JP6164093B2 - Method for manufacturing permanent magnet - Google Patents

Method for manufacturing permanent magnet Download PDF

Info

Publication number
JP6164093B2
JP6164093B2 JP2014003602A JP2014003602A JP6164093B2 JP 6164093 B2 JP6164093 B2 JP 6164093B2 JP 2014003602 A JP2014003602 A JP 2014003602A JP 2014003602 A JP2014003602 A JP 2014003602A JP 6164093 B2 JP6164093 B2 JP 6164093B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
base material
insulating coating
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014003602A
Other languages
Japanese (ja)
Other versions
JP2015133812A (en
Inventor
慎司 若松
慎司 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014003602A priority Critical patent/JP6164093B2/en
Publication of JP2015133812A publication Critical patent/JP2015133812A/en
Application granted granted Critical
Publication of JP6164093B2 publication Critical patent/JP6164093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、永久磁石型回転電機の回転子に埋め込まれる永久磁石の製造方法に関する。   The present invention relates to a method for manufacturing a permanent magnet embedded in a rotor of a permanent magnet type rotating electrical machine.

従来より、鉄道車両や電気自動車等の駆動源として永久磁石型の回転電機が用いられている。周知の通り、永久磁石型の回転電機のロータには、複数の永久磁石が埋め込まれる。回転電機の駆動時、この永久磁石を、ステータコイルによって発生される強い磁束が貫く為、永久磁石には大きな渦電流が発生する。その結果、回転電機の損失が大きくなり効率の低下を招くだけでなく、発熱により永久磁石の減磁が生じるといった問題があった。   Conventionally, a permanent magnet type rotating electrical machine has been used as a drive source for railway vehicles and electric vehicles. As is well known, a plurality of permanent magnets are embedded in a rotor of a permanent magnet type rotating electrical machine. When the rotary electric machine is driven, a strong magnetic flux generated by the stator coil penetrates the permanent magnet, so that a large eddy current is generated in the permanent magnet. As a result, there is a problem that not only the loss of the rotating electrical machine is increased and the efficiency is lowered, but also the demagnetization of the permanent magnet occurs due to heat generation.

この対策として、各々絶縁された複数の永久磁石片を組み合わせて永久磁石を構成し、これに発生する渦電流を小さくすると共に渦電流を各磁石片内に留めることで、永久磁石に生じる渦電流を低減することが行われている。   As a countermeasure, a plurality of insulated permanent magnet pieces are combined to form a permanent magnet. The eddy current generated in the permanent magnet is reduced while reducing the eddy current generated in the permanent magnet. Has been done to reduce.

例えば、特許文献1には、複数の永久磁石片をそれぞれ絶縁被膜で覆い、この複数の永久磁石片を接合することで、複数の永久磁石片からなるものの一部材として取り扱い可能な永久磁石を製造する技術が開示されている。この特許文献1では、最終的に得られる永久磁石の寸法を担保するために、永久磁石片を接合して一つの永久磁石を得た後、研削等で当該永久磁石を、規定の寸法に削った後、この永久磁石の全面を絶縁被膜で覆うことも開示されている。   For example, in Patent Document 1, a plurality of permanent magnet pieces are each covered with an insulating film, and the plurality of permanent magnet pieces are joined to manufacture a permanent magnet that can be handled as a member made of a plurality of permanent magnet pieces. Techniques to do this are disclosed. In Patent Document 1, in order to ensure the dimensions of the finally obtained permanent magnet, the permanent magnet pieces are joined to obtain one permanent magnet, and then the permanent magnet is ground to a specified dimension by grinding or the like. After that, covering the entire surface of the permanent magnet with an insulating film is also disclosed.

