JP6171438B2 - Water stoppage method for structures made of cementitious composition - Google Patents

Water stoppage method for structures made of cementitious composition Download PDF

Info

Publication number
JP6171438B2
JP6171438B2 JP2013056564A JP2013056564A JP6171438B2 JP 6171438 B2 JP6171438 B2 JP 6171438B2 JP 2013056564 A JP2013056564 A JP 2013056564A JP 2013056564 A JP2013056564 A JP 2013056564A JP 6171438 B2 JP6171438 B2 JP 6171438B2
Authority
JP
Japan
Prior art keywords
water
cement
urethane resin
hydrophilic urethane
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013056564A
Other languages
Japanese (ja)
Other versions
JP2014181486A (en
Inventor
小川 晴果
晴果 小川
利充 小林
利充 小林
隆 桝田
隆 桝田
幸一 遠藤
幸一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Masuda
Original Assignee
Masuda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masuda filed Critical Masuda
Priority to JP2013056564A priority Critical patent/JP6171438B2/en
Publication of JP2014181486A publication Critical patent/JP2014181486A/en
Application granted granted Critical
Publication of JP6171438B2 publication Critical patent/JP6171438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

本発明は、コンクリート製構造物などのセメント系組成体製構造物の漏水空隙部分に止水材を注入して止水する工法に関する。   The present invention relates to a method for stopping water by injecting a water-stopping material into a water leaking void portion of a cement-based composition structure such as a concrete structure.

従来、コンクリート製構造物は、乾燥収縮や経年劣化などでひび割れし、そして、このひび割れにより雨水や地下水が漏れる等の漏水を生じる。また、コンクリート製構造物は一般にコンクリートの打ち継ぎ部を有し、かかる打ち継ぎ部ではジャンカなどにより漏水し得る。そのため、かかるひび割れや打ち継ぎ部等の漏水空隙部分に止水材を注入・充填して、漏水を止める止水工事が適宜なされている。   Conventionally, a concrete structure is cracked due to drying shrinkage or aging deterioration, and leaks such as rainwater and groundwater leak due to the cracks. A concrete structure generally has a concrete joint, and the joint can leak water by a jumper or the like. For this reason, a water-stopping work for stopping water leakage is appropriately performed by injecting and filling a water-stopping material into the water leakage gaps such as cracks and joints.

この止水材には、例えば1液型の親水性ウレタン樹脂や、同じく1液型の水性ポリマーエマルションが使用される。そして、前者の1液型の親水性ウレタン樹脂の場合には、液体の状態で漏水空隙部分に注入されるが、ここで、当該漏水空隙部分に水が存在していると、かかる水と速やかに反応して親水性ウレタン樹脂は発泡硬化して固体となる。よって、比較的短時間で漏水空隙部分を塞いで止水することができる。しかし、漏水空隙部分の水が少ない場合には、上記の加水発泡反応が起こり難く、有効に止水できない恐れがある。
そのため、特許文献1に開示の止水工法では、漏水空隙部分に親水性ウレタンを注入する前に、予め当該漏水空隙部分に水を注入している。
For example, a one-component hydrophilic urethane resin or a one-component aqueous polymer emulsion is used as the water-stopping material. In the case of the former one-component type hydrophilic urethane resin, it is injected into the leaking void portion in a liquid state. Here, if water is present in the leaking void portion, the water and the water are promptly introduced. In response, the hydrophilic urethane resin is foam-cured and becomes a solid. Therefore, it is possible to stop the water by closing the leakage gap in a relatively short time. However, when there is little water in the water leakage gap portion, the above hydrofoaming reaction hardly occurs and there is a possibility that water cannot be effectively stopped.
Therefore, in the water stop construction method disclosed in Patent Document 1, water is injected into the water leakage gap portion in advance before the hydrophilic urethane is injected into the water leakage gap portion.

特開平2−200973号公報Japanese Patent Laid-Open No. 2-200973

しかしながら、この工法では、注入作業が、水、親水性ウレタン樹脂の二段階となってしまい、工期の長期化を招くとともに、施工手順も複雑になってしまう。
一方、後者の1液型の水性ポリマーエマルションの場合も、液体の状態で漏水空隙部分に注入される。但し、この場合には、同エマルション中の水分が蒸発等で抜けることにより硬化して固体となって、これにより漏水空隙部分を塞いで止水する。そのため、漏水空隙部分に水が存在しなくても、止水可能である。
しかし、上記のように、水性ポリマーエマルションは、その水分が抜けることで硬化するため、一般に当該硬化に長時間を要する。すなわち、止水作用の発現までに長時間を要する。そのため、工期の長期化を招く恐れがある。また、漏水空隙部分での漏水量が多い場合には、水性ポリマーエマルションを注入しても、すぐには硬化しないことから、当該エマルションが漏水空隙部分に留まれずに流されてしまい、結果、有効に止水できない恐れもある。
However, in this construction method, the injection work is in two stages, water and hydrophilic urethane resin, leading to a prolonged construction period and a complicated construction procedure.
On the other hand, in the case of the latter one-pack type aqueous polymer emulsion, it is injected into the leaking void portion in a liquid state. However, in this case, the water in the emulsion is cured by evaporating or the like to become a solid, thereby blocking the water leakage gap and stopping the water. Therefore, even if water does not exist in the water leakage gap, water can be stopped.
However, as described above, the aqueous polymer emulsion is cured by removing the moisture, and thus generally requires a long time for the curing. That is, it takes a long time to develop a water-stopping action. Therefore, there is a risk that the construction period will be prolonged. In addition, when there is a large amount of water leakage in the water leakage gap part, even if an aqueous polymer emulsion is injected, it does not cure immediately, so that the emulsion flows without staying in the water leakage gap part. There is also a risk that the water will not stop.

本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、事前の漏水空隙部分への水の注入作業を不要としながらも、親水性ウレタン樹脂の発泡硬化を確実に引き起こすことが可能であるとともに、漏水空隙部分での水性ポリマーエマルションの硬化も短時間でなすことが可能な止水工法を提供することにある。   The present invention has been made in view of the conventional problems as described above, and its purpose is to ensure foaming and hardening of the hydrophilic urethane resin while eliminating the need for water injection into the water leakage gap portion in advance. It is an object of the present invention to provide a water-stopping method that can cause the water-soluble polymer emulsion to cure in a short time and can also cure the aqueous polymer emulsion in the water leakage gap.

