JP6160472B2 - Time-of-flight mass spectrometer - Google Patents

Time-of-flight mass spectrometer Download PDF

Info

Publication number
JP6160472B2
JP6160472B2 JP2013263322A JP2013263322A JP6160472B2 JP 6160472 B2 JP6160472 B2 JP 6160472B2 JP 2013263322 A JP2013263322 A JP 2013263322A JP 2013263322 A JP2013263322 A JP 2013263322A JP 6160472 B2 JP6160472 B2 JP 6160472B2
Authority
JP
Japan
Prior art keywords
acceleration
electric field
ions
electrode
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013263322A
Other languages
Japanese (ja)
Other versions
JP2015118887A (en
Inventor
克 西口
克 西口
大輔 奥村
大輔 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013263322A priority Critical patent/JP6160472B2/en
Publication of JP2015118887A publication Critical patent/JP2015118887A/en
Application granted granted Critical
Publication of JP6160472B2 publication Critical patent/JP6160472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は飛行時間型質量分析装置(Time-of-Flight Mass Spectrometer、以下「TOFMS」と略す)に関し、さらに詳しくは、直交加速(OA: Orthogonal Acceleration)方式のTOFMSに関する。   The present invention relates to a time-of-flight mass spectrometer (hereinafter abbreviated as “TOFMS”), and more particularly to an orthogonal acceleration (OA) type TOFMS.

TOFMSでは、試料成分由来のイオンに一定の運動エネルギを付与して一定距離の空間を飛行させ、その飛行に要する時間を計測して該飛行時間からイオンの質量電荷比を求める。そのため、イオンを加速して飛行を開始させる際に、イオンの位置やイオンが持つ初期エネルギにばらつきがあると、同一質量電荷比を持つイオンの飛行時間にばらつきが生じ、質量分解能や質量精度の低下に繋がる。こうした課題を解決する手法の一つとして、直交加速(「垂直加速」や「直交引出し」などとも呼ばれる)方式のTOFMSが知られている。   In TOFMS, a constant kinetic energy is applied to ions derived from a sample component to fly in a space of a fixed distance, the time required for the flight is measured, and the mass-to-charge ratio of the ions is obtained from the flight time. Therefore, when accelerating ions and starting flight, if there are variations in the position of the ions and the initial energy of the ions, the flight time of ions with the same mass-to-charge ratio will vary, resulting in mass resolution and mass accuracy. It leads to decline. As a technique for solving such a problem, orthogonal acceleration (also called “vertical acceleration”, “orthogonal extraction”, etc.) type TOFMS is known.

直交加速方式TOFMSでは、試料由来のイオンビームをその進行方向と直交する方向にパルス的に加速し、それによって生成されたイオンパケットを飛行空間に送り込んで質量分析する。直交方向の加速を行うことで加速方向へのイオンの初速度のばらつきを抑えることにより、イオンの加速の際に生じるターンアラウンドタイムを大幅に低減することができ、それによって質量分解能を向上させることができる。こうした高い質量分解能及び質量精度を持つ直交加速方式TOFMSの前段に、コリジョンセルを挟んで、イオン選択性に優れた四重極マスフィルタを設けた、いわゆるQ−TOF装置は、高精度、高分解能なMS/MS分析が可能であり、近年、プロテオーム解析などに広く利用されている。   In the orthogonal acceleration method TOFMS, a sample-derived ion beam is accelerated in a pulse direction in a direction orthogonal to the traveling direction thereof, and an ion packet generated thereby is sent into a flight space for mass analysis. By suppressing the variation of the initial velocity of ions in the acceleration direction by accelerating in the orthogonal direction, the turnaround time that occurs during the acceleration of ions can be greatly reduced, thereby improving the mass resolution. Can do. The so-called Q-TOF device, which is equipped with a quadrupole mass filter with excellent ion selectivity, with a collision cell in front of the orthogonal acceleration method TOFMS having such high mass resolution and mass accuracy, has high accuracy and high resolution. MS / MS analysis is possible, and in recent years, it has been widely used for proteome analysis and the like.

図4は従来一般的である直交加速方式TOFMSの直交加速部の概略構成図である。
直交加速部1は、導入されるイオンビームの進行方向(X軸方向)と平行に配置された平板状の押し出し電極11と、イオンビームを挟んで押し出し電極11に対向して配置された引き出し電極12と、押し出し電極11及び引き出し電極12により引き出されたイオンを加速する加速領域を形成する複数の加速電極13(13a、13b)と、を含む。このうち、引き出し電極12と加速領域の最終段の加速電極13bとは、イオンが通過する開口部に導電性のグリッドが張設されたグリッド電極である(非特許文献1参照)。
FIG. 4 is a schematic configuration diagram of the orthogonal acceleration unit of the conventional orthogonal acceleration type TOFMS.
The orthogonal acceleration unit 1 includes a flat extrusion electrode 11 arranged in parallel with the traveling direction (X-axis direction) of the introduced ion beam, and an extraction electrode arranged opposite to the extrusion electrode 11 with the ion beam interposed therebetween. 12 and a plurality of acceleration electrodes 13 (13a, 13b) forming an acceleration region for accelerating ions extracted by the extrusion electrode 11 and the extraction electrode 12. Among these, the extraction electrode 12 and the acceleration electrode 13b at the final stage of the acceleration region are grid electrodes in which a conductive grid is stretched in an opening through which ions pass (see Non-Patent Document 1).

この直交加速部1において、試料成分由来のイオンビームは図4中に示すように、X軸方向に、押し出し電極11と引き出し電極12との間の引き出し領域に導入される。このとき、電極11、12は同電位(例えばともに接地電位)であり、引き出し領域、加速領域に電場は存在しない。十分な量のイオンが導入された所定の時点で、押し出し電極11にイオンと同極性の高電圧パルスが印加され、引き出し電極12及び加速電極13には、Z軸方向に沿ってイオンを加速するための電圧がそれぞれ印加される。このように印加される電圧によって形成される電場により、イオンビームの一部は引き出し領域から加速領域へと押し出され、さらに加速電場によって、大きな運動エネルギを付与されて最終段の加速電極13bのグリッド開口を通過してイオンパケットとして射出される。加速電場によるイオンの加速方向はZ軸方向であるが、イオンはX軸方向(ドリフト方向)の初期速度を有しているため、実際の飛行開始方向は図4中の白抜き矢印の方向となる。   In the orthogonal acceleration unit 1, the ion beam derived from the sample component is introduced into the extraction region between the extraction electrode 11 and the extraction electrode 12 in the X-axis direction as shown in FIG. 4. At this time, the electrodes 11 and 12 are at the same potential (for example, both are ground potential), and there is no electric field in the extraction region and the acceleration region. At a predetermined point in time when a sufficient amount of ions are introduced, a high voltage pulse having the same polarity as the ions is applied to the extrusion electrode 11, and the extraction electrode 12 and the acceleration electrode 13 are accelerated along the Z-axis direction. A voltage for each is applied. A part of the ion beam is pushed out from the extraction region to the acceleration region by the electric field formed by the voltage applied in this way, and further, a large kinetic energy is given by the acceleration electric field, and the grid of the final stage acceleration electrode 13b. It passes through the opening and is emitted as an ion packet. The acceleration direction of ions by the acceleration electric field is the Z-axis direction, but since the ions have an initial velocity in the X-axis direction (drift direction), the actual flight start direction is the direction of the white arrow in FIG. Become.

引き出し電極12と加速電極13bとの二つにグリッド電極が用いられるのは、イオンを所定の透過率で以て通過させながら、電位の境界を画定し、加速領域に一様な加速電場を形成するためである。しかしながら、イオンがグリッド電極を通過する際に、一定割合のイオンはグリッドに接触して消失してしまうため、その分の信号感度の低下は避けられない。また、グリッドの微細な開口部を通した電場の漏れにより発散レンズ作用が生じるため、発散した一部のイオンが検出器に入射せずさらなる感度低下を生じたり、検出器に達した時点での時間収束性などのイオン光学特性が低下し分解能や精度が下がったりするおそれがある。   The grid electrode is used for the extraction electrode 12 and the acceleration electrode 13b. The boundary electrode is defined while allowing ions to pass with a predetermined transmittance, and a uniform acceleration electric field is formed in the acceleration region. It is to do. However, when ions pass through the grid electrode, a certain percentage of the ions come into contact with the grid and disappear, and thus the signal sensitivity is inevitably lowered. In addition, since the diverging lens action occurs due to the leakage of the electric field through the fine openings in the grid, some of the diverged ions do not enter the detector, causing further sensitivity deterioration, or when the detector reaches the detector. There is a risk that the ion optical characteristics such as time convergence will deteriorate and the resolution and accuracy will decrease.

