooth profile is not particularly limited, and various tooth shapes can be adopted.

また、継手部材は、上記実施形態の構造に限定されず、内歯歯車の軸心の径方向の変位を許容しつつ、内歯歯車と支持部材とを周方向に一体的に連結する構造であればよい。   Further, the joint member is not limited to the structure of the above embodiment, and has a structure in which the internal gear and the support member are integrally connected in the circumferential direction while allowing the radial displacement of the shaft center of the internal gear. I just need it.

本発明は、筒型、カップ型、若しくはシルクハット型の外歯歯車を備える撓み噛合い式歯車装置に対して広く適用可能である。   The present invention can be widely applied to a flexure meshing gear device including a cylindrical, cup-type, or top-hat type external gear.

1、101、201、301…駆動軸
2、102、202、302…止め部材
6、106、206、306…起振体
10、110、110A、110B、210、210A、210B、310…起振体軸受
20、120、120A、120B、220、220A、220B、320…外歯歯車
21、40A、140A、240A、321、340A…フランジ部
22、140B、240B、322…円筒部
24、324…外歯
28、128A、128B、228A、228B、328…内歯
30、130、130A、130B、230、230A、230B、330…内歯歯車
31…ボルト孔
32、134、134A、134B、234、234A、234B、334…継手部材
33…駆動部材
34…中間部材
36、136、236、336…固定側部材
38、138、238、338…補助ケーシング
40、140、240、340…駆動軸ケーシング
42、142、242、342…第1固定部材
44、144、244、344…第2固定部材
50、100、200、300…撓み噛合い式歯車装置
52、152、252、352…出力側部材
101A、201A…キー
106A、134AC、134BC、140C、154D、234AC、234BC、240C、254D…貫通孔
112、212…内輪
114A、114B、214A、214B…リテーナ
116A、116B、216A、216B…ころ
118A、118B、218A、218B…外輪
130AA、130BA、140AA、140AB、140AC、154A、154B、154C、230AA、230BA、240AA、240AB、254A、254B、254C…凹部(内周凹部、外周凹部含む)
130AAA、130AB、130AC、130BB、134AAA、134ABA、134AE、134AF、140AAA、140D、154E、230AB、230AC、230BB、232A、232B、234AAA、234ABA、234AE、234AF、240AAA、240D、254E、340D、342A…側面(対向面含む)
130AAB…底面
134AA、134AB、134BA、134BB、234AA、234AB、234BA、234BB、334B…凸部
134AAB、134ABB、234AAB、234ABB…外周面
134AAC、134ABC、140AAB、140AAC、140ABB、234AAC、234ABC、240AAB、240AAC、240ABB…内周面(内側内周面、外側内周面含む)
146、246…第3固定部材
148、150…当て部材
154、254…第1出力部材
156、256…第2出力部材
158、258…第3出力部材
232…低摩擦部材
234AD、234BD…延在部
Br、Mb…軸受
O…軸方向
Og…Oリング溝
Os1、Os2…オイルシール
Pt…仕切り
DESCRIPTION OF SYMBOLS 1, 101, 201, 301 ... Drive shaft 2, 102, 202, 302 ... Stopping member 6, 106, 206, 306 ... Exciter 10, 110, 110A, 110B, 210, 210A, 210B, 310 ... Exciter Bearing 20, 120, 120A, 120B, 220, 220A, 220B, 320 ... External gear 21, 40A, 140A, 240A, 321, 340A ... Flange part 22, 140B, 240B, 322 ... Cylindrical part 24, 324 ... External tooth 28, 128A, 128B, 228A, 228B, 328 ... Internal teeth 30, 130, 130A, 130B, 230, 230A, 230B, 330 ... Internal gear 31 ... Bolt holes 32, 134, 134A, 134B, 234, 234A, 234B 334 ... Joint member 33 ... Drive member 34 ... Intermediate member 36, 136, 23 336: Fixed side member 38, 138, 238, 338 ... Auxiliary casing 40, 140, 240, 340 ... Drive shaft casing 42, 142, 242, 342 ... First fixing member 44, 144, 244, 344 ... Second fixing Member 50, 100, 200, 300 ... Flexure meshing gear device 52, 152, 252, 352 ... Output side member 101A, 201A ... Key 106A, 134AC, 134BC, 140C, 154D, 234AC, 234BC, 240C, 254D ... Through Hole 112, 212 ... Inner ring 114A, 114B, 214A, 214B ... Retainer 116A, 116B, 216A, 216B ... Roller 118A, 118B, 218A, 218B ... Outer ring 130AA, 130BA, 140AA, 140AB, 140AC, 154A, 154B, 154C 230AA, 230BA, 240AA, 240AB, 254A, 254B, 254C ... recess (inner circumferential recess includes an outer peripheral recess)
130AAA, 130AB, 130AC, 130BB, 134AAA, 134ABA, 134AE, 134AF, 140AAA, 140D, 154E, 230AB, 230AC, 230BB, 232A, 232B, 234AAA, 234ABA, 234AE, 234AF, 240AAA, 240D, 254E, 340D, 342A ... Side surface (including facing surface)
130AAB ... bottom surface 134AA, 134AB, 134BA, 134BB, 234AA, 234AB, 234BA, 234BB, 334B ... convex part 134AAB, 134ABB, 234AAB, 234ABB ... outer peripheral surface 134AAC, 134ABC, 140AAB, 140AAC, 140ABB, 234AAC, 234A, 234AAC, 234A , 240ABB ... inner peripheral surface (including inner inner peripheral surface and outer inner peripheral surface)
146, 246 ... third fixing member 148, 150 ... contact member 154, 254 ... first output member 156, 256 ... second output member 158, 258 ... third output member 232 ... low friction member 234AD, 234BD ... extending portion Br, Mb ... Bearing O ... Axial direction Og ... O-ring groove Os1, Os2 ... Oil seal Pt ... Partition

