JP6160043B2 - Steel pipe column structure and manufacturing method thereof - Google Patents

Steel pipe column structure and manufacturing method thereof Download PDF

Info

Publication number
JP6160043B2
JP6160043B2 JP2012189763A JP2012189763A JP6160043B2 JP 6160043 B2 JP6160043 B2 JP 6160043B2 JP 2012189763 A JP2012189763 A JP 2012189763A JP 2012189763 A JP2012189763 A JP 2012189763A JP 6160043 B2 JP6160043 B2 JP 6160043B2
Authority
JP
Japan
Prior art keywords
steel pipe
steel
thickness
pipe column
column structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012189763A
Other languages
Japanese (ja)
Other versions
JP2013068070A (en
Inventor
村上 琢哉
琢哉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012189763A priority Critical patent/JP6160043B2/en
Publication of JP2013068070A publication Critical patent/JP2013068070A/en
Application granted granted Critical
Publication of JP6160043B2 publication Critical patent/JP6160043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Description

本発明は、鋼製煙突、橋梁主塔、風力発電用タワー、風力発電用支持構造物、海洋構造物、建築系構造物、橋梁構造などの鋼管柱構造物及びその製造方法に関する。   The present invention relates to a steel chimney, a bridge main tower, a wind power generation tower, a wind power generation support structure, a marine structure, a building structure, a bridge structure, and a steel pipe column structure, and a manufacturing method thereof.

断面が円形の鋼管柱構造物の例としては、例えば、鋼製煙突、風力発電用タワー、洋上風力発電基礎などが挙げられる。
このような鋼管柱構造物は、高さ方向の鋼管径に着目すると、鋼管径が一様なもの、高さ方向にテーパをつけて鋼管径を上方に行くにしたがって徐々に小さくするものに大別される。
また、鋼管の板厚については、通常は高さ方向で同じか、上方に行くにしたがって徐々に薄くなっているのが一般的であるが、周方向の板厚は同じである(非特許文献1参照)。
Examples of the steel pipe column structure having a circular cross section include a steel chimney, a tower for wind power generation, an offshore wind power generation foundation, and the like.
When focusing on the steel pipe diameter in the height direction, such a steel pipe pillar structure is large in that the steel pipe diameter is uniform, and the steel pipe diameter is gradually reduced as it tapers in the height direction. Separated.
In addition, the plate thickness of the steel pipe is generally the same in the height direction or gradually decreased as it goes upward, but the plate thickness in the circumferential direction is the same (non-patent document). 1).

また、特許文献1に開示された厚肉部を有する円形鋼管柱のように、鋼管径を上方に行くにしたがって徐々に小さくする共に、鋼管の板厚を下に行くに従って厚くなるように工夫したものもある。
さらに、特許文献2に開示された建築構造物用鋼製部材のように、例えば梁と柱の接合部のように作用応力が大きい部位に厚肉部を配置し、作用応力の小さい部位に薄肉部を配置するようにしたものもある。
Moreover, like the circular steel pipe column which has the thick part disclosed by patent document 1, it devised so that it might become small gradually as the steel pipe diameter goes upwards, and it becomes thick as the plate | board thickness of a steel pipe goes down. There are also things.
Furthermore, like a steel member for a building structure disclosed in Patent Document 2, for example, a thick portion is disposed at a portion where the acting stress is large, such as a joint between a beam and a column, and a thin portion is disposed at a portion where the acting stress is small. Some parts are arranged.

鋼管柱構造物は、これを構成する鋼管が大径で厚肉となる。このような鋼管柱構造物の製造方法は、圧延鋼板から板巻きによって円形鋼管あるいは角型鋼管を製作する。製作された鋼管の高さは、圧延鋼板の幅である3〜5mであり、それを上方に順次積み重ねて溶接、ボルト等で接合することにより鋼管柱構造物が製造される。
円形鋼管の製作は、圧延方向(L方向)に曲率をつけて圧延鋼板を曲げて行われる。
The steel pipe column structure has a large diameter and thick steel pipe. In such a method of manufacturing a steel pipe column structure, a round steel pipe or a square steel pipe is manufactured by rolling a rolled steel plate. The height of the manufactured steel pipe is 3 to 5 m which is the width of the rolled steel sheet, and the steel pipe column structure is manufactured by sequentially stacking them upward and joining them with welding, bolts or the like.
The circular steel pipe is manufactured by bending a rolled steel sheet with a curvature in the rolling direction (L direction).

鋼管径が10m規模のような大径の場合には、圧延鋼板1枚では円形鋼管を製作できない場合もあり、その場合は、圧延鋼板をつないで長い板にした後に、これを円環状に巻いて製作される。   If the diameter of the steel pipe is as large as 10m, it may not be possible to produce a round steel pipe with a single rolled steel sheet. In that case, the rolled steel sheet is connected to form a long sheet, which is then rolled into an annular shape. Produced.

また、断面が角型の角型鋼管(矩形の鋼管柱構造物)の場合には、鋼板を周方向に並べて接合することにより、矩形鋼管を製作し、この矩形鋼管を上に積み重ねて接合して製造するのが一般的である。
また、角型鋼管の製作は、プレス機の性能から決まり、高さ3〜15m程度の角型鋼管を順次積み重ねることになる。この場合は圧延鋼板の曲げ方向はどちらでもよい。
In addition, in the case of a square steel pipe (rectangular steel pipe column structure) with a rectangular cross section, a rectangular steel pipe is manufactured by stacking and joining steel plates in the circumferential direction, and the rectangular steel pipes are stacked on top and joined. It is common to manufacture.
In addition, the production of square steel pipes is determined by the performance of the press machine, and square steel pipes with a height of about 3 to 15 m are sequentially stacked. In this case, the bending direction of the rolled steel sheet may be either.

特開2005−264535JP 2005-264535 A 特開平6−288033JP-A-6-288033

塔状鋼構造設計指針・同解説(1980年)、日本建築学会Tower steel structure design guidelines and explanation (1980), Architectural Institute of Japan

上記の従来例の鋼管柱構造物は、主に耐震性を向上させる構造についての工夫である。
しかし、背の高い鋼管柱構造物では、耐震性よりも耐風性を向上させることがより重要となる。その場合の一般的な課題として、静的な課題では静的風荷重に関するもの、動的な課題として、渦励振、ガスト応答に関する課題がある。
このうち、渦励振は、カルマン渦に起因する振動であり、ある範囲の風速で生じ、揺れも限定的である。揺れの大きさが許容値よりも大きい場合には、対策として鋼管柱構造物の形状を変更するか、制振装置の設置により揺れを抑える方法が採用され、鋼管柱構造物を構成する本体部の板厚を増すことは不経済であるため実施されていない。
また、静的風荷重は、風速の2乗に比例するため、設計風速(供用期間の最大風速)において最大風荷重となる。ガスト応答は風速の変動による揺れであり、応答(揺れの量)は風速の2乗に比例することから、ガスト応答分は静的風荷重の増分として設計されている。
The steel pipe column structure of the above-described conventional example is a device for a structure that mainly improves earthquake resistance.
However, in a tall steel pipe column structure, it is more important to improve wind resistance than earthquake resistance. In this case, as a general problem, a static problem is related to static wind load, and a dynamic problem is related to vortex excitation and gust response.
Among these, vortex excitation is vibration caused by Karman vortices, which occurs at a certain range of wind speed, and swing is also limited. When the magnitude of the shaking is larger than the allowable value, the main part that constitutes the steel pipe column structure is adopted as a countermeasure, either by changing the shape of the steel pipe column structure or by installing a vibration control device to suppress the shaking Increasing the plate thickness is not implemented because it is uneconomical.
Further, since the static wind load is proportional to the square of the wind speed, it becomes the maximum wind load at the design wind speed (the maximum wind speed during the service period). The gust response is a fluctuation caused by fluctuations in wind speed, and the response (amount of fluctuation) is proportional to the square of the wind speed. Therefore, the gust response is designed as an increment of the static wind load.

上記の説明は、風荷重を受ける一般的な構造物についての課題であるが、風力発電に用いられる風車を支持する鋼管柱の場合には、上記のような一般的な鋼管柱構造に加わる風荷重とは事情が異なる。
風車の場合、比較的風速の小さい領域(例えば25m/s以下)において多くの発電をするように羽根を傾けて風を受けるようにする。一方、高風速になると、発電機器が過負荷にならないようにするため、風を受け流す構造になっている。
The above explanation is a problem for a general structure that receives a wind load. However, in the case of a steel pipe column that supports a wind turbine used for wind power generation, the wind applied to the general steel pipe column structure as described above. The situation is different from the load.
In the case of a windmill, the blades are tilted so as to receive wind in a region where the wind speed is relatively low (for example, 25 m / s or less). On the other hand, when the wind speed becomes high, the structure is configured to receive wind in order to prevent the power generation equipment from being overloaded.

