JP6162608B2 - Transmission system - Google Patents

Transmission system Download PDF

Info

Publication number
JP6162608B2
JP6162608B2 JP2014000754A JP2014000754A JP6162608B2 JP 6162608 B2 JP6162608 B2 JP 6162608B2 JP 2014000754 A JP2014000754 A JP 2014000754A JP 2014000754 A JP2014000754 A JP 2014000754A JP 6162608 B2 JP6162608 B2 JP 6162608B2
Authority
JP
Japan
Prior art keywords
signal
phase
received
reception
reception signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014000754A
Other languages
Japanese (ja)
Other versions
JP2015130570A (en
Inventor
慎介 中野
慎介 中野
正史 野河
正史 野河
寺田 純
純 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014000754A priority Critical patent/JP6162608B2/en
Publication of JP2015130570A publication Critical patent/JP2015130570A/en
Application granted granted Critical
Publication of JP6162608B2 publication Critical patent/JP6162608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguides (AREA)

Description

本発明は、伝送技術に関し、特に誘電体導波路を伝送媒体とし、デジタルデータ信号をRF信号に変調した後、誘電体導波路を介して送信器から受信器へ伝送する誘電体導波路伝送技術に関する。   The present invention relates to a transmission technique, and more particularly to a dielectric waveguide transmission technique in which a dielectric waveguide is used as a transmission medium, a digital data signal is modulated into an RF signal, and then transmitted from a transmitter to a receiver via the dielectric waveguide. About.

従来、高速な信号伝送を行う手法として、誘電体導波路を伝送媒体として用いて、送信データ信号をRF信号に変調した後、誘電体導波路を介して送信器から受信器へ伝送する伝送システムが検討されている(非特許文献1)。
このような、誘電体導波路を伝送媒体とした伝送システムでは、金属配線を伝送媒体とした伝送システムに比べて、伝送信号の高周波帯域成分の信号損失が小さくできる点で優れており、光ファイバや光導波路を用いた光インターコネクション技術に必要なμmオーダーの微細な調心精度が不要のため、簡易な実装が可能な方式として期待されている。
Conventionally, as a technique for performing high-speed signal transmission, a transmission system that uses a dielectric waveguide as a transmission medium, modulates a transmission data signal into an RF signal, and then transmits the signal from a transmitter to a receiver via the dielectric waveguide. Has been studied (Non-Patent Document 1).
Such a transmission system using a dielectric waveguide as a transmission medium is superior to a transmission system using a metal wiring as a transmission medium in that the signal loss of a high-frequency band component of a transmission signal can be reduced. And a fine alignment accuracy of the order of μm necessary for optical interconnection technology using an optical waveguide is unnecessary, and it is expected as a method capable of simple mounting.

S. Fukuda et al., "A 12.5 + 12.5 Gb/s Full-Duplex Plastic Waveguide Interconnect", IEEE International Solid-State Circuits Conference 2011, pp. 150-151S. Fukuda et al., "A 12.5 + 12.5 Gb / s Full-Duplex Plastic Waveguide Interconnect", IEEE International Solid-State Circuits Conference 2011, pp. 150-151

図12は、従来の伝送システムの構成を示すブロック図である。
このような従来技術では、図12に示すように、送信器において、入力されたデジタルの送信データ信号を単相のRF信号に変調した後、誘電体導波路を用いて信号伝送を行い、受信器において、誘電体導波路を介して受信したRF信号を単相入力のローノイズアンプ(LNA)で増幅した後、復調器によって元の送信データ信号を示す受信データ信号に復調する。
このため、誘電体導波路を信号が伝送する最中に生じるノイズの影響を低減することが困難という問題があった。また、複数の誘電体導波路を実装する際に、導波路間の距離が近いほど、導波路間で大きな干渉が生じるため、複数の誘電体導波路を高い密度で集積して実装することが難しいという課題があった。
FIG. 12 is a block diagram showing a configuration of a conventional transmission system.
In such a conventional technique, as shown in FIG. 12, after the input digital transmission data signal is modulated into a single-phase RF signal in the transmitter, signal transmission is performed using a dielectric waveguide, and reception is performed. After the RF signal received through the dielectric waveguide is amplified by a low-noise amplifier (LNA) with a single phase input, the demodulator demodulates the received data signal to the original transmission data signal.
For this reason, there has been a problem that it is difficult to reduce the influence of noise generated during signal transmission through the dielectric waveguide. Further, when mounting a plurality of dielectric waveguides, the closer the distance between the waveguides, the greater the interference between the waveguides. Therefore, it is possible to integrate and mount a plurality of dielectric waveguides at a high density. There was a difficult problem.

例えば、図12で示すように、誘電体導波路を伝送している際に大きなノイズが生じた場合、すなわちノイズレベルに比べて受信する信号の強度が小さい場合、受信器によって受信信号から元の差動ベースバンド信号に復調する際、論理が切り替わるタイミングのタイミングエラー(timing err)や論理状態エラー(logic error)が生じる。
また、従来技術では、受信器にバンドパスフィルタ(BPF)を搭載することによって、信号伝送に用いる周波数帯以外のノイズ成分を低減する対策も考えられるが、このような対策では、伝送信号に用いる周波数帯と同周波数帯に生じたノイズ成分を除去することができないという課題があった。
For example, as shown in FIG. 12, when a large noise occurs during transmission through a dielectric waveguide, that is, when the intensity of a received signal is small compared to the noise level, the receiver receives an original signal from the received signal. When demodulating into a differential baseband signal, a timing error (timing err) and a logic state error (logic error) occur at the timing when the logic is switched.
In the prior art, a measure to reduce noise components other than the frequency band used for signal transmission by mounting a band pass filter (BPF) in the receiver can be considered. In such a measure, such a measure is used for a transmission signal. There has been a problem that noise components generated in the same frequency band as the frequency band cannot be removed.

本発明はこのような課題を解決するためのものであり、RF信号が誘電体導波路を伝送している最中に生じるノイズの影響や、複数の誘電体導波路を近距離に配置した場合のクロストークの影響を除去できる誘電体導波路伝送技術を提供することを目的としている。   The present invention is for solving such a problem. When an RF signal is transmitted through a dielectric waveguide, it is affected by noise, or a plurality of dielectric waveguides are arranged at a short distance. An object of the present invention is to provide a dielectric waveguide transmission technology that can eliminate the influence of crosstalk.

このような目的を達成するために、本発明にかかる伝送システムは、入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより、元の送信データを示す受信データ信号を出力する受信器とを備え、前記受信器は、前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、第1の遅延制御回路を設けて、前記ローノイズアンプから出力される前記受信RF信号のピーク振幅電圧、または、前記復調器から出力される前記受信データ信号のピーク振幅値を検出し、当該ピーク振幅電圧が最大となるように、前記第1の可変遅延回路の遅延量をフィードバック制御するようにしたものである。 In order to achieve such an object, a transmission system according to the present invention modulates an input transmission data signal to generate a P-phase (normal phase) transmission signal and a N-phase (reverse phase) composed of differential RF signals. A transmitter that generates a transmission signal and outputs it to each of the paired dielectric waveguides, and receives a P-phase (positive phase) reception signal and an N-phase (reverse phase) reception signal from each of the dielectric waveguides. A receiver that outputs a reception data signal indicating original transmission data by demodulating a differential component of the P-phase reception signal and the N-phase reception signal, and the receiver includes the dielectric waveguide. A skew adjustment circuit that removes and outputs a skew between the P-phase reception signal and the N-phase reception signal received from each, and the P-phase reception signal and the N-phase reception that are output from the skew adjustment circuit Received RF signal indicating the differential component of the signal And a demodulator that demodulates the received RF signal output from the low noise amplifier and outputs the received data signal, wherein the skew adjustment circuit includes the P-phase received signal and the N-phase received signal. For each received signal, a first variable delay circuit that gives a delay equal to or less than the cycle length of the operating frequency of the RF signal to the input RF signal; and an operating frequency of the RF signal to the input RF signal By providing a serial connection with a second variable delay circuit that gives a delay that is an integral multiple of the cycle length, and delaying one of the P-phase reception signal and the N-phase reception signal that has arrived first by the serial connection. The skew is adjusted, and at this time, a first delay control circuit is provided, and a peak amplitude voltage of the received RF signal output from the low noise amplifier or the recovery is provided. Detecting a peak amplitude value of the received data signal output from the vessel, so that the peak amplitude voltage becomes maximum, it is obtained so as to feedback control the delay amount of the first variable delay circuit.

また、本発明にかかる他の伝送システムは、入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え、前記受信器は、前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、第2の遅延制御回路を設けて、前記復調器から出力される前記受信データ信号から検出したデューティが特定の値となるように、あるいは、前記ローノイズアンプから出力される前記受信RF信号の立ち上がりまたは立ち下がりの時間、または、前記受信RF信号のジッタ量が最小となるように、前記第2の可変遅延回路の遅延量をフィードバック制御するようにしたものである。 Further, another transmission system according to the present invention modulates an input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, A transmitter for outputting to each of the pair of dielectric waveguides; a P-phase (positive phase) reception signal and an N-phase (reverse phase) reception signal from each of the dielectric waveguides; and the P-phase reception signal And a receiver that outputs a received data signal by demodulating a differential component of the N-phase received signal, and the receiver receives the P-phase received signal received from each of the dielectric waveguides and the N-phase received signal. A skew adjustment circuit that removes and outputs a skew between the phase reception signal and a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit. Low noise amplifier and the low noise A demodulator that demodulates the received RF signal output from the amplifier and outputs the received data signal, and the skew adjustment circuit receives the RF signal input for each of the P-phase received signal and the N-phase received signal. A first variable delay circuit that delays the signal with a delay equal to or less than the period length of the operating frequency of the RF signal; and an input signal that is delayed by an integer multiple of the period length of the operating frequency of the RF signal. The skew is adjusted by providing a serial connection with the second variable delay circuit, and delaying one of the P-phase reception signal and the N-phase reception signal which has arrived first by the serial connection. by providing a second delay control circuit, said as duty detected from the received data signal output from the demodulator is a specific value, or the output from the low noise amplifier Time of the rising or falling of the received RF signal, or, as the jitter amount of the received RF signal becomes minimum, is obtained so as to feedback control the delay amount of the second variable delay circuit.