特開2003−134750号公報JP 2003-134750 A

こうした特許文献1の技術によれば、渦電流の発生、ひいては、回転電機の効率低下、永久磁石の減磁といった問題を低減できる。しかし、特許文献1の技術では、複数の永久磁石片それぞれに対しての被膜加工や、複数の磁石片の接合加工が必要であるため、加工費が増加するという問題があった。また、複数の永久磁石片を接合して一つの永久磁石を形成しているため、寸法の維持が困難であり、歩留まりが悪化するといった問題も招いていた。そこで、本発明は、より簡易に永久磁石を製造できる製造方法を提供することを目的とする。   According to such a technique of Patent Document 1, problems such as generation of eddy currents, and consequently reduction in efficiency of the rotating electrical machine and demagnetization of the permanent magnets can be reduced. However, the technique of Patent Document 1 has a problem in that the processing cost increases because it is necessary to perform coating processing on each of the plurality of permanent magnet pieces and joining processing of the plurality of magnet pieces. In addition, since a single permanent magnet is formed by joining a plurality of permanent magnet pieces, it is difficult to maintain the dimensions and the yield is deteriorated. Then, an object of this invention is to provide the manufacturing method which can manufacture a permanent magnet more simply.

本発明の永久磁石の製造方法は、永久磁石型回転電機の回転子に埋め込まれる永久磁石の製造方法であって、磁石母材に分割用のスリットを形成する工程と、前記スリットが形成された磁石母材の外表面全体を、弾性を有した絶縁性被膜で被覆する工程と、前記絶縁性被膜で被覆された磁石母材に外部から衝撃を加え、前記絶縁性被膜内の磁石母材のみを分割する工程と、を備えることを特徴とする。 The method for producing a permanent magnet according to the present invention is a method for producing a permanent magnet embedded in a rotor of a permanent magnet type rotating electrical machine, wherein a slit for dividing is formed in a magnet base material, and the slit is formed. A step of coating the entire outer surface of the magnet base material with an insulating coating having elasticity, and an external impact is applied to the magnet base material coated with the insulating coating, and only the magnet base material in the insulating coating is applied. And a step of dividing.

本発明によれば、磁石母材に対してのみ被覆加工をすればよく、また、分割後の磁石片を接合する工程が不要となるため、より簡易に永久磁石を製造できる。   According to the present invention, it is only necessary to coat the magnet base material, and a step of joining the divided magnet pieces is not necessary, so that a permanent magnet can be manufactured more easily.

本発明の実施形態である永久磁石の製造工程を示す図である。It is a figure which shows the manufacturing process of the permanent magnet which is embodiment of this invention. 永久磁石を適用した回転電機の一例を示す図である。It is a figure which shows an example of the rotary electric machine to which a permanent magnet is applied.

以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の実施形態である永久磁石10の製造工程を示す図である。また、図2は、この永久磁石10を適用した永久磁石型回転電機100の一例を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a manufacturing process of a permanent magnet 10 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of a permanent magnet type rotating electrical machine 100 to which the permanent magnet 10 is applied.

はじめに図2を参照して永久磁石型回転電機100について簡単に説明する。回転電機100は、円環形のステータ110と、このステータ110と同軸的に配置された円柱形のロータ120とから構成される。ステータ110は、ステータコア111と、複数のコイル112とから構成され、複数のコイル112はステータコア111に回転軸123を中心とした同一円周上に等角度間隔で形成されるスロットに収設される。   First, the permanent magnet type rotating electrical machine 100 will be briefly described with reference to FIG. The rotating electrical machine 100 includes an annular stator 110 and a columnar rotor 120 disposed coaxially with the stator 110. The stator 110 includes a stator core 111 and a plurality of coils 112, and the plurality of coils 112 are accommodated in slots formed at equal angular intervals on the same circumference around the rotation shaft 123. .