この点を、図24に基づいてより詳細に説明する。図24は、風速と構造物に加わる風荷重との関係を示したグラフであり、縦軸が構造物に加わる風荷重を示し、横軸が風速を示している。また、図24において、実線は風車支持構造の鋼管柱を示し、破線は一般的な従来の鋼管柱を示している。
図24に示すように、風車の支持構造としての鋼管柱では、風速10〜25m/s付近の風荷重が高風速の風荷重と同等レベルとなる。この風速10〜25m/s付近の風速領域が生ずる頻度は高風速よりもはるかに多く、高頻度でこのような風荷重を受けることから、風車の支持構造では繰り返し外力による疲労が問題になる。
This point will be described in more detail with reference to FIG. FIG. 24 is a graph showing the relationship between the wind speed and the wind load applied to the structure. The vertical axis represents the wind load applied to the structure, and the horizontal axis represents the wind speed. Moreover, in FIG. 24, the continuous line has shown the steel pipe pillar of the windmill support structure, and the broken line has shown the general conventional steel pipe pillar.
As shown in FIG. 24, in the steel pipe column as the wind turbine support structure, the wind load in the vicinity of the wind speed of 10 to 25 m / s is at the same level as the wind load at the high wind speed. The frequency of the wind speed region in the vicinity of the wind speed of 10 to 25 m / s is much higher than that of the high wind speed. Since the wind load is received at a high frequency, fatigue due to repeated external forces becomes a problem in the wind turbine support structure.

疲労においては、母材よりも溶接接合部の疲労強度が弱いため、繰り返し外力を受ける鋼管柱構造物では、鋼管柱構造物の軸と直交方向の溶接部の疲労が特に問題となる。このような溶接部の疲労の問題に対し、従来においては、疲労強度等級を高くするように溶接部止端仕上げによる方法、発生応力を減じるために溶接部付近の構造を改良する方法、あるいは鋼管柱構造物の板厚を厚くする方法が行われていた。
このような方法のうち、鋼管柱構造物の板厚を厚くする方法に関し、溶接部のみならず他の部分を含めた鋼管柱構造物全体の板厚を厚くすることが行われている。このため、鋼材使用量が多くなるという問題がある。つまり、溶接部のみならず他の部位の板厚を厚くすると、溶接部以外の部分は、応力上は余裕があるため、設計上は不経済となるのである。
In fatigue, since the fatigue strength of the welded joint is weaker than that of the base metal, fatigue of the welded portion in the direction orthogonal to the axis of the steel tube column structure is particularly problematic in steel tube column structures that are repeatedly subjected to external force. In order to deal with such fatigue problems of welds, conventionally, a method of finishing the weld toes to increase the fatigue strength grade, a method of improving the structure near the weld to reduce the generated stress, or a steel pipe A method of increasing the thickness of the column structure has been performed.
Among such methods, regarding the method of increasing the plate thickness of the steel pipe column structure, increasing the plate thickness of the entire steel pipe column structure including not only the welded portion but also other portions is performed. For this reason, there exists a problem that the amount of steel materials used increases. That is, if the thickness of not only the welded portion but also other portions is increased, the portions other than the welded portion have a surplus in terms of stress, which is uneconomical in design.

本発明は、上述の課題を解決するためになされたものであり、軸方向に直交する溶接面を有する場合において、合理的な設計が可能な鋼管柱構造物及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a steel pipe column structure that can be rationally designed and a method of manufacturing the steel pipe column structure when the welding surface is orthogonal to the axial direction. Objective.

(1)本発明に係る鋼管柱構造物は、両端部に厚肉部を有し、管軸方向に積み重ねるように配置された複数の鋼管と、各鋼管の前記厚肉部を接合する溶接継手部とを有し、前記厚肉部は溶接部の疲労強度から決まる板厚に設定されている鋼管柱を、構造物の一部として備えてなることを特徴とするものである。
(1) Tubular Column structure according to the present invention, have a thick portion at both ends, joined with a plurality of steel tubes arranged in so that stacked in the axial direction of the tube, the thick portion of the steel pipe Welding The thick-walled portion includes a steel pipe column set to a plate thickness determined from the fatigue strength of the welded portion as a part of the structure.

(2)また、上記(1)に記載のものにおいて、前記鋼管における前記厚肉部の板厚と他の部位との板厚の差が4mm以下であり、かつ前記厚肉部と前記他の部位との間には板厚が徐々に変化する傾斜部が設けられ、該傾斜部における板厚勾配が1/100以下に設定されていることを特徴とするものである。 (2) Further, in the above (1), a difference in plate thickness between the thick part and the other part in the steel pipe is 4 mm or less, and the thick part and the other part An inclined portion in which the plate thickness gradually changes is provided between the portions, and the plate thickness gradient in the inclined portion is set to 1/100 or less.

(3)また、上記(1)又は(2)に記載のものにおいて、前記厚肉部の軸方向の長さが2m以下に設定されていることを特徴とするものである。 (3) Further, in the above (1) or (2), the axial length of the thick portion is set to 2 m or less.

(4)本発明に係る鋼管柱構造物の製造方法は、上記(1)乃至(3)のいずれかに記載の鋼管柱構造物の製造方法であって、圧延直交方向の両端部が溶接部の疲労強度から決まる厚肉に形成された鋼板を環状に成形して鋼管を製作する鋼管製作工程と、製作された鋼管を積み重ねて溶接接合する鋼管接合工程を備えたことを特徴とするものである。
(4) A method for manufacturing a steel pipe column structure according to the present invention is the method for manufacturing a steel pipe column structure according to any one of the above (1) to (3), wherein both ends in the direction perpendicular to the rolling are welded portions. It is characterized by having a steel pipe manufacturing process in which a steel pipe formed by forming a thick steel plate determined from the fatigue strength of the ring into a ring shape and a steel pipe joining process in which the manufactured steel pipes are stacked and welded together is there.

(5)本発明に係る鋼管柱構造物の製造方法は、上記(1)乃至(3)のいずれかに記載の鋼管柱構造物の製造方法であって、圧延方向の両端部が溶接部の疲労強度から決まる厚肉に形成された複数枚の鋼板を周方向に並べて隣り合う鋼板同士を溶接して鋼管を製作する鋼管製作工程と、製作された鋼管を積み重ねて溶接接合する鋼管接合工程を備えたことを特徴とするものである。 (5) A method for manufacturing a steel pipe column structure according to the present invention is the method for manufacturing a steel pipe column structure according to any one of (1) to (3) above, wherein both ends in the rolling direction are welded portions. A steel pipe manufacturing process in which a plurality of steel plates formed in a thickness determined from fatigue strength are arranged in the circumferential direction and adjacent steel plates are welded together to produce a steel pipe, and a steel pipe joining process in which the manufactured steel pipes are stacked and welded together It is characterized by having.

本発明の鋼管柱構造物においては、両端部に厚肉部を有する複数の鋼管を管軸方向に積み重ねて前記厚肉部を溶接接合して形成されているので、溶接継手部以外の板厚を薄くすることにより、鋼材使用量を少なくした合理的な構造となり、安価な鋼管柱構造が提供可能になる。   In the steel pipe column structure of the present invention, since a plurality of steel pipes having thick portions at both ends are stacked in the tube axis direction and the thick portions are welded to each other, the plate thickness other than the welded joint portion is formed. By reducing the thickness of the steel pipe, it is possible to provide an inexpensive steel pipe column structure with a rational structure in which the amount of steel used is reduced.