グリッド電極を用いた場合におけるこうした欠点を克服するために、グリッド電極を使用しない直交加速方式TOFMSも提案されている(特許文献1、2など参照)。しかしながら、そうした装置では、所定のタイミングでパルス的に駆動される電極を追加するなど、ハードウエアの追加と高度で複雑な制御とが必要となり、かなりのコスト増加が避けられない。   In order to overcome such drawbacks in the case of using a grid electrode, an orthogonal acceleration type TOFMS that does not use a grid electrode has also been proposed (see Patent Documents 1 and 2). However, such a device requires additional hardware and sophisticated and complicated control, such as adding an electrode that is driven in a pulse manner at a predetermined timing, and a considerable increase in cost is inevitable.

また、ドリフト方向にイオンパケットを圧縮することでイオン検出面の小さな検出器を用いることができるようにするために、押し出し電極と引き出し電極とで挟まれる引き出し領域に集束電極を配置した装置も提案されている(特許文献3参照)。しかしながら、この装置では、上記従来技術と同様に、引き出し電極と加速電極の最終段にグリッド電極が使用されているため、高いイオン透過率を達成するのは難しい。また、集束電極を新たに追加する必要があるし、押し出し電極と引き出し電極との間の狭い引き出し領域において十分に電場が作用するように集束電極を設けることも実際には難しい。   In addition, in order to be able to use a detector with a small ion detection surface by compressing ion packets in the drift direction, a device with a focusing electrode arranged in the extraction region sandwiched between the extrusion electrode and extraction electrode is also proposed. (See Patent Document 3). However, in this apparatus, as in the prior art, a grid electrode is used at the final stage of the extraction electrode and the acceleration electrode, so that it is difficult to achieve a high ion transmittance. Further, it is necessary to newly add a focusing electrode, and it is actually difficult to provide a focusing electrode so that an electric field acts sufficiently in a narrow extraction region between the extrusion electrode and the extraction electrode.

英国特許第2386751号明細書British Patent No. 2386751 国際公開第2001/011660号公報International Publication No. 2001/011660 特許第4649234号公報Japanese Patent No. 4649234

グイルハウス(M. Guilhaus)、ほか2名 、「オーソゴナル・アクセラレイション・タイム・オブ・フライト・マス・スペクトロメトリ(Orthogonal Acceleration Time-of-flight Mass Spectrometry)」、マス・スペクトロメトリー・レビュー(Mass Spectrom. Rev.)、Vol.19 、2000年、p.65-107M. Guilhaus and two others, “Orthogonal Acceleration Time-of-flight Mass Spectrometry”, Mass Spectrom. Review Rev.), Vol.19, 2000, p.65-107 嘉藤、「電子光学入門 −電子分光装置の理解のために− (第4回 Journal of Surface Analysis Vol.12 No.1(2005) pp.24-45)」、[平成25年12月6日検索]、インターネット<URL : http://www.sasj.jp/JSA/CONTENTS/vol.12_1/Vol.12%20No.1/Vol.12%20No.1%2024-45.pdf>Kato, “Introduction to Electron Optics-For Understanding Electron Spectroscopy (4th Journal of Surface Analysis Vol.12 No.1 (2005) pp.24-45)”, [Searched on December 6, 2013 ] Internet <URL: http://www.sasj.jp/JSA/CONTENTS/vol.12_1/Vol.12%20No.1/Vol.12%20No.1%2024-45.pdf>

本発明は上記課題を解決するために成されたものであり、その主な目的は、単純な電極構成及び制御によって高いイオン透過率を実現し、それによってコストの増加を避けながら高感度、高精度の測定が可能である直交加速方式の飛行時間型質量分析装置を提供することである。   The present invention has been made to solve the above-mentioned problems, and its main purpose is to realize high ion permeability by a simple electrode configuration and control, thereby avoiding an increase in cost and high sensitivity and high performance. An object of the present invention is to provide an orthogonal acceleration type time-of-flight mass spectrometer capable of measuring accuracy.

また、本発明の他の目的は、分析目的等に応じて、十分な感度を確保しつつ特に質量分解能を重視した高分解能の測定と、十分な分解能を確保しつつ特に測定感度を重視した高感度測定と、を切り替えて実行することができる直交加速方式の飛行時間型質量分析装置を提供することである。   Another object of the present invention is to provide high-resolution measurement that emphasizes mass resolution while ensuring sufficient sensitivity and high sensitivity that particularly emphasizes measurement sensitivity while ensuring sufficient resolution, depending on the purpose of analysis. An object of the present invention is to provide an orthogonal acceleration type time-of-flight mass spectrometer that can be switched between sensitivity measurement.

上記課題を解決するために成された本発明は、導入されたイオンをそのイオンビームの光軸と直交する方向に加速する直交加速部を具備する直交加速方式の飛行時間型質量分析装置において、前記直交加速部は、
a)イオンビームの光軸と平行に配置された押し出し電極と、
b)イオンビームを挟んで該押し出し電極と対向して配置されたグリッド電極である引き出し電極と、
c)前記押し出し電極及び前記引き出し電極との間に形成された電場によって該引き出し電極のグリッドを通過したイオンを、前記イオンビームの光軸と直交する方向に加速するための加速電場を形成する円環状又は円筒状である複数の加速電極と、
d)イオンに対し加速方向と直交する方向に収束作用を生じさせるべく、前記複数の加速電極の中心軸上のポテンシャル分布の下り勾配がイオンの進行方向に漸増する電場が前記加速電場の少なくとも一部で形成されるように定められた電圧を、前記複数の加速電極のそれぞれに印加する電圧印加部と、
を備えることを特徴としている。
The present invention made to solve the above-mentioned problems is an orthogonal acceleration type time-of-flight mass spectrometer having an orthogonal acceleration unit that accelerates introduced ions in a direction orthogonal to the optical axis of the ion beam. The orthogonal acceleration unit is
a) an extrusion electrode arranged parallel to the optical axis of the ion beam;
b) an extraction electrode which is a grid electrode arranged opposite to the extrusion electrode across the ion beam;
c) a circle that forms an accelerating electric field for accelerating ions that have passed through the grid of the extraction electrode by an electric field formed between the extrusion electrode and the extraction electrode in a direction perpendicular to the optical axis of the ion beam; A plurality of accelerating electrodes that are annular or cylindrical;
d) An electric field in which the descending gradient of the potential distribution on the central axis of the plurality of acceleration electrodes gradually increases in the direction of ion travel to cause at least one of the acceleration electric fields to cause a convergence effect on the ions in a direction orthogonal to the acceleration direction. A voltage application unit configured to apply a voltage determined to be formed by a unit to each of the plurality of acceleration electrodes;
It is characterized by having.

従来の一般的な直交加速方式TOFMSでは、直交加速部の加速電場におけるイオン進行方向の軸上ポテンシャル分布(axial potential distribution)が直線的な下り勾配となるように、加速電極への印加電圧が設定されている。即ち、この場合、加速電場は一様電場となり、加速電場においてイオンは径方向(加速方向と直交する方向)の力を受けない。   In the conventional general orthogonal acceleration method TOFMS, the applied voltage to the acceleration electrode is set so that the axial potential distribution in the direction of ion travel in the acceleration electric field of the orthogonal acceleration portion has a linear downward gradient. Has been. That is, in this case, the accelerating electric field is a uniform electric field, and ions are not subjected to radial force (direction perpendicular to the accelerating direction) in the accelerating electric field.