ロータ120は、ロータコア121と、ロータコア121と一体的に回転する回転軸123と、複数の永久磁石10とから構成され、複数の永久磁石10は軸心Oを中心として周方向に均等に形成されたスロットに収設される。なお、図1では、上面視矩形の永久磁石10を略V字状に並べる形態を例示しているが、永久磁石10の形状は矩形に限らず、円弧状でもよい。また、永久磁石10は、V字状ではなく、同一円周状に間隔をあけて並べるようにしてもよい。   The rotor 120 includes a rotor core 121, a rotating shaft 123 that rotates integrally with the rotor core 121, and a plurality of permanent magnets 10. The plurality of permanent magnets 10 are equally formed around the axis O in the circumferential direction. In the slot. In addition, although the form which arrange | positions the permanent magnet 10 of a top view rectangle in a substantially V shape is illustrated in FIG. 1, the shape of the permanent magnet 10 is not restricted to a rectangle, An arc shape may be sufficient. Further, the permanent magnets 10 may be arranged at intervals in the same circumference instead of being V-shaped.

こうした回転電機100を駆動させた場合、ステータコイル112によって発生される強い磁束が永久磁石10を貫くため、永久磁石10には大きな渦電流が発生する。その結果、回転電機100の損失が大きくなり効率の低下を招くだけでなく、発熱により永久磁石10の減磁が生じるといった問題があった。   When such a rotating electrical machine 100 is driven, a strong magnetic flux generated by the stator coil 112 penetrates the permanent magnet 10, so that a large eddy current is generated in the permanent magnet 10. As a result, there is a problem that not only the loss of the rotating electrical machine 100 is increased and the efficiency is lowered, but also the permanent magnet 10 is demagnetized due to heat generation.

この対策として、従来から各々絶縁された複数の磁石片を組み合わせて永久磁石10を構成することにより、発生する渦電流を小さくするとともに渦電流を各磁石片内に留めることで、永久磁石10に生じる渦電流を低減することが提案されている。かかる技術によれば、磁石片に発生する渦電流を個々の磁石片内に留めることで低減させることができる。なお、永久磁石10の分割方向は、積層鋼板と同様に軸方向でもよいし、周方向であってもよい。   As a countermeasure, a permanent magnet 10 is configured by combining a plurality of magnet pieces that have been conventionally insulated, thereby reducing the generated eddy current and retaining the eddy current in each magnet piece. It has been proposed to reduce the eddy currents that occur. According to such a technique, eddy currents generated in the magnet pieces can be reduced by staying in the individual magnet pieces. The dividing direction of the permanent magnet 10 may be the axial direction as in the laminated steel plate, or may be the circumferential direction.

しかしながら、従来の技術の多くは、各磁石片に対して絶縁性被膜の被覆加工が必要であり、コストがかかるという問題があった。また、永久磁石10のスロットへの挿入性を改善するために、複数の磁石片を互いに接合する技術も提案されているが、この場合、接合加工が別途必要となっていた。この場合、コストがかかるだけでなく、複数の磁石片から一つの永久磁石10を構成している関係上、永久磁石10の寸法維持が困難という問題もあった。   However, many of the conventional techniques have a problem that it is necessary to coat each magnet piece with an insulating coating, which is costly. Moreover, in order to improve the insertability of the permanent magnet 10 into the slot, a technique for joining a plurality of magnet pieces to each other has also been proposed, but in this case, a joining process is separately required. In this case, there is a problem that not only the cost is high, but it is difficult to maintain the dimensions of the permanent magnet 10 because a single permanent magnet 10 is constituted by a plurality of magnet pieces.

そこで、本実施形態では、製造コストを低減でき、また寸法精度を確保できる方法で、永久磁石10を製造している。この永久磁石10の製造方法について、図1を参照して説明する。   Therefore, in the present embodiment, the permanent magnet 10 is manufactured by a method that can reduce manufacturing costs and ensure dimensional accuracy. A method for manufacturing the permanent magnet 10 will be described with reference to FIG.

永久磁石10を製造する際には、まず、磁石母材12を用意する(図1(a))。磁石母材12は、希土類磁石またはフェライト磁石からなる。この磁石母材12の寸法は、最終的に得たい永久磁石10の寸法とほぼ同じに調整されている。   When manufacturing the permanent magnet 10, the magnet base material 12 is prepared first (FIG. 1 (a)). The magnet base material 12 is made of a rare earth magnet or a ferrite magnet. The size of the magnet base material 12 is adjusted to be approximately the same as the size of the permanent magnet 10 to be finally obtained.