図1は、本発明の一実施の形態に係る鋼管柱構造物の説明図である。FIG. 1 is an explanatory diagram of a steel pipe column structure according to an embodiment of the present invention. 図2は、図1に示した鋼管柱構造物を構成する円形鋼管の側面図である。FIG. 2 is a side view of a circular steel pipe constituting the steel pipe column structure shown in FIG. 図3は、本発明の一実施の形態に係る鋼管柱構造物を構成する円形鋼管の製造に使用する差厚鋼板の説明図である。FIG. 3 is an explanatory view of a differential thickness steel plate used for manufacturing a circular steel pipe constituting the steel pipe column structure according to the embodiment of the present invention. 図4は、本発明の実施の形態2に係る鋼管柱構造物の説明図である。FIG. 4 is an explanatory diagram of a steel pipe column structure according to Embodiment 2 of the present invention. 図5は、図4の矢視A−A断面図である。5 is a cross-sectional view taken along the line AA in FIG. 図6は、図4に示した鋼管柱構造物を構成する円形鋼管の側面図である。6 is a side view of a circular steel pipe constituting the steel pipe column structure shown in FIG. 図7は、図6に示した円形鋼管の製造に使用する差厚鋼板の説明図である。FIG. 7 is an explanatory view of a differential thickness steel plate used for manufacturing the circular steel pipe shown in FIG. 図8は、本発明の実施の形態3に係る鋼管柱構造物の説明図である。FIG. 8 is an explanatory diagram of a steel pipe column structure according to Embodiment 3 of the present invention. 図9は、図8の矢視A−A断面図である。9 is a cross-sectional view taken along the line AA in FIG. 図10は、図8に示した鋼管柱構造物を構成する八角形鋼管の側面図である。FIG. 10 is a side view of an octagonal steel pipe constituting the steel pipe column structure shown in FIG. 図11は、図10に示した八角形鋼管の製造に使用する差厚鋼板の説明図である。FIG. 11 is an explanatory view of a differential thickness steel plate used for manufacturing the octagonal steel pipe shown in FIG. 図12は、本発明の実施の形態4に係る鋼管柱構造物としての橋脚の説明図である。FIG. 12 is an explanatory diagram of a pier as a steel pipe column structure according to Embodiment 4 of the present invention. 図13は、図12の矢視A−A断面図である。13 is a cross-sectional view taken along line AA in FIG. 図14は、図12に示した橋脚の側面図である。FIG. 14 is a side view of the pier shown in FIG. 図15は、図12に示した橋脚の製造に使用する差厚鋼板の説明図である。FIG. 15 is an explanatory view of a differential thickness steel plate used for manufacturing the pier shown in FIG. 図16は、本発明の実施の形態5に係る鋼管柱構造物としての橋脚の説明図である。FIG. 16 is an explanatory diagram of a pier as a steel pipe column structure according to Embodiment 5 of the present invention. 図17は、図16の矢視A−A断面図である。17 is a cross-sectional view taken along the line AA in FIG. 図18は、図16に示した橋脚の側面図である。18 is a side view of the pier shown in FIG. 図19は、図16に示した橋脚の製造に使用する差厚鋼板の説明図である。FIG. 19 is an explanatory view of a differential thickness steel plate used for manufacturing the pier shown in FIG. 16. 図20は、本発明の実施の形態6に係る鋼管柱構造物としての橋脚の説明図である。FIG. 20 is an explanatory diagram of a pier as a steel pipe column structure according to Embodiment 6 of the present invention. 図21は、図20の矢視A−A断面図である。21 is a cross-sectional view taken along the line AA in FIG. 図22は、図20に示した橋脚の側面図である。FIG. 22 is a side view of the pier shown in FIG. 図23は、図20に示した橋脚の製造に使用する差厚鋼板の説明図である。FIG. 23 is an explanatory view of a differential thickness steel plate used for manufacturing the pier shown in FIG. 20. 図24は、本発明の実施の形態1の作用を説明するための図であって、風荷重と風速との関係を示すグラフである。FIG. 24 is a diagram for explaining the operation of the first embodiment of the present invention, and is a graph showing the relationship between the wind load and the wind speed. 図25は、本発明の実施の形態1の作用を説明するための図であって、鋼管柱構造物が風荷重を受けたときのモーメント分布を示す図である。FIG. 25 is a diagram for explaining the operation of the first embodiment of the present invention, and is a diagram showing a moment distribution when the steel pipe column structure receives a wind load. 図26は、比較例としての従来例の鋼管柱の板厚と疲労強度との関係を説明する説明図である。FIG. 26 is an explanatory diagram for explaining the relationship between the plate thickness and fatigue strength of a conventional steel pipe column as a comparative example. 図27は、実施の形態1の鋼管柱の板厚と疲労強度との関係を説明する説明図である。FIG. 27 is an explanatory diagram for explaining the relationship between the plate thickness of the steel pipe column and the fatigue strength of the first embodiment. 図28は、実施の形態7に係る海洋構造物の説明図である。FIG. 28 is an explanatory diagram of an offshore structure according to the seventh embodiment. 図29は、図28における矢視A−A線に沿う断面図である。29 is a cross-sectional view taken along line AA in FIG. 図30は、実施の形態8に係る鋼管柱構造物の説明図である。FIG. 30 is an explanatory diagram of a steel pipe column structure according to the eighth embodiment.

[実施の形態1]
本実施の形態を図1〜図3に基づいて説明する。
本実施の形態の鋼管柱構造物1は、両端部に厚肉部を有する複数の鋼管を管軸方向に積み重ねて前記厚肉部を溶接接合して形成された鋼管柱によって構成されるものである。
以下具体的に説明する。
[Embodiment 1]
This embodiment will be described with reference to FIGS.
The steel pipe column structure 1 of the present embodiment is constituted by a steel pipe column formed by stacking a plurality of steel pipes having thick portions at both ends in the tube axis direction and welding the thick portions. is there.
This will be specifically described below.

本実施の形態では、鋼管柱構造物1の例として、上部に風車設備が設置されるタワーを例に挙げており、このようなタワーは風よって軸方向に直交する揺れが生じるため、軸方向に直交する溶接面の疲労強度が問題になる。
鋼管柱構造物1は、図1に示すように、18個の円形鋼管(第1円形鋼管1a〜第18円形鋼管1r)を、基礎3の上に高さ方向に積み重ね、各円形鋼管の端部を突合せ溶接にて接合して形成している。図中の破線で示す部位が溶接面の位置であり、溶接面は鋼管柱構造物1の軸方向に直交している。
円形鋼管は、下から順に第1円形鋼管1a、第2円形鋼管1b・・・、第18円形鋼管1rとなっている。なお、簡略化のために、各円形鋼管における高さ方向には、鋼管径にテーパはつけていない。
In the present embodiment, as an example of the steel pipe column structure 1, a tower in which wind turbine equipment is installed in the upper part is taken as an example, and such a tower generates a vibration perpendicular to the axial direction due to the wind. The problem is the fatigue strength of the welded surface orthogonal to.
As shown in FIG. 1, the steel pipe column structure 1 is formed by stacking 18 circular steel pipes (first circular steel pipe 1a to 18th circular steel pipe 1r) on the foundation 3 in the height direction. The parts are joined by butt welding. The part shown with the broken line in a figure is a position of a welding surface, and the welding surface is orthogonal to the axial direction of the steel pipe column structure 1. FIG.
The circular steel pipes are, in order from the bottom, a first circular steel pipe 1a, a second circular steel pipe 1b,..., And an eighteenth circular steel pipe 1r. For simplification, the diameter of each steel pipe is not tapered in the height direction.

図2は、第1円形鋼管1aの側面を拡大して示す側面図である。第1円形鋼管1aは、図2に示すように、上下方向で板厚が変化している。板厚が変化する部位は、上部から順に上厚肉部5(上溶接継手部)、上テーパ部7、薄肉部9、下テーパ部11、下厚肉部13となっている。なお、この例では、第1円形鋼管1aの直径は6000mmである。
上厚肉部5及び下厚肉部13(下溶接継手部)では疲労強度を高めるために、板厚を厚くして溶接部に発生する応力を低減させている。突合せ溶接の疲労強度等級はD等級であり、他方母材はA等級であるから、疲労強度のみを考えると、同じ繰返し回数でも溶接部では母材の2倍程度の応力が必要となる。換言すると、疲労強度だけで考えれば、母材部は溶接部の半分の板厚でよいことになる。そこで、本実施の形態においては溶接継手部の板厚を必要な板厚として、その他の部位をこの板厚よりも肉薄にすることで、鋼重を減らしている。
FIG. 2 is an enlarged side view showing a side surface of the first circular steel pipe 1a. As shown in FIG. 2, the thickness of the first circular steel pipe 1a changes in the vertical direction. The portions where the plate thickness changes are the upper thick portion 5 (upper weld joint portion), the upper tapered portion 7, the thin portion 9, the lower tapered portion 11, and the lower thick portion 13 in order from the top. In this example, the diameter of the first circular steel pipe 1a is 6000 mm.
In the upper thick part 5 and the lower thick part 13 (lower weld joint part), in order to increase the fatigue strength, the plate thickness is increased to reduce the stress generated in the welded part. Since the fatigue strength grade of butt welding is the D grade and the base material is the A grade, considering only the fatigue strength, a stress about twice as large as that of the base material is required in the welded portion even with the same number of repetitions. In other words, considering only the fatigue strength, the base material portion may be half as thick as the welded portion. Therefore, in the present embodiment, the steel weight is reduced by setting the plate thickness of the welded joint as a necessary plate thickness and making other portions thinner than this plate thickness.

図25は、図1に示す鋼管柱構造物1に風荷重が載荷した時のモーメント分布を説明する説明図であり、図25(a)が鋼管柱構造物1と風との関係を示し、図25(b)がモーメント分布を示している。
図1に示す鋼管柱構造物1に風荷重が載荷した時のモーメント分布は、図25(b)に示すように、下側が大きく、上に行くほど小さい分布となる。
したがって、作用応力に応じて板厚を変化させる従来技術であれば、鋼管柱構造物として円形鋼管を想定した場合、同一径であれば基礎に近いほど板厚は厚くなる。すなわち、図1に示した単純な片持ち梁構造の鋼管柱構造を考えると、第1円形鋼管1aの板厚が最も厚く、第2円形鋼管1b、第3円形鋼管1cの順に板厚が徐々に薄くなってゆき、第18円形鋼管1rで最も薄くなり、本発明の一実施の形態のように、各円形鋼管が、図2に示すように、上下方向で板厚が変化するのとは全く異なる。
FIG. 25 is an explanatory diagram for explaining the moment distribution when a wind load is loaded on the steel pipe column structure 1 shown in FIG. 1, and FIG. 25 (a) shows the relationship between the steel pipe column structure 1 and the wind, FIG. 25B shows the moment distribution.
As shown in FIG. 25 (b), the moment distribution when the wind load is loaded on the steel pipe column structure 1 shown in FIG. 1 is larger on the lower side and smaller on the upper side.
Therefore, if it is a prior art which changes plate | board thickness according to action stress, when a circular steel pipe is assumed as a steel pipe pillar structure, if it is the same diameter, plate | board thickness will become thick, so that it is close to a foundation. That is, when considering the steel tube column structure of the simple cantilever structure shown in FIG. 1, the plate thickness of the first circular steel tube 1a is the largest, and the plate thickness gradually increases in the order of the second circular steel tube 1b and the third circular steel tube 1c. As shown in FIG. 2, the thickness of each circular steel pipe is changed in the vertical direction as shown in FIG. 2 as in the embodiment of the present invention. Completely different.