これに対し、本発明に係るTOFMSでは、加速電極の中心軸Z上のポテンシャル分布、つまり軸上ポテンシャル分布φが、加速電場の少なくとも一部の範囲で∂2φ/∂Z2<0となるように各加速電極への印加電圧が設定される。これは、下向きの勾配が徐々に大きくなるような軸上ポテンシャル分布である。よく知られているように、空間的な電位分布はラプラス方程式により規定されるが、軸対称座標系におけるラプラス方程式の規定から、∂2φ/∂Z2<0である場合には、このポテンシャル分布の変化を打ち消すように、中心軸Zに直交する半径方向の正の成分が存在する。そのため、このときの電場は、中心軸Zを外れた位置にあるイオンに対して、半径方向に中心軸Zに向かって力を及ぼすこととなる。これにより、加速電場を通過するイオンパケットは少なくともその加速電場の一部で中心に向かう力、つまりイオンの拡がりを収束させるような力を受け、そのイオン軌道は中心に向かって収束された状態で飛行空間に向けて射出される。 On the other hand, in the TOFMS according to the present invention, the potential distribution on the central axis Z of the acceleration electrode, that is, the axial potential distribution φ is ∂ 2 φ / ∂Z 2 <0 in at least a part of the acceleration electric field. Thus, the voltage applied to each acceleration electrode is set. This is an axial potential distribution in which the downward gradient gradually increases. As is well known, if the spatial potential distribution is defined by the Laplace equation, the provisions of the Laplace equation in axisymmetric coordinate system is ∂ 2 φ / ∂Z 2 <0, the potential There is a positive component in the radial direction orthogonal to the central axis Z so as to cancel the change in distribution. Therefore, the electric field at this time exerts a force toward the central axis Z in the radial direction with respect to ions located at a position off the central axis Z. As a result, the ion packet passing through the accelerating electric field receives at least a part of the accelerating electric field toward the center, that is, a force that converges the ion spread, and the ion trajectory is converged toward the center. It is injected towards the flight space.

換言すれば、本発明に係るTOFMSは、直交加速部においてイオンを加速する加速電極自体にイオンを収束させるレンズ機能を持たせたものであると捉えることができる。それにより、従来、複数の加速電極の最終段に設けられていたグリッド電極を設けなくても、また付加的な収束のためのレンズ電極やその電圧源を追加することなく、イオンを効率よく飛行させて検出器に到達させることができる。   In other words, the TOFMS according to the present invention can be regarded as having a lens function for converging ions on the acceleration electrode itself for accelerating ions in the orthogonal acceleration unit. This allows ions to fly efficiently without the need to provide a grid electrode, which was previously provided at the final stage of a plurality of acceleration electrodes, and without adding a lens electrode or voltage source for additional convergence. To reach the detector.

なお、加速電極の最終段にグリッド電極を使用しない場合、その射出開口の近傍には、電場の漏れのために∂2φ/∂Z2>0であるような軸上ポテンシャルが生じる。そのため、この領域ではイオンを発散させるレンズ作用が生じてしまうことになる。しかしながら、イオンがその領域に至るまでの加速領域において、上記発散作用よりも大きな収束作用を与えるように軸上ポテンシャル分布を調整しておきさえすれば、全体としては収束作用が勝り、イオンパケットをそのドリフト方向(押し出し電極と引き出し電極との間に導入されるイオンビームの進行方向)に圧縮することができる。 When the grid electrode is not used in the final stage of the accelerating electrode, an axial potential such that ∂ 2 φ / ∂Z 2 > 0 is generated in the vicinity of the injection opening due to electric field leakage. Therefore, in this region, a lens action for diverging ions occurs. However, as long as the axial potential distribution is adjusted so as to give a larger convergence effect than the diverging action in the acceleration region where ions reach that area, the overall convergence effect is superior and the ion packet is reduced. it can be compressed into (the traveling direction of the ion beam is introduced between the repeller electrode and the extraction electrode) that drift direction.

上述したように加速電場においてイオンを収束させることで、検出器へ到達するイオンの量は増加するものの、イオンの初期位置によって飛行距離が僅かながら変化するので、質量分解能等が下がるおそれがある。
そこで、本発明に係る飛行時間型質量分析装置において、好ましくは、加速電場におけるイオンを加速方向と直交する方向に収束する作用を調整するために、前記複数の加速電極のそれぞれに印加する電圧を変更するように前記電圧印加部を制御する制御部をさらに備える構成とするとよい。
As described above, by converging ions in the accelerating electric field, the amount of ions reaching the detector increases, but the flight distance slightly changes depending on the initial position of the ions, which may reduce the mass resolution and the like.
Therefore, in the time-of-flight mass spectrometer according to the present invention, preferably, the voltage applied to each of the plurality of acceleration electrodes is adjusted in order to adjust the action of converging ions in the acceleration electric field in a direction orthogonal to the acceleration direction. It is preferable to further include a control unit that controls the voltage application unit so as to be changed.

また本発明に係る飛行時間型質量分析装置において、さらに好ましくは、質量分解能を優先させる高分解能測定モードと感度を優先させる高感度測定モードとを切り替え可能であり、上記制御部は、高感度測定モードが指定されたときに、複数の加速電極の中心軸上のポテンシャル分布の下り勾配がイオンの進行方向に漸増する電場が前記加速電場の少なくとも一部で形成されるような電圧を複数の加速電極のそれぞれに印加し、高分解能測定モードが指定されたときには、上記ポテンシャル分布の電位勾配が一様である電場となるような電圧を複数の加速電極のそれぞれに印加する構成とするとよい。   In the time-of-flight mass spectrometer according to the present invention, more preferably, a high-resolution measurement mode that prioritizes mass resolution and a high-sensitivity measurement mode that prioritizes sensitivity can be switched. When a mode is specified, a plurality of acceleration voltages are generated so that an electric field in which a descending gradient of potential distribution on the central axes of a plurality of acceleration electrodes gradually increases in the ion traveling direction is formed in at least a part of the acceleration electric field. When a high-resolution measurement mode is specified by applying to each of the electrodes, a voltage that provides an electric field with a uniform potential gradient of the potential distribution may be applied to each of the plurality of acceleration electrodes.

この構成では、高感度測定モードが指定されたときには、上述したように加速領域においてイオンパケットの収束が行われ、イオンが少ない損失で以て検出器に到達する。それによって、特に高感度の測定が可能である。一方、高分解能測定モードが指定されたときには、従来通り、加速領域には一様加速電場が形成される。それによって、直交加速部から射出されたイオンは拡がりつつ進むため、一部のイオンは検出器に達せず、高感度測定モードよりは感度が下がる。その反面、検出器に到達する同一イオン種の飛行距離の長さは揃うため、高感度測定モードよりも高い分解能を達成できる。   In this configuration, when the high sensitivity measurement mode is designated, the ion packet is converged in the acceleration region as described above, and the ions reach the detector with a small loss. Thereby, a particularly sensitive measurement is possible. On the other hand, when the high resolution measurement mode is designated, a uniform accelerating electric field is formed in the acceleration region as usual. As a result, the ions ejected from the orthogonal acceleration unit travel while spreading, so that some ions do not reach the detector and the sensitivity is lower than in the high sensitivity measurement mode. On the other hand, since the lengths of the flight distances of the same ion species reaching the detector are uniform, higher resolution can be achieved than in the high sensitivity measurement mode.

この構成によれば、制御部による制御によって、高感度測定モードと高分解能測定モードとの切替えを短時間で行うことができるので、例えば液体クロマトグラフで成分分離された特定の成分が導入されている比較的短い時間中に、高分解能測定と高感度測定とを切り替えて、それぞれ測定に対する結果(マススペクトル)を得ることも可能である。   According to this configuration, since the high sensitivity measurement mode and the high resolution measurement mode can be switched in a short time by the control by the control unit, for example, a specific component separated by a liquid chromatograph is introduced. It is also possible to switch between high-resolution measurement and high-sensitivity measurement during a relatively short period of time, and obtain the results (mass spectrum) for each measurement.

本発明に係る飛行時間型質量分析装置によれば、複数の加速電極の最終段に設けられていたグリッド電極を用いる必要がないので、その分、グリッド電極によるイオンの損失を減らして効率良くイオンを検出器に入射させることができる。また、イオンを収束するために、収束のためのレンズ電極やその電圧源などを新たに追加する必要がないので、装置のコスト増加を抑えながら測定の高感度化を図ることができる。また、イオンパケットの幅を圧縮して検出器に入射させることができるので、同じ測定感度を得るために必要なイオン検出面のサイズが小さくて済む。それにより、検出器のコストを抑えることができるのみならず、時間応答性などの性能がより良好な検出器を使用することができる。   According to the time-of-flight mass spectrometer according to the present invention, it is not necessary to use the grid electrode provided at the final stage of the plurality of acceleration electrodes. Can be incident on the detector. In addition, since it is not necessary to newly add a lens electrode for focusing or its voltage source in order to focus ions, it is possible to increase the sensitivity of measurement while suppressing an increase in the cost of the apparatus. Further, since the width of the ion packet can be compressed and incident on the detector, the size of the ion detection surface required for obtaining the same measurement sensitivity can be reduced. Thereby, not only the cost of the detector can be suppressed, but also a detector with better performance such as time response can be used.