Claims (6)

起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置において、
前記内歯歯車と、該内歯歯車が連結される支持部材とは、該内歯歯車の軸心の径方向の変位を許容する継手部材によって連結され
前記継手部材は、前記内歯歯車及び前記支持部材とは別部材であり、
前記継手部材と前記内歯歯車とは、径方向の第1方向に相対変位可能に連結され、
前記継手部材と前記支持部材とは、前記第1方向と直交する径方向の第2方向に相対変位可能に連結され
ことを特徴とする撓み噛合い式歯車装置。
In a flexure meshing gear device comprising an oscillator, an external gear that is flexibly deformed by the rotation of the oscillator, and an internal gear that is internally meshed with the external gear,
The internal gear and the support member to which the internal gear is coupled are coupled by a joint member that allows a radial displacement of the axial center of the internal gear ,
The joint member is a separate member from the internal gear and the support member,
The joint member and the internal gear are coupled so as to be relatively displaceable in a first radial direction,
Wherein A joint member and the support member, the first direction and the second direction of the radial direction perpendicular Ru is relatively displaceably coupled meshing deflection and said gearing.
起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置において、
前記内歯歯車と、該内歯歯車が連結される支持部材とは、該内歯歯車の軸心の径方向の変位を許容する継手部材によって連結され、
前記内歯歯車として第1内歯歯車および第2内歯歯車を有する筒型の撓み噛合い式歯車装置であって、
前記支持部材は、前記第1内歯歯車が連結される第1支持部材と、前記第2内歯歯車が連結される第2支持部材と、を有し、
前記継手部材は、前記第1内歯歯車と前記第1支持部材とを、該第1内歯歯車の軸心の径方向の変位を許容して連結する第1継手部材と、
前記第2内歯歯車と前記第2支持部材とを、該第2内歯歯車の軸心の径方向の変位を許容して連結する第2継手部材と、を有する
ことを特徴とする撓み噛合い式歯車装置。
In a flexure meshing gear device comprising an oscillator, an external gear that is flexibly deformed by the rotation of the oscillator, and an internal gear that is internally meshed with the external gear,
The internal gear and the support member to which the internal gear is coupled are coupled by a joint member that allows a radial displacement of the axial center of the internal gear,
A cylindrical flexure meshing gear device having a first internal gear and a second internal gear as the internal gear,
The support member includes a first support member to which the first internal gear is coupled, and a second support member to which the second internal gear is coupled,
The joint member includes a first joint member that connects the first internal gear and the first support member while allowing radial displacement of the axial center of the first internal gear;
And a second coupling member that connects the second internal gear and the second support member while allowing a radial displacement of the axial center of the second internal gear. Type gear device.
請求項2において、
前記第1内歯歯車と前記第2内歯歯車との対向面の少なくとも一方に低摩擦処理が施される
ことを特徴とする撓み噛合い式歯車装置。
In claim 2,
A flexure meshing gear device, characterized in that at least one of the opposing surfaces of the first internal gear and the second internal gear is subjected to a low friction process.
請求項2または3において、
前記第1内歯歯車と前記第2内歯歯車との間に、低摩擦部材が配置される
ことを特徴とする撓み噛合い式歯車装置。
In claim 2 or 3,
A low-friction member is disposed between the first internal gear and the second internal gear.
起振体と、該起振体の回転により撓み変形される外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、を備えた撓み噛合い式歯車装置において、
前記内歯歯車と、該内歯歯車が連結される支持部材とは、該内歯歯車の軸心の径方向の変位を許容する継手部材によって連結され、
前記外歯歯車の軸方向側部に配置され、該外歯歯車の軸方向移動を規制する規制部材を有し、
該規制部材は、前記継手部材と一体的に形成される
ことを特徴とする撓み噛合い式歯車装置。
In a flexure meshing gear device comprising an oscillator, an external gear that is flexibly deformed by the rotation of the oscillator, and an internal gear that is internally meshed with the external gear,
The internal gear and the support member to which the internal gear is coupled are coupled by a joint member that allows a radial displacement of the axial center of the internal gear,
A restricting member that is disposed on an axial side of the external gear and restricts the axial movement of the external gear;
The restricting member is formed integrally with the joint member.
請求項5において、
前記規制部材は、前記支持部材よりも硬度が高い
ことを特徴とする撓み噛合い式歯車装置。
In claim 5,
The restricting member has a higher hardness than the support member.
JP2014032350A 2014-02-21 2014-02-21 Bending gear system Active JP6175381B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014032350A JP6175381B2 (en) 2014-02-21 2014-02-21 Bending gear system
TW103137432A TWI614427B (en) 2014-02-21 2014-10-29 Flexing meshing gear device
CN201410609304.8A CN104864037B (en) 2014-02-21 2014-10-31 Flexible engagement gear device
KR1020140150285A KR101681247B1 (en) 2014-02-21 2014-10-31 Flexible engagement gear device
DE102014017530.8A DE102014017530A1 (en) 2014-02-21 2014-11-27 Transmission device of flexibly engaging type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032350A JP6175381B2 (en) 2014-02-21 2014-02-21 Bending gear system