ここで、溶接接合部の疲労強度と鋼管柱構造物1の板厚との関係について説明する。
図26は高さ方向に板厚が同じ円形鋼管を積み重ねて接合した場合(比較例)の板厚(図26(a))と、疲労強度(図26(b))との関係を示している。また、図27は本実施の形態の鋼管柱構造物1についての板厚(図27(a))と疲労強度(図27(b))との関係を示している。
Here, the relationship between the fatigue strength of the welded joint and the plate thickness of the steel pipe column structure 1 will be described.
FIG. 26 shows the relationship between the thickness (FIG. 26 (a)) and the fatigue strength (FIG. 26 (b)) in the case where circular steel pipes having the same thickness are stacked and joined in the height direction (comparative example). Yes. FIG. 27 shows the relationship between the plate thickness (FIG. 27 (a)) and the fatigue strength (FIG. 27 (b)) for the steel pipe column structure 1 of the present embodiment.

複数の円形鋼管を高さ方向に溶接接合して製作された鋼管柱構造物の場合、各円形鋼管の板厚が同じであるとすると、図26に示すように、疲労強度は溶接接合部で格段に低下する。通常の設計では、曲げモーメントに応じて断面を変化させて断面を決めるため下部側の円形鋼管の板厚が上部側の円形鋼管の板厚よりも厚なるが、その場合でも溶接部の付近では格段に疲労強度が低下することは明白である。
これに対して、本実施の形態の鋼管柱構造物では、各円形鋼管の溶接部の板厚を溶接部の疲労強度から決まる板厚で設計し、各円形鋼管の溶接部以外の部位については母材一般の疲労強度から決まる板厚で設計している(図27(a)参照)ので、鋼管柱構造物全体として疲労強度が一定になり(図27(b)参照)、非常に合理的な設計となっている。
In the case of a steel pipe column structure manufactured by welding a plurality of round steel pipes in the height direction, assuming that the plate thickness of each round steel pipe is the same, as shown in FIG. Decrease dramatically. In normal design, the thickness of the lower circular steel pipe is thicker than the thickness of the upper circular steel pipe because the cross section is changed according to the bending moment to determine the cross section. It is clear that the fatigue strength is significantly reduced.
On the other hand, in the steel pipe column structure of the present embodiment, the plate thickness of the welded portion of each circular steel pipe is designed with a plate thickness determined from the fatigue strength of the welded portion. Since it is designed with a plate thickness determined from the fatigue strength of the base metal in general (see FIG. 27A), the fatigue strength is constant for the entire steel pipe column structure (see FIG. 27B), which is very reasonable. Design.

具体的には、上下の溶接継手部は厚肉(30mm)として必要な疲労強度を確保し、これに繋がる部位については肉厚を徐々に小さくするような上テーパ部7及び下テーパ部11を設け、中間部を薄肉部9(肉厚:26mm)としている。上溶接継手部と肉薄部を繋ぐ部位に、上テーパ部7を設け、板厚が変化する部位において応力集中が発生しないように板厚が徐々に変化するようにしている。この点は、下溶接部と肉薄部を繋ぐ下テーパ部も同様である。
上テーパ部及び下テーパ部におけるテーパ面における板厚勾配は、応力集中が少なければ良く、設計の通例では、1/5の板厚勾配(板厚1mm減に対して長さが5mm以上)の緩やかさが好ましいとされているが、1/5の板厚勾配であってもまだ応力集中が発生するため、応力集中をなくして本発明の最大効果を発揮するためには、1/100(板厚1mm減に対して長さが100mm以上)以下の板厚勾配を設けるのが好ましい。
本例では、板厚勾配は1/100に設定している。
上下溶接継手部の肉厚が30mmで薄肉部の肉厚が26mmであり、板厚勾配が1/100であることから、上テーパ部及び下テーパ部の長さは400mmとなっている。
板厚勾配とは、板厚の変化量と該板厚が変化部位の板の長さとの関係を示すものである。例えば、板厚が変化する部位の板の長さが100mmで、変化する板厚が1mmの場合には、板厚勾配は1/100となる。この場合、板厚が変化する部位が片側テーパであっても両側テーパであってもその形状とは無関係で、板厚の変化量のみを考慮するものである。
Specifically, the upper and lower welded joints are thick (30 mm) to ensure the necessary fatigue strength, and the upper taper part 7 and the lower taper part 11 that gradually reduce the thickness of the parts connected to this are provided. The middle part is a thin part 9 (thickness: 26 mm). An upper taper portion 7 is provided at a portion connecting the upper weld joint portion and the thin portion so that the plate thickness gradually changes so that stress concentration does not occur at the portion where the plate thickness changes. The same applies to the lower taper portion connecting the lower welded portion and the thin portion.
The thickness gradient on the taper surface at the upper and lower taper portions is sufficient if the stress concentration is small, and in the usual design, the thickness gradient is 1/5 (the length is 5 mm or more with respect to 1 mm thickness reduction). Although mildness is preferred, stress concentration still occurs even with a 1/5 thickness gradient, so in order to achieve the maximum effect of the present invention without stress concentration, 1/100 ( It is preferable to provide a thickness gradient of not more than 100 mm with respect to a reduction of 1 mm in thickness.
In this example, the thickness gradient is set to 1/100.
Since the thickness of the upper and lower welded joints is 30 mm, the thickness of the thin part is 26 mm, and the thickness gradient is 1/100, the length of the upper taper part and the lower taper part is 400 mm.
The plate thickness gradient indicates the relationship between the amount of change in plate thickness and the length of the plate where the plate thickness changes. For example, when the length of the plate at the portion where the plate thickness changes is 100 mm and the plate thickness changing is 1 mm, the plate thickness gradient is 1/100. In this case, regardless of whether the portion where the plate thickness changes is a single-sided taper or a double-sided taper, only the amount of change in the plate thickness is considered.

本実施の形態の第1円形鋼管1aにおいては、テーパ部は外面側及び内面側の両面に設けられている。このようにすることで、第1円形鋼管1aにおける構造軸が板厚中央になり、設計上好ましいからである。もっとも、後述する実施の形態において示すように、テーパ面を外面側あるいは内面側のいずれか一方に設けるようにしてもよい。   In the first circular steel pipe 1a of the present embodiment, the tapered portions are provided on both the outer surface side and the inner surface side. By doing in this way, it is because the structural axis in the 1st circular steel pipe 1a turns into a plate | board thickness center, and is preferable on a design. However, as shown in the embodiments described later, the tapered surface may be provided on either the outer surface side or the inner surface side.

また、溶接部近傍では、溶接仕上げの形状により応力集中が発生することから、溶接部付近では板厚が一定であることが望ましい。その意味で、上溶接継手部及び下溶接継手部は所定の長さを有することが好ましいが、この部位をあまり長くなると厚肉の部位が長くなりコストが高くなること、及び製作上の観点から上溶接継手部及び下溶接継手部の長さは2m以下であることが望ましい。本例では上溶接継手部及び下溶接継手部の長さはそれぞれ0.5mに設定している。   Moreover, since stress concentration occurs in the vicinity of the welded portion due to the shape of the weld finish, it is desirable that the plate thickness be constant in the vicinity of the welded portion. In that sense, the upper welded joint part and the lower welded joint part preferably have a predetermined length, but if this part is made too long, the thick part will become longer and the cost will increase, and from the viewpoint of production The length of the upper weld joint and the lower weld joint is preferably 2 m or less. In this example, the length of the upper weld joint and the lower weld joint is set to 0.5 m.