また、本発明にかかる他の伝送システムは、入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え、前記受信器は、前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、前記第1の可変遅延回路により前記RF信号の動作周波数の周期長以下の遅延を与えることにより前記スキューを調整した後、前記第2の可変遅延回路により当該RF信号の動作周波数の周期長の整数倍の遅延を与えることにより前記スキューを調整するようにしたものである。 Further, another transmission system according to the present invention modulates an input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, A transmitter for outputting to each of the pair of dielectric waveguides; a P-phase (positive phase) reception signal and an N-phase (reverse phase) reception signal from each of the dielectric waveguides; and the P-phase reception signal And a receiver that outputs a received data signal by demodulating a differential component of the N-phase received signal, and the receiver receives the P-phase received signal received from each of the dielectric waveguides and the N-phase received signal. A skew adjustment circuit that removes and outputs a skew between the phase reception signal and a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit. Low noise amplifier and the low noise A demodulator that demodulates the received RF signal output from the amplifier and outputs the received data signal, and the skew adjustment circuit receives the RF signal input for each of the P-phase received signal and the N-phase received signal. A first variable delay circuit that delays the signal with a delay equal to or less than the period length of the operating frequency of the RF signal; and an input signal that is delayed by an integer multiple of the period length of the operating frequency of the RF signal. The skew is adjusted by providing a serial connection with the second variable delay circuit, and delaying one of the P-phase reception signal and the N-phase reception signal which has arrived first by the serial connection. after adjusting the skew by providing the periodicity length less delay of the operating frequency of the RF signal by the first variable delay circuit, the RF signal by the second variable delay circuit It is obtained so as to adjust the skew by providing the period length integer multiple of the delay of the operating frequency.

また、本発明にかかる他の伝送システムは、入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え、前記受信器は、前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、前記P相受信信号または前記N相受信信号のいずれか一方に、これらP相受信信号とN相受信信号との間の許容遅延差より大きい固定時間長の遅延を与え、前記P相受信信号または前記N相受信信号のいずれか他方を前記直列接続で遅延させることにより、前記スキューを調整するようにしたものである。 Further, another transmission system according to the present invention modulates an input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, A transmitter for outputting to each of the pair of dielectric waveguides; a P-phase (positive phase) reception signal and an N-phase (reverse phase) reception signal from each of the dielectric waveguides; and the P-phase reception signal And a receiver that outputs a received data signal by demodulating a differential component of the N-phase received signal, and the receiver receives the P-phase received signal received from each of the dielectric waveguides and the N-phase received signal. A skew adjustment circuit that removes and outputs a skew between the phase reception signal and a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit. Low noise amplifier and the low noise A demodulator that demodulates the received RF signal output from the amplifier and outputs the received data signal, and the skew adjustment circuit receives the RF signal input for each of the P-phase received signal and the N-phase received signal. A first variable delay circuit that delays the signal with a delay equal to or less than the period length of the operating frequency of the RF signal; and an input signal that is delayed by an integer multiple of the period length of the operating frequency of the RF signal. The skew is adjusted by providing a serial connection with the second variable delay circuit, and delaying one of the P-phase reception signal and the N-phase reception signal which has arrived first by the serial connection. , on one of the P-phase received signal and the N-phase receiver signal, these allowable delay difference greater than a fixed length of time delay between these P-phase received signal and the N-phase receiver signal, the P-phase receiving signal Or by delaying the other one of said N-phase received signal at the series connection, is obtained so as to adjust the skew.

本発明によれば、受信器において、2つの誘電体導波路から受信した差動のP相受信信号RPとN相受信信号RNの差動成分に基づいて受信データ信号が生成される。したがって、これら誘電体導波路を伝搬中のRF信号に生じるノイズの影響を除去することができ、受信感度や伝送距離を向上させることが可能となる。   According to the present invention, in the receiver, a reception data signal is generated based on the differential components of the differential P-phase reception signal RP and the N-phase reception signal RN received from the two dielectric waveguides. Therefore, it is possible to remove the influence of noise generated on the RF signal propagating through these dielectric waveguides, and it is possible to improve reception sensitivity and transmission distance.

また、伝送するRF信号と同周波数帯のクロストークによる影響もノイズ同様に除去することができ、同じ周波数帯のRF信号を伝送する複数の誘電体導波路を高密度に集積することが可能となる。この際、異なる周波数帯を用いた周波数分割技術によってクロストークの影響を除去することも考えられるが、特に高い周波数帯を扱うトランシーバにおいては、周波数帯の異なるトランシーバの開発コストさらには回路コストが非常に大きくなる。本実施の形態によれば、このような周波数帯の異なるトランシーバが不要となるため、伝送システム全体の低コスト化を実現することが可能となる。   In addition, the effects of crosstalk in the same frequency band as the RF signal to be transmitted can be removed in the same way as noise, and a plurality of dielectric waveguides that transmit RF signals in the same frequency band can be integrated at high density. Become. At this time, it is possible to eliminate the effects of crosstalk by using frequency division technology using different frequency bands, but especially in transceivers that handle high frequency bands, the development cost and circuit cost of transceivers with different frequency bands are extremely high. Become bigger. According to the present embodiment, since such transceivers having different frequency bands are not required, it is possible to reduce the cost of the entire transmission system.

第1の実施の形態にかかる伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission system concerning 1st Embodiment. 第2の実施の形態にかかる伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission system concerning 2nd Embodiment. スキューの影響を示す信号波形図である。It is a signal waveform diagram which shows the influence of skew. 第2の実施の形態にかかる受信器およびスキュー調整回路の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver concerning 2nd Embodiment, and a skew adjustment circuit. 第2の実施の形態にかかるスキュー調整回路の動作例を示す信号波形図である。FIG. 10 is a signal waveform diagram illustrating an operation example of the skew adjustment circuit according to the second embodiment. 第2の実施の形態にかかる受信器およびスキュー調整回路の他の構成を示すブロック図である。It is a block diagram which shows the other structure of the receiver concerning 2nd Embodiment, and a skew adjustment circuit. 第2の実施の形態にかかるスキュー調整回路の他の動作例を示す信号波形図である。FIG. 10 is a signal waveform diagram illustrating another operation example of the skew adjustment circuit according to the second embodiment. 第3の実施の形態にかかる伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission system concerning 3rd Embodiment. 第4の実施の形態にかかる伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission system concerning 4th Embodiment. 第4の実施の形態にかかるスキュー調整回路の動作例を示す信号波形図である。It is a signal waveform diagram which shows the operation example of the skew adjustment circuit concerning 4th Embodiment. 第5の実施の形態にかかる伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission system concerning 5th Embodiment. 従来の伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional transmission system.

次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
まず、図1を参照して、本発明の第1の実施の形態にかかる伝送システムについて説明する。図1は、第1の実施の形態にかかる伝送システムの構成を示すブロック図である。
Next, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
First, a transmission system according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of a transmission system according to the first embodiment.

この伝送システム1は、誘電体導波路を伝送媒体とし、入力された送信データ信号をRF信号に変調した後、誘電体導波路を介して送信器から受信器へ伝送する機能を有している。
本実施の形態にかかる伝送システム1は、対をなす誘電体導波路LP,LNを用いた差動伝送の構成を用いることで、送信信号が誘電体導波路LP,LNを伝送している最中に生じるノイズの影響や、これら誘電体導波路LP,LNを近距離に配置した場合のクロストークの影響を除去するようにしたものである。
The transmission system 1 uses a dielectric waveguide as a transmission medium, modulates an input transmission data signal into an RF signal, and then transmits the signal from the transmitter to the receiver via the dielectric waveguide. .
The transmission system 1 according to the present embodiment uses a differential transmission configuration using a pair of dielectric waveguides LP and LN, so that a transmission signal is transmitted through the dielectric waveguides LP and LN. The influence of noise generated therein and the influence of crosstalk when these dielectric waveguides LP and LN are arranged at a short distance are eliminated.

図1に示すように、伝送システム1は、送信器Tx、受信器Rx、およびこれら送信器Txと受信器Rxとの間を接続する、対をなす誘電体導波路LP,LNとから構成されている。   As shown in FIG. 1, the transmission system 1 includes a transmitter Tx, a receiver Rx, and a pair of dielectric waveguides LP and LN that connect the transmitter Tx and the receiver Rx. ing.

送信器Txは、デジタル信号からなる送信データ信号TSから、差動のRF信号からなるP相(正相)送信信号TPおよびN相(逆相)送信信号TNを生成して、それぞれ対応する誘電体導波路LP,LNへ出力する機能を有している。
この送信器Txには、主な機能部として、変調器11と増幅器(PA)12とが設けられている。
The transmitter Tx generates a P-phase (positive phase) transmission signal TP and an N-phase (reverse phase) transmission signal TN, which are differential RF signals, from the transmission data signal TS, which is a digital signal. It has a function of outputting to the body waveguides LP and LN.
The transmitter Tx is provided with a modulator 11 and an amplifier (PA) 12 as main functional units.

変調器11は、入力された送信データ信号TSを差動の送信RF信号に変調して出力する機能を有している。
増幅器12は、変調器11から出力された差動の送信RF信号をそれぞれ増幅し、得られたP相送信信号TPおよびN相送信信号TNを、それぞれ対応する誘電体導波路LP,LNへ出力する機能を有している。これらP相送信信号TPおよびN相送信信号TNは、動作周波数および変調形式が同一で、極性が反転したRF信号からなる。
The modulator 11 has a function of modulating the input transmission data signal TS into a differential transmission RF signal and outputting it.
The amplifier 12 amplifies the differential transmission RF signal output from the modulator 11, and outputs the obtained P-phase transmission signal TP and N-phase transmission signal TN to the corresponding dielectric waveguides LP and LN, respectively. It has a function to do. The P-phase transmission signal TP and the N-phase transmission signal TN are composed of RF signals having the same operating frequency and modulation format and inverted polarity.

受信器Rxは、送信器Txから誘電体導波路LP,LNを介して伝送されたP相(正相)受信信号RPおよびN相(逆相)受信信号RNを受信して、元の送信データ信号TSを示すデジタル信号からなる受信データ信号RSを復調して出力する機能を有している。
この受信器Rxには、主な機能部として、ローノイズアンプ(LNA)21と復調器22とが設けられている。
The receiver Rx receives the P-phase (normal phase) reception signal RP and the N-phase (reverse phase) reception signal RN transmitted from the transmitter Tx via the dielectric waveguides LP and LN, and transmits the original transmission data. It has a function of demodulating and outputting a received data signal RS composed of a digital signal indicating the signal TS.
The receiver Rx is provided with a low noise amplifier (LNA) 21 and a demodulator 22 as main functional units.

ローノイズアンプ21は、誘電体導波路LP,LNから受信したP相受信信号RPとN相受信信号RNの差動成分を増幅し、差動の受信RF信号21P,21Nとして出力する機能を有している。
復調器22は、ローノイズアンプ21から出力された受信RF信号21P,21Nを復調し、得られた受信データ信号RSを出力する機能を有している。
The low noise amplifier 21 has a function of amplifying a differential component of the P-phase reception signal RP and the N-phase reception signal RN received from the dielectric waveguides LP and LN and outputting the differential reception RF signals 21P and 21N. ing.
The demodulator 22 has a function of demodulating the reception RF signals 21P and 21N output from the low noise amplifier 21 and outputting the obtained reception data signal RS.