また本発明に係る好ましい構成の飛行時間型質量分析装置によれば、例えば微量成分の定量分析など、測定感度を重視した高感度測定を行いたい場合に、質量分解能は低いものの、質量分解能を重視した高分解能測定に比べて十分に高い感度で測定を行うことができる。一方、比較的含有量が多い成分の定性分析など、質量分解能を重視した高分解能測定を行いたい場合には、感度は低いものの、高感度測定に比べて十分に高い質量分解能で測定を行うことができる。このように、感度重視又は質量分解能重視の明確な測定の切り替えが可能であるので、分析目的に応じた的確な結果を得ることができる。   In addition, according to the time-of-flight mass spectrometer having a preferred configuration according to the present invention, when high sensitivity measurement with an emphasis on measurement sensitivity is desired, such as quantitative analysis of trace components, although mass resolution is low, mass resolution is emphasized. Measurement can be performed with sufficiently high sensitivity compared to the high resolution measurement. On the other hand, if you want to perform high-resolution measurement with an emphasis on mass resolution, such as qualitative analysis of components with a relatively high content, the sensitivity is low, but the measurement should be performed with sufficiently high mass resolution compared to high-sensitivity measurement. Can do. As described above, since it is possible to clearly switch the measurement with emphasis on sensitivity or mass resolution, it is possible to obtain an accurate result according to the analysis purpose.

本発明の一実施例である直交加速方式TOFMSの全体構成図。1 is an overall configuration diagram of an orthogonal acceleration TOFMS that is an embodiment of the present invention. FIG. 本実施例の直交加速方式TOFMSにおける直交加速部の構成図。The block diagram of the orthogonal acceleration part in the orthogonal acceleration type TOFMS of a present Example. 本実施例の直交加速方式TOFMSと従来の直交加速方式TOFMSとで直交加速部の複数の加速電極にそれぞれ印加される電圧の比較を示す概略図。Schematic which shows the comparison of the voltage respectively applied to the several acceleration electrode of an orthogonal acceleration part by the orthogonal acceleration type TOFMS of a present Example, and the conventional orthogonal acceleration type TOFMS. 従来の直交加速方式TOFMSにおける直交加速部の構成図。The block diagram of the orthogonal acceleration part in the conventional orthogonal acceleration type TOFMS. イオン軌道のシミュレーションのための電極モデルを示す図(a)、本実施例の直交加速方式TOFMSの直交加速部における軸上ポテンシャル分布を示す図(b)、従来の直交加速方式TOFMSの直交加速部における軸上ポテンシャル分布を示す図(c)。The figure which shows the electrode model for the simulation of ion trajectory (a), the figure which shows the axial potential distribution in the orthogonal acceleration part of orthogonal acceleration type TOFMS of this execution example (b), the orthogonal acceleration part of conventional orthogonal acceleration type TOFMS The figure which shows the axial potential distribution in (c). 本実施例の直交加速方式TOFMSにおけるイオン軌道のシミュレーション結果を示す図(a)、及び従来の直交加速方式TOFMSの直交加速部におけるイオン軌道のシミュレーション結果を示す図(b)。The figure (a) which shows the simulation result of the ion orbit in the orthogonal acceleration type TOFMS of a present Example, and the figure (b) which shows the simulation result of the ion orbit in the orthogonal acceleration part of the conventional orthogonal acceleration type TOFMS.

本発明の一実施例である直交加速方式TOFMSについて、添付図面を参照して説明する。図1は本実施例の直交加速方式TOFMSの全体構成図、図2は本実施例の直交加速方式TOFMSにおける直交加速部の構成図である。図1及び図2において、すでに説明した図4中の構成要素と同一の構成要素には同じ符号を付している。   An orthogonal acceleration type TOFMS which is an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram of the orthogonal acceleration type TOFMS of this embodiment, and FIG. 2 is a configuration diagram of an orthogonal acceleration unit in the orthogonal acceleration type TOFMS of this embodiment. 1 and 2, the same reference numerals are given to the same components as those already described in FIG. 4.

本実施例の直交加速方式TOFMSは、目的試料中の成分をイオン化するイオン源4と、飛行空間21及び反射器22を備えるTOF分析器2と、イオンを加速してTOF分析器2に送り込む直交加速部1と、イオン源4から出射されたイオンを案内するイオンガイド5と、TOF分析器2の飛行空間21を飛行して来たイオンを検出する検出器3と、検出器3による検出信号を受けてデータ処理を行いマススペクトル等を作成するデータ処理部6と、直交加速部1に含まれる複数の電極にそれぞれ所定の電圧を印加する直交加速電源部7と、直交加速電源部7等を制御する制御部8と、入力設定を行う入力部9と、を備える。制御部8は、機能ブロックとしてモード切替部81を含む。なお、イオンガイド5や反射器22などに電圧を印加する構成要素も当然存在するが、図1ではこれらの記載を省略している。   The orthogonal acceleration method TOFMS of the present embodiment includes an ion source 4 that ionizes components in a target sample, a TOF analyzer 2 that includes a flight space 21 and a reflector 22, and an orthogonal that accelerates ions and sends them to the TOF analyzer 2. Accelerator 1, ion guide 5 that guides ions emitted from ion source 4, detector 3 that detects ions flying in flight space 21 of TOF analyzer 2, and detection signal from detector 3 The data processing unit 6 that receives the received data and creates a mass spectrum, the orthogonal acceleration power source unit 7 that applies a predetermined voltage to each of the plurality of electrodes included in the orthogonal acceleration unit 1, the orthogonal acceleration power source unit 7 and the like The control part 8 which controls this, and the input part 9 which performs input setting are provided. The control unit 8 includes a mode switching unit 81 as a functional block. In addition, although the component which applies a voltage to the ion guide 5, the reflector 22, etc. also exists naturally, these description is abbreviate | omitted in FIG.

図2に示すように、直交加速部1は、イオンビームの入射方向でもあるX軸方向に平行に配置された押し出し電極11、該押し出し電極11と略平行に配置された引き出し電極12、Z軸方向に並べて複数配置された加速電極13、を含む。加速電極13は、Z軸方向に延びる中心軸C1を中心に回転対称である円環状又は扁平円筒状である。図4に示した従来の直交加速部1では、最終段の加速電極13はグリッド電極13bであるが、本実施例の構成では、最終段の加速電極も他の加速電極と同じ形状であり、グリッド電極ではない。   As shown in FIG. 2, the orthogonal acceleration unit 1 includes an extrusion electrode 11 arranged in parallel to the X-axis direction that is also an ion beam incident direction, an extraction electrode 12 arranged substantially parallel to the extrusion electrode 11, and a Z-axis. A plurality of acceleration electrodes 13 arranged in the direction are included. The acceleration electrode 13 has an annular shape or a flat cylindrical shape that is rotationally symmetric about a central axis C1 extending in the Z-axis direction. In the conventional orthogonal acceleration unit 1 shown in FIG. 4, the final stage acceleration electrode 13 is the grid electrode 13b. However, in the configuration of this embodiment, the final stage acceleration electrode has the same shape as the other acceleration electrodes. It is not a grid electrode.

本実施例の直交加速方式TOFMSにおける基本的な分析動作を簡単に説明する。
イオン源4において生成された各種イオンは、イオンガイド5により収束されつつX軸方向に直交加速部1に導入される。イオンが直交加速部1に導入される際には該直交加速部1には加速電場は形成されておらず、十分な量のイオンが直交加速部1に導入された時点で、直交加速電源部7から押し出し電極11、引き出し電極12、及び複数の加速電極13にそれぞれ所定電圧が印加されることで、引き出し電場及び加速電場が形成される。この引き出し電場の作用によってイオンは引き出し領域から加速領域に送られ、さらに加速電場の作用によってイオンはZ軸方向に運動エネルギを付与されて、TOF分析器2の飛行空間21へ送り込まれる。
The basic analysis operation in the orthogonal acceleration type TOFMS of this embodiment will be briefly described.
Various ions generated in the ion source 4 are introduced into the orthogonal acceleration unit 1 in the X-axis direction while being converged by the ion guide 5. When ions are introduced into the orthogonal acceleration unit 1, an acceleration electric field is not formed in the orthogonal acceleration unit 1, and when a sufficient amount of ions are introduced into the orthogonal acceleration unit 1, the orthogonal acceleration power supply unit By applying a predetermined voltage from 7 to the extrusion electrode 11, the extraction electrode 12, and the plurality of acceleration electrodes 13, an extraction electric field and an acceleration electric field are formed. Ions are sent from the extraction region to the acceleration region by the action of the extraction electric field, and further, the ions are given kinetic energy in the Z-axis direction by the action of the acceleration electric field and are sent to the flight space 21 of the TOF analyzer 2.

