JP6171490B2 - Manufacturing method of mask for EUV exposure - Google Patents

Manufacturing method of mask for EUV exposure Download PDF

Info

Publication number
JP6171490B2
JP6171490B2 JP2013072948A JP2013072948A JP6171490B2 JP 6171490 B2 JP6171490 B2 JP 6171490B2 JP 2013072948 A JP2013072948 A JP 2013072948A JP 2013072948 A JP2013072948 A JP 2013072948A JP 6171490 B2 JP6171490 B2 JP 6171490B2
Authority
JP
Japan
Prior art keywords
film
mask
substrate
multilayer reflective
sacrificial film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013072948A
Other languages
Japanese (ja)
Other versions
JP2014197628A (en
Inventor
豊 小寺
豊 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013072948A priority Critical patent/JP6171490B2/en
Publication of JP2014197628A publication Critical patent/JP2014197628A/en
Application granted granted Critical
Publication of JP6171490B2 publication Critical patent/JP6171490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体製造技術に関し、特に極端紫外線(EUV:Extreme Ultra Violet)を使用したリソグラフィで使用するEUVマスクの製造方法に関する。   The present invention relates to a semiconductor manufacturing technique, and more particularly to a method of manufacturing an EUV mask used in lithography using extreme ultraviolet (EUV).

半導体デバイスの製造プロセスにおいては、半導体デバイスの微細化に伴い、フォトリソグラフィ技術の微細化に対する要求が高まっている。既に、リソグラフィの露光も従来の波長が193nmのArFエキシマレーザー光を用いた露光から、波長が13.5nmのEUV(Extreme Ultra Violet:極端紫外線)領域の光を用いた露光に置き換わりつつある。   In the manufacturing process of semiconductor devices, with the miniaturization of semiconductor devices, there is an increasing demand for miniaturization of photolithography technology. Already, lithography exposure has been replaced by exposure using light in the EUV (Extreme Ultra Violet) region with a wavelength of 13.5 nm, instead of conventional exposure using ArF excimer laser light with a wavelength of 193 nm.

EUV露光用のマスク(EUVマスク)は、EUV領域の光に対してほとんどの物質が高い光吸収性をもつため、従来の透過型のマスクとは異なり、反射型のマスクである(例えば、特許文献1参照)。特許文献1には、ガラス基板上にモリブデン(Mo)層及びシリコン(Si)層を交互に積層して多層膜からなる光反射膜を形成し、その上にタンタル(Ta)を主成分とする光吸収体によりパターンを形成する技術が開示されている。   A mask for EUV exposure (EUV mask) is a reflection type mask unlike conventional transmission type masks because most substances have high light absorption with respect to light in the EUV region (for example, patents). Reference 1). In Patent Document 1, a molybdenum (Mo) layer and a silicon (Si) layer are alternately laminated on a glass substrate to form a light reflecting film composed of a multilayer film, and tantalum (Ta) is the main component thereon. A technique for forming a pattern with a light absorber is disclosed.

また、EUV光は前記の通り光の透過を利用する屈折光学系が使用できないことから、露光機の光学系も反射型となる。このため、透過型のビームスプリッターを利用した偏向が不可能である。従って、反射型マスクでは、マスクへの入射光と反射光が同軸上に設計できない欠点がある。このため、EUVマスクは、6度程度光軸を傾けてマスクへ入射した光の反射光を半導体基板に導く手法が採用されている。この手法では、光軸を傾斜することから、マスクパターンに対する光の入射方向に依存して半導体基板上でマスクの配線パターンがマスクパターンとは異なる線幅となる射影効果と呼ばれる問題がある。   Further, as described above, since an EUV light cannot use a refractive optical system that utilizes the transmission of light, the optical system of the exposure machine is also a reflection type. For this reason, deflection using a transmissive beam splitter is impossible. Therefore, the reflective mask has a drawback that the incident light to the mask and the reflected light cannot be designed on the same axis. For this reason, the EUV mask employs a technique in which the reflected light of the light incident on the mask is guided to the semiconductor substrate by tilting the optical axis by about 6 degrees. In this method, since the optical axis is inclined, there is a problem called a projection effect in which the wiring pattern of the mask on the semiconductor substrate has a line width different from that of the mask pattern depending on the incident direction of light with respect to the mask pattern.