次に、この磁石母材12を複数の磁石片18に割断するために、磁石母材12の割断しようとする部位に、図1(b)に示すように、予めスリット14を形成する。このスリット14の形状は、特に限定されないが、後述する外部からの衝撃を受けた際に、磁石母材12が割断する程度の深さ、および、鋭さを有すること要求される。また、スリット14の位置も特に限定されないが、本実施形態では、磁石母材12の片面にのみスリットを形成している。スリットの形成方法としては、磁石母材12の成形型に設けたスリット形成用のリブにより磁石母材12の成形工程で設ける方法、ダイサーやスライサー等の機械加工による方法、レーザビーム照射による方法、ワイヤカット放電加工による方法等がある。   Next, in order to cleave the magnet base material 12 into a plurality of magnet pieces 18, slits 14 are formed in advance in the part of the magnet base material 12 to be cleaved as shown in FIG. The shape of the slit 14 is not particularly limited, but is required to have such a depth and sharpness that the magnet base material 12 is cleaved when subjected to an external impact described later. The position of the slit 14 is not particularly limited, but in this embodiment, the slit is formed only on one side of the magnet base material 12. As a method of forming the slit, a method of providing in a molding process of the magnet base material 12 by a slit forming rib provided in a molding die of the magnet base material 12, a method by machining such as a dicer or a slicer, a method by laser beam irradiation, There is a method by wire cut electric discharge machining.

スリット14が形成されれば、次に、磁石母材12の全面を絶縁性被膜16で被覆する。ここで用いる絶縁性被膜16は、衝撃を受けても破断しないように、ある程度の弾性を有する材料、例えば、フッ素系樹脂等からなる。この絶縁性被膜16の被覆方法は、均一な厚みで被覆できるのであれば、特に限定されない。したがって、例えば、フッ素系樹脂を磁石母材12の全面に吹き付けた後、所定の温度で焼き付ける等して絶縁性被膜16を形成してもよい。   If the slit 14 is formed, the entire surface of the magnet base material 12 is then covered with an insulating coating 16. The insulating coating 16 used here is made of a material having a certain degree of elasticity, such as a fluorine-based resin, so that it does not break even when subjected to an impact. The method for coating the insulating coating 16 is not particularly limited as long as it can be coated with a uniform thickness. Therefore, for example, the insulating coating 16 may be formed by spraying a fluorine-based resin on the entire surface of the magnet base material 12 and then baking it at a predetermined temperature.

絶縁性被膜16が形成されれば、最後に、この被覆された磁石母材12に外部から衝撃を加え、絶縁性被膜16内の磁石母材12を、複数の磁石片18に割断する。衝撃は、例えば、スリット14の両側を支持した状態で、スリット14の反対側面に衝撃を与える、いわゆる三点曲げのような形で与えることが考えられる。こうした衝撃を受けて磁石母材12は複数の磁石片18に分かれることになるが、絶縁性被膜16は、弾性を有しているため衝撃を受けても破断せず、複数の磁石片18全体を覆った状態を維持する。換言すれば、複数の磁石片18は、絶縁性被膜16で覆われた一つの部品、永久磁石10として取り扱うことができる。   If the insulating coating 16 is formed, finally, an impact is applied to the coated magnet base material 12 from the outside, and the magnet base material 12 in the insulating coating 16 is cleaved into a plurality of magnet pieces 18. For example, it is conceivable that the impact is applied in the form of so-called three-point bending, in which the impact is applied to the opposite side surface of the slit 14 while both sides of the slit 14 are supported. Under such an impact, the magnet base material 12 is divided into a plurality of magnet pieces 18. However, since the insulating coating 16 has elasticity, it does not break even when subjected to an impact, and the plurality of magnet pieces 18 as a whole. Keep the state covered. In other words, the plurality of magnet pieces 18 can be handled as one component, the permanent magnet 10, covered with the insulating coating 16.