[第1の実施の形態の動作]
次に、図1を参照して、本実施の形態にかかる伝送システム1の動作について説明する。
まず、送信器Txは、変調器11により、入力された送信データ信号TSを差動の送信RF信号に変調して出力し、増幅器12により、変調器11から出力された差動の送信RF信号をそれぞれ増幅し、得られたP相送信信号TPおよびN相送信信号TNを、それぞれ対応する誘電体導波路LP,LNへ出力する。
[Operation of First Embodiment]
Next, the operation of the transmission system 1 according to the present embodiment will be described with reference to FIG.
First, the transmitter Tx modulates the input transmission data signal TS into a differential transmission RF signal by the modulator 11 and outputs it, and the amplifier 12 outputs the differential transmission RF signal output from the modulator 11. And the obtained P-phase transmission signal TP and N-phase transmission signal TN are output to the corresponding dielectric waveguides LP and LN, respectively.

受信器Rxは、ローノイズアンプ21により、誘電体導波路LP,LNから受信したP相受信信号RPとN相受信信号RNの差動成分を増幅し、差動の受信RF信号21P,21Nとして出力し、復調器22により、ローノイズアンプ21から出力された受信RF信号21P,21Nを復調し、得られた受信データ信号RSを出力する。   The receiver Rx amplifies the differential component of the P-phase received signal RP and the N-phase received signal RN received from the dielectric waveguides LP and LN by the low noise amplifier 21, and outputs the amplified differential received RF signals 21P and 21N. Then, the demodulator 22 demodulates the received RF signals 21P and 21N output from the low noise amplifier 21, and outputs the obtained received data signal RS.

[第1の実施の形態の効果]
このように、本実施の形態は、送信器Txが、入力されたデジタル信号からなる送信データ信号TSを差動のRF信号からなるP相(正相)送信信号TPおよびN相(逆相)送信信号TNを生成して、それぞれ対応する誘電体導波路LP,LNへ出力し、受信器Rxが、送信器Txから誘電体導波路LP,LNを介して伝送されたP相(正相)受信信号RPおよびN相(逆相)受信信号RNを受信して、元の送信データ信号TSを示すデジタル信号からなる受信データ信号RSを復調して出力するようにしたものである。
[Effect of the first embodiment]
As described above, in this embodiment, the transmitter Tx converts the transmission data signal TS formed of the input digital signal into the P-phase (positive phase) transmission signal TP and N-phase (reverse phase) formed of differential RF signals. The transmission signal TN is generated and output to the corresponding dielectric waveguides LP and LN, respectively, and the receiver Rx transmits the P phase (positive phase) transmitted from the transmitter Tx via the dielectric waveguides LP and LN. The reception signal RP and the N-phase (reverse phase) reception signal RN are received, and the reception data signal RS composed of a digital signal indicating the original transmission data signal TS is demodulated and output.

これにより、受信器Rxにおいて、誘電体導波路LP,LNから受信した差動のP相受信信号RPとN相受信信号RNの差動成分に基づいて受信データ信号RSが生成される。したがって、誘電体導波路LP,LNを伝搬中のRF信号に生じるノイズの影響を除去することができ、受信感度や伝送距離を向上させることが可能となる。   Thereby, in the receiver Rx, the reception data signal RS is generated based on the differential component of the differential P-phase reception signal RP and the N-phase reception signal RN received from the dielectric waveguides LP and LN. Therefore, it is possible to remove the influence of noise generated on the RF signal propagating through the dielectric waveguides LP and LN, and it is possible to improve the reception sensitivity and the transmission distance.

また、伝送するRF信号と同周波数帯のクロストークによる影響もノイズ同様に除去することができ、同じ周波数帯のRF信号を伝送する複数の誘電体導波路を高密度に集積することが可能となる。この際、異なる周波数帯を用いた周波数分割技術によってクロストークの影響を除去することも考えられるが、特に高い周波数帯を扱うトランシーバにおいては、周波数帯の異なるトランシーバの開発コストさらには回路コストが非常に大きくなる。本実施の形態によれば、このような周波数帯の異なるトランシーバが不要となるため、伝送システム1全体の低コスト化を実現することが可能となる。   In addition, the effects of crosstalk in the same frequency band as the RF signal to be transmitted can be removed in the same way as noise, and a plurality of dielectric waveguides that transmit RF signals in the same frequency band can be integrated at high density. Become. At this time, it is possible to eliminate the effects of crosstalk by using frequency division technology using different frequency bands, but especially in transceivers that handle high frequency bands, the development cost and circuit cost of transceivers with different frequency bands are extremely high. Become bigger. According to the present embodiment, since such transceivers having different frequency bands are not required, the cost of the entire transmission system 1 can be reduced.

なお、本実施の形態では、送信器Txの変調器11および増幅器12について、入出力とも差動構成にした場合を例として説明したが、送信器Txから差動のP相送信信号TPおよびN相送信信号TNが出力される構成であれば、これに限るものではない。
また、本実施の形態では、受信器Rxのローノイズアンプ21および復調器22について、入出力とも差動構成にした場合を例として説明したが、受信器Rxで差動のP相受信信号RPおよびN相受信信号RNを受信される構成であれば、これに限るものではない。
In the present embodiment, the case where the modulator 11 and the amplifier 12 of the transmitter Tx have a differential configuration for both input and output has been described as an example. However, differential P-phase transmission signals TP and N from the transmitter Tx are described. The configuration is not limited to this as long as the phase transmission signal TN is output.
Further, in the present embodiment, the low noise amplifier 21 and the demodulator 22 of the receiver Rx are described as an example in which both the input and the output are configured differentially. However, the receiver Px receives the differential P-phase reception signal RP and The configuration is not limited to this as long as the N-phase reception signal RN is received.

また、本実施の形態では、送信データ信号TSが差動デジタル信号からなる場合を例として説明したが、これに限定されるものではなく、単相デジタル信号からなる送信データ信号TSを入力として、送信器Txから差動のP相送信信号TPおよびN相送信信号TNを出力するようにしてもよい。
また、本実施の形態では、受信データ信号RSが差動デジタル信号からなる場合を例として説明したが、これに限定されるものではなく、単相デジタル信号からなる受信データ信号RSを、受信器Rxで生成して出力するようにしてもよい。
In the present embodiment, the case where the transmission data signal TS is composed of a differential digital signal has been described as an example. However, the present invention is not limited to this, and the transmission data signal TS composed of a single-phase digital signal is input. A differential P-phase transmission signal TP and N-phase transmission signal TN may be output from the transmitter Tx.
In the present embodiment, the case where the reception data signal RS is composed of a differential digital signal has been described as an example. However, the present invention is not limited to this, and the reception data signal RS composed of a single-phase digital signal is received by the receiver. You may make it produce | generate and output by Rx.

[第2の実施の形態]
次に、図2を参照して、本発明の第2の実施の形態にかかる伝送システム1について説明する。図2は、第2の実施の形態にかかる伝送システムの構成を示すブロック図である。
本実施の形態は、図2に示すように、受信器Rxにスキュー調整回路23が設けられている点が、第1の実施の形態と異なる。
[Second Embodiment]
Next, with reference to FIG. 2, the transmission system 1 concerning the 2nd Embodiment of this invention is demonstrated. FIG. 2 is a block diagram illustrating a configuration of a transmission system according to the second embodiment.
As shown in FIG. 2, the present embodiment is different from the first embodiment in that a skew adjustment circuit 23 is provided in the receiver Rx.

伝送システム1において、送信器Txと受信器Rxとを接続する2本の誘電体導波路LP,LNは、送信器Txと受信器Rxとの間の距離が遠くなるほど、誘電体導波路LP,LNを完全な等長とすることは難しい。このように、誘電体導波路LP,LNが完全な等長でない場合、これら誘電体導波路LP,LNを個別に伝送する2つのRF信号間にスキューが発生するため、これら誘電体導波路LP,LNから受信したP相受信信号RPとN相受信信号RNの差動成分が変化する。   In the transmission system 1, the two dielectric waveguides LP and LN that connect the transmitter Tx and the receiver Rx have a longer distance between the transmitter Tx and the receiver Rx. It is difficult to make LN completely equal. As described above, when the dielectric waveguides LP and LN are not completely equal in length, a skew is generated between the two RF signals individually transmitted through the dielectric waveguides LP and LN. , The differential component of the P-phase received signal RP and the N-phase received signal RN received from LN changes.

図3は、スキューの影響を示す信号波形図である。
図3に示すように、周期長Tからなる動作周波数を持つP相受信信号RPおよびN相受信信号RNに、1/3周期長(=T/3)のスキューが生じた場合、スキューなしの場合に得られる差動成分RDの振幅電圧Vppに比べて、得られる差動成分RDの振幅電圧は半分(=Vpp/2)となり、1/2周期長(=T/2)のスキューが生じる、差動成分RDの信号振幅はゼロ(Vpp=0)となる。
FIG. 3 is a signal waveform diagram showing the influence of skew.
As shown in FIG. 3, when a skew of 1/3 period length (= T / 3) occurs in the P-phase reception signal RP and the N-phase reception signal RN having an operation frequency of the period length T, no skew is generated. In comparison with the amplitude voltage Vpp of the differential component RD obtained in this case, the amplitude voltage of the differential component RD obtained is halved (= Vpp / 2), and a skew of 1/2 period length (= T / 2) occurs. The signal amplitude of the differential component RD is zero (Vpp = 0).

一般的に、差動RF信号を用いた信号伝送を行う場合、これら差動RF信号としてデータレートよりも高い動作周波数帯を用いるため、正確なスキュー調整回路が必要となる。また、2つのRF信号間に生じるスキューの量は、これらRF信号がそれぞれ個別に伝送される2つの誘電体導波路の経路長の差によって決まる。このため、誘電体導波路を用いた差動伝送を想定した場合、金属配線を用いてNRZ信号を差動伝送する場合と同程度の可変範囲を持ち、かつ、より高精度のスキュー調整が必要となる。   In general, when signal transmission using differential RF signals is performed, since an operating frequency band higher than a data rate is used as these differential RF signals, an accurate skew adjustment circuit is required. Further, the amount of skew generated between two RF signals is determined by the difference in path length between two dielectric waveguides through which these RF signals are transmitted individually. For this reason, assuming differential transmission using a dielectric waveguide, it has a variable range similar to that of differential transmission of NRZ signals using metal wiring, and more accurate skew adjustment is required. It becomes.