そこで、この射影効果を抑制ないし軽減するためにマスクパターンを形成している吸収膜の膜厚を薄膜化する提案がなされているが、この手法では、EUV光を吸収するのに必要な光の減衰量が不足するため、半導体基板への反射光が増加し、半導体基板上に塗布されたレジスト膜を感光させてしまう問題が発生する。また、半導体基板では、チップを多面付で露光するために、隣接するチップにおいてはその境界領域において多重露光が発生する。さらに、EUV光源は13.5nmにその放射スペクトルのピークを有するが、アウトオブバンド(Out of Band)と呼ばれる13.5nm帯以外の真空紫外線から近赤外線領域の光も放射することが知られている。このアウトオブバンドは本来不必要なものであり、これは半導体ウェハ基板に塗布されたレジストを感光することから、フィルターなどで除去すべき不要な光である。   Therefore, in order to suppress or reduce this projection effect, a proposal has been made to reduce the film thickness of the absorption film forming the mask pattern. However, in this method, light necessary for absorbing EUV light is proposed. Since the amount of attenuation is insufficient, the reflected light to the semiconductor substrate increases, causing a problem of exposing the resist film applied on the semiconductor substrate. Further, in the semiconductor substrate, in order to expose the chips with multiple surfaces, multiple exposure occurs in the boundary region between adjacent chips. Furthermore, although the EUV light source has a peak of its emission spectrum at 13.5 nm, it is known to emit light in the near infrared region from vacuum ultraviolet rays other than the 13.5 nm band called out-of-band. Yes. This out-of-band is unnecessary in nature, and is unnecessary light that should be removed by a filter or the like because the resist applied to the semiconductor wafer substrate is exposed.

また、タンタル(Ta)を用いた光吸収膜は真空紫外線から遠紫外線(Deep Ultra Violet)領域、近赤外線領域の光も反射することから、上述の通り、隣接したチップの境界領域近傍の半導体配線部分において無視できない光量が積算され、配線パターンの寸法に影響を与える問題が発生する。
この問題に対して、チップ境界の反射光を低減するためにEUV光の反射に寄与する多層反射膜をパターンを形成する吸収層に引き続きエッチングなどの手段で除去し、母材の石英表面を露出させるマスク構造の提案もある(例えば、特許文献2参照)。しかしながら、アウトオブバンド光は母材の石英を透過してEUVマスクのパターン側とは反対面に形成された窒化クロム(CrN)などの裏面導電膜にて反射し、再度石英を透過して半導体基板側に放射し半導体基板に塗布されたレジストを感光する問題が残っている。
Further, since the light absorption film using tantalum (Ta) reflects light in the vacuum ultraviolet to deep ultraviolet (Deep Ultra Violet) region and the near infrared region, as described above, the semiconductor wiring in the vicinity of the boundary region of adjacent chips is used. The amount of light that cannot be ignored in the portion is integrated, causing a problem that affects the dimensions of the wiring pattern.
To reduce the reflected light at the chip boundary, the multilayer reflective film that contributes to the EUV light reflection is removed by means such as etching after the absorbing layer that forms the pattern to expose the quartz surface of the base material. There is also a proposal of a mask structure to be made (see, for example, Patent Document 2). However, the out-of-band light is transmitted through the base material quartz and reflected by the back conductive film such as chromium nitride (CrN) formed on the opposite surface of the EUV mask pattern side, and is transmitted through the quartz again to form the semiconductor. There remains a problem of exposing the resist radiated to the substrate side and applied to the semiconductor substrate.

特開2007−273651号公報JP 2007-273651 A 特開2009−212220号公報JP 2009-212220 A

本発明は、上記課題を解決するためになされたもので、その目的とするところは、射影効果が発生せず、半導体基板で多重露光されるチップの境界領域に相応するマスク領域において、EUVおよび紫外線領域から近赤外線の反射を低減した構造を有する反射型マスクを提供する事にある。   The present invention has been made to solve the above-described problems. The object of the present invention is to produce EUV and UV in a mask region corresponding to a boundary region of a chip that is not subjected to a projection effect and is subjected to multiple exposure on a semiconductor substrate. An object of the present invention is to provide a reflective mask having a structure in which near-infrared reflection is reduced from the ultraviolet region.