図1中に2点鎖線で示すように、直交加速部1の加速領域から飛行を開始したイオンは反射器22により形成される反射電場によって折り返され、最終的に検出器3に到達する。検出器3は、到達したイオンの量に応じた検出信号を時間経過に伴い順次生成する。データ処理部6は、イオンの射出時点を起点として、検出信号から飛行時間スペクトルを求め、さらに飛行時間を質量電荷比m/zに換算することでマススペクトルを求める。   As indicated by a two-dot chain line in FIG. 1, ions that have started flying from the acceleration region of the orthogonal acceleration unit 1 are folded back by the reflected electric field formed by the reflector 22 and finally reach the detector 3. The detector 3 sequentially generates detection signals according to the amount of ions that have reached with time. The data processing unit 6 obtains the time-of-flight spectrum from the detection signal starting from the ion injection time point, and further obtains the mass spectrum by converting the flight time to the mass-to-charge ratio m / z.

上述したような分析を行う際に、直交加速電源部7は所定のタイミングで、押し出し電極11、引き出し電極12、複数の加速電極13にそれぞれ所定の電圧をパルス的に印加する。図3は、本実施例の直交加速方式TOFMSと従来の直交加速方式TOFMSとで直交加速部の複数の加速電極にそれぞれ印加される電圧の比較を示す概略図である。なお、これは分析対象が正イオンである場合の例である。   When performing the analysis as described above, the orthogonal acceleration power supply unit 7 applies a predetermined voltage to the extrusion electrode 11, the extraction electrode 12, and the plurality of acceleration electrodes 13 in a pulse manner at a predetermined timing. FIG. 3 is a schematic diagram showing a comparison of voltages applied to a plurality of acceleration electrodes of the orthogonal acceleration unit in the orthogonal acceleration type TOFMS of the present embodiment and the conventional orthogonal acceleration type TOFMS. This is an example when the analysis target is a positive ion.

図3に示すように、従来は、加速方向(つまりZ軸方向)に直線的な下向き勾配となるような加速電圧が、等間隔で設けられた各加速電極13に印加されている。こうした加速電圧によって形成される加速電場の中心軸C1上のポテンシャル分布(軸上ポテンシャル分布)も、加速方向に直線状に下向き勾配となる。つまり、軸上ポテンシャル分布φは原理的には、∂2φ/∂Z2=0となり、加速電場は加速度の変化がない一様電場である。 As shown in FIG. 3, conventionally, an acceleration voltage having a linear downward gradient in the acceleration direction (that is, the Z-axis direction) is applied to each acceleration electrode 13 provided at equal intervals. The potential distribution (axial potential distribution) on the central axis C1 of the accelerating electric field formed by such an accelerating voltage also has a downward slope linearly in the acceleration direction. That is, the axial potential distribution φ is ∂ 2 φ / ∂Z 2 = 0 in principle, and the accelerating electric field is a uniform electric field with no change in acceleration.

これに対し、本実施例の直交加速方式TOFMSでは、加速方向に下向きの勾配が徐々に大きくなるような加速電圧が、等間隔で設けられた各加速電極13に印加される。そのため、加速電場の軸上ポテンシャル分布φは、∂2φ/∂Z2<0となる。このような加速電場におけるイオンの挙動は、空間的な静電場の電位分布を求めるために一般によく利用されるラプラス方程式を用いて説明することができる。理論的にはよく知られていることである(例えば非特許文献2等参照)ので、詳細な説明は省き、概略的に説明する。いま、ここでは、加速領域は円柱形状であるので円柱座標で考える。 In contrast, in the orthogonal acceleration type TOFMS of the present embodiment, an acceleration voltage that gradually increases the downward gradient in the acceleration direction is applied to each acceleration electrode 13 provided at equal intervals. Therefore, the axial potential distribution φ of the accelerating electric field is ∂ 2 φ / ∂Z 2 <0. The behavior of ions in such an accelerating electric field can be explained by using a Laplace equation that is commonly used to obtain a potential distribution of a spatial electrostatic field. Since it is well known in theory (see, for example, Non-Patent Document 2 etc.), a detailed description will be omitted, and the description will be made schematically. Here, since the acceleration region has a cylindrical shape, the cylindrical coordinates are considered.

加速電極13により形成される静電的な加速電場では、ポテンシャル分布は次のラプラス方程式が満たされる必要がある。
(1/r){∂/∂r(r∂φ/∂r)}+∂2φ/∂Z2=0 …(1)
ここでrは円柱座標の半径方向の位置、Zは中心軸C1上の位置である。
2φ/∂Z2=0である場合、(1)式は、
(1/r){∂/∂r(r∂φ/∂r)}=0 …(2)
となる。これはZには依存しないので、中心軸C1上のいずれの位置でも半径方向のポテンシャル分布が同じであることを意味する。そのため、加速電場を通過するイオンに対して、その半径方向rには力が作用しない。つまり、加速電場ではイオンを収束させたり発散させたりする力は生じない。
In an electrostatic acceleration electric field formed by the acceleration electrode 13, the potential distribution needs to satisfy the following Laplace equation.
(1 / r) {∂ / ∂r (r∂φ / ∂r)} + ∂ 2 φ / ∂Z 2 = 0 (1)
Here, r is a position in the radial direction of the cylindrical coordinates, and Z is a position on the central axis C1.
When ∂ 2 φ / ∂ Z 2 = 0, equation (1) is
(1 / r) {∂ / ∂r (r∂φ / ∂r)} = 0 (2)
It becomes. Since this does not depend on Z, it means that the radial potential distribution is the same at any position on the central axis C1. Therefore, no force acts on the ions passing through the acceleration electric field in the radial direction r. That is, no force is generated in the accelerating electric field to converge or diverge the ions.

これに対し、(1)式の制約から、∂2φ/∂Z2≠0である場合には、このポテンシャル変化を打ち消すように、半径方向のポテンシャル分布も加速方向(Z軸方向)に対して変化する必要がある。そして、∂2φ/∂Z2<0である場合には、
(1/r){∂/∂r(r∂φ/∂r)}=−∂2φ/∂Z2>0 …(3)
となり、半径方向rの成分は常に正になる。
半径方向rにおける力が中心方向に作用することは以下の式からも明らかである。即ち、ラプラス方程式から、
(1/r){∂/∂r(r∂φ/∂r)}=c(>0) …(4)
とおき、系の対称性からr=0において∂φ/∂r=0となることを考慮して(4)式を積分していくと次の(5)式が得られる。
∂φ/∂r=c’r …(5)
半径方向の電場はE(r)=−∂φ/∂rであるので(6)式が求まる。
E(r)=−c’r …(6)
この(6)式から、半径方向には中心に向かう力がかかることが示される。なお、非特許文献2に示されている(20)式の2次までの近似からも同等の式が得られる。
以上のように、このときの加速電場は、半径方向rに中心軸C1から離れた位置に存在するイオンに対して、常に中心軸Zに向かって押すような力が作用する電場となる。それ故に、加速電場で加速されるイオンは全体としてX軸方向、つまりドリフト方向に収束されることになる。
On the other hand, if ∂ 2 φ / ∂Z 2 ≠ 0 due to the constraint of equation (1), the potential distribution in the radial direction is also relative to the acceleration direction (Z-axis direction) so as to cancel out this potential change. Need to change. And when ∂ 2 φ / ∂ Z 2 <0,
(1 / r) {∂ / ∂r (r∂φ / ∂r)} = − ∂ 2 φ / ∂Z 2 > 0 (3)
And the component in the radial direction r is always positive.
It is clear from the following formula that the force in the radial direction r acts in the central direction. That is, from the Laplace equation,
(1 / r) {∂ / ∂r (r∂φ / ∂r)} = c (> 0) (4)
Then, taking into account that ∂φ / ∂r = 0 at r = 0 from the symmetry of the system, the following equation (5) is obtained by integrating equation (4).
∂φ / ∂r = c'r (5)
Since the electric field in the radial direction is E (r) = − ∂φ / ∂r, equation (6) is obtained.
E (r) = − c′r (6)
This equation (6) shows that a force toward the center is applied in the radial direction. An equivalent expression can be obtained from approximation up to the second order of Expression (20) shown in Non-Patent Document 2.
As described above, the accelerating electric field at this time is an electric field in which a force that always pushes toward the central axis Z acts on ions existing at a position away from the central axis C1 in the radial direction r. Therefore, the ions accelerated by the accelerating electric field are converged in the X-axis direction, that is, the drift direction as a whole.