かかる目的を達成するために請求項1に示す発明は、
セメント系組成体製構造物の漏水空隙部分に止水材を注入器具で注入して止水する止水工法であって、
前記注入器具は、
二股形状の基部と、
前記基部に一体に設けられる基部側筒部と、
前記基部側筒部に管継手を介して着脱自在に設けられ、前記漏水空隙部分に連通される吐出口と前記吐出口に連通する流路とを有する先端側筒部と、を備え、
前記注入器具に対してそれぞれ別個に供給される液状の親水性ウレタン樹脂と水性ポリマーエマルションとを、前記流路内で混合しながら前記吐出口から吐出して前記漏水空隙部分に注入し、
前記先端側筒部を前記基部側筒部から管継手のところで取り外して未使用の先端側筒部に付け替えてから次の注入作業を行うことを特徴とする。
In order to achieve this object, the invention shown in claim 1
A water-stop method for stopping water by injecting a water-stopping material into a water leakage gap portion of a cement-based composition structure with an injection device,
The injection device is
A bifurcated base,
A base-side tube portion provided integrally with the base portion;
The proximal tubular portion via the pipe joint detachably attached to, and a distal cylindrical portion which have a a flow path communicating with the leakage gap portion communicated is discharge port and the discharge port,
Liquid hydrophilic urethane resin and aqueous polymer emulsion, which are separately supplied to the injection device, are discharged from the discharge port while being mixed in the flow path, and injected into the leakage gap portion ,
The distal end side cylindrical portion is removed from the base side cylindrical portion at a pipe joint and is replaced with an unused distal end side cylindrical portion, and then the next injection operation is performed .

上記請求項1に示す発明によれば、注入器具内の流路において親水性ウレタン樹脂と水性ポリマーエマルションとが混合される。そして、このとき、親水性ウレタン樹脂を発泡硬化する加水発泡反応に必要な水は、水性ポリマーエマルションから供給され、他方、この供給により、水性ポリマーエマルションからは水が抜かれて、水性ポリマーエマルションは硬化する。よって、事前の漏水空隙部分への水の注入作業を行わずに、ウレタン樹脂の発泡硬化を確実に引き起こすことができるとともに、漏水空隙部分での水性ポリマーエマルションの硬化も短時間でなすことができる。
また、吐出口に連通する上記の流路内で親水性ウレタン樹脂と水性ポリマーエマルションとを混合しながら、漏水空隙部分に注入する。よって、親水性ウレタン樹脂と水性ポリマーエマルションとの混合物の流動性が高いうちに、当該混合物を漏水空隙部分に注入することができて、これにより、漏水空隙部分の深部まで円滑且つ確実に注入することができる。
According to the first aspect of the present invention, the hydrophilic urethane resin and the aqueous polymer emulsion are mixed in the flow path in the injection device. At this time, the water necessary for the hydrofoaming reaction for foaming and curing the hydrophilic urethane resin is supplied from the aqueous polymer emulsion. On the other hand, the water is removed from the aqueous polymer emulsion by this supply, and the aqueous polymer emulsion is cured. To do. Therefore, it is possible to reliably cause foaming and hardening of the urethane resin without performing the operation of injecting water into the water leakage gap portion in advance, and it is possible to cure the aqueous polymer emulsion in the water leakage gap portion in a short time. .
In addition, the hydrophilic urethane resin and the aqueous polymer emulsion are mixed in the flow path communicating with the discharge port, and injected into the water leakage gap portion. Therefore, while the fluidity of the mixture of the hydrophilic urethane resin and the aqueous polymer emulsion is high, the mixture can be injected into the leaking void portion, thereby smoothly and reliably injecting into the deep portion of the leaking void portion. be able to.

請求項2に示す発明は、請求項1に記載のセメント系組成体製構造物の止水工法であって、
前記水性ポリマーエマルションは、日本工業規格JISA6203:2000「セメント混和用ポリマーディスパージョン又は再乳化形粉末樹脂」の規格を満足するセメント混和用ポリマーディスパージョンであることを特徴とする。
The invention shown in claim 2 is a water stop construction method for a structure made of a cement-based composition according to claim 1,
The aqueous polymer emulsion is a polymer dispersion for cement that satisfies the standard of Japanese Industrial Standard JIS A6203: 2000 “Cement-mixed polymer dispersion or re-emulsified powder resin”.

上記請求項2に示す発明によれば、発泡硬化した親水性ウレタン樹脂は、上記のセメント混和用ポリマーディスパージョンの固形分たるポリマーによって複合化される。そして、かかる複合化により、当該ポリマーが具備する長期の化学的安定性、すなわち高い耐久性が、親水性ウレタン樹脂に付与される。よって、発泡硬化後に起こり得る親水性ウレタン樹脂の加水分解や肉やせ(長期に亘って水分補給が無い場合に親水性ウレタン樹脂自体の水分が蒸発して生じる同樹脂の収縮現象)、バクテリア孔食(セメント系組成体製構造物に生息するバクテリアによる局所的腐食現象)、セメント系組成体中のアルカリ分による劣化などを有効に防ぐことができて、結果、長期に亘り安定した止水効果を発揮可能となる。
また、同ポリマーは、良好な伸び能力、高い引張強さ、及び高い接着能を有するので、当該ポリマーによって複合化された親水性ウレタン樹脂には、これらの特性も付与される。よって、止水施工後に起こり得るセメント系組成体製構造物の乾燥収縮等の変形に対しても、剥がれや破断など無く速やかに追従して変形可能であり、このことも上記の止水効果の安定化に有効に寄与する。
According to the second aspect of the present invention, the foam-cured hydrophilic urethane resin is compounded with the solid polymer of the above-described cement-mixing polymer dispersion. And, by such complexing, the long-term chemical stability of the polymer, that is, high durability is imparted to the hydrophilic urethane resin. Therefore, hydrolysis and thinning of the hydrophilic urethane resin that can occur after foam hardening (shrinkage phenomenon of the hydrophilic urethane resin itself due to evaporation of moisture in the absence of hydration over a long period of time), bacterial pitting (Local corrosion phenomenon due to bacteria that inhabit the structure made of cementitious composition), degradation due to alkali content in the cementitious composition can be effectively prevented, resulting in a stable water-stopping effect over a long period of time. It can be demonstrated.
Further, since the polymer has good elongation ability, high tensile strength, and high adhesion ability, these characteristics are also imparted to the hydrophilic urethane resin compounded by the polymer. Therefore, even for deformation such as drying shrinkage of a structure made of a cementitious composition that can occur after water stoppage construction, it can be quickly followed without deformation or peeling, which also has the above water stop effect. Contributes effectively to stabilization.

請求項3に示す発明は、請求項2に記載のセメント系組成体製構造物の止水工法であって、
前記親水性ウレタン樹脂と前記セメント混和用ポリマーディスパージョンとの配合は、前記セメント混和用ポリマーディスパージョンの不揮発分(固形分)を除く、水分に対する前記親水性ウレタン樹脂の濃度が20〜80重量%の範囲内となるように行われることを特徴とする。
Invention of Claim 3 is a water stop construction method of the structure made from cement system composition of Claim 2,
The blend of the hydrophilic urethane resin and the cement-mixing polymer dispersion is such that the concentration of the hydrophilic urethane resin with respect to moisture is 20 to 80% by weight excluding the non-volatile content (solid content) of the cement-mixing polymer dispersion. It is performed so that it may become in the range of.

上記請求項3に示す発明によれば、親水性ウレタン樹脂の発泡硬化を比較的短時間で確実に行うことができる。すなわち、濃度が10重量%以下の場合に起こりうる親水性ウレタン樹脂の硬化時間の大幅な遅延を有効に防ぐとともに、90重量%以上の場合に起こりうる水不足起因の親水性ウレタン樹脂の硬化不良を防ぐことができる。   According to the third aspect of the present invention, the foaming and curing of the hydrophilic urethane resin can be reliably performed in a relatively short time. That is, a significant delay in the curing time of the hydrophilic urethane resin that can occur when the concentration is 10% by weight or less is effectively prevented, and the poor curing of the hydrophilic urethane resin due to water shortage that can occur when the concentration is 90% by weight or more. Can be prevented.