本発明は、かかる課題に鑑みなされたもので、請求項に記載の発明は、
基板の一方の面上に、EUV光を反射する多層反射膜を備えたEUV露光用マスクの製造方法であって、
基板の一方の面に犠牲膜を形成し、他方の面に透明導電膜を形成してブランクを用意する工程と、ブランクの犠牲膜にレジストを塗布し、所定の回路パターンを描画、現像を行い、犠牲膜をエッチングする工程と、エッチングした犠牲膜をマスクとして基板をエッチングして多層反射膜埋め込み溝を作製する工程と、多層反射膜埋め込み溝にEUV露光のための多層反射膜を積層する工程と、犠牲膜上に積層された多層反射膜、および犠牲膜を剥離する工程と、を含む事を特徴とするEUV露光用マスクの製造方法としたものである。
This invention is made | formed in view of this subject, The invention of Claim 1 is
An EUV exposure mask manufacturing method comprising a multilayer reflective film that reflects EUV light on one surface of a substrate,
A sacrificial film is formed on one side of the substrate, a transparent conductive film is formed on the other side, and a blank is prepared. A resist is applied to the blank sacrificial film, and a predetermined circuit pattern is drawn and developed. Etching the sacrificial film, etching the substrate using the etched sacrificial film as a mask, forming a multilayer reflective film embedded groove, and laminating a multilayer reflective film for EUV exposure in the multilayer reflective film embedded groove And a multilayer reflective film laminated on the sacrificial film, and a step of peeling the sacrificial film.

請求項に記載の発明は、
犠牲膜は、基板とのエッチング選択比が確保できる材料で形成され、透明導電膜は、単
層構造もしくは積層構造で、インジウムと錫の酸化物であるITO、酸化錫(SnO)にアンチモン(Sb)を添加したATO、酸化錫(SnO)にフッ素(F)を添加したFTO、酸化亜鉛(ZnO)にアルミナ(Al)を添加したAZO、酸化亜鉛(ZnO)に酸化ガリウム(Ga)を添加したGZOの、いずれかを含む材料で形成されることを特徴とする請求項に記載のEUV露光用マスクの製造方法としたものである。
The invention described in claim 2
The sacrificial film is formed of a material that can ensure an etching selectivity with respect to the substrate, and the transparent conductive film has a single-layer structure or a stacked structure, which is ITO, which is an oxide of indium and tin, tin oxide (SnO 2 ), antimony ( ATO with Sb) added, FTO with tin (SnO 2 ) added with fluorine (F), AZO with zinc oxide (ZnO) added with alumina (Al 2 O 3 ), and zinc oxide (ZnO) with gallium oxide ( 2. The method for producing an EUV exposure mask according to claim 1 , wherein the mask is formed of a material containing any one of GZO added with Ga 2 O 3 ).

本発明によれば、射影効果の影響を抑制する事で、ウェハ露光パターンの位置ずれや歪みを低減させる事が可能となると共に、露光パターン以外の領域からのEUVおよびDUVの反射を抑制する事を特徴とするEUV用反射型マスク製造方法を提供する。 According to the present invention, it is possible to reduce the positional deviation and distortion of the wafer exposure pattern by suppressing the influence of the projection effect, and to suppress the reflection of EUV and DUV from regions other than the exposure pattern. The manufacturing method of the reflective mask for EUV characterized by these is provided.