<製造方法>
鋼管柱構造物1の製造方法の一例を、以下に示す。
図3は鋼管柱構造物1を構成する円形鋼管の製造方法を示したものであり、図3(a)は使用する差厚鋼板15とその曲げ方向を説明する説明図、図3(b)は図3(a)に示した差厚鋼板15の断面図である。
図3(a)において、矢印で示すL方向は圧延方向を示し、C方向は圧延直交方向を示している。
本実施の形態に使用する差厚鋼板15は、図3に示すように、圧延直交方向(C方向)に板厚を変化させた鋼板(本明細書において「CP鋼板」という)である。
本実施の形態の円形鋼管は、図3に示すCP鋼板をL方向にロール成形して円環状にして、端部を溶接することで製造する。このようにして製造された各円形鋼管を積み重ねて、上下の厚肉になった溶接継手部を突合せ溶接にて接合することで鋼管柱構造物1を製造する。
なお、CP鋼板でなくても、通常の鋼板から中央部を切削するなどで同じ板厚分布を有した鋼板を製作しても良い。
<Manufacturing method>
An example of the manufacturing method of the steel pipe column structure 1 is shown below.
FIG. 3 shows the manufacturing method of the circular steel pipe which comprises the steel pipe pillar structure 1, FIG. 3 (a) is explanatory drawing explaining the difference thickness steel plate 15 to be used, and its bending direction, FIG.3 (b). These are sectional drawings of the differential thickness steel plate 15 shown to Fig.3 (a).
In FIG. 3A, the L direction indicated by the arrow indicates the rolling direction, and the C direction indicates the rolling orthogonal direction.
As shown in FIG. 3, the differential thickness steel plate 15 used in the present embodiment is a steel plate (referred to as “CP steel plate” in the present specification) in which the plate thickness is changed in the rolling orthogonal direction (C direction).
The circular steel pipe of the present embodiment is manufactured by roll-forming the CP steel plate shown in FIG. 3 in the L direction to form an annular shape and welding the ends. The steel pipe column structure 1 is manufactured by stacking the circular steel pipes thus manufactured and joining the upper and lower thick welded joint portions by butt welding.
In addition, even if it is not a CP steel plate, you may manufacture the steel plate which has the same board thickness distribution by cutting a center part from a normal steel plate.

本実施の形態の鋼管柱構造物1においては、円形鋼管(第1円形鋼管1a〜第18円形鋼管1r)を、基礎3の上に高さ方向に積み重ね、円形鋼管の端部を突合せ溶接にて接合して形成するに際して、各円形鋼管の上下の溶接継手部の肉厚を厚肉にして、その他の部位をこれよりも肉薄にしているので、鋼重を低減でき、合理的な設計の鋼管柱構造物が実現されている。   In the steel pipe column structure 1 of the present embodiment, circular steel pipes (first circular steel pipe 1a to 18th circular steel pipe 1r) are stacked in the height direction on the foundation 3, and the ends of the circular steel pipes are butt welded. When joining and forming, the thickness of the welded joints at the top and bottom of each circular steel pipe is made thicker, and the other parts are made thinner than this, so the steel weight can be reduced and a rational design can be achieved. A steel pipe column structure is realized.

[実施の形態2]
実施の形態2を図4〜図7に基づいて説明する。
本実施の形態の鋼管柱構造物21は、実施の形態1と同様に、円形鋼管(第1円形鋼管21a〜第20円形鋼管1t)を、基礎3の上に高さ方向に積み重ね、円形端部を突合せ溶接にて接合して形成されるものである。本実施の形態の鋼管柱構造物21も、実施の形態1のものと同様に、繰り返し応力による疲労が問題となり、疲労強度の関係からこれにこの強度を確保するために所定の板厚が要求されるような鋼管柱構造物である。
[Embodiment 2]
The second embodiment will be described with reference to FIGS.
As in the first embodiment, the steel pipe column structure 21 of the present embodiment is formed by stacking circular steel pipes (first circular steel pipe 21a to twentieth circular steel pipe 1t) on the foundation 3 in the height direction, and circular ends. It is formed by joining the parts by butt welding. Similarly to the first embodiment, the steel pipe column structure 21 of the present embodiment is also subject to fatigue due to repeated stress, and a predetermined plate thickness is required to ensure this strength from the relationship of fatigue strength. This is a steel pipe column structure.

本実施の形態の鋼管柱構造物21が実施の形態1の鋼管柱構造物と異なる主な点は、実施の形態1においては円形鋼管における上テーパ部7及び下テーパ部11を外面側及び内面側の両面に設けていたが、本実施の形態の鋼管柱構造物21においては、図6、図7に示すように、テーパ部を円形鋼管の外面側にのみ設けた片テーパとした点である。なお、片テーパを設ける場合には、円形鋼管の内面側に設けるようにしてもよい。
円形鋼管21aにおける板厚が変化する部位は、図6に示すように、上溶接継手部23、上片テーパ部25、薄肉部27、下片テーパ部29、下溶接継手部31となっている。
本実施の形態の円形鋼管の製造に使用する差厚鋼板33は、図7に示すように、圧延直交方向(C方向)に板厚を変化させたCP鋼板である。差厚鋼板33は、その片面側にのみテーパ面が設けられている。
The main difference between the steel pipe column structure 21 of the present embodiment and the steel pipe column structure of the first embodiment is that, in the first embodiment, the upper taper portion 7 and the lower taper portion 11 of the circular steel pipe are arranged on the outer surface side and the inner surface. However, in the steel pipe column structure 21 of the present embodiment, as shown in FIGS. 6 and 7, the tapered portion is a single taper provided only on the outer surface side of the circular steel pipe. is there. In addition, when providing a one side taper, you may make it provide in the inner surface side of a circular steel pipe.
As shown in FIG. 6, the portions of the circular steel pipe 21 a where the plate thickness changes are the upper weld joint portion 23, the upper piece taper portion 25, the thin portion 27, the lower piece taper portion 29, and the lower weld joint portion 31. .
As shown in FIG. 7, the differential thickness steel plate 33 used for manufacturing the circular steel pipe of the present embodiment is a CP steel plate whose thickness is changed in the rolling orthogonal direction (C direction). The differential thickness steel plate 33 is provided with a tapered surface only on one side thereof.

本実施の形態の鋼管柱構造物21の具体的な寸法を示すと、鋼管径6000mm、鋼管柱構造物21を構成する各円形鋼管の高さ4m、上溶接継手部23及び下溶接継手部31の板厚30mm、上溶接継手部23及び下溶接継手部31の長さ0.5m、肉薄部27の板厚25mm、上溶接継手部23及び下溶接継手部31と薄肉部27との板厚の勾配は1/100としている。このような仕様にすることで、従来であれば、全ての板厚が30mm必要であったのを板厚の一部を薄肉にすることができ、鋼重は約10%低減されている。   Specific dimensions of the steel pipe column structure 21 of the present embodiment are as follows: the steel pipe diameter is 6000 mm, the height of each circular steel pipe constituting the steel pipe column structure 21 is 4 m, the upper weld joint portion 23 and the lower weld joint portion 31. The thickness of the upper welded joint portion 23 and the lower welded joint portion 31 is 0.5 m, the thickness of the thin portion 27 is 25 mm, and the thickness of the upper welded joint portion 23 and the lower welded joint portion 31 and the thinned portion 27 is The gradient is 1/100. By adopting such a specification, it is possible to make a part of the plate thickness thinner than the conventional plate thickness of 30 mm, and the steel weight is reduced by about 10%.

[実施の形態3]
実施の形態3を図8〜図11に基づいて説明する。
本実施の形態の鋼管柱構造物41も、実施の形態1、2のものと同様に、繰り返し応力による疲労が問題となり、疲労強度の関係からこれにこの強度を確保するために所定の板厚が要求されるような鋼管柱構造物である。
本実施の形態の鋼管柱構造物41は、八角形断面を持つ八角形鋼管41a、41b・・を軸方向に積み重ねて突き合わせ溶接によって接合することで構築されている。
各八角形鋼管は、長さ16mの鋼板8枚を周方向に8枚並べて八角形を形成し、この8枚の鋼板の隣り合う部位を高さ方向(八角形鋼管の軸方向)に溶接することで製作される。このため、各八角形鋼管には軸方向に溶接線が8箇所できることになるが、この溶接線は鋼管柱構造物の軸に直交する部位なので疲労強度は問題にはならない。また、軸方向で板厚が変化する部位同士を溶接することになり、板厚の変化する部位で隙間が生ずることになるが、板厚の変化量が少ないので、溶接による肉盛りによって変化分を吸収できるので問題はない。
[Embodiment 3]
A third embodiment will be described with reference to FIGS.
As with the first and second embodiments, the steel pipe column structure 41 of the present embodiment also has a problem of fatigue due to repeated stress, and due to the relationship between fatigue strength, a predetermined plate thickness is required to secure this strength. It is a steel pipe column structure that is required.
The steel pipe column structure 41 of this embodiment is constructed by stacking octagonal steel pipes 41a, 41b,... Having an octagonal cross section in the axial direction and joining them by butt welding.
Each octagonal steel pipe forms eight octagonal steel plates in the circumferential direction by arranging eight 16m long steel plates in the circumferential direction, and the adjacent parts of the eight steel plates are welded in the height direction (the axial direction of the octagonal steel pipe). It is manufactured by. For this reason, each octagonal steel pipe has eight weld lines in the axial direction. However, since these weld lines are parts perpendicular to the axis of the steel pipe column structure, fatigue strength is not a problem. In addition, the parts where the plate thickness changes in the axial direction are welded to each other, and a gap is formed at the part where the plate thickness changes.However, since the amount of change in the plate thickness is small, Can be absorbed, so there is no problem.