図4は、第2の実施の形態にかかる受信器およびスキュー調整回路の構成を示すブロック図である。
図4に示すように、本実施の形態にかかる受信器Rxで用いられるスキュー調整回路23には、主な回路部として、高精度可変遅延回路(第1の可変遅延回路)23AP,23ANと、離散可変遅延回路(第2の可変遅延回路)23BP,23BNとが設けられている。
FIG. 4 is a block diagram illustrating a configuration of a receiver and a skew adjustment circuit according to the second embodiment.
As shown in FIG. 4, the skew adjustment circuit 23 used in the receiver Rx according to the present embodiment includes high-precision variable delay circuits (first variable delay circuits) 23AP and 23AN as main circuit units. Discrete variable delay circuits (second variable delay circuits) 23BP and 23BN are provided.

高精度可変遅延回路23APは、誘電体導波路LPから受信したRF信号からなるP相受信信号RPに対して、RF信号の動作周波数の周期長T以下の遅延を与え、得られたP相受信信号RP1を出力する高精度な可変遅延回路である。
高精度可変遅延回路23ANは、誘電体導波路LNから受信したRF信号からなるN相受信信号RNに対して、RF信号の動作周波数の周期長T以下の遅延を与え、得られたN相受信信号RN1を出力する高精度な可変遅延回路である。
The high-accuracy variable delay circuit 23AP gives a delay equal to or shorter than the period length T of the operating frequency of the RF signal to the P-phase reception signal RP composed of the RF signal received from the dielectric waveguide LP, and the obtained P-phase reception This is a highly accurate variable delay circuit that outputs the signal RP1.
The high-accuracy variable delay circuit 23AN gives a delay equal to or less than the period length T of the operating frequency of the RF signal to the N-phase reception signal RN composed of the RF signal received from the dielectric waveguide LN, and the obtained N-phase reception This is a highly accurate variable delay circuit that outputs the signal RN1.

離散可変遅延回路23BPは、高精度可変遅延回路23APから出力されたP相受信信号RP1に対して、RF信号の動作周波数の周期長Tを単位として、指定された整数n倍の周期長T×n遅延を与えた後、P相受信信号RP2としてローノイズアンプ21へ出力する離散遅延回路である。
離散可変遅延回路23BNは、高精度可変遅延回路23ANから出力されたN相受信信号RN1に対して、RF信号の動作周波数の周期長Tを単位として、指定された整数n倍の周期長T×n遅延を与えた後、N相受信信号RN2としてローノイズアンプ21へ出力する離散遅延回路である。
The discrete variable delay circuit 23BP is a specified integer length n times the cycle length T × of the cycle length T of the operating frequency of the RF signal with respect to the P-phase received signal RP1 output from the high-precision variable delay circuit 23AP. This is a discrete delay circuit that outputs a P-phase received signal RP2 to the low-noise amplifier 21 after giving n delays.
The discrete variable delay circuit 23BN has a cycle length T × a specified integer n times the unit of the cycle length T of the operating frequency of the RF signal with respect to the N-phase received signal RN1 output from the high-precision variable delay circuit 23AN. This is a discrete delay circuit that outputs an N-phase received signal RN2 to the low-noise amplifier 21 after giving n delays.

[第2の実施の形態の動作]
次に、図5を参照して、本実施の形態にかかるスキュー調整回路23の動作について説明する。図5は、第2の実施の形態にかかるスキュー調整回路の動作例を示す信号波形図である。
ここでは、N相受信信号RNに対してP相受信信号RPが遅延する方向に発生した、RF信号の周期長Tの2倍と周期長Tより小さいΔTAとからなるスキュー(=2T+ΔTA)を、先行するN相受信信号RNに対して高精度可変遅延回路23ANおよび離散可変遅延回路23BNで遅延を与えることによりスキューを調整する場合を例として説明する。この際、高精度可変遅延回路23APと離散可変遅延回路23BPの遅延はゼロである。
[Operation of Second Embodiment]
Next, the operation of the skew adjustment circuit 23 according to the present embodiment will be described with reference to FIG. FIG. 5 is a signal waveform diagram illustrating an operation example of the skew adjustment circuit according to the second embodiment.
Here, a skew (= 2T + ΔTA), which is generated in the direction in which the P-phase reception signal RP is delayed with respect to the N-phase reception signal RN, is composed of twice the period length T of the RF signal and ΔTA smaller than the period length T, An example will be described in which the skew is adjusted by giving a delay to the preceding N-phase received signal RN by the high-precision variable delay circuit 23AN and the discrete variable delay circuit 23BN. At this time, the delays of the high-precision variable delay circuit 23AP and the discrete variable delay circuit 23BP are zero.

まず、高精度可変遅延回路23ANは、誘電体導波路LNから受信したN相受信信号RNに対して周期長Tより小さいΔTA分の高精度可変遅延を与え、N相受信信号RN1として出力する。ΔTAについては、例えば、N相受信信号RNの正側ピークのタイミングとP相受信信号RPの負側ピークのタイミングとのタイミング差に基づき検出すればよい。   First, the high-precision variable delay circuit 23AN gives a high-precision variable delay of ΔTA smaller than the cycle length T to the N-phase reception signal RN received from the dielectric waveguide LN, and outputs it as an N-phase reception signal RN1. ΔTA may be detected based on, for example, the timing difference between the positive peak timing of the N-phase received signal RN and the negative peak timing of the P-phase received signal RP.

次に、離散可変遅延回路23BNは、高精度可変遅延回路23ANから出力されたN相受信信号RN1に対して、周期長Tの2倍の時間長を持つ2T分の離散可変遅延を与え、N相受信信号RN2として出力する。2Tについては、例えば、N相受信信号RN1の先頭タイミングとP相受信信号RP1の先頭タイミングとタイミング差に基づき検出すればよい。
これにより、離散可変遅延回路23BPから出力されるP相受信信号RP2に対して、キューがゼロのN相受信信号RN2を、離散可変遅延回路23BNで得ることができる。
Next, the discrete variable delay circuit 23BN gives a discrete variable delay of 2T having a time length twice as long as the cycle length T to the N-phase reception signal RN1 output from the high-precision variable delay circuit 23AN. Output as phase reception signal RN2. For example, 2T may be detected based on the timing difference between the leading timing of the N-phase received signal RN1 and the leading timing of the P-phase received signal RP1.
Thereby, the N-phase received signal RN2 with zero queue can be obtained by the discrete variable delay circuit 23BN with respect to the P-phase received signal RP2 output from the discrete variable delay circuit 23BP.

また、離散可変遅延回路23BP,23BNの遅延量が厳密に周期長Tの整数倍ではない場合、離散可変遅延回路23BP,23BNによるスキュー調整後の両信号に僅かなスキューが残る。
このような場合、離散可変遅延回路23BP,23BNの後段に、高精度可変遅延回路23CP,23CNをそれぞれ直列接続し、離散可変遅延回路23BP,23BNによるスキュー調整後、これら高精度可変遅延回路23CP,23CNで高精度可変遅延を与えるようにしてもよい。
When the delay amounts of the discrete variable delay circuits 23BP and 23BN are not strictly an integral multiple of the period length T, a slight skew remains in both signals after the skew adjustment by the discrete variable delay circuits 23BP and 23BN.
In such a case, high-precision variable delay circuits 23CP and 23CN are respectively connected in series after the discrete variable delay circuits 23BP and 23BN, and after the skew adjustment by the discrete variable delay circuits 23BP and 23BN, these high-precision variable delay circuits 23CP, High precision variable delay may be given by 23CN.

図6は、第2の実施の形態にかかる受信器およびスキュー調整回路の他の構成を示すブロック図である。図7は、第2の実施の形態にかかるスキュー調整回路の他の動作例を示す信号波形図である。
図6において、離散可変遅延回路23BP,23BNの後段に、高精度可変遅延回路23CP,23CNがそれぞれ設けられている。
FIG. 6 is a block diagram illustrating another configuration of the receiver and the skew adjustment circuit according to the second embodiment. FIG. 7 is a signal waveform diagram showing another operation example of the skew adjustment circuit according to the second embodiment.
In FIG. 6, high-precision variable delay circuits 23CP and 23CN are provided at the subsequent stage of the discrete variable delay circuits 23BP and 23BN, respectively.

これにより、図7に示すように、離散可変遅延回路23BNにより、2T分の離散可変遅延が与えられたN相受信信号RN2に対して、離散可変遅延回路23BNの後段の高精度可変遅延回路23CNにより、周期長Tより小さいΔTB分の高精度可変遅延が与えられて、P相受信信号RPおよびN相受信信号RNを得ることができる。   As a result, as shown in FIG. 7, a high-precision variable delay circuit 23CN at the subsequent stage of the discrete variable delay circuit 23BN is applied to the N-phase received signal RN2 to which a discrete variable delay of 2T is given by the discrete variable delay circuit 23BN. Thus, a high-accuracy variable delay of ΔTB smaller than the cycle length T is given, and the P-phase received signal RP and the N-phase received signal RN can be obtained.

[第2の実施の形態の効果]
このように、本実施の形態は、受信器Rxに、誘電体導波路LP,LNから受信したP相受信信号RPとN相受信信号RNとの間に発生したスキューを調整するスキュー調整回路23を設けるとともに、このスキュー調整回路23を、直列接続した高精度可変遅延回路23APおよび離散可変遅延回路23BPと、直列接続した高精度可変遅延回路23ANおよび離散可変遅延回路23BNから構成し、高精度可変遅延回路23APおよび離散可変遅延回路23BPで、P相受信信号RPに対してRF信号の周期長Tより小さい高精度遅延と、周期長Tの整数倍の離散遅延とをそれぞれ個別に与えるとともに、高精度可変遅延回路23ANおよび離散可変遅延回路23BNで、N相受信信号RNに対してRF信号の周期長Tより小さい高精度遅延と、周期長Tの整数倍の離散遅延とをそれぞれ個別に与えるようにしたものである。
[Effect of the second embodiment]
As described above, in this embodiment, the receiver Rx adjusts the skew generated between the P-phase received signal RP and the N-phase received signal RN received from the dielectric waveguides LP and LN. The skew adjustment circuit 23 includes a high-precision variable delay circuit 23AP and a discrete variable delay circuit 23BP connected in series, and a high-precision variable delay circuit 23AN and a discrete variable delay circuit 23BN connected in series. In the delay circuit 23AP and the discrete variable delay circuit 23BP, a high-accuracy delay smaller than the period length T of the RF signal and a discrete delay that is an integral multiple of the period length T are individually given to the P-phase received signal RP, and With precision variable delay circuit 23AN and discrete variable delay circuit 23BN, high precision smaller than period length T of RF signal with respect to N-phase received signal RN Extension and, in which the discrete delay is an integral multiple of the period length T was set to each provide separately.