本発明の実施例の反射型マスク用ブランクスの断面図。Sectional drawing of the blank for reflective type masks of the Example of this invention. 本発明の実施例の反射型マスクを説明する平面図及び断面図。The top view and sectional drawing explaining the reflective mask of the Example of this invention. 本発明の実施例を反射型マスクの製造方法を説明する工程図。Process drawing explaining the manufacturing method of a reflection type mask of the Example of this invention. 本発明の実施例の反射型マスクの製造方法の各部分の工程での断面図。Sectional drawing in the process of each part of the manufacturing method of the reflective mask of the Example of this invention. 本発明の実施例の反射型マスクの製造方法の図4に続く各部分の工程での断面図。Sectional drawing in the process of each part following FIG. 4 of the manufacturing method of the reflective mask of the Example of this invention. 本発明の実施例の反射型マスクの製造方法の図5に続く各部分の工程での断面図。Sectional drawing in the process of each part following FIG. 5 of the manufacturing method of the reflective mask of the Example of this invention. 本発明の実施例の裏面導電膜の光学特性を示す図。The figure which shows the optical characteristic of the back surface electrically conductive film of the Example of this invention.

以下、図面を参照しつつ、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明では、膜として記載しているが、膜を層としても良い。   In the present invention, the film is described as a film, but the film may be a layer.

先ず、本発明の第1の実施の形態例について図1および図2を参照して説明する。図1は反射型マスク用ブランクス10の断面図であり、図2は反射型マスク100であって、図2(a)はそのマスク100の平面図、図2(b)はそのマスク100の断面図である。   First, a first embodiment of the present invention will be described with reference to FIG. 1 and FIG. 1 is a cross-sectional view of a reflective mask blank 10, FIG. 2 is a reflective mask 100, FIG. 2A is a plan view of the mask 100, and FIG. 2B is a cross-section of the mask 100. FIG.

図2(a)、(b)に示すように、回路パターンAは多層反射膜12が基板11に埋め込まれた構造をしており、回路パターンAを有する面と反対の面は透明な裏面導電膜13を有する。   As shown in FIGS. 2A and 2B, the circuit pattern A has a structure in which the multilayer reflective film 12 is embedded in the substrate 11, and the surface opposite to the surface having the circuit pattern A is a transparent back surface conductive. A film 13 is provided.

次に本マスクの製造方法を図3乃至図6に示す。ここで、図3は工程S1〜S14のステップを示し、図4乃至図6は各工程S1〜S14での加工状態の断面図を示す。   Next, the manufacturing method of this mask is shown in FIGS. Here, FIG. 3 shows the steps of steps S1 to S14, and FIGS. 4 to 6 show cross-sectional views of the processed states in steps S1 to S14.

まず反射型マスク用ブランクス10を用意する(図3、図4の「開始」工程)。露光するEUV光の波長は、例えば13.5nmである。基板11は石英基板であり、6インチ角で厚さは6.35mmとする。反射型マスク100の回路パターンAを形成する面に犠牲膜14を形成する。犠牲膜14には基板11とのエッチング選択比が十分に確保できる材料を選択する必要がある。ここでは例として、クロム(Cr)をイオンビームスパッタリング装置で5から100nmの厚みで形成する。また、回路パターンAを形成する面と反対の面上に透明な裏面導電膜13として酸化インジウム(ITO)をマグネトロンスパッタにより100nm積層して形成する。   First, the reflective mask blanks 10 are prepared ("start" step in FIGS. 3 and 4). The wavelength of the EUV light to be exposed is 13.5 nm, for example. The substrate 11 is a quartz substrate, which is 6 inches square and has a thickness of 6.35 mm. A sacrificial film 14 is formed on the surface of the reflective mask 100 where the circuit pattern A is to be formed. For the sacrificial film 14, it is necessary to select a material that can ensure a sufficient etching selectivity with the substrate 11. Here, as an example, chromium (Cr) is formed with an ion beam sputtering apparatus with a thickness of 5 to 100 nm. In addition, indium oxide (ITO) is formed as a transparent back surface conductive film 13 on the surface opposite to the surface on which the circuit pattern A is formed by laminating 100 nm by magnetron sputtering.