八角形鋼管を構成する鋼板は、図11に示すように、圧延方向(L方向)に板厚が変化する差厚鋼板53(LP鋼板(Longitudinally Profiled Steel Plate))を用いている。
LP鋼板における圧延方向長さ16mの板厚分布は、図10に示すように、両端の上溶接継手部43及び下溶接継手部51は長さが1mで板厚が30mm、上テーパ部45及び下テーパ部49の長さが1m(板厚勾配1/200)、薄肉部の長さが12mで板厚が25mmとなっている。
これにより、従来の等厚だった断面よりも鋼重は約14%低減される。さらに、鋼管柱軸に直交する溶接箇所は、16m間隔となり、実施例1、従来技術よりも少なく、設計クリティカルとなる部位を減らすことができるため、好ましい設計と言える。
As shown in FIG. 11, a steel plate constituting the octagonal steel pipe uses a differential thickness steel plate 53 (LP steel plate (Longitudinally Profiled Steel Plate)) whose thickness changes in the rolling direction (L direction).
As shown in FIG. 10, the thickness distribution of the LP steel sheet with a length of 16 m in the rolling direction is such that the upper weld joint 43 and the lower weld joint 51 at both ends have a length of 1 m, a plate thickness of 30 mm, an upper taper 45 and The length of the lower taper portion 49 is 1 m (plate thickness gradient 1/200), the length of the thin portion is 12 m, and the plate thickness is 25 mm.
As a result, the steel weight is reduced by about 14% from the cross section of the same thickness. Furthermore, the welded locations orthogonal to the steel pipe column axis are 16 m apart, which is less than in Example 1 and the prior art, and can be said to be a preferable design because the number of design critical sites can be reduced.

なお、上記の実施の形態1〜3においては、鋼管柱構造物1、21、41は高さ方向において管径が同一のものを示しているが、本発明はこれに限られるものではなく、例えば下部側の径を大きくして上部側に行くに従って管径が徐々に小さくなる態様や、高さ方向の途中において管径が変化する態様であってもよい。   In the first to third embodiments, the steel pipe column structures 1, 21, and 41 have the same pipe diameter in the height direction, but the present invention is not limited to this. For example, a mode in which the diameter on the lower side is increased and the pipe diameter is gradually decreased toward the upper side, or the pipe diameter is changed in the middle of the height direction may be employed.

[実施の形態4]
実施の形態4を図12〜図15に基づいて説明する。
本実施の形態4は、鋼管柱構造物を橋梁の橋脚61に適用した例である。この例では、橋脚61と橋桁63が一体となったラーメン構造であり、橋脚61に作用する曲げモーメントは、橋脚61の上部、下部(地際部)で最大となる。橋脚61の上端部は橋桁63と溶接接合され、橋脚61の下端部は架台と溶接接合される。橋脚の寸法は、高さ20mで矩形断面であり、矩形断面は、橋軸方向(図12の矢印A方向)が2mで橋軸直交方向が4mである(図13参照)。2本の橋脚の間の距離は30mである。
本実施の形態の橋脚61は、長さ20mの鋼板4枚を周方向に並べて矩形鋼管を形成し、この4枚の鋼板の隣り合う部位を溶接することで製作される。このため、橋脚には軸方向に溶接線が4箇所できることになるが、この溶接線は鋼管柱構造物の軸に直交する部位なので疲労強度は問題にはならない。
[Embodiment 4]
A fourth embodiment will be described with reference to FIGS.
The fourth embodiment is an example in which a steel pipe column structure is applied to a bridge pier 61. In this example, the bridge pier 61 and the bridge girder 63 are integrated into a ramen structure, and the bending moment acting on the pier 61 is maximized at the upper part and the lower part (border part) of the pier 61. The upper end of the pier 61 is welded to the bridge girder 63, and the lower end of the pier 61 is welded to the gantry. The size of the pier is 20 m in height and a rectangular cross section, and the rectangular cross section is 2 m in the bridge axis direction (arrow A direction in FIG. 12) and 4 m in the bridge axis orthogonal direction (see FIG. 13). The distance between the two piers is 30m.
The bridge pier 61 of this embodiment is manufactured by arranging four steel plates having a length of 20 m in the circumferential direction to form a rectangular steel pipe and welding adjacent portions of the four steel plates. For this reason, although four weld lines can be made in the axial direction on the pier, the fatigue strength is not a problem because these weld lines are parts orthogonal to the axis of the steel pipe column structure.

矩形鋼管を構成する鋼板は、図15に示すように、圧延方向(L方向)に板厚が変化する差厚鋼板67(LP鋼板)を用いている。
差厚鋼板67における圧延方向長さ20mの板厚分布は、図14に示すように、両端の上端溶接継手部69及び下端溶接継手部77は長さが2mで板厚が30mm、上テーパ部71及び下テーパ部75の長さが1m(板厚勾配1/200)、薄肉部73の長さが14mで板厚が25mmとなっている。
本実施の形態の橋脚61は、板厚が等厚だった従来例よりも鋼重は約12%低減される。
As shown in FIG. 15, the steel plate constituting the rectangular steel pipe uses a differential thickness steel plate 67 (LP steel plate) whose thickness changes in the rolling direction (L direction).
As shown in FIG. 14, the thickness distribution of the difference thickness steel plate 67 with a length of 20 m in the rolling direction is as follows. The upper end weld joint portion 69 and the lower end weld joint portion 77 at both ends are 2 m in length and 30 mm thick, and the upper taper portion. 71 and the lower taper portion 75 have a length of 1 m (plate thickness gradient 1/200), the thin portion 73 has a length of 14 m and a plate thickness of 25 mm.
In the pier 61 of this embodiment, the steel weight is reduced by about 12% compared to the conventional example in which the plate thickness is equal.

[実施の形態5]
実施の形態5を図16〜図19に基づいて説明する。
本実施の形態5は、実施の形態4と同様に鋼管柱構造物を橋梁の橋脚に適用した例である。
本実施の形態の橋脚81が実施の形態4の橋脚61と異なる主な点は、実施の形態4においては橋脚61を構成する差厚鋼板67におけるテーパ部を、差厚鋼板67の外面側及び内面側の両面に設けていたが、本実施の形態の差厚鋼板83においては、図18、図19に示すように、テーパ部を鋼板の外面側にのみ設けている点である。
[Embodiment 5]
The fifth embodiment will be described with reference to FIGS.
The fifth embodiment is an example in which a steel pipe column structure is applied to a bridge pier as in the fourth embodiment.
The main difference between the pier 81 of the present embodiment and the pier 61 of the fourth embodiment is that, in the fourth embodiment, the taper portion of the differential thickness steel plate 67 constituting the pier 61 is changed to the outer surface side of the differential thickness steel plate 67 and Although the difference thickness steel plate 83 of the present embodiment is provided on both inner surfaces, the taper portion is provided only on the outer surface side of the steel plate as shown in FIGS.

本実施の形態の橋脚81の寸法を具体的に示すと、高さが20m、矩形断面における橋軸方向(図16の矢印A方向)が2mで橋軸直交方向が4mである。
差厚鋼板83における圧延方向長さ20mの板厚分布は、図18に示すように、両端の上端溶接継手部85及び下端溶接継手部93は長さが2mで板厚が30mm、上テーパ部87及び下テーパ部91の長さが1m(板厚勾配1/200)、薄肉部89の長さが14mで板厚が25mmとなっている。
本実施の形態の橋脚83は、板厚が等厚だった従来例よりも鋼重は約12%低減される。
Specifically, the dimensions of the bridge pier 81 of the present embodiment are 20 m in height, 2 m in the bridge axis direction (arrow A direction in FIG. 16) in the rectangular cross section, and 4 m in the bridge axis orthogonal direction.
As shown in FIG. 18, the thickness distribution of the difference thickness steel plate 83 with a length of 20 m in the rolling direction is as follows. The upper end weld joint 85 and the lower end weld joint 93 are 2 m in length and 30 mm in thickness, and have an upper taper portion. 87 and the lower taper portion 91 have a length of 1 m (plate thickness gradient 1/200), the thin portion 89 has a length of 14 m and a plate thickness of 25 mm.
In the bridge pier 83 of the present embodiment, the steel weight is reduced by about 12% compared to the conventional example in which the plate thickness is equal.

[実施の形態6]
実施の形態6を図20〜図23に基づいて説明する。
本実施の形態6は、実施の形態4、5と同様に鋼管柱構造物を橋梁の橋脚に適用した例である。
本実施の形態の橋脚101は、高さ20m、直径2500mmの円形鋼管から構成されている。
円形鋼管は、図23に示すような圧延方向(L方向)に板厚を変化させた差厚鋼管103を圧延直交方向(C方向)に曲げ加工して製作する。この場合、圧延直交方向の長さが7850mm(直径2500mmの円周長さ分)必要となるが、鋼板製造上の制約から1枚の鋼板で製作することができず、複数枚のLP鋼板のL方向同士を合わせて溶接して1枚の鋼板として、この鋼板を曲げ加工することにより、円形鋼管を製作する。
[Embodiment 6]
Embodiment 6 will be described with reference to FIGS.
The sixth embodiment is an example in which a steel pipe column structure is applied to a bridge pier as in the fourth and fifth embodiments.
The pier 101 of the present embodiment is composed of a circular steel pipe having a height of 20 m and a diameter of 2500 mm.
The circular steel pipe is manufactured by bending a differential thickness steel pipe 103 having a thickness changed in the rolling direction (L direction) as shown in FIG. 23 in the rolling orthogonal direction (C direction). In this case, the length in the direction perpendicular to the rolling is 7850 mm (for the circumferential length of 2500 mm in diameter), but due to restrictions in steel plate manufacturing, it cannot be manufactured with one steel plate, A round steel pipe is manufactured by bending the steel sheets as a single steel sheet by welding the L directions together.