これにより、P相受信信号RPとN相受信信号RNとの間に発生したスキューが、周期長Tより小さい高精度遅延と周期長Tの整数倍の離散遅延とに分解されてそれぞれ調整されるため、それぞれの遅延量に応じた高精度可変遅延回路23AP,23ANおよび離散可変遅延回路23BP,23BNで、効率よく高い精度でスキューを調整することができる。   As a result, the skew generated between the P-phase received signal RP and the N-phase received signal RN is decomposed and adjusted into a high-accuracy delay smaller than the period length T and a discrete delay that is an integral multiple of the period length T, respectively. Therefore, the skew can be adjusted efficiently and with high accuracy by the high-precision variable delay circuits 23AP and 23AN and the discrete variable delay circuits 23BP and 23BN corresponding to the respective delay amounts.

また、本実施の形態において、離散可変遅延回路23BP,23BNの後段に高精度可変遅延回路23CP,23CNを設けて、周期長Tの整数倍の離散遅延を与えた後、さらに周期長Tより小さい高精度可変遅延を与えるようにしてもよい。これにより、離散遅延後に残った僅かなスキューを微調整することができ、極めて高い精度でスキューを調整することが可能となる。   In the present embodiment, high-precision variable delay circuits 23CP and 23CN are provided after the discrete variable delay circuits 23BP and 23BN to give a discrete delay that is an integral multiple of the cycle length T, and then smaller than the cycle length T. High precision variable delay may be provided. Thereby, a slight skew remaining after the discrete delay can be finely adjusted, and the skew can be adjusted with extremely high accuracy.

また、本実施の形態では、高精度可変遅延回路23AP,23ANによる調整後、離散可変遅延回路23BP,23BNを調整し、場合によってはその後、高精度可変遅延回路23CP,23CNを再調整するスキュー調整フローを示したが、P信号の負側ピークのタイミングとN側信号の正側ピークのタイミングのずれが小さい場合(P信号とN信号の差動信号の振幅電圧がローノイズアンプ21および復調器22の受信感度よりも大きい場合)、離散可変遅延回路23BP,23BNによって、およそのスキュー調整を行った後に、高精度可変遅延回路23AP,23ANによるスキュー調整フローも可能である。   In the present embodiment, after the adjustment by the high-precision variable delay circuits 23AP and 23AN, the discrete variable delay circuits 23BP and 23BN are adjusted, and in some cases, the high-precision variable delay circuits 23CP and 23CN are readjusted after that. Although the flow is shown, when the difference between the timing of the negative peak of the P signal and the timing of the positive peak of the N signal is small (the amplitude voltage of the differential signal of the P signal and the N signal is low noise amplifier 21 and demodulator 22). In other words, the skew adjustment flow by the high-accuracy variable delay circuits 23AP and 23AN is possible after performing the approximate skew adjustment by the discrete variable delay circuits 23BP and 23BN.

また、本実施の形態では、高精度可変遅延回路23AP,23AN→離散可変遅延回路23BP,23BNの順に配置した場合を例として説明したが、配置順序についてはこれに限定されるものではなく、離散可変遅延回路23BP,23BN→高精度可変遅延回路23AP,23ANの順に配置することも可能である。   In this embodiment, the case where the high-precision variable delay circuits 23AP and 23AN are arranged in the order of the discrete variable delay circuits 23BP and 23BN has been described as an example. However, the arrangement order is not limited to this, and the discrete order is not limited to this. It is also possible to arrange the variable delay circuits 23BP and 23BN in order of the high-precision variable delay circuits 23AP and 23AN.

また、本実施の形態では、P相受信信号RPおよびN相受信信号RNのそれぞれに対応して、高精度可変遅延回路23AP,23ANおよび離散可変遅延回路23BP,23BNを設けた場合を例として説明したが、これに限定されるものではない。例えば、誘電体導波路LP,LNの線路長のうち、いずれか一方が固定的に常に長い場合には、高精度可変遅延回路23AP,23ANおよび離散可変遅延回路23BP,23BNのうち、線路長が長い誘電体導波路に対応する一方の高精度可変遅延回路(23AP,23AN)と離散可変遅延回路(23BP,23BN)の組を削除して、線路長が短い誘電体導波路に対応する一方の高精度可変遅延回路(23AP,23AN)と離散可変遅延回路(23BP,23BN)の組だけでスキュー調整回路23を構成してもよい。   Further, in the present embodiment, a case where high-precision variable delay circuits 23AP and 23AN and discrete variable delay circuits 23BP and 23BN are provided corresponding to each of P-phase received signal RP and N-phase received signal RN will be described as an example. However, the present invention is not limited to this. For example, when one of the line lengths of the dielectric waveguides LP and LN is fixed and always long, the line length of the high-precision variable delay circuits 23AP and 23AN and the discrete variable delay circuits 23BP and 23BN is One of the high-precision variable delay circuits (23AP, 23AN) and the discrete variable delay circuits (23BP, 23BN) corresponding to the long dielectric waveguide is deleted, and the one corresponding to the dielectric waveguide having a short line length is deleted. The skew adjustment circuit 23 may be configured only by a set of the high-precision variable delay circuit (23AP, 23AN) and the discrete variable delay circuit (23BP, 23BN).

[第3の実施の形態]
次に、図8を参照して、本発明の第3の実施の形態にかかる伝送システム1について説明する。図8は、第3の実施の形態にかかる伝送システムの構成を示すブロック図である。
[Third Embodiment]
Next, with reference to FIG. 8, the transmission system 1 concerning the 3rd Embodiment of this invention is demonstrated. FIG. 8 is a block diagram illustrating a configuration of a transmission system according to the third embodiment.

本実施の形態は、スキュー調整回路23において、P相受信信号RPまたはN相受信信号RNのいずれか一方に、これらP相受信信号RPとN相受信信号RNとの間の許容遅延差より大きい固定時間長TL分の遅延を与え、P相受信信号RPまたはN相受信信号RNのいずれか他方を、高精度可変遅延回路(23AP,23AN)と離散可変遅延回路(23BP,23BN)の直列接続で遅延させることにより、スキューを調整する点が、第2の実施の形態と異なる。   In the present embodiment, in the skew adjustment circuit 23, either the P-phase reception signal RP or the N-phase reception signal RN is larger than the allowable delay difference between the P-phase reception signal RP and the N-phase reception signal RN. A delay of a fixed time length TL is given, and either the P-phase reception signal RP or the N-phase reception signal RN is connected in series with a high-precision variable delay circuit (23AP, 23AN) and a discrete variable delay circuit (23BP, 23BN). The point of adjusting the skew by delaying is different from the second embodiment.

すなわち、本実施の形態において、スキュー調整回路23には、P相受信信号RPに対応して、第2の実施の形態と同様に高精度可変遅延回路23APと離散可変遅延回路23BPの直列接続が設けられており、N相受信信号RNに対しては、高精度可変遅延回路23ANと離散可変遅延回路23BNの接続回路に代えて、固定遅延回路23Dが設けられている。
固定遅延回路23Dは、N相受信信号RNに対して、P相受信信号RPとN相受信信号RNとの間の許容遅延差より大きい固定時間長TLの遅延を与えた後、N相受信信号RN2としてローノイズアンプ21へ出力する固定遅延回路である。
That is, in the present embodiment, the skew adjustment circuit 23 has a series connection of the high-precision variable delay circuit 23AP and the discrete variable delay circuit 23BP corresponding to the P-phase received signal RP, as in the second embodiment. For the N-phase received signal RN, a fixed delay circuit 23D is provided instead of the connection circuit of the high-precision variable delay circuit 23AN and the discrete variable delay circuit 23BN.
The fixed delay circuit 23D gives the N-phase received signal RN a delay with a fixed time length TL that is greater than the allowable delay difference between the P-phase received signal RP and the N-phase received signal RN. This is a fixed delay circuit that outputs to the low noise amplifier 21 as RN2.

これにより、見かけ上、N相受信信号RNより先にP相受信信号RPが受信器Rxで受信される状態、すなわちN相受信信号RNがP相受信信号RPに対して遅延している状態を常に作り出すことができる。このため、スキュー調整回路23において、P相受信信号RPに対して遅延を与える高精度可変遅延回路23APと離散可変遅延回路23BPの直列接続だけで、P相受信信号RPおよびN相受信信号RNのスキューを除去することができ、スキュー調整回路23さらには受信器Rxの回路規模を簡素化することが可能となる。   As a result, the state in which the P-phase received signal RP is received by the receiver Rx prior to the N-phase received signal RN, that is, the state in which the N-phase received signal RN is delayed with respect to the P-phase received signal RP. Can always produce. For this reason, in the skew adjustment circuit 23, the P-phase reception signal RP and the N-phase reception signal RN are simply connected in series by the high-precision variable delay circuit 23AP that delays the P-phase reception signal RP and the discrete variable delay circuit 23BP. The skew can be removed, and the circuit scale of the skew adjustment circuit 23 and the receiver Rx can be simplified.

また、本実施の形態では、第2の実施の形態のうち、高精度可変遅延回路23ANと離散可変遅延回路23BNの接続回路に代えて、固定遅延回路23Dを設けた場合を例として説明したが、これに限定されるものではない。例えば、第2の実施の形態のうち、高精度可変遅延回路23APと離散可変遅延回路23BPの直列接続に代えて、固定遅延回路23Dを設けてもよい。
これにより、見かけ上、P相受信信号RPより先にN相受信信号RNが受信器Rxで受信される状態、すなわちP相受信信号RPがN相受信信号RNに対して遅延している状態を常に作り出すことができ、前述と同様に、スキュー調整回路23さらには受信器Rxの回路規模を簡素化することが可能となる。
In the present embodiment, the case where the fixed delay circuit 23D is provided instead of the connection circuit of the high-precision variable delay circuit 23AN and the discrete variable delay circuit 23BN in the second embodiment has been described as an example. However, the present invention is not limited to this. For example, in the second embodiment, a fixed delay circuit 23D may be provided instead of the series connection of the high-precision variable delay circuit 23AP and the discrete variable delay circuit 23BP.
As a result, the state in which the N-phase received signal RN is received by the receiver Rx prior to the P-phase received signal RP, that is, the state in which the P-phase received signal RP is delayed with respect to the N-phase received signal RN. As described above, the circuit scale of the skew adjustment circuit 23 and the receiver Rx can be simplified.

[第4の実施の形態]
次に、図9を参照して、本発明の第4の実施の形態にかかる伝送システム1について説明する。図9は、第4の実施の形態にかかる伝送システムの構成を示すブロック図である。
[Fourth Embodiment]
Next, with reference to FIG. 9, the transmission system 1 concerning the 4th Embodiment of this invention is demonstrated. FIG. 9 is a block diagram illustrating a configuration of a transmission system according to the fourth embodiment.