こうしたイオン収束作用を確認するために行ったイオン軌道シミュレーションについて説明する。図5において、(a)はイオン軌道のシミュレーションのための電極モデルを示す図、(b)は本実施例の直交加速方式TOFMSの直交加速部における軸上ポテンシャル分布を示す図、(c)は従来の直交加速方式TOFMSの直交加速部における軸上ポテンシャル分布を示す図である。図6において、(a)は本実施例の直交加速方式TOFMSにおけるイオン軌道のシミュレーション結果を示す図、(b)は従来の直交加速方式TOFMSの直交加速部におけるイオン軌道のシミュレーション結果を示す図である。
なお、グリッド電極における正確なシミュレーションは複雑であるため、このシミュレーションでは、グリッド電極を等電位面を規定する役割のみの厚みのない境界で以て置換している。そのため、グリッド電極による発散レンズ作用は考慮していない。
An ion trajectory simulation performed to confirm the ion focusing action will be described. 5A is a diagram showing an electrode model for ion orbit simulation, FIG. 5B is a diagram showing an on-axis potential distribution in the orthogonal acceleration portion of the orthogonal acceleration method TOFMS of the present embodiment, and FIG. It is a figure which shows the axial potential distribution in the orthogonal acceleration part of the conventional orthogonal acceleration type TOFMS. 6A is a diagram illustrating a simulation result of the ion trajectory in the orthogonal acceleration method TOFMS of the present embodiment, and FIG. 6B is a diagram illustrating a simulation result of the ion trajectory in the orthogonal acceleration unit of the conventional orthogonal acceleration method TOFMS. is there.
In addition, since the exact simulation in a grid electrode is complicated, in this simulation, the grid electrode is replaced by the boundary with no thickness only of the role which defines an equipotential surface. Therefore, the diverging lens action by the grid electrode is not considered.

図5(a)に示すように、シミュレーション計算では、加速電極13は5段の円筒電極とし、その全体のZ軸方向の長さは0.1[m]、内径は0.05[m]である。本実施例の直交加速方式TOFMSにおいて、押し出し電極11、引き出し電極12、5段の加速電極13に印加した電圧はそれぞれ、9100、4900、4900、4116、3136、1764、0[V]である。このとき、軸上ポテンシャル分布は、図5(b)に示すように、加速領域のほぼ全体に亘り、∂2φ/∂Z2<0である。一方、比較対象である従来の直交加速方式TOFMSにおいて、押し出し電極11、引き出し電極12、5段の加速電極13に印加した電圧はそれぞれ、9100、4900、3920、2940、1960、980、0[V]である。このとき、軸上ポテンシャル分布は加速領域のほぼ全体に亘り、∂2φ/∂Z2=0である。ただし、いずれも、加速領域からの射出開口にグリッド電極を設けていないので、その付近の領域では∂2φ/∂Z2>0となっている。 As shown in FIG. 5A, in the simulation calculation, the acceleration electrode 13 is a five-stage cylindrical electrode, the entire length in the Z-axis direction is 0.1 [m], and the inner diameter is 0.05 [m]. It is. In the orthogonal acceleration type TOFMS of this embodiment, the voltages applied to the extrusion electrode 11, the extraction electrode 12, and the five-stage acceleration electrode 13 are 9100, 4900, 4900, 4116, 3136, 1764, and 0 [V], respectively. At this time, as shown in FIG. 5B, the axial potential distribution is ∂ 2 φ / 加速 Z 2 <0 over almost the entire acceleration region. On the other hand, in the conventional orthogonal acceleration type TOFMS to be compared, the voltages applied to the extrusion electrode 11, the extraction electrode 12, and the five-stage acceleration electrode 13 are 9100, 4900, 3920, 2940, 1960, 980, 0 [V, respectively. ]. At this time, the axial potential distribution is ∂ 2 φ / ∂Z 2 = 0 over almost the entire acceleration region. However, in any case, since no grid electrode is provided at the exit opening from the acceleration region, ∂ 2 φ / ∂Z 2 > 0 in the vicinity of the region.

シミュレーション計算では、押し出し電極11と引き出し電極12に挟まれる領域に所定のエネルギを以てイオンが連続的に進入している状態を想定し、X軸方向に延びるイオンビームから初期パケット幅30[mm]のイオンパケットを切り出して、引き出し領域から加速領域へと引き出したあとに加速した。
加速電場が一様である従来の電圧条件の下では、図6(b)に示すように、初期のドリフト方向への30[mm]幅のイオンパケットは、60[cm]飛行した時点で大きく発散していることが分かる。このようにイオンが発散すると検出器のイオン検出面に到達し得ないイオンの割合がかなり大きくなるため、大きな感度低下は免れ得ない。また、発散したイオンをできるだけ多く取り込むためには、イオン検出面が大きな検出器が必要になり、検出器のコスト増加も大きい。
In the simulation calculation, it is assumed that ions continuously enter a region between the extrusion electrode 11 and the extraction electrode 12 with a predetermined energy, and an initial packet width of 30 [mm] from an ion beam extending in the X-axis direction is assumed. The ion packet was cut out and accelerated after being extracted from the extraction region to the acceleration region.
Under the conventional voltage condition where the accelerating electric field is uniform, as shown in FIG. 6 (b), an ion packet with a width of 30 [mm] in the initial drift direction becomes large when flying 60 [cm]. You can see that it diverges. When ions diverge in this way, the ratio of ions that cannot reach the ion detection surface of the detector becomes considerably large, and thus a large sensitivity reduction cannot be avoided. In order to capture as many diverged ions as possible, a detector having a large ion detection surface is required, and the cost of the detector is greatly increased.

これに対し、図6(a)に示すように、本発明に係る直交加速方式TOFMSでは、初期のドリフト方向への30[mm]幅のイオンパケットは、60[cm]飛行した時点で幅が20[mm]まで圧縮されていることが分かる。このことから、加速領域においてイオン収束が有効になされていることが確認できる。このように収束したイオンを検出器に入射することで、検出器のイオン検出面に効率良くイオンを到達させることができ、感度の向上に非常に有効である。また、検出器のイオン検出面が小さくて済むことで、検出器のコストを抑えることができる。   On the other hand, as shown in FIG. 6 (a), in the orthogonal acceleration type TOFMS according to the present invention, an ion packet having a width of 30 [mm] in the initial drift direction has a width of 60 [cm] at the time of flight. It turns out that it is compressed to 20 [mm]. From this, it can be confirmed that ion focusing is effectively performed in the acceleration region. By making the converged ions enter the detector, the ions can efficiently reach the ion detection surface of the detector, which is very effective in improving sensitivity. In addition, since the ion detection surface of the detector is small, the cost of the detector can be suppressed.

上記軌道シミュレーション結果からも明らかなように、加速方向に下向きの勾配が徐々に大きくなるような加速電圧が各加速電極13に印加されるとき、加速領域で収束されたイオンパケットが飛行空間21に射出されるため、そうした収束が行われない場合に比べて検出器3に入射するイオンの量は増加する。それにより、高感度な測定が可能である。ただし、加速領域において収束を行うと、当然のことながら、多くのイオンの飛行軌道は微妙に変化し、それによって飛行距離も変化する。この飛行距離の変化は初期的に中心軸C1から離れた位置にあるイオンほど大きく、同一質量電荷比を持つイオンにおける飛行距離の変化量の幅は質量分解能の低下をもたらす。つまり、上述したようなイオンの収束による測定感度の向上は質量分解能の低下をもたらすおそれがある。   As is clear from the trajectory simulation results, when an accelerating voltage is applied to each accelerating electrode 13 so that the downward gradient gradually increases in the accelerating direction, the ion packets converged in the accelerating region enter the flying space 21. Since it is ejected, the amount of ions incident on the detector 3 is increased as compared with the case where such convergence is not performed. Thereby, highly sensitive measurement is possible. However, if convergence is performed in the acceleration region, naturally, the flight trajectory of many ions changes slightly, and the flight distance also changes accordingly. The change in the flight distance is initially larger for ions located farther from the central axis C1, and the width of the flight distance change amount for ions having the same mass-to-charge ratio causes a decrease in mass resolution. That is, the improvement in measurement sensitivity due to ion convergence as described above may cause a decrease in mass resolution.