なお、犠牲膜は、クロムのように、基板とのエッチング選択比が確保できる材料で形成する。また透明導電膜は、単層構造もしくは積層構造で、インジウムと錫の酸化物であるITO、酸化錫(SnO)にアンチモン(Sb)を添加したATO、酸化錫(SnO)にフッ素(F)を添加したFTO、酸化亜鉛(ZnO)にアルミナ(Al)を添加したAZO、酸化亜鉛(ZnO)に酸化ガリウム(Ga)を添加したGZOの、いずれかを含む材料で形成するとよい。 Note that the sacrificial film is formed of a material that can ensure an etching selectivity with the substrate, such as chromium. The transparent conductive film, a single-layer structure or a stacked structure, ITO is indium tin oxide, ATO added with antimony (Sb) to tin oxide (SnO 2), fluorine tin oxide (SnO 2) (F ) Added with FTO, zinc oxide (ZnO) with alumina (Al 2 O 3 ) added, zinc oxide (ZnO) with gallium oxide (Ga 2 O 3 ) added with ZZO It is good to form.

次に回路パターンAとなる多層反射膜を埋め込むための多層反射膜埋め込み溝のガイドを犠牲膜14に形成する。つまり、電子線に反応を示す化学増幅系や非化学増幅系レジスト21を犠牲膜14上に塗布(工程S1、以下同様に図3乃至図6に記した工程を表す)し、所定の回路パターンAを電子線描画装置により描画する(S2)。その後アルカリ溶
液などで現像(S3)を行い、これにより形成したレジスト21のパターンをマスクにしてフッ素系ガスや塩素系ガスを用いたガスプラズマにより犠牲膜14をエッチング(S4)する。ここでは犠牲膜14はクロム(Cr)であるため、塩素系プラズマによりエッチングを行い、不要なレジスト21のパターンを酸素プラズマによる灰化や硫酸やオゾン水などの酸化薬液による分解ないし有機溶剤などで溶解除去(S5)する。その後必要に応じて、酸・アルカリ系薬品やオゾンガスや水素ガスなどを溶解した超純水や有機アルカリ系薬品、界面活性剤などによる洗浄処理(S6)と、遠心力を利用したスピン乾燥(S7)を行う。
Next, a guide for the multilayer reflective film embedding groove for embedding the multilayer reflective film to be the circuit pattern A is formed in the sacrificial film 14. That is, a chemical amplification system or non-chemical amplification system resist 21 that reacts with an electron beam is applied on the sacrificial film 14 (step S1, hereinafter, the steps described in FIGS. 3 to 6), and a predetermined circuit pattern is formed. A is drawn by an electron beam drawing apparatus (S2). Thereafter, development (S3) is performed with an alkaline solution or the like, and the sacrificial film 14 is etched (S4) by gas plasma using a fluorine-based gas or a chlorine-based gas using the pattern of the resist 21 formed thereby as a mask. Here, since the sacrificial film 14 is chromium (Cr), etching is performed with chlorine-based plasma, and an unnecessary resist 21 pattern is decomposed by ashing with oxygen plasma, decomposition with an oxidizing chemical such as sulfuric acid or ozone water, or an organic solvent. Dissolve and remove (S5). Thereafter, if necessary, cleaning with acid / alkaline chemicals, ultrapure water in which ozone gas or hydrogen gas is dissolved, organic alkaline chemicals, surfactants, etc. (S6), and spin drying using centrifugal force (S7) )I do.

以上の工程により回路パターンAが犠牲膜に形成され、新たなマスクとなる。   Through the above steps, the circuit pattern A is formed on the sacrificial film and becomes a new mask.