本実施の形態は、図9に示すように、受信器Rxに遅延制御回路30を設けて、ローノイズアンプ21から差動出力される受信RF信号21P,21Nの振幅情報、および復調器22から差動出力される受信データ信号RSのデューティ情報に基づき、スキュー調整回路23をフィードバック制御することによりスキューを自動する点が、第2の実施の形態と異なる。   In the present embodiment, as shown in FIG. 9, a delay control circuit 30 is provided in the receiver Rx, the amplitude information of the received RF signals 21P and 21N output differentially from the low noise amplifier 21, and the difference from the demodulator 22. The difference from the second embodiment is that the skew is automatically controlled by feedback control of the skew adjustment circuit 23 based on the duty information of the received data signal RS that is movably output.

本実施の形態において、遅延制御回路30には、高精度遅延制御回路(第1の遅延制御回路)31と、離散遅延制御回路(第2の遅延制御回路)32とが設けられている。
高精度遅延制御回路31は、ローノイズアンプ21から差動出力される受信RF信号21P,21Nの振幅情報を検出し、その検出結果に基づき高精度可変遅延回路23AP,23ANの遅延量を調整する機能を有している。
離散遅延制御回路32は、復調器22から差動出力される受信データ信号RSのデューティ情報を検出し、その検出結果に基づき離散可変遅延回路23BP,23BNの遅延量を調整する機能を有している。
In the present embodiment, the delay control circuit 30 is provided with a high-accuracy delay control circuit (first delay control circuit) 31 and a discrete delay control circuit (second delay control circuit) 32.
The high precision delay control circuit 31 detects amplitude information of the reception RF signals 21P and 21N that are differentially output from the low noise amplifier 21, and adjusts the delay amount of the high precision variable delay circuits 23AP and 23AN based on the detection result. have.
The discrete delay control circuit 32 has a function of detecting the duty information of the reception data signal RS differentially output from the demodulator 22 and adjusting the delay amount of the discrete variable delay circuits 23BP and 23BN based on the detection result. Yes.

図10は、第4の実施の形態にかかるスキュー調整回路の動作例を示す信号波形図である。
図10に示すように、誘電体導波路LP,LNから受信したP相受信信号RPとN相受信信号RNの間のスキューが、動作周波数の周期長Tの整数倍である場合、これらP相受信信号RPとN相受信信号RNの差動成分RDのピーク振幅電圧は最大となり、ローノイズアンプ21から出力される受信RF信号21P,21Nのピーク振幅電圧も最大となる。
FIG. 10 is a signal waveform diagram illustrating an operation example of the skew adjustment circuit according to the fourth embodiment.
As shown in FIG. 10, when the skew between the P-phase received signal RP and the N-phase received signal RN received from the dielectric waveguides LP and LN is an integral multiple of the period length T of the operating frequency, these P-phases The peak amplitude voltage of the differential component RD of the reception signal RP and the N-phase reception signal RN is maximized, and the peak amplitude voltages of the reception RF signals 21P and 21N output from the low noise amplifier 21 are also maximized.

よって、高精度遅延制御回路31において、ローノイズアンプ21から出力される受信RF信号21P,21Nのピーク振幅電圧を検出し、このピーク振幅電圧が最大になるように高精度可変遅延回路23AP,23ANの遅延量をフィードバック制御することで、P相受信信号RPとN相受信信号RNの位相を揃えることができる。   Therefore, the high-accuracy delay control circuit 31 detects the peak amplitude voltage of the reception RF signals 21P and 21N output from the low noise amplifier 21, and the high-accuracy variable delay circuits 23AP and 23AN detect the peak amplitude voltage so as to maximize the peak amplitude voltage. By performing feedback control of the delay amount, the phases of the P-phase reception signal RP and the N-phase reception signal RN can be made uniform.

また、図10に示すように、誘電体導波路LP,LNから受信したP相受信信号RPとN相受信信号RNの先頭タイミングがずれている場合、これらP相受信信号RPとN相受信信号RNの差動成分RDの振幅持続時間Ddは、P相受信信号RPの振幅持続時間Dpと異なる。これにより、復調器22で復調された受信データ信号RSは、送信データ信号TSと立ち上がりや立ち下がりでタイミングずれが生じるため、送信器Txに入力された送信データ信号TSとデューティ(パルス幅)が変化する。   Also, as shown in FIG. 10, when the leading timings of the P-phase received signal RP and the N-phase received signal RN received from the dielectric waveguides LP and LN are shifted, these P-phase received signal RP and N-phase received signal The amplitude duration Dd of the differential component RD of RN is different from the amplitude duration Dp of the P-phase received signal RP. As a result, the reception data signal RS demodulated by the demodulator 22 is shifted in timing from the transmission data signal TS at the rise and fall, so the transmission data signal TS input to the transmitter Tx and the duty (pulse width) are Change.

よって、離散遅延制御回路32において、復調器22から出力される受信データ信号RSのデューティ比が、所望の値、例えば送信データ信号TSのデューティ比と等しい値となるよう、あるいは受信データ信号RSが誤判定されにくいデューティ比50%となるように、離散可変遅延回路23BP,23BNの遅延量をフィードバック制御することで、P相受信信号RPとN相受信信号RNの先頭タイミングを揃えることができる。   Therefore, in the discrete delay control circuit 32, the duty ratio of the reception data signal RS output from the demodulator 22 is equal to a desired value, for example, the duty ratio of the transmission data signal TS, or the reception data signal RS is By performing feedback control of the delay amounts of the discrete variable delay circuits 23BP and 23BN so that the duty ratio is less likely to be erroneously determined, the leading timings of the P-phase reception signal RP and the N-phase reception signal RN can be aligned.

したがって、本実施の形態によれば、高精度遅延制御回路31により、ローノイズアンプ21から差動出力される受信RF信号21P,21Nのピーク振幅情報をフィードバックした高精度可変遅延制御が実施され、離散遅延制御回路32により、復調器22から差動出力される受信データ信号RSのデューティ情報をフィードバックした離散可変遅延制御が実施されることになる。
これにより、P相受信信号RPとN相受信信号RNに対するスキュー調整を自動化することが可能となる。
Therefore, according to the present embodiment, the high-accuracy delay control circuit 31 performs the high-accuracy variable delay control by feeding back the peak amplitude information of the received RF signals 21P and 21N that are differentially output from the low-noise amplifier 21. The delay control circuit 32 performs discrete variable delay control in which the duty information of the reception data signal RS output differentially from the demodulator 22 is fed back.
This makes it possible to automate skew adjustment for the P-phase received signal RP and the N-phase received signal RN.

この際、図3に示したように、動作周波数の1/2周期長(=T/2)のスキューが生じて、差動成分RDの信号振幅電圧、さらには復調器22から出力される受信データ信号RSの振幅電圧がゼロ(Vpp=0)となるため、離散遅延制御回路32による離散可変遅延制御ができなくなる場合がある。また、この受信データ信号RSの振幅電圧がゼロとなる状態は、1/2周期長のスキューに周期長Tの整数倍のスキューが加えられた状態でも同様に発生するため、周期長Tの整数倍でスキュー調整する離散可変遅延制御により、この状態から脱出することはできない。   At this time, as shown in FIG. 3, a skew of ½ period length (= T / 2) of the operating frequency is generated, and the signal amplitude voltage of the differential component RD and further the reception output from the demodulator 22 are generated. Since the amplitude voltage of the data signal RS becomes zero (Vpp = 0), the discrete variable delay control by the discrete delay control circuit 32 may not be possible. Further, the state in which the amplitude voltage of the reception data signal RS becomes zero occurs in the same manner even when a skew that is an integral multiple of the cycle length T is added to the 1/2 cycle length skew. It is impossible to escape from this state by discrete variable delay control that adjusts the skew by a factor of two.

このため、本実施の形態において、高精度遅延制御回路31によりP相受信信号RPとN相受信信号RNの位相を揃えた後、この位相同期完了に基づいて高精度遅延制御回路31から離散遅延制御回路32に出力された位相同期完了信号30Sに応じて、離散遅延制御回路32によりP相受信信号RPとN相受信信号RNの先頭タイミングを揃えるようにしてもよい。
これにより、離散遅延制御回路32により離散可変遅延制御を行う場合には、必ずスキューが周期長Tの整数倍となるため、離散遅延制御回路32による離散可変遅延制御が実施可能な状態とすることができ、安定したスキュー調整を実現することが可能となる。この際、スキュー調整制御の順序が規定されるだけで、高精度可変遅延回路23AP,23ANと離散可変遅延回路23BP,23BNの配置順序については限定されるものではない。
For this reason, in the present embodiment, the high-accuracy delay control circuit 31 aligns the phases of the P-phase received signal RP and the N-phase received signal RN, and then the discrete delay from the high-accuracy delay control circuit 31 based on the completion of the phase synchronization Depending on the phase synchronization completion signal 30S output to the control circuit 32, the start timings of the P-phase reception signal RP and the N-phase reception signal RN may be aligned by the discrete delay control circuit 32.
Thereby, when discrete variable delay control is performed by the discrete delay control circuit 32, the skew is always an integral multiple of the cycle length T, so that the discrete variable control by the discrete delay control circuit 32 can be performed. Therefore, stable skew adjustment can be realized. At this time, only the order of the skew adjustment control is defined, and the arrangement order of the high-precision variable delay circuits 23AP and 23AN and the discrete variable delay circuits 23BP and 23BN is not limited.

また、本実施の形態では、ローノイズアンプ21から出力される受信RF信号21P,21Nのピーク振幅情報を高精度可変遅延回路23AP,23ANにフィードバックする場合を例として説明したが、これに限定されるものではない。例えば、復調器22において包絡線検波方式等を用いた場合、入力される受信RF信号21P,21Nのピーク振幅電圧が大きい程、復調後の受信データ信号RSのピーク振幅電圧も大きくなる。このため、復調器22から出力される受信データ信号RSのピーク振幅情報を検出して、高精度可変遅延回路23AP,23ANにフィードバックすることによって、P相受信信号RPとN相受信信号RNの位相を揃える方法も可能である。   In the present embodiment, the case where the peak amplitude information of the received RF signals 21P and 21N output from the low noise amplifier 21 is fed back to the high-precision variable delay circuits 23AP and 23AN has been described as an example, but the present invention is not limited thereto. It is not a thing. For example, when the envelope detection method or the like is used in the demodulator 22, the peak amplitude voltage of the received data signal RS after demodulation increases as the peak amplitude voltage of the input reception RF signals 21P and 21N increases. For this reason, the peak amplitude information of the reception data signal RS output from the demodulator 22 is detected and fed back to the high-precision variable delay circuits 23AP and 23AN, so that the phases of the P-phase reception signal RP and the N-phase reception signal RN are detected. It is also possible to align them.