Publications (2)

Publication Number Publication Date
JP2015158218A JP2015158218A (en) 2015-09-03
JP6175381B2 true JP6175381B2 (en) 2017-08-02

Family

ID=53782241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032350A Active JP6175381B2 (en) 2014-02-21 2014-02-21 Bending gear system

Country Status (5)

Country Link
JP (1) JP6175381B2 (en)
KR (1) KR101681247B1 (en)
CN (1) CN104864037B (en)
DE (1) DE102014017530A1 (en)
TW (1) TWI614427B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016108967A1 (en) * 2016-05-13 2017-11-16 Brose Fahrzeugteile Gmbh & Co. Kg, Bamberg Spindle drive for an adjusting element of a motor vehicle
JP6890407B2 (en) * 2016-12-07 2021-06-18 住友重機械工業株式会社 Assist device
WO2019038983A1 (en) * 2017-08-23 2019-02-28 日本電産株式会社 Speed reducer
JP6909141B2 (en) 2017-12-13 2021-07-28 住友重機械工業株式会社 Flexible meshing gear device
JP7175084B2 (en) * 2018-01-30 2022-11-18 住友重機械工業株式会社 flexural mesh gearbox
DE102018117976A1 (en) * 2018-07-25 2020-01-30 Schaeffler Technologies AG & Co. KG The wave gear
DE102018120425A1 (en) * 2018-08-22 2020-02-27 Schaeffler Technologies AG & Co. KG The wave gear
JP7088790B2 (en) * 2018-09-04 2022-06-21 住友重機械工業株式会社 Flexion meshing gear device
IT201900004871A1 (en) * 2019-04-01 2020-10-01 Omme Gears S A S CYCLOID REDUCER
EP3779239B1 (en) 2019-08-13 2021-08-11 maxon international ag High reduction transmission