次に回路パターンAに多層反射膜12を埋め込む方法を例示する。まず回路パターンAを、犠牲膜14をエッチングマスクとして基板11をエッチングして多層反射膜埋め込み溝を作成(S8)する。ここで、多層反射膜埋め込み溝の深さは、埋め込む多層反射膜12の厚みと等しくなるようにエッチングを行う。エッチング後に、埋め込み溝の内部に多層反射膜が適切に付着・積層される様に、SC−1洗浄,加熱乾燥など適宜方法にて洗浄、乾燥を行う(S9、10)。次にEUV露光のための多層反射膜12を作製する。モリブデン(Mo)を4.2nm、珪素(Si)を2.8nmを交互にイオンビームスパッタリング装置で交互に40対、合計80対を最上層が珪素(Si)となるように積層する(S11)。次に犠牲膜14上に積層された多層反射膜12、および犠牲膜14をCMP(Chemical Mechanical Polishing)装置により表面研磨することで剥離(S12)する。その後必要に応じて、酸・アルカリ系薬品やオゾンガスや水素ガスなどを溶解した超純水や有機アルカリ系薬品、界面活性剤などによる洗浄処理(S13)と、遠心力を利用したスピン乾燥(S14)を行う。   Next, a method of embedding the multilayer reflective film 12 in the circuit pattern A is exemplified. First, the substrate 11 is etched using the circuit pattern A and the sacrificial film 14 as an etching mask to form a multilayer reflective film embedded groove (S8). Here, etching is performed so that the depth of the multilayer reflective film embedding groove is equal to the thickness of the multilayer reflective film 12 to be embedded. After the etching, cleaning and drying are performed by an appropriate method such as SC-1 cleaning or heat drying so that the multilayer reflective film is appropriately attached and laminated inside the buried trench (S9, 10). Next, the multilayer reflective film 12 for EUV exposure is produced. Molybdenum (Mo) of 4.2 nm and silicon (Si) of 2.8 nm are alternately laminated by an ion beam sputtering apparatus so that a total of 80 pairs are formed so that the uppermost layer is silicon (Si) (S11). . Next, the multilayer reflective film 12 laminated on the sacrificial film 14 and the sacrificial film 14 are peeled off (S12) by surface polishing using a CMP (Chemical Mechanical Polishing) apparatus. Thereafter, if necessary, cleaning treatment with acid / alkali chemical, ozone gas, hydrogen gas, etc., ultrapure water, organic alkaline chemical, surfactant, etc. (S13), and spin drying using centrifugal force (S14) )I do.

以上の工程により反射型マスク100が完成する。   The reflective mask 100 is completed through the above steps.

本マスク構造においては、多層反射膜12を埋め込んだ回路パターンA以外の領域は基板11が最表面となった状態になっている。通常のEUV露光用マスクにおいては、裏面導電膜13としてクロム(Cr)が使用されるのが一般的である。この場合、EUV光は基板11により吸収されるが、アウトオブバンド光に関しては、基板11を一旦透過して裏面導電膜13から反射して再度戻ってくる成分を除去できない。そこで、本発明においては、裏面導電膜材料として透明導電膜を使用する。   In this mask structure, the region other than the circuit pattern A in which the multilayer reflective film 12 is embedded is in a state where the substrate 11 is the outermost surface. In a normal EUV exposure mask, chromium (Cr) is generally used as the back surface conductive film 13. In this case, EUV light is absorbed by the substrate 11, but regarding the out-of-band light, the component that once passes through the substrate 11, reflects from the back surface conductive film 13, and returns again cannot be removed. Therefore, in the present invention, a transparent conductive film is used as the back surface conductive film material.

図7に従来の裏面導電膜材料の一例としてクロム(Cr)と本発明にかかるITOによる反射率スペクトルを示す。反射光とは主面側から入射し、基板11を透過して裏面導電膜13を反射して再度基板11を透過して主面から射出した光である。測定には反射率計を用いた。測定の結果、波長250nmから850nmの範囲において、従来のクロム(Cr)に対して本発明のITOは平均で反射率は42.1%から13.5%に低減した。またITOのシート抵抗は90オーム/□であった。   FIG. 7 shows a reflectance spectrum of chromium (Cr) as an example of a conventional back surface conductive film material and ITO according to the present invention. The reflected light is light incident from the main surface side, transmitted through the substrate 11, reflected from the back surface conductive film 13, transmitted through the substrate 11 again, and emitted from the main surface. A reflectometer was used for the measurement. As a result of the measurement, the average reflectance of the ITO of the present invention was reduced from 42.1% to 13.5% with respect to the conventional chromium (Cr) in the wavelength range of 250 nm to 850 nm. The sheet resistance of ITO was 90 ohm / □.