また、本実施の形態では、復調器22から出力される受信データ信号RSのデューティを離散可変遅延回路23BP,23BNにフィードバックする場合を例として説明したが、これに限定されるものではない。例えば、図10に示した差動成分RDは、高精度可変遅延制御後、ピーク振幅電圧が最大となる前にそれより小さな(およそ半分)振幅電圧が出力されるため、復調器22から出力される受信データ信号RSの立ち上がりや立ち下がりの時間が大きくなる。このため、これら立ち上がりや立ち下がりの時間を検出して、これらが最小になるように離散可変遅延回路23BP,23BNにフィードバックすることによって、P相受信信号RPとN相受信信号RNの先頭タイミングを揃える方法も可能である。   In the present embodiment, the case where the duty of the reception data signal RS output from the demodulator 22 is fed back to the discrete variable delay circuits 23BP and 23BN has been described as an example. However, the present invention is not limited to this. For example, the differential component RD shown in FIG. 10 is output from the demodulator 22 because a smaller (approximately half) amplitude voltage is output before the peak amplitude voltage becomes the maximum after the high-precision variable delay control. The rising and falling time of the received data signal RS increases. For this reason, by detecting the rise and fall times and feeding them back to the discrete variable delay circuits 23BP and 23BN so as to minimize them, the leading timings of the P-phase received signal RP and the N-phase received signal RN are set. A method of aligning is also possible.

また、復調器22から出力される受信データ信号RSの立ち上がりや立ち下がりの時間が増加したり、デューティが変動することによって、受信データ信号RSのジッタ量が大きくなることも考えられる。このため、受信データ信号RSのジッタ量を検出し、このジッタ量が最小になるように離散可変遅延回路23BP,23BNにフィードバックすることによって、P相受信信号RPとN相受信信号RNの先頭タイミングを揃える方法も可能である。   It is also conceivable that the amount of jitter of the reception data signal RS increases due to an increase in the rise or fall time of the reception data signal RS output from the demodulator 22 or a change in duty. For this reason, the leading timing of the P-phase received signal RP and the N-phase received signal RN is detected by detecting the jitter amount of the received data signal RS and feeding back to the discrete variable delay circuits 23BP and 23BN so that the jitter amount is minimized. It is also possible to align them.

なお、前述した立ち上がり/立ち下がりの時間やジッタ量を離散可変遅延回路23BP,23BNにフィードバックする方法について、送信器Txに入力される送信データ信号TSのデューティ情報が分からない場合にも利用可能であるという利点がある。
また、図10では、ASK変調された相受信信号RPおよびN相受信信号RNを例としてスキュー調整回路23の動作を説明したが、これに限定されるものではない。例えば、復調器22から出力される受信データ信号RSが、High状態かLow状態かの2電位を判定する形式の信号、例えばNRZ形式やRZ形式の信号であればよい。
Note that the above-described method of feeding back the rise / fall time and jitter amount to the discrete variable delay circuits 23BP and 23BN can be used even when the duty information of the transmission data signal TS input to the transmitter Tx is not known. There is an advantage of being.
In FIG. 10, the operation of the skew adjustment circuit 23 has been described by taking the ASK-modulated phase received signal RP and the N-phase received signal RN as examples. However, the present invention is not limited to this. For example, the received data signal RS output from the demodulator 22 may be a signal in a format for determining two potentials of a high state and a low state, for example, a signal in the NRZ format or the RZ format.

[第5の実施の形態]
次に、図11を参照して、本発明の第5の実施の形態にかかる伝送システム1について説明する。図11は、第5の実施の形態にかかる伝送システムの構成を示すブロック図である。
[Fifth Embodiment]
Next, with reference to FIG. 11, the transmission system 1 concerning the 5th Embodiment of this invention is demonstrated. FIG. 11 is a block diagram illustrating a configuration of a transmission system according to the fifth embodiment.

本実施の形態は、図11に示すように、送信器Txから出力されるP相送信信号TPおよびN相送信信号TNのうち、P相送信信号TPのみが振幅電圧を有するRF信号となっており、N相送信信号TNはグラウンド(接地電位)に接続した振幅電圧ゼロの信号である点が、第1および第2の実施の形態と異なる。   In the present embodiment, as shown in FIG. 11, only the P-phase transmission signal TP is an RF signal having an amplitude voltage among the P-phase transmission signal TP and the N-phase transmission signal TN output from the transmitter Tx. The N-phase transmission signal TN differs from the first and second embodiments in that the N-phase transmission signal TN is a signal having an amplitude voltage of zero connected to the ground (ground potential).

N相送信信号TNに振幅電圧ゼロの基準信号を送信することで、N側の受信信号として誘電体導波路伝送中に生じるノイズやクロストークの影響のみが伝搬される。2つの誘電体導波路LP,LNが等長配線されている場合、P相送信信号TPとN相送信信号TNとの差分を取ると、誘電体導波路LP,LNを伝搬中に生じたノイズやクロストークの影響が除去されたP相受信信号RPを取り出すことが可能となり、それを基に受信データ信号RSを復調することができる。   By transmitting a reference signal with zero amplitude voltage to the N-phase transmission signal TN, only the influence of noise and crosstalk generated during transmission of the dielectric waveguide is propagated as the N-side received signal. When the two dielectric waveguides LP and LN are wired at the same length, if the difference between the P-phase transmission signal TP and the N-phase transmission signal TN is taken, noise generated during propagation through the dielectric waveguides LP and LN It is possible to extract the P-phase received signal RP from which the influence of crosstalk has been removed, and the received data signal RS can be demodulated based on the P-phase received signal RP.

また、2つの誘電体導波路LP,LNが等長配線されていない場合、受信器Rxに備わるスキュー調整回路23によって、P相受信信号RPとN相受信信号RNのそれぞれに生じるノイズの先頭タイミングまたはピーク振幅電圧のタイミングを揃えることで、ローノイズアンプ21による差動増幅された受信RF信号21P,21Nにおいてノイズ除去効果を最大化できる。なお、P相受信信号RPとN相受信信号RNのそれぞれに生じるノイズの先頭タイミングやピーク振幅電圧にほとんどスキューが発生しない場合、スキュー調整回路23を省いて、P相送信信号TPとN相送信信号TNとをローノイズアンプ21へ直接入力してもよい。   When the two dielectric waveguides LP and LN are not equally wired, the leading timing of noise generated in each of the P-phase reception signal RP and the N-phase reception signal RN by the skew adjustment circuit 23 provided in the receiver Rx. Alternatively, by adjusting the timing of the peak amplitude voltage, the noise removal effect can be maximized in the reception RF signals 21P and 21N that are differentially amplified by the low noise amplifier 21. If there is almost no skew in the leading timing and peak amplitude voltage of noise generated in each of the P-phase received signal RP and the N-phase received signal RN, the skew adjustment circuit 23 is omitted and the P-phase transmitted signal TP and the N-phase transmitted signal are omitted. The signal TN may be directly input to the low noise amplifier 21.

また、本実施の形態では、N相送信信号TNとしてグラウンドに接続した振幅電圧ゼロ信号を用いた例を示したが、振幅電圧がゼロの一定電位であれば、いずれの電位であってもよい。また、本実施の形態では、P相送信信号TPに振幅電圧を有するRF信号を用い、N相送信信号TNに振幅電圧ゼロの信号を用いた例を示したが、P相送信信号TPに振幅電圧ゼロの信号を用い、N相送信信号TNに振幅電圧を有するRF信号を用いてもよい。また、本実施の形態では、伝送媒体として誘電体導波路LP,LNを用いた場合を例として説明したが、これに限定されるものではなく、金属配線などの他の伝送媒体を用いた伝送システムにも適用できる。   In this embodiment, an example in which an amplitude voltage zero signal connected to the ground is used as the N-phase transmission signal TN has been described. However, any potential may be used as long as the amplitude voltage is a constant potential of zero. . In the present embodiment, an example in which an RF signal having an amplitude voltage is used for the P-phase transmission signal TP and a signal having an amplitude voltage of zero is used for the N-phase transmission signal TN has been described. An RF signal having an amplitude voltage may be used for the N-phase transmission signal TN by using a signal having a zero voltage. In the present embodiment, the case where the dielectric waveguides LP and LN are used as transmission media has been described as an example. However, the present invention is not limited to this, and transmission using other transmission media such as metal wiring is possible. It can also be applied to the system.

[実施の形態の拡張]
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
[Extended embodiment]
The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, each embodiment can be implemented in any combination within a consistent range.

1…伝送システム、Tx…送信器、11…変調器、12…増幅器(PA)、Rx…受信器、RS…受信データ信号、21…ローノイズアンプ(LNA)、21P,21N…受信RF信号、22…復調器、23…スキュー調整回路、23AP,23AN…高精度可変遅延回路(第1の可変遅延回路)、23BP,23BN…離散可変遅延回路(第2の可変遅延回路)、23CP,23CN…高精度可変遅延回路、30…遅延制御回路、30S…位相同期完了信号、31…高精度遅延制御回路(第1の遅延制御回路)、32…離散遅延制御回路(第2の遅延制御回路)、LP,LN…誘電体導波路、TS…送信データ信号、RS…受信データ信号、TP…P相送信信号、TN…N相送信信号、RP,RP1,RP2…P相受信信号、RN,RN1,RN2,RN3…N相受信信号、RD…差動成分。   DESCRIPTION OF SYMBOLS 1 ... Transmission system, Tx ... Transmitter, 11 ... Modulator, 12 ... Amplifier (PA), Rx ... Receiver, RS ... Received data signal, 21 ... Low noise amplifier (LNA), 21P, 21N ... Received RF signal, 22 ... demodulator, 23 ... skew adjustment circuit, 23AP, 23AN ... high precision variable delay circuit (first variable delay circuit), 23BP, 23BN ... discrete variable delay circuit (second variable delay circuit), 23CP, 23CN ... high Precision variable delay circuit, 30 ... delay control circuit, 30S ... phase synchronization completion signal, 31 ... high precision delay control circuit (first delay control circuit), 32 ... discrete delay control circuit (second delay control circuit), LP , LN ... dielectric waveguide, TS ... transmission data signal, RS ... reception data signal, TP ... P phase transmission signal, TN ... N phase transmission signal, RP, RP1, RP2 ... P phase reception signal, RN, RN1 RN2, RN3 ... N-phase receiving signal, RD ... differential component.