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316144B2 (en) * 1972-05-23 1978-05-30
JPS60241550A (en) * 1984-05-14 1985-11-30 Matsushita Electric Ind Co Ltd Deflection engagement type power transmission apparatus
JPS6155435A (en) * 1984-08-27 1986-03-19 Matsushita Electric Ind Co Ltd Reduction gear
US4945293A (en) * 1989-09-18 1990-07-31 Integrated Design Corp. Web tension control system
JPH03119643U (en) * 1990-03-23 1991-12-10
JP3098116B2 (en) * 1992-10-28 2000-10-16 栃木富士産業株式会社 Differential device
JP3781315B2 (en) * 1996-04-19 2006-05-31 株式会社ハーモニック・ドライブ・システムズ Top hat flexure meshing gear system
JP2000009191A (en) * 1998-06-19 2000-01-11 Harmonic Drive Syst Ind Co Ltd Cup type wave gear device
JP2002339990A (en) * 2001-05-22 2002-11-27 Harmonic Drive Syst Ind Co Ltd Lightweight bearing, and wave motive gear device
JP2007187284A (en) * 2006-01-16 2007-07-26 Jtekt Corp Thrust roller bearing
JP5316144B2 (en) * 2009-03-23 2013-10-16 株式会社ジェイテクト Transmission ratio variable device
JP5312364B2 (en) * 2010-02-03 2013-10-09 住友重機械工業株式会社 Bending gear system
JP5256249B2 (en) * 2010-06-18 2013-08-07 住友重機械工業株式会社 Bending gear system
TWI412674B (en) * 2010-11-17 2013-10-21 Ind Tech Res Inst Reducer structure and its wave gear drive
KR101486880B1 (en) * 2011-01-26 2015-01-28 스미도모쥬기가이고교 가부시키가이샤 Flexible engagement gear device and method for determining shape of gear tooth of flexible engagement gear device
JP5938933B2 (en) * 2012-02-20 2016-06-22 アイシン精機株式会社 Wave gear device
JP5779120B2 (en) * 2012-02-24 2015-09-16 住友重機械工業株式会社 Eccentric oscillation type speed reducer
JP5812897B2 (en) * 2012-02-28 2015-11-17 住友重機械工業株式会社 Bending gear system
CN202707948U (en) * 2012-06-20 2013-01-30 苏州悍猛谐波机电有限公司 Harmonic reducer with fixed gear wheel
JP6171281B2 (en) 2012-08-06 2017-08-02 日亜化学工業株式会社 Beam homogenizer and optical engine using the same

Also Published As

Publication number Publication date
CN104864037B (en) 2018-10-02
CN104864037A (en) 2015-08-26
TWI614427B (en) 2018-02-11
KR20150099387A (en) 2015-08-31
KR101681247B1 (en) 2016-11-30
TW201533352A (en) 2015-09-01
DE102014017530A1 (en) 2015-08-27
JP2015158218A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6175381B2 (en) Bending gear system
US8020470B2 (en) Harmonic gear drive
WO2017098663A1 (en) Flat strain wave gearing device
JP6027481B2 (en) Bending gear system
EP2639477A1 (en) Planetary gear reducer
KR101644955B1 (en) Flexible engagement gear device
JP2005517139A (en) Transmission device with groove for lubricant
JP2017096343A (en) Flexing engagement type gear device
JP2017180799A (en) Wave gear reducer
JP6511458B2 (en) Scroll type fluid machine
JP2005321071A (en) Inscribed gearing type planetary gear mechanism
KR20160105879A (en) Gear transmission device
JP2022154796A (en) External tooth gear of wave gear reduction gear and wave gear reduction gear
CN112368491A (en) Speed reducer
CN111720497B (en) Cycloidal speed reducer, method for manufacturing cycloidal speed reducer, and motor unit
JP7307905B2 (en) Rotation reduction transmission device
EP4411170A1 (en) Speed reducer
WO2016190206A1 (en) Reverse input blocking clutch
JP2020106139A (en) Rotation deceleration transmission device
JP2010159795A (en) Coupling shaft structure of motor shaft and pinion shaft
JP2023023982A (en) Deflection engagement type gear device
TW202342902A (en) Wave generator for wave gearing, and wave gearing
JP2024136092A (en) Gearbox
JP2012255509A (en) Rotary damper
CN113280082A (en) Wave gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150