請求項4に示す発明は、請求項1乃至3の何れかに記載のセメント系組成体製構造物の止水工法であって、
前記親水性ウレタン樹脂は、上水道水に対して10重量%の濃度で前記樹脂を添加した際の硬化時間が、常温(20℃)で30分以上となる遅延硬化型樹脂であることを特徴とする。
Invention of Claim 4 is the water stop construction method of the structure made from the cement-type composition in any one of Claims 1 thru | or 3,
The hydrophilic urethane resin is a delayed curable resin having a curing time of 30 minutes or more at room temperature (20 ° C.) when the resin is added at a concentration of 10% by weight with respect to tap water. To do.

上記請求項4に示す発明によれば、親水性ウレタン樹脂として、上記のような遅延硬化型樹脂を用いている。よって、水性ポリマーエマルションと合流後の親水性ウレタン樹脂の発泡硬化の進行を適度に遅らせることができる。つまり、水性ポリマーエマルションと合流後の親水性ウレタン樹脂に係り、その流動性が高い状態を所定時間に亘って確保することができる。そして、これにより、注入器具内の流路での親水性ウレタン樹脂の硬化詰まりを有効に防ぎながら、親水性ウレタン樹脂と水性ポリマーエマルションとの混合物を吐出口から速やかに吐出して漏水空隙部分に円滑に注入可能となる。   According to the fourth aspect of the present invention, the delayed curable resin as described above is used as the hydrophilic urethane resin. Therefore, the progress of foam curing of the hydrophilic urethane resin after merging with the aqueous polymer emulsion can be appropriately delayed. That is, it is related to the hydrophilic urethane resin after merging with the aqueous polymer emulsion, and a high fluidity state can be secured for a predetermined time. Thus, while effectively preventing the clogging of the hydrophilic urethane resin in the flow path in the injection device, the mixture of the hydrophilic urethane resin and the aqueous polymer emulsion is quickly discharged from the discharge port to the leakage gap portion. Smooth injection is possible.

本発明によれば、事前の漏水空隙部分への水の注入作業を不要としながらも、親水性ウレタン樹脂の発泡硬化を確実に引き起こすことが可能であるとともに、漏水空隙部分での水性ポリマーエマルションの硬化も短時間でなすことが可能となる。   According to the present invention, it is possible to reliably cause foaming hardening of the hydrophilic urethane resin while eliminating the need for prior water injection operation into the water leakage gap portion, and the aqueous polymer emulsion in the water leakage gap portion Curing can be performed in a short time.

図1A乃至図1Dは、本実施形態の止水工法の説明図である。Drawing 1A thru / or Drawing 1D are explanatory views of a water stop construction method of this embodiment. 同止水工法に供される注入装置20の注入ヘッド25の一部破断側面図である。It is a partially broken side view of the injection head 25 of the injection device 20 provided for the water stop method. 親水性ウレタン樹脂の一例のHycel−OH−822Nの濃度(%)と硬化時間との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration (%) of Hycel-OH-822N of an example of a hydrophilic urethane resin, and hardening time. 本実施形態の止水材の引張試験結果である。It is a tensile test result of the water stop material of this embodiment.

===本実施形態===
図1A乃至図1Dは、本実施形態の止水工法の説明図である。また、図2は、同止水工法に供される注入装置20の注入ヘッド25の一部破断側面図である。
この止水工法は、コンクリート製構造物1のひび割れや打ち継ぎ部等の漏水空隙部分1pwに対して止水材を注入して漏水空隙部分1pwを埋めるものである。なお、この図1Aでは、漏水空隙部分1pwとしてひび割れ1pwを例示しているが、空隙であれば、何等これに限らない。
=== This Embodiment ===
Drawing 1A thru / or Drawing 1D are explanatory views of a water stop construction method of this embodiment. Moreover, FIG. 2 is a partially broken side view of the injection head 25 of the injection device 20 provided for the water stop method.
In this water stop construction method, a water stop material is injected into a water leak gap portion 1pw such as a crack or a joint portion of the concrete structure 1 to fill the water leak gap portion 1pw. In addition, in FIG. 1A, although the crack 1pw is illustrated as the water leaking gap portion 1pw, it is not limited to this as long as it is a gap.

図1Aに示すように、この止水工法では、先ず、止水対象のコンクリート製構造物1の近傍に注入装置20を搬入・配置する。注入装置20は、2液混合型の装置である。すなわち、互いに種類の異なる止水材を貯留する二つのタンク22,22と、タンク22,22毎に設けられたポンプ23,23と、各高圧ホース24,24を介して各ポンプ23,23から各止水材が圧送される注入器具25としての注入ヘッド25と、を有する。一方のタンク22には、第1止水材として液状の親水性ウレタン樹脂が貯留されており、もう一方のタンク22には、第2止水材として水性ポリマーエマルジョンが貯留されている。そして、これら親水性ウレタン樹脂と水性ポリマーエマルションとは、対応する各ポンプ23,23によってそれぞれ別個に注入ヘッド25へ圧送供給されるとともに、同ヘッド25内の流路SP25c(図2)で混合されて同ヘッド25の吐出口25hから混合状態で吐出される。
詳しくは、図2に示すように、注入ヘッド25は、二股形状の基部25aと、基部25aに一体に設けられる基部側筒部25bと、基部側筒部25bに適宜な管継手25jを介して略同軸且つ着脱自在に設けられる先端側筒部25cと、を有する。基部25aには、二つの流路R25a,R25aが設けられており、各流路R25a,R25aには、それぞれ上記二つの高圧ホース24,24のうちの対応する各高圧ホース24,24が接続されている。また、これら二つの流路R25a,R25aは基部25a内の所定位置で合流して一つの流路R25a1となっており、そして当該一つの流路R25a1は基部側筒部25bの筒内流路SP25bに繋がっており、更に当該筒内流路SP25bは、ミキサー26内蔵の上記先端側筒部25cの筒内流路SP25cに繋がっている。よって、各タンク22,22から圧送された親水性ウレタン樹脂及び水性ポリマーエマルションは、注入ヘッド25内の基部25a内で合流し、そして、基部側筒部25bを経て先端側筒部25cを通る際には、これら親水性ウレタン樹脂と水性ポリマーエマルションとは上記ミキサー26で撹拌・混合される。そして、当該混合状態で先端側筒部25cの吐出口25hから吐出される。
As shown in FIG. 1A, in this water stop method, first, an injection device 20 is carried in and arranged in the vicinity of the concrete structure 1 to be water stop. The injection device 20 is a two-liquid mixing type device. That is, two tanks 22 and 22 storing different types of water-stopping materials, pumps 23 and 23 provided for the tanks 22 and 22, and the pumps 23 and 23 through the high-pressure hoses 24 and 24, respectively. And an injection head 25 as an injection device 25 to which each water stop material is pumped. One tank 22 stores a liquid hydrophilic urethane resin as a first water-stopping material, and the other tank 22 stores an aqueous polymer emulsion as a second water-stopping material. The hydrophilic urethane resin and the aqueous polymer emulsion are separately pumped and supplied to the injection head 25 by the corresponding pumps 23 and 23 and mixed in the flow path SP25c (FIG. 2) in the head 25. Then, the liquid is discharged from the discharge port 25h of the head 25 in a mixed state.
Specifically, as shown in FIG. 2, the injection head 25 includes a bifurcated base portion 25a, a base side cylinder portion 25b provided integrally with the base portion 25a, and an appropriate pipe joint 25j on the base side cylinder portion 25b. A distal end side cylinder portion 25c provided substantially coaxially and detachably. The base 25a is provided with two flow paths R25a, R25a, and the corresponding high pressure hoses 24, 24 of the two high pressure hoses 24, 24 are connected to the flow paths R25a, R25a, respectively. ing. The two flow paths R25a and R25a merge at a predetermined position in the base portion 25a to form one flow path R25a1, and the one flow path R25a1 is the in-cylinder flow path SP25b of the base side cylinder portion 25b. Further, the in-cylinder flow path SP25b is connected to the in-cylinder flow path SP25c of the distal end side cylinder portion 25c built in the mixer 26. Therefore, the hydrophilic urethane resin and the aqueous polymer emulsion pumped from the tanks 22 and 22 merge in the base portion 25a in the injection head 25, and pass through the distal end side cylindrical portion 25c via the base side cylindrical portion 25b. The hydrophilic urethane resin and the aqueous polymer emulsion are stirred and mixed by the mixer 26. And it discharges from the discharge outlet 25h of the front end side cylinder part 25c in the said mixed state.