Claims (4)

入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、
前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え
前記受信器は、
前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、
前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、
前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、
前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、第1の遅延制御回路を設けて、前記ローノイズアンプから出力される前記受信RF信号のピーク振幅電圧、または、前記復調器から出力される前記受信データ信号のピーク振幅値を検出し、当該ピーク振幅電圧が最大となるように、前記第1の可変遅延回路の遅延量をフィードバック制御する
ことを特徴とする伝送システム。
Modulates the input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, and outputs them to each of the paired dielectric waveguides. A transmitter,
A P-phase (normal phase) reception signal and an N-phase (reverse phase) reception signal are received from each of the dielectric waveguides, and received by demodulating the differential components of the P-phase reception signal and the N-phase reception signal. A receiver for outputting a data signal ,
The receiver is
A skew adjustment circuit that removes and outputs a skew between the P-phase received signal and the N-phase received signal received from each of the dielectric waveguides;
A low-noise amplifier that outputs a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit;
A demodulator that demodulates the received RF signal output from the low noise amplifier and outputs the received data signal;
The skew adjustment circuit includes a first variable delay circuit that gives a delay equal to or less than a period length of an operation frequency of the RF signal to the input RF signal for each of the P-phase reception signal and the N-phase reception signal; A serial connection with a second variable delay circuit that gives a delay that is an integral multiple of the cycle length of the operating frequency of the RF signal to the input RF signal is provided, and any of these P-phase received signal and N-phase received signal The skew is adjusted by delaying one that arrives first by the serial connection, and at this time, a first delay control circuit is provided, and a peak amplitude voltage of the received RF signal output from the low noise amplifier Alternatively, the peak amplitude value of the received data signal output from the demodulator is detected, and the delay amount of the first variable delay circuit is fed so as to maximize the peak amplitude voltage. Transmission system characterized by back control.
入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、
前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え、
前記受信器は、
前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、
前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、
前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、
前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、第2の遅延制御回路を設けて、前記復調器から出力される前記受信データ信号から検出したデューティが特定の値となるように、あるいは、前記ローノイズアンプから出力される前記受信RF信号の立ち上がりまたは立ち下がりの時間、または、前記受信RF信号のジッタ量が最小となるように、前記第2の可変遅延回路の遅延量をフィードバック制御する
ことを特徴とする伝送システム。
Modulates the input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, and outputs them to each of the paired dielectric waveguides. A transmitter,
A P-phase (normal phase) reception signal and an N-phase (reverse phase) reception signal are received from each of the dielectric waveguides, and received by demodulating the differential components of the P-phase reception signal and the N-phase reception signal. A receiver for outputting a data signal,
The receiver is
A skew adjustment circuit that removes and outputs a skew between the P-phase received signal and the N-phase received signal received from each of the dielectric waveguides;
A low-noise amplifier that outputs a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit;
A demodulator that demodulates the received RF signal output from the low noise amplifier and outputs the received data signal;
The skew adjustment circuit includes a first variable delay circuit that gives a delay equal to or less than a period length of an operation frequency of the RF signal to the input RF signal for each of the P-phase reception signal and the N-phase reception signal; A serial connection with a second variable delay circuit that gives a delay that is an integral multiple of the cycle length of the operating frequency of the RF signal to the input RF signal is provided, and any of these P-phase received signal and N-phase received signal The skew is adjusted by delaying one that arrives first by the serial connection, and at this time, a second delay control circuit is provided, and the duty detected from the received data signal output from the demodulator Is a specific value, or the rising or falling time of the received RF signal output from the low noise amplifier, or the jitter amount of the received RF signal As a minimum, the transmission system, characterized in that the feedback control of the delay amount of the second variable delay circuit.
入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、
前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え、
前記受信器は、
前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、
前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、
前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、
前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより、前記スキューを調整し、この際、前記第1の可変遅延回路により、前記RF信号の動作周波数の周期長以下の遅延を与えることにより前記スキューを調整した後、前記第2の可変遅延回路により当該RF信号の動作周波数の周期長の整数倍の遅延を与えることにより前記スキューを調整する
ことを特徴とする伝送システム。
Modulates the input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, and outputs them to each of the paired dielectric waveguides. A transmitter,
A P-phase (normal phase) reception signal and an N-phase (reverse phase) reception signal are received from each of the dielectric waveguides, and received by demodulating the differential components of the P-phase reception signal and the N-phase reception signal. A receiver for outputting a data signal,
The receiver is
A skew adjustment circuit that removes and outputs a skew between the P-phase received signal and the N-phase received signal received from each of the dielectric waveguides;
A low-noise amplifier that outputs a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit;
A demodulator that demodulates the received RF signal output from the low noise amplifier and outputs the received data signal;
The skew adjustment circuit includes a first variable delay circuit that gives a delay equal to or less than a period length of an operation frequency of the RF signal to the input RF signal for each of the P-phase reception signal and the N-phase reception signal; A serial connection with a second variable delay circuit that gives a delay that is an integral multiple of the cycle length of the operating frequency of the RF signal to the input RF signal is provided, and any of these P-phase received signal and N-phase received signal The skew is adjusted by delaying the one that arrives first by the serial connection, and at this time, by giving a delay equal to or less than the period length of the operating frequency of the RF signal by the first variable delay circuit. after adjusting the skew, and adjusting the skew by providing a delay of an integral multiple of the period length of the operating frequency of the RF signal by the second variable delay circuit Transmission system.
入力された送信データ信号を変調して差動のRF信号からなるP相(正相)送信信号とN相(逆相)送信信号を生成し、対をなす誘電体導波路のそれぞれへ出力する送信器と、
前記誘電体導波路のそれぞれからP相(正相)受信信号およびN相(逆相)受信信号を受信し、前記P相受信信号と前記N相受信信号の差動成分を復調することにより受信データ信号を出力する受信器とを備え、
前記受信器は、
前記誘電体導波路のそれぞれから受信した前記P相受信信号と前記N相受信信号との間のスキューを除去して出力するスキュー調整回路と、
前記スキュー調整回路から出力された前記P相受信信号と前記N相受信信号の差動成分を示す受信RF信号を出力するローノイズアンプと、
前記ローノイズアンプから出力された前記受信RF信号を復調して前記受信データ信号を出力する復調器とを備え、
前記スキュー調整回路は、前記P相受信信号および前記N相受信信号ごとに、入力されたRF信号に対して当該RF信号の動作周波数の周期長以下の遅延を与える第1の可変遅延回路と、入力されたRF信号に対して当該RF信号の動作周波数の周期長の整数倍の遅延を与える第2の可変遅延回路との直列接続を設け、これらP相受信信号およびN相受信信号のうちいずれか先に到着した一方を前記直列接続で遅延させることにより前記スキューを調整し、この際、前記P相受信信号または前記N相受信信号のいずれか一方に、これらP相受信信号とN相受信信号との間の許容遅延差より大きい固定時間長の遅延を与え、前記P相受信信号または前記N相受信信号のいずれか他方を前記直列接続で遅延させることにより前記スキューを調整する
ことを特徴とする伝送システム。
Modulates the input transmission data signal to generate a P-phase (normal phase) transmission signal and an N-phase (reverse phase) transmission signal composed of differential RF signals, and outputs them to each of the paired dielectric waveguides. A transmitter,
A P-phase (normal phase) reception signal and an N-phase (reverse phase) reception signal are received from each of the dielectric waveguides, and received by demodulating the differential components of the P-phase reception signal and the N-phase reception signal. A receiver for outputting a data signal,
The receiver is
A skew adjustment circuit that removes and outputs a skew between the P-phase received signal and the N-phase received signal received from each of the dielectric waveguides;
A low-noise amplifier that outputs a reception RF signal indicating a differential component of the P-phase reception signal and the N-phase reception signal output from the skew adjustment circuit;
A demodulator that demodulates the received RF signal output from the low noise amplifier and outputs the received data signal;
The skew adjustment circuit includes a first variable delay circuit that gives a delay equal to or less than a period length of an operation frequency of the RF signal to the input RF signal for each of the P-phase reception signal and the N-phase reception signal; A serial connection with a second variable delay circuit that gives a delay that is an integral multiple of the cycle length of the operating frequency of the RF signal to the input RF signal is provided, and any of these P-phase received signal and N-phase received signal The skew is adjusted by delaying one that arrives first by the serial connection, and at this time, either the P-phase reception signal or the N-phase reception signal is added to the P-phase reception signal and the N-phase reception signal. The skew is adjusted by giving a delay having a fixed time length larger than an allowable delay difference with respect to the signal and delaying the other of the P-phase received signal and the N-phase received signal through the serial connection. Transmission system characterized in that.
JP2014000754A 2014-01-07 2014-01-07 Transmission system Active JP6162608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000754A JP6162608B2 (en) 2014-01-07 2014-01-07 Transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000754A JP6162608B2 (en) 2014-01-07 2014-01-07 Transmission system

Publications (2)

Publication Number Publication Date
JP2015130570A JP2015130570A (en) 2015-07-16
JP6162608B2 true JP6162608B2 (en) 2017-07-12

Family

ID=53761016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000754A Active JP6162608B2 (en) 2014-01-07 2014-01-07 Transmission system

Country Status (1)

Country Link
JP (1) JP6162608B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206737A (en) * 1988-02-12 1989-08-18 Sharp Corp Optical space transmission device
JPH0382230A (en) * 1989-08-25 1991-04-08 Toshiba Corp Optical transmission system and optical transmitter
JP2002111750A (en) * 2000-10-02 2002-04-12 Mitsubishi Electric Corp Optical transmitter/receiver and optical transmitter
JP2010245905A (en) * 2009-04-07 2010-10-28 Sony Corp Transmission apparatus and communication system

Also Published As

Publication number Publication date
JP2015130570A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP4516501B2 (en) DQPSK optical receiver circuit
TWI530148B (en) Digital calibration-based skew cancellation for long-reach mipi d-phy serial links
KR100944774B1 (en) Transmitter circuit and radio transmission appatatus for transmitting data via radio by using impluses
JP4838775B2 (en) Optical transmission circuit
EP3646520B1 (en) Frequency/phase-shift-keying for back-channel serdes communication
JP5076391B2 (en) Differential signal transmission system and signal line skew adjustment method
EP2747312A1 (en) Optical reception device and optical reception method
KR100945400B1 (en) Circuit and method for differential signaling receiver
WO2012151496A2 (en) Intra-pair skew cancellation for differential signaling
JP2017028489A (en) Skew correction circuit, electronic device and skew correction method
JP6162608B2 (en) Transmission system
US20160065316A1 (en) Signal recovery circuit and signal recovery method
CN101692624B (en) Method and device for monitoring-measuring and controlling phase difference based on DQPSK modulation
JP2007134803A (en) Signal transmission system, signal transmitter and signal receiver
US20060133558A1 (en) Mechanism to aid a phase interpolator in recovering a clock signal
JP2016063345A (en) Receiver circuit
US7783203B2 (en) System and method for controlling a difference in optical phase and an optical signal transmitter
TW201729547A (en) Radio frequency interconnect
US7903983B2 (en) Optical receiver and control method for optical receiver
JP5407177B2 (en) Signal multiplier, signal generator, optical transmitter and optical communication device
JP5621895B1 (en) Data transmission system and data transmission method
US10361786B1 (en) Phase optimization technique in high-speed simultaneous bi-directional links
US11323181B2 (en) Phase optimization technique in high-speed simultaneous bidirectional links
JP5560646B2 (en) Oversampling circuit and serial communication system using the same
WO2010022110A2 (en) Automatic phase shifter and aligner for high-speed serial data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6162608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150