本実施の形態6で用いた差厚鋼板103における圧延方向長さ20mの板厚分布は、図22に示すように、両端の上端溶接継手部105及び下端溶接継手部113は長さが1mで板厚が25mm、上テーパ部107及び下テーパ部111の長さが3m(板厚勾配1/300)、薄肉部の長さが12mで板厚が15mmとなっている。
本実施の形態の橋脚101は、板厚が等厚だった従来例よりも鋼重は約30%低減される。
As shown in FIG. 22, the thickness distribution of the difference thickness steel plate 103 used in Embodiment 6 with a length of 20 m in the rolling direction is 1 m in length at the upper end weld joint portion 105 and the lower end weld joint portion 113 at both ends. The plate thickness is 25 mm, the length of the upper taper portion 107 and the lower taper portion 111 is 3 m (plate thickness gradient 1/300), the length of the thin portion is 12 m, and the plate thickness is 15 mm.
In the bridge pier 101 of this embodiment, the steel weight is reduced by about 30% compared to the conventional example in which the plate thickness is equal.

[実施の形態7]
本実施の形態7を図28、図29に基づいて説明する。
本実施の形態7は本発明の鋼管柱構造物を海洋構造物115に適用したものである。
本実施の形態7の海洋構造物115は、図28、図29に示すように、海中に立設した3本の脚部117と、3本の脚部117の上端部を連結する連結部119と、連結部119材に立設された海上タワー部121を備えている。
3本の脚部117と海上タワー部121は、両端部に厚肉部を有する複数の鋼管を管軸方向に積み重ねて前記厚肉部を溶接接合して形成された鋼管柱(以下、「本発明係る鋼管柱」という)によって構成されている。
[Embodiment 7]
The seventh embodiment will be described with reference to FIGS.
In the seventh embodiment, the steel pipe column structure of the present invention is applied to the offshore structure 115.
As shown in FIGS. 28 and 29, the offshore structure 115 according to the seventh embodiment includes three connecting portions 119 that connect the three leg portions 117 standing in the sea and the upper end portions of the three leg portions 117. And a marine tower portion 121 erected on the connecting portion 119 material.
The three leg portions 117 and the offshore tower portion 121 are formed by stacking a plurality of steel pipes having thick portions at both ends in the tube axis direction and welding the thick portions to each other (hereinafter referred to as “main”). The steel pipe column according to the invention ”).

本発明の鋼管柱構造物は、本実施の形態の海洋構造物115に示されるように、本発明に係る鋼管柱を複数本用いたものであってもよいし、構造物の一部に連結部119を介在させて本発明に係る鋼管柱を結合したものであってもよい。つまり、本発明の鋼管柱構造物は、本発明に係る鋼管柱を構造部の一部として備えているものであればよい。   As shown in the offshore structure 115 of the present embodiment, the steel pipe column structure of the present invention may use a plurality of steel pipe columns according to the present invention, or may be connected to a part of the structure. A steel pipe column according to the present invention may be coupled with the portion 119 interposed. That is, the steel pipe column structure of the present invention only needs to have the steel pipe column according to the present invention as a part of the structure portion.

[実施の形態8]
本実施の形態8を、図30に基づいて説明する。
本実施の形態8の鋼管柱構造物123は、基礎122(地面)に立設された鉛直鋼管柱125と、鉛直鋼管柱125の高さ方向の途中に水平方向に接合された水平鋼管柱127とを備えて構成されている。
鉛直鋼管柱125と水平鋼管柱127には、本発明に係る鋼管柱が適用されている。
鉛直鋼管柱125は、下端部を基礎122(地面)に固定した固定端とし、上部が自由端とする片持ち梁である。また、水平鋼管柱127も鉛直鋼管柱125との接続部を固定端と考えれば、片持ち梁とみなすことができる。
[Embodiment 8]
The eighth embodiment will be described with reference to FIG.
A steel pipe column structure 123 according to the eighth embodiment includes a vertical steel pipe column 125 erected on a foundation 122 (ground), and a horizontal steel pipe column 127 joined in the middle in the height direction of the vertical steel pipe column 125. And is configured.
A steel pipe column according to the present invention is applied to the vertical steel pipe column 125 and the horizontal steel pipe column 127.
The vertical steel pipe column 125 is a cantilever having a lower end fixed to a foundation 122 (ground) and an upper portion free. Further, the horizontal steel pipe column 127 can also be regarded as a cantilever beam when the connection portion with the vertical steel pipe column 125 is considered as a fixed end.

鉛直鋼管柱125における水平鋼管柱127との接合部は作用応力が大きくなることから、接続部近傍の板厚を厚くする。この場合、水平鋼管柱127との接合部に配置された円形又は矩形鋼管の板厚は溶接接合部よりも水平鋼管柱127との接続部が厚くなることもある。このように、他の部材との接合との関係で鉛直鋼管柱125を構成する一部の円形又は矩形鋼管の板厚が、両端部に厚肉部を有する鋼管ではない場合であっても、当該鉛直鋼管柱125は本発明に係る鋼管柱に含まれる。
また、水平鋼管柱127に関しても、基部の部分すなわち鉛直鋼管柱125との接合部は作用応力が大きいため、板厚を厚くする。他方、基部から離れた部位では、作用応力は小さいが、溶接疲労強度等級の低い溶接部のみ肉厚にしている。
Since the joint portion of the vertical steel pipe column 125 with the horizontal steel pipe column 127 has a large acting stress, the plate thickness in the vicinity of the connection portion is increased. In this case, the thickness of the circular or rectangular steel pipe disposed at the joint with the horizontal steel pipe column 127 may be thicker at the connection with the horizontal steel pipe column 127 than at the weld joint. Thus, even if the plate thickness of some circular or rectangular steel pipes constituting the vertical steel pipe column 125 in relation to the joining with other members is not a steel pipe having thick portions at both ends, The vertical steel pipe column 125 is included in the steel pipe column according to the present invention.
Further, with respect to the horizontal steel pipe column 127, the base portion, that is, the joint portion with the vertical steel pipe column 125 has a large acting stress, so that the plate thickness is increased. On the other hand, in the part away from the base, the acting stress is small, but only the welded part with a low weld fatigue strength grade is made thick.

なお、鋼管柱構造物における軸方向に直交する溶接面を有する溶接継手部のどの部位の板厚を他の部位よりも肉厚にするかについては、鋼管柱構造物の用途、例えば鋼製煙突、橋梁主塔、風力発電用タワー、海洋構造物、建築系構造物、橋梁構造などによって作用する応力との関係で決定すればよい。   In addition, as to which part of the welded joint portion having a weld surface orthogonal to the axial direction in the steel pipe column structure is to be thicker than other parts, the use of the steel pipe column structure, for example, a steel chimney And the bridge main tower, wind power generation tower, marine structure, architectural structure, bridge structure, and the like.