本発明により作製されるマスクは、以上のような構成であるので、従来のEUVマスクのような吸収膜を有さない事により吸収膜による射影効果が発生しないため、ウェハ露光による露光パターンの位置ずれや歪みといった問題を低減する。さらに、裏面導電膜の導電性を確保しつつ多層反射膜以外の領域から生じるアウトオブバンド光がウェハ基板側に導かれず、ウェハ基板上に塗布されたレジストの感光を避ける事が可能となった。   Since the mask manufactured according to the present invention has the above-described configuration, the projection effect by the absorption film does not occur due to the absence of the absorption film as in the conventional EUV mask. Reduce problems such as misalignment and distortion. Furthermore, out-of-band light generated from a region other than the multilayer reflective film is not guided to the wafer substrate side while ensuring the conductivity of the back surface conductive film, and it is possible to avoid the resist of the resist applied on the wafer substrate. .

本発明は前記実施形態そのままに限定されるものでなく、本発明の趣旨を逸脱しない限り、変形して具体化できる。また、明細書に示される事項の適宜の組み合わせによって種々の発明を想定できるものである。   The present invention is not limited to the above-described embodiment as it is, and can be modified and embodied without departing from the gist of the present invention. Various inventions can be envisaged by appropriately combining the matters shown in the specification.

10 反射型マスク用ブランクス
11 基板
12 多層反射膜
13 裏面導電膜
14 犠牲膜
21 レジスト(パターン)
100 反射型マスクブランク
DESCRIPTION OF SYMBOLS 10 Reflective mask blanks 11 Substrate 12 Multilayer reflective film 13 Back surface conductive film 14 Sacrificial film 21 Resist (pattern)
100 reflective mask blank

Claims (2)

基板の一方の面上に、EUV光を反射する多層反射膜を備えたEUV露光用マスクの製造方法であって、
基板の一方の面に犠牲膜を形成し、他方の面に透明導電膜を形成してブランクを用意する工程と、ブランクの犠牲膜にレジストを塗布し、所定の回路パターンを描画、現像を行い、犠牲膜をエッチングする工程と、エッチングした犠牲膜をマスクとして基板をエッチングして多層反射膜埋め込み溝を作製する工程と、多層反射膜埋め込み溝にEUV露光のための多層反射膜を積層する工程と、犠牲膜上に積層された多層反射膜、および犠牲膜を剥離する工程と、を含む事を特徴とするEUV露光用マスクの製造方法。
An EUV exposure mask manufacturing method comprising a multilayer reflective film that reflects EUV light on one surface of a substrate,
A sacrificial film is formed on one side of the substrate, a transparent conductive film is formed on the other side, and a blank is prepared. A resist is applied to the blank sacrificial film, and a predetermined circuit pattern is drawn and developed. Etching the sacrificial film, etching the substrate using the etched sacrificial film as a mask, forming a multilayer reflective film embedded groove, and laminating a multilayer reflective film for EUV exposure in the multilayer reflective film embedded groove And a multilayer reflective film stacked on the sacrificial film, and a step of peeling the sacrificial film.
犠牲膜は、基板とのエッチング選択比が確保できる材料で形成され、透明導電膜は、単層構造もしくは積層構造で、インジウムと錫の酸化物であるITO、酸化錫(SnO)にアンチモン(Sb)を添加したATO、酸化錫(SnO)にフッ素(F)を添加したFTO、酸化亜鉛(ZnO)にアルミナ(Al)を添加したAZO、酸化亜鉛(ZnO)に酸化ガリウム(Ga)を添加したGZOの、いずれかを含む材料で形成されることを特徴とする請求項に記載のEUV露光用マスクの製造方法。 The sacrificial film is formed of a material that can ensure an etching selectivity with respect to the substrate, and the transparent conductive film has a single-layer structure or a stacked structure, which is ITO, which is an oxide of indium and tin, tin oxide (SnO 2 ), antimony ( ATO with Sb) added, FTO with tin (SnO 2 ) added with fluorine (F), AZO with zinc oxide (ZnO) added with alumina (Al 2 O 3 ), and zinc oxide (ZnO) with gallium oxide ( 2. The method for producing an EUV exposure mask according to claim 1 , wherein the mask is formed of a material containing any one of GZO added with Ga 2 O 3 ).
JP2013072948A 2013-03-29 2013-03-29 Manufacturing method of mask for EUV exposure Active JP6171490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072948A JP6171490B2 (en) 2013-03-29 2013-03-29 Manufacturing method of mask for EUV exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072948A JP6171490B2 (en) 2013-03-29 2013-03-29 Manufacturing method of mask for EUV exposure