そこで、本実施例の直交加速方式TOFMSでは、上述したようなイオンの収束を常に行うのではなく、特に感度を重視した測定を行いたい場合に、ユーザの選択によってイオンを収束させて感度向上を図るようにしている。そのために、本実施例の直交加速方式TOFMSでは、測定モードとして高感度測定モードと高分解能測定モードとが用意されており、入力部9を介したユーザの指示により、いずれかの測定モードでの測定が可能となっている。また、分析条件を予め設定したメソッドファイルに従って自動的に分析を遂行させる場合には、高感度測定モードと高分解能測定モードとを自動的に切り替えながら測定を行うこともできるようになっている。   Therefore, the orthogonal acceleration type TOFMS of this embodiment does not always perform the ion convergence as described above, but improves the sensitivity by converging the ions according to the selection of the user when the measurement is particularly important. I try to figure it out. Therefore, in the orthogonal acceleration method TOFMS of the present embodiment, a high-sensitivity measurement mode and a high-resolution measurement mode are prepared as measurement modes, and in any measurement mode according to a user instruction via the input unit 9. Measurement is possible. In addition, when the analysis is automatically performed according to the method file in which the analysis conditions are set in advance, the measurement can be performed while automatically switching between the high sensitivity measurement mode and the high resolution measurement mode.

いずれにしても、制御部8においてモード切替部81が直交加速電源部7に測定モードを指示し、高感度測定モードでは直交加速電源部7は上述したように加速電場においてイオンを収束させるような電圧(加速方向に下向きの勾配が徐々に大きくなる電圧)を各加速電極13に印加し、高分解能測定モードでは直交加速電源部7は加速電場においてイオンを収束しないような電圧(加速方向に下向きの勾配が直線状である電圧)を各加速電極13に印加する。それにより、高感度測定モードでは、高分解能測定モードに比べて多量のイオンが検出器3に到達するので、高い測定感度を実現することができる。一方、高分解能測定モードでは、高感度測定モードに比べて検出器3に到達するイオンの量は減るものの、同一質量電荷比を持つイオンの飛行距離が揃うので、高い分解能を実現することができる。   In any case, the mode switching unit 81 in the control unit 8 instructs the orthogonal acceleration power supply unit 7 to select the measurement mode, and in the high sensitivity measurement mode, the orthogonal acceleration power supply unit 7 converges ions in the acceleration electric field as described above. A voltage (voltage in which the downward gradient gradually increases in the acceleration direction) is applied to each acceleration electrode 13, and in the high resolution measurement mode, the orthogonal acceleration power supply unit 7 does not converge ions in the acceleration electric field (downward in the acceleration direction). Is applied to each accelerating electrode 13. Thereby, in the high sensitivity measurement mode, a larger amount of ions reaches the detector 3 than in the high resolution measurement mode, so that high measurement sensitivity can be realized. On the other hand, in the high resolution measurement mode, although the amount of ions reaching the detector 3 is reduced as compared with the high sensitivity measurement mode, the flight distances of ions having the same mass-to-charge ratio are uniform, so that high resolution can be realized. .

なお、加速領域における軸上ポテンシャル分布によってイオンの収束度合いは変わるから、上述したような測定モードの切替えのみならず、使用するTOF分析器2や検出器3に応じて、軸上ポテンシャル分布を適宜調整するように印加電圧を設定するようにしてもよい。それによって、様々な構成の直交加速方式TOFMSにおいて、測定感度をできるだけ上げつつ、質量分解能や質量精度も確保することができる。   Since the degree of ion convergence varies depending on the axial potential distribution in the acceleration region, not only the switching of the measurement mode as described above, but also the axial potential distribution is appropriately determined according to the TOF analyzer 2 and the detector 3 to be used. The applied voltage may be set so as to be adjusted. Thereby, in the orthogonal acceleration TOFMS having various configurations, it is possible to ensure mass resolution and mass accuracy while increasing the measurement sensitivity as much as possible.

また、上記実施例では、加速領域の中心軸C上のほぼ全てにおいて軸上ポテンシャル分布φが∂2φ/∂Z2<0となるような電場を形成していたが、中心軸C上の少なくとも一部で軸上ポテンシャル分布φが∂2φ/∂Z2<0となるような電場を形成し、他の部分では軸上ポテンシャル分布φが∂2φ/∂Z2=0となるような電場であってもよい。もちろん、加速領域におけるイオンの収束作用が、加速領域の最終段がグリッド電極でない場合に生じるイオンの発散よりも上回る必要があることは、上記説明から明白である。 In the above embodiment, an electric field is formed such that the axial potential distribution φ is ∂ 2 φ / ∂Z 2 <0 in almost all the central axis C of the acceleration region. An electric field is formed such that the on-axis potential distribution φ is ∂ 2 φ / ∂Z 2 <0 at least in part, and the on-axis potential distribution φ is ∂ 2 φ / ∂Z 2 = 0 in other parts. May be an electric field. Of course, it is apparent from the above description that the ion focusing action in the acceleration region needs to exceed the ion divergence that occurs when the final stage of the acceleration region is not a grid electrode.

また、上記実施例は、イオン源4で生成したイオンをイオンガイド5を通して直交加速部1に導入していたが、イオントラップから吐き出されたイオンやコリジョンセル等で解離されたイオンを直交加速部1に導入してもよい。また、本発明に係る直交加速方式TOFMSは、様々な装置に利用することができる。   Moreover, although the said Example introduced the ion produced | generated with the ion source 4 to the orthogonal acceleration part 1 through the ion guide 5, the ion discharged from the ion trap, the ion dissociated with the collision cell, etc. are orthogonal acceleration part. 1 may be introduced. Further, the orthogonal acceleration type TOFMS according to the present invention can be used in various apparatuses.

例えば、この直交加速方式TOFMSの前段に液体クロマトグラフを接続することでLC−TOFMS装置とすることができ、この直交加速方式TOFMSの前段にガスクロマトグラフを接続することでGC−TOFMS装置とすることができる。また、この直交加速方式TOFMSの前段に、液体クロマトグラフを接続し、イオン源4と直交加速部1との間にイオン移動度計を設けることでLC−IMS−TOFMS装置とすることができる。さらにまた、この直交加速方式TOFMSの前段に、液体クロマトグラフを接続し、イオン源4と直交加速部1との間に、四重極マスフィルタ及びコリジョンセルを設けることでLC−Q−TOFMS装置とすることができ、この直交加速方式TOFMSの前段に、ガスクロマトグラフを接続し、イオン源4と直交加速部1との間に、四重極マスフィルタ及びコリジョンセルを設けることでGC−Q−TOFMS装置とすることができる。   For example, an LC-TOFMS apparatus can be obtained by connecting a liquid chromatograph to the front stage of the orthogonal acceleration type TOFMS, and a GC-TOFMS apparatus can be obtained by connecting a gas chromatograph to the front stage of the orthogonal acceleration type TOFMS. Can do. Further, a LC-IMS-TOFMS apparatus can be obtained by connecting a liquid chromatograph to the front stage of the orthogonal acceleration type TOFMS and providing an ion mobility meter between the ion source 4 and the orthogonal acceleration unit 1. Furthermore, a LC-Q-TOFMS apparatus is provided by connecting a liquid chromatograph to the front stage of the orthogonal acceleration type TOFMS and providing a quadrupole mass filter and a collision cell between the ion source 4 and the orthogonal acceleration unit 1. By connecting a gas chromatograph to the front stage of this orthogonal acceleration type TOFMS and providing a quadrupole mass filter and a collision cell between the ion source 4 and the orthogonal acceleration unit 1, GC-Q- It can be a TOFMS device.

さらにまた、上記実施例では、TOF分析器はリフレクトロン型のTOF分析器であるが、リニア型や周回型(マルチターン型)など、他の構成のTOF分析器を用いてもよいことは当然である。   Furthermore, in the above embodiment, the TOF analyzer is a reflectron type TOF analyzer, but it goes without saying that a TOF analyzer having another configuration such as a linear type or a circular type (multi-turn type) may be used. It is.