1 鋼管柱構造物
1a 第1円形鋼管
1b 第2円形鋼管
1k 第11円形鋼管
1r 第18円形鋼管
3 基礎
5 上厚肉部
7 上テーパ部
9 薄肉部
11 下テーパ部
13 下厚肉部
15 差厚鋼板
21 鋼管柱構造物
21a 第1円形鋼管
21b 第2円形鋼管
21c 第3円形鋼管
21s 第19円形鋼管
21t 第20円形鋼管
23 上溶接継手部
25 上片テーパ部
27 薄肉部
29 下片テーパ部
31 下溶接継手部
33 差厚鋼板
41 鋼管柱構造物
41a 第1八角形鋼管
41b 第2八角形鋼管
43 上部溶接継手部
45 上テーパ部
47 薄肉部
49 下テーパ部
51 下部溶接継手部
53 差厚鋼板
61 橋脚
63 橋桁
65 架台
67 差厚鋼板
69 上端溶接継手部
71 上テーパ部
73 薄肉部
75 下テーパ部
77 下端溶接継手部
81 橋脚
83 差厚鋼板
85 上端溶接継手部
87 上テーパ部
89 薄肉部
91 下テーパ部
93 下端溶接継手部
101 橋脚
103 差厚鋼板
105 上端溶接継手部
107 上テーパ部
109 薄肉部
111 下テーパ部
113 下端溶接継手部
115 海洋構造物
117 脚部
119 連結部
121 海上タワー部
123 鋼管柱構造物
122 基礎
125 鉛直鋼管柱
127 水平鋼管柱
DESCRIPTION OF SYMBOLS 1 Steel pipe pillar structure 1a 1st round steel pipe 1b 2nd round steel pipe 1k 11th round steel pipe 1r 18th round steel pipe 3 Foundation 5 Upper thick part 7 Upper taper part 9 Thin wall part 11 Lower taper part 13 Lower thick part 15 Difference Thick steel plate 21 Steel pipe column structure 21a 1st circular steel pipe 21b 2nd circular steel pipe 21c 3rd circular steel pipe 21s 19th circular steel pipe 21t 20th circular steel pipe 23 Upper weld joint part 25 Upper piece taper part 27 Thin part 29 Lower piece taper part 31 Lower Welded Joint Part 33 Differential Thickness Steel Plate 41 Steel Pipe Column Structure 41a First Octagonal Steel Pipe 41b Second Octagonal Steel Pipe 43 Upper Welded Joint Part 45 Upper Tapered Part 47 Thin Wall Part 49 Lower Tapered Part 51 Lower Welded Joint Part 53 Differential Thickness Steel plate 61 Bridge pier 63 Bridge girder 65 Mount 67 Differential thickness steel plate 69 Upper end weld joint 71 Upper taper part 73 Thin wall part 75 Lower taper part 77 Lower end weld joint part 81 Bridge Leg 83 Differential thickness steel plate 85 Upper end weld joint 87 Upper taper portion 89 Thin wall portion 91 Lower taper portion 93 Lower end weld joint portion 101 Bottom pier 103 Differential thickness steel plate 105 Upper end weld joint portion 107 Upper taper portion 109 Thin wall portion 111 Lower taper portion 113 Lower end Welded joint 115 Marine structure 117 Leg 119 Connection part 121 Marine tower part 123 Steel pipe pillar structure 122 Foundation 125 Vertical steel pipe pillar 127 Horizontal steel pipe pillar

Claims (5)

風力発電に用いられる風車を支持する鋼管柱構造物であって、
両端部に厚肉部を有し、管軸方向に積み重ねるように配置された複数の鋼管と、各鋼管の前記厚肉部を接合する溶接継手部とを有し、前記各鋼管の厚肉部は溶接部の疲労強度から決まる板厚に設定され、前記溶接部以外の部位は母材一般の疲労強度から決まる板厚に設定され、鋼管柱構造物全体として疲労強度が一定になっていることを特徴とする鋼管柱構造物。
A steel pipe column structure that supports a windmill used for wind power generation,
Thick wall portions of each steel pipe having thick wall portions at both ends and having a plurality of steel pipes arranged so as to be stacked in the direction of the pipe axis, and welded joint portions joining the thick wall portions of the respective steel pipes Is set to the plate thickness determined from the fatigue strength of the welded portion, and the portion other than the welded portion is set to the plate thickness determined from the fatigue strength of the base metal in general, and the fatigue strength of the steel pipe column structure as a whole is constant Steel tube pillar structure characterized by
前記鋼管における前記厚肉部の板厚と他の部位との板厚の差が4mm以下であり、かつ前記厚肉部と前記他の部位との間には板厚が徐々に変化する傾斜部が設けられ、該傾斜部における板厚勾配が1/100以下に設定されていることを特徴とする請求項1記載の鋼管柱構造物。   The difference between the thickness of the thick portion and the other portion in the steel pipe is 4 mm or less, and the inclined portion where the thickness gradually changes between the thick portion and the other portion. The steel pipe column structure according to claim 1, wherein a thickness gradient at the inclined portion is set to 1/100 or less. 前記厚肉部の軸方向の長さが2m以下に設定されていることを特徴とする請求項1又は2記載の鋼管柱構造物。   The steel pipe pillar structure according to claim 1 or 2, wherein an axial length of the thick part is set to 2 m or less. 請求項1乃至3のいずれかに記載の鋼管柱構造物の製造方法であって、圧延直交方向の両端部が溶接部の疲労強度から決まる厚肉に形成され、前記溶接部以外の部位は母材一般の疲労強度から決まる板厚に設定された鋼板を環状に成形して鋼管を製作する鋼管製作工程と、製作された鋼管を積み重ねて溶接接合する鋼管接合工程を備えたことを特徴とする鋼管柱構造物の製造方法。 It is a manufacturing method of the steel pipe pillar structure in any one of Claims 1 thru | or 3, Comprising: Both ends of a rolling orthogonal direction are formed in the thick wall determined from the fatigue strength of a welding part, and parts other than the said welding part are mother. It features a steel pipe manufacturing process for manufacturing steel pipes by annularly forming a steel plate set to a thickness determined from the general fatigue strength of the material, and a steel pipe joining process for stacking the manufactured steel pipes and welding them together. Manufacturing method of steel pipe column structure. 請求項1乃至3のいずれかに記載の鋼管柱構造物の製造方法であって、圧延方向の両端部が溶接部の疲労強度から決まる厚肉に形成され、前記溶接部以外の部位は母材一般の疲労強度から決まる板厚に設定された複数枚の鋼板を周方向に並べて隣り合う鋼板同士を溶接して鋼管を製作する鋼管製作工程と、製作された鋼管を積み重ねて溶接接合する鋼管接合工程を備えたことを特徴とする鋼管柱構造物の製造方法。 It is a manufacturing method of the steel pipe pillar structure in any one of Claims 1 thru | or 3, Comprising: Both ends of a rolling direction are formed in the thickness decided from the fatigue strength of a welding part, and parts other than the said welding part are base materials. A steel pipe manufacturing process in which a plurality of steel plates set to a thickness determined by general fatigue strength are arranged in the circumferential direction and adjacent steel plates are welded together to produce a steel pipe, and steel pipe joining in which the manufactured steel pipes are stacked and welded together The manufacturing method of the steel pipe pillar structure characterized by including the process.
JP2012189763A 2011-09-07 2012-08-30 Steel pipe column structure and manufacturing method thereof Active JP6160043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189763A JP6160043B2 (en) 2011-09-07 2012-08-30 Steel pipe column structure and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011194880 2011-09-07
JP2011194880 2011-09-07
JP2012189763A JP6160043B2 (en) 2011-09-07 2012-08-30 Steel pipe column structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013068070A JP2013068070A (en) 2013-04-18
JP6160043B2 true JP6160043B2 (en) 2017-07-12

Family

ID=48474041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189763A Active JP6160043B2 (en) 2011-09-07 2012-08-30 Steel pipe column structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6160043B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961984B2 (en) * 2017-03-31 2021-11-05 株式会社Ihi Column structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206546A (en) * 1984-03-30 1985-10-18 Kubota Ltd Manufacture of pillar material
JPS62104694A (en) * 1985-10-30 1987-05-15 Komatsu Ltd Base material for welding
JPH09168822A (en) * 1995-12-21 1997-06-30 Nkk Corp Steel tube having threaded joint and its manufacture
JP2005264535A (en) * 2004-03-18 2005-09-29 Jfe Steel Kk Cylindrical steel pipe column having thick-walled portion, and method of producing the same
JP5471380B2 (en) * 2009-12-04 2014-04-16 新日鐵住金株式会社 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers

Also Published As

Publication number Publication date
JP2013068070A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5146580B2 (en) Steel pipe column structure and manufacturing method thereof
JP7132559B2 (en) Offshore platform and manufacturing method by prefabricated jacket combining aluminum pipe - confined concrete - steel pipe
EP2877642B1 (en) Node structures for lattice frames
EP1947328B1 (en) Joining device for hybrid wind turbine towers
JP5136726B2 (en) Monopile foundation for structures that generate vibration.
US8910446B2 (en) Structural shape for wind tower members
JP2007520653A (en) Wind turbine tower, prefabricated metal wall parts for use in wind turbine tower, and method for constructing wind turbine tower
JP5181029B2 (en) Offshore wind power generator
US8056296B2 (en) Methods and apparatus for assembling wind turbine towers
DK2828436T3 (en) Offshore foundation for wind energy systems with arcuate bent nodes
US10724203B2 (en) Foundation pile for a wind turbine
US8522502B2 (en) Pole construction for framework towers of wind power plants
Guo et al. Behavior of thin-walled circular hollow section stub columns under axial compression
JP2013083071A (en) Double pipe structure using spiral pipe
JP2013241911A (en) Oceanic wind power generation facility, support device thereof and design method thereof
JP6160043B2 (en) Steel pipe column structure and manufacturing method thereof
JP2017043387A (en) Leg earthquake-proof reinforcing structure composed of circular cylinder brace and tie-rod brace of spherical tank
DK2574772T3 (en) The wind turbine tower
US20170260768A1 (en) Hybrid wind power tower having steel tower and dsct tower combined
JP2011184056A (en) Leg earthquake-proof reinforcing structure for spherical tank
CN113529779A (en) Offshore wind power single-column variable-cross-section steel-concrete negative pressure cylinder foundation and construction method
JP2013525635A (en) Stand structure
JP2024002488A (en) transition piece
JP2013199823A (en) Damper brace and seismic response controlled structure
CN110108151B (en) Natural ventilation cooling tower and reinforced steel pipe concrete X pillar thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6160043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250