Publications (2)

Publication Number Publication Date
JP2014197628A JP2014197628A (en) 2014-10-16
JP6171490B2 true JP6171490B2 (en) 2017-08-02

Family

ID=52358226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072948A Active JP6171490B2 (en) 2013-03-29 2013-03-29 Manufacturing method of mask for EUV exposure

Country Status (1)

Country Link
JP (1) JP6171490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036899A1 (en) * 2018-08-14 2020-02-20 Lam Research Corporation Modification of sno2 surface for euv lithography

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6441193B2 (en) * 2015-09-14 2018-12-19 東芝メモリ株式会社 Method for manufacturing a reflective mask
SG11201906153SA (en) 2017-01-17 2019-08-27 Hoya Corp Reflective mask blank, reflective mask, method of manufacturing same, and method of manufacturing semiconductor device
US11340524B2 (en) * 2019-04-01 2022-05-24 Taiwan Semiconductor Manufacturing Company Ltd. Photomask, method of fabricating a photomask, and method of fabricating a semiconductor structure using a photomask

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144710A (en) * 1991-11-22 1993-06-11 Hitachi Ltd Optical element and fabrication thereof
JP2006267595A (en) * 2005-03-24 2006-10-05 Toshiba Corp Mask blank and its manufacturing method and using method, and mask and its manufacturing method and using method
US8614032B2 (en) * 2009-09-02 2013-12-24 Wi-A Corporation Laser-reflective mask and method for manufacturing same
JP5736900B2 (en) * 2011-03-30 2015-06-17 凸版印刷株式会社 Reflective exposure mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036899A1 (en) * 2018-08-14 2020-02-20 Lam Research Corporation Modification of sno2 surface for euv lithography

Also Published As

Publication number Publication date
JP2014197628A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
KR101596177B1 (en) Reflective mask and method for manufacturing same
JP5772135B2 (en) Reflective mask blank and reflective mask
JP5953833B2 (en) Reflective photomask and method of manufacturing the same
JP6171490B2 (en) Manufacturing method of mask for EUV exposure
JP6287046B2 (en) Reflective mask, reflective mask blank and manufacturing method thereof
JP2014168019A (en) Light reflecting type photomask and mask blank for euv exposure, and method for manufacturing semiconductor device
KR101611775B1 (en) Reflective mask blank, reflective mask, and methods for manufacturing reflective mask blank and reflective mask
JP5736900B2 (en) Reflective exposure mask
JP2013206936A (en) Reflective mask and method of manufacturing reflective mask
JP2013191663A (en) Reflective mask blank and reflective mask
JP2013074202A (en) Reflective mask and manufacturing method therefor
JP5240396B2 (en) Reflective mask and reflective mask manufacturing method
JP5990961B2 (en) Reflective mask
JP5970901B2 (en) REFLECTIVE MASK AND METHOD FOR PRODUCING REFLECTIVE MASK
JP2014096484A (en) Blanks for euvl mask and manufacturing method thereof, euvl mask and updating method thereof
JP6743539B2 (en) Reflective mask and method of manufacturing reflective mask
JP2014232844A (en) Method for manufacturing reflective mask
JP5803517B2 (en) Reflective mask, mask blank, and manufacturing method thereof
JP2014192312A (en) Reflective phase shift mask and manufacturing method thereof
JP5754592B2 (en) Reflective mask manufacturing method and reflective mask
JP2012182289A (en) Reflective mask blank and manufacturing method thereof, and reflective mask and manufacturing method thereof
JP6361283B2 (en) Reflective mask blank and reflective mask
JP5950535B2 (en) Reflective mask blank and reflective mask
JP2017227702A (en) Reflective photomask
JP2013084882A (en) Reflective mask and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250