なお、上記のミキサー26は、先端側筒部25cと略同軸に筒内流路SP25cに収容された軸部と、当該軸部の外周面から螺旋状に突出するリブ部と、を有したものを本体としている。そして、かかる筒内流路SP25cを通過する際に、親水性ウレタン樹脂と水性ポリマーエマルションとの両者は、上記の螺旋状のリブ部によって撹拌される。   The mixer 26 has a shaft portion accommodated in the in-cylinder flow path SP25c substantially coaxially with the distal end side cylinder portion 25c, and a rib portion protruding spirally from the outer peripheral surface of the shaft portion. Is the main body. When passing through the in-cylinder flow path SP25c, both the hydrophilic urethane resin and the aqueous polymer emulsion are agitated by the spiral rib portion.

また、各ポンプ23,23の吐出圧力の大きさは、注入対象のひび割れ1pwの幅や深さに応じて、0(MPa)よりも大きく50(MPa)以下の範囲から適宜選択されるが、ひび割れ1pwの深部まで確実に注入させる観点からは、望ましくは10(MPa)以上50(MPa)以下の範囲から選択されると良い。   In addition, the magnitude of the discharge pressure of each pump 23, 23 is appropriately selected from a range greater than 0 (MPa) and less than or equal to 50 (MPa) depending on the width and depth of the crack 1pw to be injected. From the viewpoint of reliably injecting to the deep part of the crack 1 pw, it is preferable to select from a range of 10 (MPa) to 50 (MPa).

一方、かかる注入装置20の搬入・配置作業と同時並行或いは相前後して、図1Aに示すように、止水対象のコンクリート製構造物1に対し、漏水空隙部分1pwたるひび割れ1pwに繋がるように注入孔1hを穿孔する。なお、かかる注入孔1hは複数形成され、例えば、水平方向及び鉛直方向の各方向に対して200mm等の形成ピッチで並んで形成される。   On the other hand, as shown in FIG. 1A, as shown in FIG. 1A, the concrete structure 1 to be water-stopped is connected to a crack 1pw that is a water leakage gap portion 1pw at the same time or in parallel with the carrying-in / placement operation of the injection device 20. The injection hole 1h is drilled. A plurality of such injection holes 1h are formed, for example, formed side by side at a formation pitch of 200 mm or the like in each of the horizontal direction and the vertical direction.

そうしたら、図1Bのように、注入孔1hに注入ヘッド25の先端側筒部25cを差し込み、各ポンプ23,23を起動などして、先端側筒部25cの吐出口25hから、親水性ウレタン樹脂と水性ポリマーエマルションとの混合物を吐出し、これにより当該混合物をひび割れ1pwに注入する。なお、この注入された混合物は、短時間で硬化する。すなわち、親水性ウレタン樹脂の発泡硬化に必要な水は、水性ポリマーエマルションから供給され、他方、この供給により、水性ポリマーエマルションからは水が抜かれて、水性ポリマーエマルションは硬化する。よって、親水性ウレタン樹脂の発泡硬化が短時間でなされるだけでなく、水性ポリマーエマルションの硬化も短時間でなされる。   Then, as shown in FIG. 1B, the distal end side cylinder portion 25c of the injection head 25 is inserted into the injection hole 1h, the pumps 23 and 23 are activated, and the hydrophilic urethane is discharged from the discharge port 25h of the end side cylinder portion 25c. A mixture of resin and aqueous polymer emulsion is discharged, which is injected into the crack 1 pw. The injected mixture is cured in a short time. That is, the water necessary for foaming and curing the hydrophilic urethane resin is supplied from the aqueous polymer emulsion. On the other hand, the supply removes water from the aqueous polymer emulsion and the aqueous polymer emulsion is cured. Therefore, not only the foaming and curing of the hydrophilic urethane resin is performed in a short time, but also the aqueous polymer emulsion is cured in a short time.

なお、注入し終えたら、各ポンプ23,23を停止するか、或いは注入ヘッド25内の流路R25a,R25aを不図示のバルブで閉じる等して、吐出口25hからの吐出を停止し、そして図1Cのように注入ヘッド25の先端側筒部25cを注入孔1hから抜く。そうしたら、この注入孔1hの水平方向又は鉛直方向の隣に位置する未注入の注入孔1h(図1A乃至図1Dでは不図示)へ移行して、当該注入孔1hに対して上述の注入作業を繰り返す。また、注入済みの注入孔1hには、図1Dのように、モルタル等の適宜な充填材を充填等して孔の無い状態に仕上げる。   When the injection is completed, the pumps 23 and 23 are stopped, or the discharge from the discharge port 25h is stopped by closing the flow paths R25a and R25a in the injection head 25 with a valve (not shown), and As shown in FIG. 1C, the distal end side cylinder portion 25c of the injection head 25 is removed from the injection hole 1h. If it does so, it will transfer to the uninjected injection hole 1h (not shown in FIG. 1A thru | or FIG. 1D) located in the horizontal direction or the vertical direction of this injection hole 1h, and the above-mentioned injection | pouring operation | work with respect to the said injection hole 1h repeat. Further, as shown in FIG. 1D, the injected injection hole 1h is filled with an appropriate filler such as mortar so as to be finished without a hole.