また、上記実施例や上記記載の各種変形例はいずれも本発明の一例にすぎず、本発明の趣旨の範囲で適宜変更、修正、追加などを行っても本願特許請求の範囲に包含されることは明らかである。   The above-described embodiments and the above-described various modifications are merely examples of the present invention, and appropriate changes, modifications, additions, etc. within the scope of the present invention are included in the scope of the claims of the present application. It is clear.

1…直交加速部
11…押し出し電極
12…引き出し電極
13…加速電極
2…TOF分析器
21…飛行空間
22…反射器
3…検出器
4…イオン源
5…イオンガイド
6…データ処理部
7…直交加速電源部
8…制御部
81…モード切替部
9…入力部
DESCRIPTION OF SYMBOLS 1 ... Orthogonal acceleration part 11 ... Extrusion electrode 12 ... Extraction electrode 13 ... Acceleration electrode 2 ... TOF analyzer 21 ... Flight space 22 ... Reflector 3 ... Detector 4 ... Ion source 5 ... Ion guide 6 ... Data processing part 7 ... Orthogonal Acceleration power supply unit 8 ... control unit 81 ... mode switching unit 9 ... input unit

Claims (3)

導入されたイオンをそのイオンビームの光軸と直交する方向に加速する直交加速部を具備する直交加速方式の飛行時間型質量分析装置において、前記直交加速部は、
a)イオンビームの光軸と平行に配置された押し出し電極と、
b)イオンビームを挟んで該押し出し電極と対向して配置されたグリッド電極である引き出し電極と、
c)前記押し出し電極及び前記引き出し電極との間に形成された電場によって該引き出し電極のグリッドを通過したイオンを、前記イオンビームの光軸と直交する方向に加速するための加速電場を形成する円環状又は円筒状である複数の加速電極と、
d)イオンに対し加速方向と直交する方向に収束作用を生じさせるべく、前記複数の加速電極の中心軸上のポテンシャル分布の下り勾配がイオンの進行方向に漸増する電場が前記加速電場の少なくとも一部で形成されるように定められた電圧を、前記複数の加速電極のそれぞれに印加する電圧印加部と、
を備えることを特徴とする飛行時間型質量分析装置。
In the orthogonal acceleration type time-of-flight mass spectrometer having an orthogonal acceleration unit that accelerates the introduced ions in a direction orthogonal to the optical axis of the ion beam, the orthogonal acceleration unit includes:
a) an extrusion electrode arranged parallel to the optical axis of the ion beam;
b) an extraction electrode which is a grid electrode arranged opposite to the extrusion electrode across the ion beam;
c) a circle that forms an accelerating electric field for accelerating ions that have passed through the grid of the extraction electrode by an electric field formed between the extrusion electrode and the extraction electrode in a direction perpendicular to the optical axis of the ion beam; A plurality of accelerating electrodes that are annular or cylindrical;
d) An electric field in which the descending gradient of the potential distribution on the central axis of the plurality of acceleration electrodes gradually increases in the direction of ion travel to cause at least one of the acceleration electric fields to cause a convergence effect on the ions in a direction orthogonal to the acceleration direction. A voltage application unit configured to apply a voltage determined to be formed by a unit to each of the plurality of acceleration electrodes;
A time-of-flight mass spectrometer.
請求項1に記載の飛行時間型質量分析装置であって、
加速電場におけるイオンを加速方向と直交する方向に収束する作用を調整するために、前記複数の加速電極のそれぞれに印加する電圧を変更するように前記電圧印加部を制御する制御部をさらに備えることを特徴とする飛行時間型質量分析装置。
The time-of-flight mass spectrometer according to claim 1,
In order to adjust the action of converging ions in the acceleration electric field in a direction orthogonal to the acceleration direction, the apparatus further includes a control unit that controls the voltage application unit so as to change a voltage applied to each of the plurality of acceleration electrodes. A time-of-flight mass spectrometer.
請求項2に記載の飛行時間型質量分析装置であって、
質量分解能を優先させる高分解能測定モードと感度を優先させる高感度測定モードとを切り替え可能であり、前記制御部は、高感度測定モードが指定されたときに、複数の加速電極の中心軸上のポテンシャル分布の下り勾配がイオンの進行方向に漸増する電場が前記加速電場の少なくとも一部で形成されるような電圧を複数の加速電極のそれぞれに印加し、高分解能測定モードが指定されたときには、前記ポテンシャル分布の電位勾配が一様である電場となるような電圧を複数の加速電極のそれぞれに印加することを特徴とする飛行時間型質量分析装置。
The time-of-flight mass spectrometer according to claim 2,
A high-resolution measurement mode that prioritizes mass resolution and a high-sensitivity measurement mode that prioritizes sensitivity can be switched, and when the high-sensitivity measurement mode is designated, the control unit is arranged on the central axes of a plurality of acceleration electrodes. When a voltage is applied to each of the plurality of accelerating electrodes such that an electric field in which the descending slope of the potential distribution gradually increases in the ion traveling direction is formed in at least a part of the accelerating electric field, and a high resolution measurement mode is designated, A time-of-flight mass spectrometer characterized in that a voltage that produces an electric field with a uniform potential gradient of the potential distribution is applied to each of a plurality of acceleration electrodes.
JP2013263322A 2013-12-20 2013-12-20 Time-of-flight mass spectrometer Active JP6160472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263322A JP6160472B2 (en) 2013-12-20 2013-12-20 Time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263322A JP6160472B2 (en) 2013-12-20 2013-12-20 Time-of-flight mass spectrometer

Publications (2)

Publication Number Publication Date
JP2015118887A JP2015118887A (en) 2015-06-25
JP6160472B2 true JP6160472B2 (en) 2017-07-12

Family

ID=53531451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263322A Active JP6160472B2 (en) 2013-12-20 2013-12-20 Time-of-flight mass spectrometer

Country Status (1)

Country Link
JP (1) JP6160472B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240543B (en) * 2017-07-26 2023-06-27 合肥美亚光电技术股份有限公司 Time-of-flight mass spectrometer with double-field acceleration region
WO2019207737A1 (en) * 2018-04-26 2019-10-31 株式会社島津製作所 Time of flight mass spectrometer
US11081333B2 (en) 2018-08-31 2021-08-03 Shimadzu Corporation Power connector for mass spectrometer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123154A (en) * 1982-12-29 1984-07-16 Shimadzu Corp Flight time type mass spectrometer
JP4649234B2 (en) * 2004-07-07 2011-03-09 日本電子株式会社 Vertical acceleration time-of-flight mass spectrometer
US20080290269A1 (en) * 2005-03-17 2008-11-27 Naoaki Saito Time-Of-Flight Mass Spectrometer
JP4902230B2 (en) * 2006-03-09 2012-03-21 株式会社日立ハイテクノロジーズ Mass spectrometer
CN102971827B (en) * 2010-05-07 2016-10-19 Dh科技发展私人贸易有限公司 For delivering three switch topology of mass spectrometric ultrafast pulse generator polarity switching

Also Published As

Publication number Publication date
JP2015118887A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
US9373490B1 (en) Time-of-flight mass spectrometer
CN107078019B (en) Multiple reflection ToF analysis instrument
US9543138B2 (en) Ion optical system for MALDI-TOF mass spectrometer
US11081332B2 (en) Ion guide within pulsed converters
JP6287419B2 (en) Time-of-flight mass spectrometer
US20200365383A1 (en) Multi-pass mass spectrometer
JP2018517244A (en) Multiple reflection TOF mass spectrometer
EP3815130A1 (en) Multi-pass mass spectrometer with high duty cycle
US10991567B2 (en) Quadrupole devices
JP6627979B2 (en) Mass spectrometer
WO2010116396A1 (en) Ion trap device
JP6160472B2 (en) Time-of-flight mass spectrometer
US9048071B2 (en) Imaging mass spectrometer and method of controlling same
US11276544B2 (en) Dynamic electron impact ion source
JP6022383B2 (en) Mass spectrometry system and method
JP6044715B2 (en) Time-of-flight mass spectrometer
EP4109490A1 (en) Apparatus and methods for injecting ions into an electrostatic trap
JP6292319B2 (en) Time-of-flight mass spectrometer
JP7391084B2 (en) Pulse accelerator for time-of-flight mass spectrometer
JP6128235B2 (en) Ion mobility analyzer and mass spectrometer
JPWO2010052752A1 (en) Multi-turn time-of-flight mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R151 Written notification of patent or utility model registration

Ref document number: 6160472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151