ところで、このようにして得られた永久磁石10は、複数の磁石片18に分割されており、この磁石片18間には、必ず接触抵抗が発生する。この接触抵抗が発生することにより、磁石片18間に絶縁材を挟んだ場合と同様に、磁石片18に発生する渦電流が、個々の磁石片18内に留まり、低減する。そして、結果として、回転電機100の損失低減や、発熱低減といった効果が生まれる。   By the way, the permanent magnet 10 obtained in this way is divided into a plurality of magnet pieces 18, and contact resistance is always generated between the magnet pieces 18. When this contact resistance is generated, eddy currents generated in the magnet pieces 18 remain in the individual magnet pieces 18 and are reduced, as in the case where an insulating material is sandwiched between the magnet pieces 18. As a result, effects such as loss reduction of the rotating electrical machine 100 and heat generation reduction are produced.

ところで、本実施系形態の永久磁石10は、複数の磁石片18に分割されているが、その外表面全体は絶縁性被膜16で被覆された状態のままであるため、割断前後で外径寸法が殆ど変わらず、規定の寸法を容易に維持できる。結果として、歩留まりを大幅に向上することができる。   By the way, although the permanent magnet 10 of the present embodiment is divided into a plurality of magnet pieces 18, the entire outer surface remains covered with the insulating coating 16. Can be easily maintained at the specified dimensions. As a result, the yield can be greatly improved.

また、従来の技術では、割断した後の磁石片18それぞれに対して被覆加工をしており、一つの永久磁石10製造のために複数回の被覆加工が必要であった。一方、本実施形態では、割断前の磁石母材12の全面を絶縁性被膜で被覆した後、磁石母材12のみを割断している。換言すれば、一つの永久磁石10製造のために必要な被覆加工は1回だけでいいため、従来の技術に比べ、被覆加工の手間を大幅に減らすことができる。また、従来の技術では、被覆後の磁石片18を互いに接合する接合工程が必要であったが、本実施形態では、複数の磁石片18は絶縁性被膜16により一体化されているため、接合工程が不要となる。つまり、本実施形態によれば、永久磁石10の製造に必要な加工の手間や工程数を減らすことができ、製造に必要なコストを低減できる。   Further, in the conventional technique, each of the magnet pieces 18 after being cleaved is coated, and a plurality of times of coating are necessary for manufacturing one permanent magnet 10. On the other hand, in this embodiment, only the magnet base material 12 is cleaved after the entire surface of the magnet base material 12 before cleaving is covered with an insulating film. In other words, since only one coating process is necessary for manufacturing one permanent magnet 10, it is possible to greatly reduce the labor of the coating process compared to the conventional technique. Further, in the conventional technique, a joining step for joining the coated magnet pieces 18 to each other is necessary. However, in the present embodiment, since the plurality of magnet pieces 18 are integrated by the insulating coating 16, the joining is performed. A process becomes unnecessary. That is, according to the present embodiment, it is possible to reduce the labor and the number of processes necessary for manufacturing the permanent magnet 10, and it is possible to reduce the cost required for manufacturing.

10 永久磁石、12 磁石母材、14 スリット、16 絶縁性被膜、18 磁石片、100 回転電機、110 ステータ、111 ステータコア、112 コイル、120 ロータ、121 ロータコア、123 回転軸。   DESCRIPTION OF SYMBOLS 10 Permanent magnet, 12 Magnet base material, 14 Slit, 16 Insulating film, 18 Magnet piece, 100 Rotary electric machine, 110 Stator, 111 Stator core, 112 Coil, 120 rotor, 121 Rotor core, 123 Rotating shaft.