ちなみに、一つの注入孔1hへの注入作業が終わった時点の先端側筒部25cの筒内流路SP25cには(図2を参照)、内蔵のミキサー26の混合・撹拌作用により親水性ウレタン樹脂と水性ポリマーエマルションとが高度に混合された状態で存在している。そのため、時間の経過と伴に硬化して詰まる恐れがあって、当該先端側筒部25cをそのまま使用すると、次の注入作業に支障を来す可能性がある。よって、かかる詰まりが懸念される場合には、先端側筒部25cを基部側筒部25bから管継手25jのところで取り外して未使用の先端側筒部25cに付け替えてから次の注入作業を行うのが望ましい。   Incidentally, in the in-cylinder flow path SP25c of the distal end side cylinder part 25c at the time when the injection operation into one injection hole 1h is finished (see FIG. 2), hydrophilic urethane resin is obtained by the mixing / stirring action of the built-in mixer 26. And an aqueous polymer emulsion are present in a highly mixed state. For this reason, there is a possibility that it will harden and become clogged with the passage of time, and if the distal end side cylinder portion 25c is used as it is, there is a possibility that the next injection operation will be hindered. Therefore, when such clogging is a concern, the distal end side cylinder part 25c is removed from the base side cylinder part 25b at the pipe joint 25j and replaced with an unused distal end side cylinder part 25c before the next injection operation is performed. Is desirable.

ところで、水性ポリマーエマルションとしては、例えば日本工業規格JISA6203:2000「セメント混和用ポリマーディスパージョン又は再乳化形粉末樹脂」の規格を満足するセメント混和用ポリマーディスパージョンを例示できる。ここで、当該セメント混和用ポリマーディスパージョンとは、同規格に定義されているように、水の中にポリマーの微粒子が分散している系のことである。そして、同規格には、その種類として、セメント混和用樹脂エマルションと、セメント混和用ゴムラテックスとの2種類が記載されている。前者のセメント混和用樹脂エマルションは、エチレン酢酸ビニル系、アクリル酸エステル系、樹脂アスファルト系などの樹脂エマルションに安定化剤、消泡剤などを加えて、よく分散させ均質にしたものであり、後者のセメント混和用ゴムラテックスは、合成ゴム系、天然ゴム系、ゴムアスファルト系などのゴムラテックスに安定化剤、消泡剤などを加えて、よく分散させ均質にしたものである。そして、ここでは、そのうちのセメント混和用樹脂エマルションとしてポリエチレン系水性エマルションを使用している。より具体的には、ポリエチレン系水性エマルションとして、ナルライト(製品名:成瀬化学株式会社製)を使用している。但し、何等ナルライトなどのポリエチレン系水性エマルションに限るものではなく、上記に例示のセメント混和用樹脂エマルションやセメント混和用ゴムラテックスについても、好適に使用可能である。   By the way, as an aqueous polymer emulsion, the polymer dispersion for cement mixing which satisfies the specification of Japanese Industrial Standard JISA6203: 2000 "polymer dispersion for cement mixing or re-emulsified powder resin" can be illustrated, for example. Here, the polymer dispersion for cement admixture is a system in which fine particles of polymer are dispersed in water as defined in the same standard. The standard describes two types of resin emulsion for cement admixture and rubber latex for cement admixture. The former resin emulsion for admixture with cement is a resin emulsion such as ethylene vinyl acetate, acrylate ester, resin asphalt, etc., which is well dispersed and homogenized by adding stabilizers and antifoaming agents. The rubber rubber for cement admixture is obtained by adding a stabilizer, an antifoaming agent, etc. to a rubber latex such as a synthetic rubber, natural rubber, or rubber asphalt, and dispersing and homogenizing it well. Here, a polyethylene-based aqueous emulsion is used as the resin emulsion for mixing with cement. More specifically, nallite (product name: manufactured by Naruse Chemical Co., Ltd.) is used as the polyethylene-based aqueous emulsion. However, the present invention is not limited to polyethylene-based aqueous emulsions such as nallite, and the above-described cement-mixing resin emulsions and cement-mixing rubber latexes can also be suitably used.

そして、かかるセメント混和用ポリマーディスパージョンによれば、そのポリマー由来の長期の化学的安定性、すなわち高い耐久性が、発泡硬化後の親水性ウレタン樹脂に付与される。よって、発泡硬化後に起こり得る親水性ウレタン樹脂の加水分解や肉やせ、バクテリア孔食、コンクリート中のアルカリ分による劣化などを有効に防ぐことができて、その結果、長期に亘り安定した止水効果を発揮することができる。
また、同ポリマーは、良好な伸び能力、高い引張強さ、及び高い接着能を有するので、当該ポリマーによって複合化された親水性ウレタン樹脂には、これらの特性も付与される。よって、止水施工後に起こり得るコンクリート製構造物1の乾燥収縮等の変形に対しても、ひび割れ1pwからの剥がれや破断など無く速やかに追従して変形可能であり、このことも上記の止水効果の安定化に有効に寄与する。ちなみに、上記セメント混和用ポリマーディスパージョンの一例としてポリエチレン系水性エマルションを用いて親水性ウレタン樹脂を複合化した場合に、当該複合化された親水性ウレタン樹脂が、良好な伸び能力及び高い引張強さを具備していることについては、引張試験で確認済みであり、当該引張試験結果については後述する。
And according to the polymer dispersion for cement admixture, long-term chemical stability derived from the polymer, that is, high durability is imparted to the hydrophilic urethane resin after foam curing. Therefore, it is possible to effectively prevent hydrolytic urethane resin hydrolysis, flesh thinning, bacterial pitting, and deterioration due to alkali content in concrete, which can occur after foam hardening, resulting in a stable water-stopping effect over a long period of time. Can be demonstrated.
Further, since the polymer has good elongation ability, high tensile strength, and high adhesion ability, these characteristics are also imparted to the hydrophilic urethane resin compounded by the polymer. Therefore, deformation such as drying shrinkage of the concrete structure 1 that may occur after the water stop construction can be quickly followed without deformation or breakage from the crack 1pw. Contributes effectively to stabilizing the effect. By the way, when a hydrophilic urethane resin is combined using a polyethylene-based aqueous emulsion as an example of the polymer dispersion for cement admixture, the combined hydrophilic urethane resin has good elongation capacity and high tensile strength. Has been confirmed by a tensile test, and the results of the tensile test will be described later.

一方、親水性ウレタン樹脂としては、例えばHycel−OH−822N、Hycel−OH−1X、Hycel−OH−1AX、Hycel−OH−3X(何れも製品名:東邦化学工業株式会社製)などを例示できるが、ここでは、硬化時間が遅め(長め)の遅延硬化型としてHycel−OH−822Nを使用している。   On the other hand, examples of the hydrophilic urethane resin include Hycel-OH-822N, Hycel-OH-1X, Hycel-OH-1AX, Hycel-OH-3X (all are product names: manufactured by Toho Chemical Co., Ltd.). However, Hycel-OH-822N is used here as a delayed curing type with a slower (longer) curing time.

そして、かかる遅延硬化型を用いれば、その発泡硬化の進行が遅いことに基づいて、図2の注入ヘッド25の基部25aの流路R25a1及び基部側筒部25bの筒内流路SP25bでの親水性ウレタン樹脂の硬化詰まりを有効に防ぐことができて、これにより、次の注入孔1hへの注入作業の移行を円滑に行うことができる。詳しくは次の通りである。
先ず、吐出口25hからの吐出を停止する注入終了時点では、既述のように、基部25aの流路R25a1及び基部側筒部25bの筒内流路SP25bには、親水性ウレタン樹脂と水性ポリマーエマルションとが高度な混合状態ではないが、合流状態で存在している。そのため、軽度に発泡硬化し得る状態にある。但し、当該合流状態が長時間続くと、発泡硬化が進行して基部25aの流路R25a1及び基部側筒部25bの筒内流路SP25bが詰まる恐れがある。また、既述のように先端側筒部25cについては、管継手25jで分離して交換可能に構成されているが、基部25a及び基部側筒部25bについては交換することができない。そのため、仮に基部25aの流路R25a1や基部側筒部25bの筒内流路SP25bにおいて硬化して詰まると、次の注入孔1hの注入作業を行えなくなってしまい、工期の遅延を招く。よって、所定の注入口1hでの吐出を停止してから、次の注入孔1hでの吐出を開始するまでの間に、基部25aの流路R25a1や基部側筒部25bの筒内流路SP25bにおいて硬化詰まりが生じないように硬化の進行を多少遅らせる目的で、親水性ウレタン樹脂に遅延硬化型を用いている。そして、これにより、次の注入孔1hへの注入作業を円滑に行えるようにしている。
Then, if such a delayed curing type is used, the hydrophilicity in the flow path R25a1 of the base portion 25a of the injection head 25 and the in-cylinder flow path SP25b of the base side cylinder portion 25b is based on the slow progress of the foam hardening. The hardened clogging of the conductive urethane resin can be effectively prevented, and thereby the transition of the injection operation to the next injection hole 1h can be performed smoothly. Details are as follows.
First, as described above, at the time of completion of injection at which discharge from the discharge port 25h is stopped, hydrophilic urethane resin and aqueous polymer are provided in the flow path R25a1 of the base portion 25a and the in-cylinder flow path SP25b of the base side cylinder portion 25b. Although it is not in a highly mixed state with the emulsion, it exists in a combined state. Therefore, it is in a state where it can be slightly foamed and cured. However, if the merging state continues for a long time, the foam hardening may proceed and the flow path R25a1 of the base portion 25a and the in-cylinder flow path SP25b of the base side cylinder portion 25b may be clogged. Further, as described above, the distal end side cylinder portion 25c is configured to be exchangeable by being separated by the pipe joint 25j, but the base portion 25a and the base side cylinder portion 25b cannot be exchanged. Therefore, if it hardens and clogs in the flow path R25a1 of the base portion 25a and the in-cylinder flow path SP25b of the base portion side cylinder portion 25b, the next injection hole 1h cannot be injected, resulting in a delay in the construction period. Therefore, the flow path R25a1 of the base portion 25a and the in-cylinder flow path SP25b of the base side cylinder portion 25b after the discharge at the predetermined injection port 1h is stopped until the discharge at the next injection hole 1h is started. For the purpose of delaying the progress of curing somewhat so as not to cause clogging during curing, a delayed curing type is used for the hydrophilic urethane resin. And thereby, the injection | pouring operation | work to the next injection hole 1h can be performed smoothly.

但し、かかる遅延硬化型の親水性ウレタン樹脂は、何等上記のHycel−OH−822Nに限るものではない。すなわち、当該Hycel−OH−822Nとほぼ同程度に硬化時間が長い親水性ウレタン樹脂であれば、上述のHycel−OH−822Nと同様に注入作業の移行容易性を奏することができるので、好適に用いることができる。   However, the delayed curing type hydrophilic urethane resin is not limited to Hycel-OH-822N. That is, a hydrophilic urethane resin having a curing time almost as long as that of the Hycel-OH-822N can exhibit the ease of transfer of the injection operation similarly to the Hycel-OH-822N described above. Can be used.

なお、上記の遅延硬化型に該当するか否かの判定方法の一例としては、例えば、次の方法が挙げられる。先ず、判定対象の親水性ウレタン樹脂を上水道水に対して10重量%の濃度で添加し、また添加後の温度を20℃に維持する。そして、その添加後の硬化時間が、30分間以上であった場合には、この判定対象の親水性ウレタン樹脂も、上記の遅延硬化型に該当するものと判定される。ちなみに、上記の硬化時間は、10重量%の濃度で親水性ウレタン樹脂を上水道水に添加後に、指触乾燥(JIS K 5500塗料用語による)するまでに要した時間のことである。   In addition, as an example of the determination method of whether it corresponds to said delayed hardening type, the following method is mentioned, for example. First, the hydrophilic urethane resin to be determined is added at a concentration of 10% by weight with respect to tap water, and the temperature after the addition is maintained at 20 ° C. And when the hardening time after the addition is 30 minutes or more, it is determined that the hydrophilic urethane resin to be determined also corresponds to the delayed curing type. Incidentally, the above-mentioned curing time is the time required for finger-drying (according to JIS K 5500 paint term) after adding a hydrophilic urethane resin to tap water at a concentration of 10% by weight.

ここで、望ましくは、かかる親水性ウレタン樹脂とセメント混和用ポリマーディスパージョンとの配合を、セメント混和用ポリマーディスパージョンの不揮発分(固形分)を除く、水分に対する親水性ウレタン樹脂の濃度が20〜80重量%の範囲内となるように行うと良い。   Here, desirably, the concentration of the hydrophilic urethane resin with respect to moisture is 20 to 20 except for the non-volatile content (solid content) of the polymer dispersion for cement admixture of the hydrophilic urethane resin and the polymer dispersion for cement admixture. It is good to carry out so that it may become in the range of 80 weight%.

そして、このように配合されれば、親水性ウレタン樹脂の発泡硬化を比較的短時間で確実に行うことができる。すなわち、図3Aのグラフに示すように、濃度が10重量%以下の場合に起こりうる親水性ウレタン樹脂の硬化時間の大幅な遅延を有効に防ぐとともに、90重量%以上の場合に起こりうる水不足起因の親水性ウレタン樹脂の硬化不良を有効に防ぐことができる。ちなみに、図3A中の各硬化時間は、Hycel−OH−822Nを各濃度で上水道水に添加後に、常温(20℃)において、当該濃度の親水性ウレタン樹脂が、指触乾燥(JIS K 5500塗料用語による)するまでに要した時間のことである。   And if it mix | blends in this way, foaming hardening of hydrophilic urethane resin can be performed reliably in a comparatively short time. That is, as shown in the graph of FIG. 3A, it is possible to effectively prevent a significant delay in the curing time of the hydrophilic urethane resin that may occur when the concentration is 10% by weight or less, and to cause water shortage that may occur when the concentration is 90% by weight or more. It is possible to effectively prevent poor curing of the hydrophilic urethane resin. By the way, each curing time in FIG. 3A shows that after the addition of Hycel-OH-822N to tap water at various concentrations, the hydrophilic urethane resin of the concentration is dried by touch (JIS K 5500 paint) at room temperature (20 ° C.). This is the time it took to complete (by term).

図3Bは、本実施形態の2液型の止水材、すなわち親水性ウレタン樹脂と水性ポリマーエマルションとを混合してなる止水材の引張試験結果の表である。なお、同表には、比較例として1液型の親水性ウレタン樹脂の止水材の引張試験結果も併記している。   FIG. 3B is a table showing a tensile test result of the two-component water-stopping material of the present embodiment, that is, a water-stopping material obtained by mixing a hydrophilic urethane resin and an aqueous polymer emulsion. In the table, as a comparative example, a tensile test result of a one-component hydrophilic urethane resin water-stopping material is also shown.

この引張試験では、本実施形態の止水材及び比較例の止水材の各々につき、帯板状に硬化した試験片を3つずつ用意した。そして、各試験片の長手方向の両端部を力点として50(mm/分)の引張速度で長手方向に引っ張るとともに、試験片が破断した際の長手方向の長さLm及び引張荷重Pmを測定し、当該長さLm及び引張荷重Pm等を下式1、式2に代入して、引張強さや伸び率を算出した。
引張強さ(N/mm)=Pm/(w×t) … (1)
伸び率(%)=(Lm−L0)/L0×100 … (2)
なお、上式1中のw及びtは、それぞれ無負荷時の試験片の幅w及び厚さtであり、同表には、これらの幅w及び厚さtの数値も併記している。また、上式2中のL0は、無負荷時の長手方向の長さであり、つまり、L0の長さの部分が、破断時にはLmになったということである。なお、ここではL0を50mmとした。
In this tensile test, for each of the waterstop material of this embodiment and the waterstop material of the comparative example, three test pieces cured in a strip shape were prepared. And while pulling in the longitudinal direction at a tensile speed of 50 (mm / min) using both ends in the longitudinal direction of each test piece as a force point, the length Lm in the longitudinal direction and the tensile load Pm when the test piece broke were measured. The length Lm and the tensile load Pm were substituted into the following formulas 1 and 2 to calculate the tensile strength and elongation.
Tensile strength (N / mm 2 ) = Pm / (w × t) (1)
Elongation rate (%) = (Lm−L0) / L0 × 100 (2)
In addition, w and t in the above formula 1 are the width w and thickness t of the test piece at the time of no load, respectively, and the numerical values of these width w and thickness t are also shown in the same table. Further, L0 in the above formula 2 is the length in the longitudinal direction when there is no load, that is, the portion of the length of L0 becomes Lm at the time of breakage. Here, L0 was set to 50 mm.

また、本実施形態の2液型の止水材の試験片については、親水性ウレタン樹脂として100(cm)のHycel−OH−822Nを使用し、また水性ポリマーエマルションとして、固形分が55重量%のナルライトを使用した。なお、親水性ウレタン樹脂と水性ポリマーエマルションとの配合比は、1:2とした。そして、これらを混合して硬化させることにより、本実施形態に係る帯板状の試験片を形成した。 Moreover, about the test piece of the 2 liquid-type water-stopping material of this embodiment, 100 (cm < 3 >) Hycel-OH-822N is used as hydrophilic urethane resin, and solid content is 55 weight as an aqueous polymer emulsion. % Nallite was used. The mixing ratio between the hydrophilic urethane resin and the aqueous polymer emulsion was 1: 2. And these were mixed and hardened, and the strip-shaped test piece which concerns on this embodiment was formed.

他方、比較例の1液型の止水材の試験片についても、100(cm)のHycel−OH−822Nを使用しているが、発泡硬化させるべく20重量%の濃度で純水を添加し、これにより、比較例の帯板状の試験片を形成した。 On the other hand, 100 (cm 3 ) Hycel-OH-822N was used for the test piece of the one-component water-stopping material of the comparative example, but pure water was added at a concentration of 20% by weight for foam curing. Thus, a strip-like test piece of a comparative example was formed.

図3Bの引張試験結果の表を見ると、比較例の止水材と比べて、本実施形態の止水材は、伸び率及び引張強さのどちらの値も非常に大きくなっており、このことから、伸び能力及び引張強さの点で格段に優れていることがわかる。よって、本実施形態の止水材は、1液型の親水性ウレタン樹脂と比べて、長期に亘り安定した止水効果を奏し得ることが、試験によっても裏付けられた。   When the table of the tensile test result of FIG. 3B is seen, compared with the water stop material of a comparative example, both the values of elongation rate and tensile strength of the water stop material of this embodiment are very large. This shows that it is remarkably excellent in terms of elongation ability and tensile strength. Therefore, it was proved by the test that the water-stopping material of the present embodiment can exhibit a water-stopping effect that is stable over a long period of time as compared with the one-pack type hydrophilic urethane resin.

ちなみに、このように本実施形態の止水材の引張強さや伸び率が大きい理由は、親水性ウレタン樹脂の発泡部分の多数の空孔の表面が、ポリエチレン系ポリマーでコーティングされることにより、同ポリマーの良好な伸び能力、及び高い引張強さが同親水性ウレタン樹脂に付与されたためと推察される。   Incidentally, the reason why the waterproofing material of this embodiment has such a large tensile strength and elongation rate is that the surface of a large number of pores in the foamed portion of the hydrophilic urethane resin is coated with a polyethylene polymer. This is presumably because the polymer had good elongation capacity and high tensile strength.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、セメント系組成体製構造物の一例として、コンクリート製構造物1を例示したが、何等これに限らずモルタル製でも良い。   In the above-described embodiment, the concrete structure 1 is illustrated as an example of the cement-based composition structure. However, the structure is not limited thereto, and may be made of mortar.

1 コンクリート製構造物(セメント系組成体製構造物)、
1h 注入孔、1pw ひび割れ(漏水空隙部分)、
20 注入装置、22 タンク、
23 ポンプ、24 高圧ホース、
25 注入ヘッド(注入器具)、
25a 基部、25b 基部側筒部、25c 先端側筒部、
25h 吐出口、25j 管継手、
26 ミキサー、
R25a 流路、R25a1 流路、
SP25b 筒内流路、SP25c 筒内流路、
1 concrete structure (structure made of cement-based composition),
1h injection hole, 1pw crack (water leakage gap),
20 injection devices, 22 tanks,
23 pump, 24 high pressure hose,
25 injection head (injection device),
25a base, 25b base side cylinder, 25c tip side cylinder,
25h Discharge port, 25j fitting,
26 mixer,
R25a channel, R25a1 channel,
SP25b in-cylinder flow path, SP25c in-cylinder flow path,

Claims (4)

セメント系組成体製構造物の漏水空隙部分に止水材を注入器具で注入して止水する止水工法であって、
前記注入器具は、
二股形状の基部と、
前記基部に一体に設けられる基部側筒部と、
前記基部側筒部に管継手を介して着脱自在に設けられ、前記漏水空隙部分に連通される吐出口と前記吐出口に連通する流路とを有する先端側筒部と、を備え、
前記注入器具に対してそれぞれ別個に供給される液状の親水性ウレタン樹脂と水性ポリマーエマルションとを、前記流路内で混合しながら前記吐出口から吐出して前記漏水空隙部分に注入し、
前記先端側筒部を前記基部側筒部から管継手のところで取り外して未使用の先端側筒部に付け替えてから次の注入作業を行うことを特徴とするセメント系組成体製構造物の止水工法。
A water-stop method for stopping water by injecting a water-stopping material into a water leakage gap portion of a cement-based composition structure with an injection device,
The injection device is
A bifurcated base,
A base-side tube portion provided integrally with the base portion;
The proximal tubular portion via the pipe joint detachably attached to, and a distal cylindrical portion which have a a flow path communicating with the leakage gap portion communicated is discharge port and the discharge port,
Liquid hydrophilic urethane resin and aqueous polymer emulsion, which are separately supplied to the injection device, are discharged from the discharge port while being mixed in the flow path, and injected into the leakage gap portion ,
The water stop of the structure made of a cementitious composition, wherein the next injection operation is performed after the front end side cylinder part is removed from the base side cylinder part at a pipe joint and replaced with an unused front end side cylinder part. Construction method.
請求項1に記載のセメント系組成体製構造物の止水工法であって、
前記水性ポリマーエマルションは、日本工業規格JISA6203:2000「セメント混和用ポリマーディスパージョン又は再乳化形粉末樹脂」の規格を満足するセメント混和用ポリマーディスパージョンであることを特徴とするセメント系組成体製構造物の止水工法。
It is a water stop construction method of the structure made from cement system composition according to claim 1,
Cement-based composition structure characterized in that the aqueous polymer emulsion is a cement-dispersed polymer dispersion that satisfies the standards of Japanese Industrial Standard JIS A6203: 2000 "Cement-mixed polymer dispersion or re-emulsified powder resin". Water-stop construction method.
請求項2に記載のセメント系組成体製構造物の止水工法であって、
前記親水性ウレタン樹脂と前記セメント混和用ポリマーディスパージョンとの配合は、前記セメント混和用ポリマーディスパージョンの不揮発分(固形分)を除く、水分に対する前記親水性ウレタン樹脂の濃度が20〜80重量%の範囲内となるように行われることを特徴とするセメント系組成体製構造物の止水工法。
It is a water stop construction method of the structure made from cement system composition according to claim 2,
The blend of the hydrophilic urethane resin and the cement-mixing polymer dispersion is such that the concentration of the hydrophilic urethane resin with respect to moisture is 20 to 80% by weight excluding the non-volatile content (solid content) of the cement-mixing polymer dispersion. A water stop construction method for a structure made of a cementitious composition, which is carried out so as to fall within the range of
請求項1乃至3の何れかに記載のセメント系組成体製構造物の止水工法であって、
前記親水性ウレタン樹脂は、上水道水に対して10重量%の濃度で前記樹脂を添加した際の硬化時間が、常温(20℃)で30分以上となる遅延硬化型樹脂であることを特徴とするセメント系組成体製構造物の止水工法。
A waterproofing method for a structure made of a cement-based composition according to any one of claims 1 to 3,
The hydrophilic urethane resin is a delayed curable resin having a curing time of 30 minutes or more at room temperature (20 ° C.) when the resin is added at a concentration of 10% by weight with respect to tap water. Water stop construction method for a cement-based composition structure.
JP2013056564A 2013-03-19 2013-03-19 Water stoppage method for structures made of cementitious composition Active JP6171438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056564A JP6171438B2 (en) 2013-03-19 2013-03-19 Water stoppage method for structures made of cementitious composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056564A JP6171438B2 (en) 2013-03-19 2013-03-19 Water stoppage method for structures made of cementitious composition

Publications (2)

Publication Number Publication Date
JP2014181486A JP2014181486A (en) 2014-09-29
JP6171438B2 true JP6171438B2 (en) 2017-08-02

Family

ID=51700476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056564A Active JP6171438B2 (en) 2013-03-19 2013-03-19 Water stoppage method for structures made of cementitious composition

Country Status (1)

Country Link
JP (1) JP6171438B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193869A (en) * 2016-04-20 2017-10-26 寿建設株式会社 Countermeasure method to water leakage from concrete surface
JP6842054B2 (en) * 2016-07-06 2021-03-17 株式会社大林組 Aqueous emulsion and water stop method
JP6818271B2 (en) * 2016-09-06 2021-01-20 株式会社大林組 Water-stopping method for water-stopping liquid mixing injection system, water-stopping liquid mixing injection plug and cement-based composition structure
JP7405356B2 (en) * 2019-03-22 2023-12-26 株式会社大林組 Water stop materials and water stop construction methods
AU2021232207B2 (en) * 2020-03-05 2023-01-05 RCSM Enterprises Pty Ltd Methods and formulations for sealing structural leaks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092562A (en) * 1983-10-26 1985-05-24 小林 直彦 Injection of chemical liquid into minute cracks of concrete building
JPH111537A (en) * 1997-06-13 1999-01-06 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophilic urethane resin composition and water-in-ground cut-off stabilizer containing the same
JP3996009B2 (en) * 2002-07-31 2007-10-24 東亜道路工業株式会社 Two-part waterstop composition
JP4476859B2 (en) * 2005-03-31 2010-06-09 住友大阪セメント株式会社 Dry mortar spraying method

Also Published As

Publication number Publication date
JP2014181486A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP6171438B2 (en) Water stoppage method for structures made of cementitious composition
CN108137409A (en) Fastening system and application thereof
KR101785061B1 (en) Method for grouting using steel pipe and apparatus for the same
JP5300162B1 (en) Water-stop agent, water-stop method, and injection device
JP2008024925A (en) Plastic grout material and method for producing the same
JP2000054794A (en) Filling method for cavity part and grout used therefor
JP2014129675A (en) Ground reinforcement method and injection system
JP5334379B2 (en) Hollow steel pipe reinforcement method for power transmission tower
JP6220195B2 (en) Leakage cracking water-stopping material using high-performance inorganic crack injection material and its waterproofing method
JP2001288469A (en) Plastic grout injection method
JP5861937B2 (en) Filling method of filler
JP6842054B2 (en) Aqueous emulsion and water stop method
KR102535741B1 (en) Inorganic anchor material and method for anchoring anchor bar using the same
JP2018150477A (en) Grout material and grout injection method
JP2006283335A (en) Dry mortar spraying method
JP4674171B2 (en) Rehabilitation method for existing pipes
JP3515014B2 (en) Filling method for cavity
JP5234539B2 (en) Construction method of underwater pillar
JP6561014B2 (en) Gap filler and method for producing the same
KR101420207B1 (en) Pipe for Injecting Chemical Grout and Grouting Method Using the Same
JP6395030B2 (en) First mixture for producing plastic injection material, method for producing plastic injection material, and method for applying plastic injection material
JP7405356B2 (en) Water stop materials and water stop construction methods
JP5422316B2 (en) Lightweight mortar construction method and lightweight mortar
JP2018111992A (en) Construction method of sprayed concrete
JP5641396B2 (en) Light injection material and injection method of light injection material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250