Claims (1)

永久磁石型回転電機の回転子に埋め込まれる永久磁石の製造方法であって、
磁石母材に分割用のスリットを形成する工程と、
前記スリットが形成された磁石母材の外表面全体を、弾性を有した絶縁性被膜で被覆する工程と、
前記絶縁性被膜で被覆された磁石母材に外部から衝撃を加え、前記絶縁性被膜内の磁石母材のみを分割する工程と、
を備えることを特徴とする永久磁石の製造方法。
A method of manufacturing a permanent magnet embedded in a rotor of a permanent magnet type rotating electrical machine,
Forming a slit for splitting in the magnet base material;
Covering the entire outer surface of the magnet base material in which the slit is formed with an insulating coating having elasticity;
Applying an external impact to the magnet base material covered with the insulating coating, and dividing only the magnet base material in the insulating coating;
A method for producing a permanent magnet, comprising:
JP2014003602A 2014-01-10 2014-01-10 Method for manufacturing permanent magnet Expired - Fee Related JP6164093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003602A JP6164093B2 (en) 2014-01-10 2014-01-10 Method for manufacturing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003602A JP6164093B2 (en) 2014-01-10 2014-01-10 Method for manufacturing permanent magnet

Publications (2)

Publication Number Publication Date
JP2015133812A JP2015133812A (en) 2015-07-23
JP6164093B2 true JP6164093B2 (en) 2017-07-19

Family

ID=53900628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003602A Expired - Fee Related JP6164093B2 (en) 2014-01-10 2014-01-10 Method for manufacturing permanent magnet

Country Status (1)

Country Link
JP (1) JP6164093B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123575A (en) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd Magnetic sheet, antenna using the same, and method of manufacturing the same
JP4497198B2 (en) * 2007-12-06 2010-07-07 トヨタ自動車株式会社 Permanent magnet and method for manufacturing the same, and rotor and IPM motor
FI121291B (en) * 2007-12-11 2010-09-15 Abb Oy Permanent magnetic module and electric machine rotor comprising said module
EP2333935B1 (en) * 2008-10-02 2016-01-06 Nissan Motor Co., Ltd. Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
EP2869440B1 (en) * 2012-07-02 2017-02-01 Nissan Motor Co., Ltd. Apparatus and method for manufacturing magnet segments constituting field pole magnetic body

Also Published As

Publication number Publication date
JP2015133812A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
US7973442B2 (en) Permanent magnet-type rotary electric machine and production method for rotor for permanent magnet-type rotary electric machine
US10411534B2 (en) Rotor and rotating electric machine
US9251951B2 (en) Method of manufacturing magnet segment of field pole magnet body
WO2015162655A1 (en) Axial air gap rotating electric machine and rotating electric machine bobbin
WO2017090571A1 (en) Motor and method for manufacturing motor
JPWO2012105006A1 (en) Permanent magnet, motor rotor or stator, rotating electric machine
JP2013042596A (en) Permanent magnet type rotary electric machine and manufacturing method therefor
CN108496293B (en) Electrical sheet with printed connecting sheet
JP2013116002A (en) Parting method for permanent magnet used for rotor
KR101611519B1 (en) Rotor for permanent magnet type and manufacturing method of the same
JP6164093B2 (en) Method for manufacturing permanent magnet
JP5942178B1 (en) Electric motor and electric device including the same
JP5360224B2 (en) Method for manufacturing electric motor rotor
CN110235340B (en) Method for producing and disassembling a permanently excited rotating electrical machine
JP2008236862A (en) Rotor core, rotor, and rotating machine using the rotor
JP6487705B2 (en) Method for manufacturing divided and incompletely divided non-magnetized permanent magnet, and incompletely divided non-magnetized permanent magnet
JP2010130884A (en) Rotating electric machine and method for manufacturing rotating electric machine
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
WO2014030547A1 (en) Rotor structure and rotor manufacturing method for permanent magnet type rotating electrical machine
JP5854448B1 (en) Step motor processing method
JP2015192590A (en) rotor
JP6395028B2 (en) Manufacturing method of core for rotating electrical machine
JP6391830B2 (en) Electric motor, air conditioner and method for manufacturing electric motor rotor
JP2013099089A (en) Rotor for motor and method of manufacturing the same
JP5929310B2 (en) Manufacturing method of magnet piece constituting magnetic body for field pole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6164093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees