JP6158595B2 - Thermistor element - Google Patents

Thermistor element Download PDF

Info

Publication number
JP6158595B2
JP6158595B2 JP2013113056A JP2013113056A JP6158595B2 JP 6158595 B2 JP6158595 B2 JP 6158595B2 JP 2013113056 A JP2013113056 A JP 2013113056A JP 2013113056 A JP2013113056 A JP 2013113056A JP 6158595 B2 JP6158595 B2 JP 6158595B2
Authority
JP
Japan
Prior art keywords
thermistor
pair
electrode
projection
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013113056A
Other languages
Japanese (ja)
Other versions
JP2014232800A (en
Inventor
俊哉 大矢
俊哉 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013113056A priority Critical patent/JP6158595B2/en
Publication of JP2014232800A publication Critical patent/JP2014232800A/en
Application granted granted Critical
Publication of JP6158595B2 publication Critical patent/JP6158595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

本発明は、温度に応じて抵抗値が変化する板状の金属酸化物焼結体であるサーミスタ部と、板状のサーミスタ部の第一面及び第一面とは反対側の第二面の各々に形成された一対の電極部とを備えたサーミスタ素子に関する。   The present invention provides a thermistor part, which is a plate-like metal oxide sintered body whose resistance value changes according to temperature, and a first surface of the plate-like thermistor part and a second surface opposite to the first surface. The present invention relates to a thermistor element including a pair of electrode portions formed in each.

自動車の排気管内を流れる排気ガス等の温度を検知するためのサーミスタ素子が知られている。この種のサーミスタ素子には、例えば、サーミスタ部、電極部、及びリード線を備えたものがある。サーミスタ部は、温度に応じて抵抗値が変化する板状の金属酸化物焼結体である。電極部は、板状のサーミスタ部の第一面及び第一面とは反対側の第二面に形成された導電性金属を含む層である。リード線は、電極部に接合されている。サーミスタ素子は、サーミスタ部の抵抗値の変化をリード線を介して取り出すことによって、周囲の温度を検知可能である。   2. Description of the Related Art A thermistor element for detecting the temperature of exhaust gas or the like flowing in an automobile exhaust pipe is known. This type of thermistor element includes, for example, a thermistor portion, an electrode portion, and a lead wire. The thermistor part is a plate-like metal oxide sintered body whose resistance value changes according to temperature. The electrode portion is a layer containing a conductive metal formed on the first surface of the plate-like thermistor portion and the second surface opposite to the first surface. The lead wire is joined to the electrode part. The thermistor element can detect the ambient temperature by taking out the change in the resistance value of the thermistor part through the lead wire.

サーミスタ素子が高熱衝撃又は高熱振動の環境下で使用される場合、サーミスタ部から電極部が剥離するという問題があった。そこでサーミスタ部と、電極部との接合強度を高める技術が種々検討されている。例えば、特許文献1に記載のサーミスタ素子では、サーミスタ部と電極部とに共材となる同一の絶縁性の金属酸化物を含ませている。   When the thermistor element is used in an environment of high thermal shock or high thermal vibration, there is a problem that the electrode part is peeled off from the thermistor part. Therefore, various techniques for increasing the bonding strength between the thermistor part and the electrode part have been studied. For example, in the thermistor element described in Patent Document 1, the thermistor portion and the electrode portion include the same insulating metal oxide that is a common material.

特開2012−74604号公報JP 2012-74604 A

特許文献1に記載のサーミスタ素子では、サーミスタ部と電極部との間の化学的結合力は向上しているが、サーミスタ部と電極部との接合強度を向上させるための物理的な条件についての検討はされていなかった。   In the thermistor element described in Patent Document 1, the chemical bonding force between the thermistor portion and the electrode portion is improved, but the physical conditions for improving the bonding strength between the thermistor portion and the electrode portion are as follows. It was not examined.

本発明は、サーミスタ部と電極部との接合部分に剥離が生じにくいサーミスタ素子を提供することを目的とする。   An object of the present invention is to provide a thermistor element in which peeling is unlikely to occur at a joint portion between a thermistor portion and an electrode portion.

本発明の一態様に係るサーミスタ素子は、温度に応じて抵抗値が変化する板状の金属酸化物焼結体であるサーミスタ部と、板状の前記サーミスタ部の第一面及び前記第一面とは反対側の第二面の各々に形成された一対の電極部と、前記一対の電極部の各々に接続された一対のリード線とを備えたサーミスタ素子であって、前記サーミスタ部の前記第一面及び前記第二面は各々研磨されており、前記サーミスタ部の前記第一面及び前記第二面は各々、前記サーミスタ部の厚み方向に凹んだ凹部であって、前記厚み方向と垂直な面に対して前記凹部全体を投影した場合の第一投影図形が、前記垂直な面に対して前記凹部の開口を投影した場合の第二投影図形の外側となる部分を有する凹部を複数備え、前記一対の電極部の各々は、前記凹部の少なくとも一部を満たす凸部であって、前記垂直な面に対して自身を投影した場合の第三投影図形が前記第二投影図形の外側となる部分を有する凸部を複数有する。   The thermistor element which concerns on 1 aspect of this invention is a thermistor part which is a plate-shaped metal oxide sintered compact from which resistance value changes according to temperature, the 1st surface of the plate-shaped thermistor part, and the 1st surface A thermistor element comprising a pair of electrode portions formed on each of the second surfaces opposite to each other and a pair of lead wires connected to each of the pair of electrode portions, wherein the thermistor portion Each of the first surface and the second surface is polished, and each of the first surface and the second surface of the thermistor portion is a recess recessed in the thickness direction of the thermistor portion, and is perpendicular to the thickness direction. A plurality of recesses having a portion on the outside of the second projection figure when the first projection figure when projecting the entire depression on a flat surface projects the opening of the depression on the vertical plane Each of the pair of electrode portions has a small number of the recessed portions. A convex portion meet some and also, a plurality have a convex portion having a portion where the third projection figure when projected itself to the plane perpendicular is outside of said second projected figure.

本態様のサーミスタ素子によれば、サーミスタ部の第一面及び第二面の各々が備える凹部に、電極部の凸部が形成されている。凹部の形状は、第一投影図形が、第二投影図形の外側となる部分を有する形状である。凸部の形状は、第三投影図形が、第二投影図形の外側となる部分を有する形状である。サーミスタ素子に、サーミスタ部と電極部とを引き剥がす力が加わった場合、凸部は、厚み方向と垂直な面において凹部の開口よりも外側になる部位を有しているため、凹部に引っかかる。このため、凹部又は凸部が変形されることなく凸部が凹部から引き抜かれない。したがって本態様のサーミスタ素子は、凹凸のみが形成されたサーミスタ部の第一面及び第二面に電極部が形成される従来のサーミスタ素子よりも、サーミスタ部と電極部との接合強度が大きく、電極部がサーミスタ部から剥がれにくい。   According to the thermistor element of this aspect, the convex part of the electrode part is formed in the concave part provided in each of the first surface and the second surface of the thermistor part. The shape of the recess is a shape in which the first projection graphic has a portion that is outside the second projection graphic. The shape of the convex portion is a shape in which the third projected graphic has a portion that is outside the second projected graphic. When force is applied to the thermistor element to peel off the thermistor part and the electrode part, the convex part is caught by the concave part because the convex part has a part that is outside the opening of the concave part in a plane perpendicular to the thickness direction. For this reason, a convex part is not pulled out from a recessed part, without a recessed part or a convex part deform | transforming. Therefore, the thermistor element of this aspect has a larger bonding strength between the thermistor part and the electrode part than the conventional thermistor element in which the electrode part is formed on the first and second surfaces of the thermistor part in which only the irregularities are formed, The electrode part is difficult to peel off from the thermistor part.

サーミスタ素子1の概略斜視図である。1 is a schematic perspective view of a thermistor element 1. FIG. サーミスタ部10の第一面11を模式的に示した拡大斜視図である。4 is an enlarged perspective view schematically showing a first surface 11 of the thermistor section 10. FIG. 図2の3−3線の矢視方向断面に対応する図と、サーミスタ部10の厚み方向Dと垂直な面50に凹部15全体、開口14,及び凸部23全体を投影した場合の投影図51から53との対応を示す図である。FIG. 2 is a diagram corresponding to a section taken along line 3-3 in FIG. It is a figure which shows a response | compatibility with 51-53. 変形例1から3の凹部15及び開口14の概略斜視図と、サーミスタ部10の厚み方向Dと垂直な面50に凹部15全体及び開口14を各々投影した場合の投影図51及び52との対応を示す図である。Correspondence between a schematic perspective view of the recess 15 and the opening 14 of the first to third modifications, and projections 51 and 52 when the entire recess 15 and the opening 14 are projected on a surface 50 perpendicular to the thickness direction D of the thermistor portion 10. FIG.

本発明の実施の形態について、図面を参照して説明する。なお、参照する図面は、本発明が採用しうる技術的特徴を説明するために用いられるものであり、記載されている装置の構成等は、単なる説明例である。図1の上側、下側、左側、右側、左斜め下側、及び右斜め上側を各々、サーミスタ素子1の上側、下側、左側、右側、前側、及び後ろ側と定義する。   Embodiments of the present invention will be described with reference to the drawings. Note that the drawings to be referred to are used for explaining technical features that can be adopted by the present invention, and the configuration of the apparatus described is merely an illustrative example. The upper side, the lower side, the left side, the right side, the lower left diagonal side, and the upper right diagonal side of FIG. 1 are respectively defined as the upper side, lower side, left side, right side, front side, and rear side of the thermistor element 1.

サーミスタ素子1は、例えば、温度センサに組み込まれ、自動車の排気ガス等の被測定流体の温度を検知する等の用途に用いられる素子である。サーミスタ素子1は、サーミスタ部10,一対の電極部20,一対のリード線40及び接合部30を主に備える。サーミスタ部10は、温度に応じて抵抗値が変化する板状(直方体状)の金属酸化物焼結体である。サーミスタ部10には、(Y0.9Sr0.1)(Al0.60Mn0.38Cr0.02)Oの組成を有するペロブスカイト型の結晶構造の金属酸化物である導電体と、サーミスタ素子1の抵抗値を調整するための絶縁性の金属酸化物とが含まれている。サーミスタ部10の第一面11及び第二面12は各々研磨され、凹凸の度合いが調整されている。第一面11及び第二面12は各々、最大高さ粗さRzが、0.8(μm)以下であることが好ましい。 The thermistor element 1 is an element incorporated in a temperature sensor, for example, and used for applications such as detecting the temperature of a fluid to be measured such as automobile exhaust gas. The thermistor element 1 mainly includes a thermistor portion 10, a pair of electrode portions 20, a pair of lead wires 40 and a joint portion 30. The thermistor portion 10 is a plate-shaped (cuboid) metal oxide sintered body whose resistance value changes according to temperature. The thermistor portion 10 includes a conductor which is a metal oxide having a perovskite crystal structure having a composition of (Y 0.9 Sr 0.1 ) (Al 0.60 Mn 0.38 Cr 0.02 ) O 3 Insulating metal oxide for adjusting the resistance value of the thermistor element 1 is included. The first surface 11 and the second surface 12 of the thermistor portion 10 are each polished to adjust the degree of unevenness. Each of the first surface 11 and the second surface 12 preferably has a maximum height roughness Rz of 0.8 (μm) or less.

図2に模式的に示すように、板状をなすサーミスタ部10の第一面11及び第二面12(図1参照)は各々、サーミスタ部10の厚み方向Dに凹んだ第一特定形状の凹部15を複数備える。第二面12は、第一面11とは反対側の面である。第一特定形状とは、図3に示すように、サーミスタ部10の厚み方向Dと垂直な面50に対して凹部15全体を投影した場合の第一投影図形51が、面50に対して凹部15の開口14を投影した場合の第二投影図形52の外側となる部分を有する形状である。即ち、第一投影図形51は、厚み方向Dと垂直な一部又は全部の方向において、第二投影図形52の外側となる部位を有する。本実施形態の第一投影図形51は、厚み方向Dと垂直な全ての方向において、第二投影図形52の外側になる。本実施形態の凹部15の第一投影図形51は、凹部15の厚み方向Dに垂直な切断面のうち、面積が最大となる切断面と等しい。   As schematically shown in FIG. 2, the first surface 11 and the second surface 12 (see FIG. 1) of the thermistor portion 10 having a plate shape each have a first specific shape recessed in the thickness direction D of the thermistor portion 10. A plurality of recesses 15 are provided. The second surface 12 is a surface opposite to the first surface 11. As shown in FIG. 3, the first specific shape means that the first projection graphic 51 when the entire recess 15 is projected on the surface 50 perpendicular to the thickness direction D of the thermistor portion 10 is the recess on the surface 50. This is a shape having a portion that is outside the second projected figure 52 when 15 apertures 14 are projected. That is, the first projected graphic 51 has a portion that is outside the second projected graphic 52 in a part or all of the direction perpendicular to the thickness direction D. The first projected graphic 51 of the present embodiment is outside the second projected graphic 52 in all directions perpendicular to the thickness direction D. The first projected pattern 51 of the recess 15 of the present embodiment is equal to the cut surface having the largest area among the cut surfaces perpendicular to the thickness direction D of the recess 15.

本実施形態の凹部15は、後述するように、サーミスタ部10を構成する金属酸化物焼結体を焼結する過程で形成された円状又は楕円状の気泡(ポア)が、研磨によって金属酸化物焼結体の表面に露出されて形成される。したがって、第一面11及び第二面12の各々には、第一特定形状を有しない凹部18も形成される場合がある。図示しないが、第一特定形状を有しない凹部18では、第一投影図は、第二投影図と等しい。即ち、凹部18には、厚み方向Dと垂直ないずれの方向にも、開口17の外側になる部位がない。   As will be described later, the concave portion 15 of this embodiment is formed by circular or elliptical bubbles (pores) formed in the process of sintering the metal oxide sintered body constituting the thermistor portion 10 by polishing. It is exposed on the surface of the sintered product. Therefore, the first surface 11 and the second surface 12 may be each formed with a recess 18 that does not have the first specific shape. Although not shown, in the concave portion 18 not having the first specific shape, the first projection view is equal to the second projection view. That is, the concave portion 18 has no portion that is outside the opening 17 in any direction perpendicular to the thickness direction D.

一対の電極部20は、板状をなすサーミスタ部10の第一面11及び第二面12に形成されている。図3に模式的に示すように、一対の電極部20は、サーミスタ部10と対向する側の面21及び面22(図1参照)に、凹部15の少なくとも一部を満たす第二特定形状の凸部23を備える。第二特定形状とは、サーミスタ部10の厚み方向Dと垂直な面50に対して自身を投影した場合の第三投影図形53が第二投影図形52の外側となる部分を有する形状である。即ち、第三投影図形53は、厚み方向Dと垂直な一部又は全部の方向において、第二投影図形52の外側となる部位をもつ。本実施形態の第三投影図形53は、厚み方向Dと垂直な全ての方向において、第二投影図形52の外側になる。本実施形態の凸部23は、凹部15の形状に沿うように形成されている。即ち、凸部23は凹部15を満たしている。本実施形態の第三投影図形53は、凸部23の厚み方向Dに垂直な切断面のうち、面積が最大となる切断面と等しい。サーミスタ部10と、一対の電極部20との間の接合強度の観点からは、凸部23が凹部15を満たす割合が大きい方が、凸部23が凹部15を満たす割合が小さい場合に比べ好ましい。凸部23と凹部15との間に隙間が存在すると、サーミスタ部10と一対の電極部20との間の接触面積が減少するためである。凹部15及び凸部23は、第一面11及び第二面12の各々に略均一に分布していることが好ましい。この場合、第一面11及び第二面12の全体に亘って接合強度が略均一になり、接合強度のムラに起因して電極部20がサーミスタ部10から剥離することを回避できるからである。   The pair of electrode portions 20 is formed on the first surface 11 and the second surface 12 of the thermistor portion 10 having a plate shape. As schematically shown in FIG. 3, the pair of electrode portions 20 has a second specific shape that fills at least part of the recess 15 on the surface 21 and the surface 22 (see FIG. 1) on the side facing the thermistor portion 10. Convex part 23 is provided. The second specific shape is a shape having a portion where the third projection graphic 53 is outside the second projection graphic 52 when projected onto the surface 50 perpendicular to the thickness direction D of the thermistor section 10. That is, the third projected figure 53 has a portion that is outside the second projected figure 52 in a part or all of the direction perpendicular to the thickness direction D. The third projected figure 53 of the present embodiment is outside the second projected figure 52 in all directions perpendicular to the thickness direction D. The convex portion 23 of the present embodiment is formed so as to follow the shape of the concave portion 15. That is, the convex portion 23 fills the concave portion 15. The third projected figure 53 of the present embodiment is equal to the cut surface having the largest area among the cut surfaces perpendicular to the thickness direction D of the convex portion 23. From the viewpoint of the bonding strength between the thermistor portion 10 and the pair of electrode portions 20, it is preferable that the ratio of the convex portion 23 filling the concave portion 15 is larger than the case where the proportion of the convex portion 23 filling the concave portion 15 is small. . This is because the contact area between the thermistor portion 10 and the pair of electrode portions 20 is reduced when there is a gap between the convex portion 23 and the concave portion 15. The concave portions 15 and the convex portions 23 are preferably distributed substantially uniformly on each of the first surface 11 and the second surface 12. In this case, the bonding strength is substantially uniform over the entire first surface 11 and the second surface 12, and it is possible to avoid peeling of the electrode portion 20 from the thermistor portion 10 due to uneven bonding strength. .

一対のリード線40の右端は各々、接合部30によって一対の電極部20の中央付近に接合されている。リード線40としては、例えば、ジュメット線、又はPt若しくはPt合金製の線材を用いることができる。一対のリード線40は互いに略平行であり、左右方向に伸びる。   The right ends of the pair of lead wires 40 are each joined to the vicinity of the center of the pair of electrode parts 20 by the joining part 30. As the lead wire 40, for example, a jumet wire or a wire made of Pt or Pt alloy can be used. The pair of lead wires 40 are substantially parallel to each other and extend in the left-right direction.

サーミスタ素子1の製造方法について説明する。サーミスタ素子1の製造方法は、金属酸化物焼結体形成工程、研磨工程、塗布工程、熱処理工程、切断工程、及び接合工程を備え、各工程はこの順で実施される。以下、サーミスタ素子1の製造方法が備える各工程について詳述する。   A method for manufacturing the thermistor element 1 will be described. The manufacturing method of the thermistor element 1 includes a metal oxide sintered body forming step, a polishing step, a coating step, a heat treatment step, a cutting step, and a joining step, and each step is performed in this order. Hereinafter, each process with which the manufacturing method of the thermistor element 1 is provided is explained in full detail.

(1)金属酸化物焼結体形成工程
Y,Sr,Cr,Mn,Alの酸化物、又は該元素の炭酸塩を、サーミスタ部10に含まれる、化学式(Y0.9Sr0.1)(Al0.60Mn0.38Cr0.02)Oのペロブスカイト型の結晶構造を有する導電体の組成となるよう秤量し、混合、仮焼により導電体仮焼粉を得る。導電体仮焼粉を粉砕し、得られた粉末に絶縁性の金属酸化物を所定量加えると共に適宜バインダー等を添加した後、金型に充填し、一軸プレス機を用いて直径40(mm)、厚さ1.5(mm)の円板状に成形する。円板状に成形された粉末(換言すれば、成形体)を、大気雰囲気下にて所定の温度で焼成し、導電性の金属酸化物焼結体を得る。所定の温度は、従来の金属酸化物焼結体形成工程の焼成温度よりも高い。従来の焼成温度で焼成した場合、焼成後のサーミスタウエハには気泡(ポア)がほとんど発生しない。円板状に成形された粉末(成形体)を所定の温度で焼成した場合、材料の一部が溶融し、凝固時に複数のポアが不規則に形成される。ポアは、例えば、球状及び楕円状である。焼成温度及び焼成時間は、ポアの最大径が5から20(μm)程度の大きさとなるように設定されることが好ましい。例えば、円板状に成形された粉末(成形体)は、1570(℃)、4時間の条件で焼成される。
(1) Metal oxide sintered body forming step Y, Sr, Cr, Mn, oxide of Al, or a carbonate of said element, included in the thermistor 10, the chemical formula (Y 0.9 Sr 0.1) A conductor calcined powder is obtained by weighing the mixture to have a composition of a conductor having a perovskite-type crystal structure of (Al 0.60 Mn 0.38 Cr 0.02 ) O 3 , and mixing and calcining. The conductor calcined powder is pulverized, and a predetermined amount of an insulating metal oxide is added to the obtained powder, and a binder and the like are appropriately added, and then the mold is filled, and the diameter is 40 mm using a single screw press. And formed into a disk shape having a thickness of 1.5 (mm). A powder (in other words, a molded body) formed into a disk shape is fired at a predetermined temperature in an air atmosphere to obtain a conductive metal oxide sintered body. The predetermined temperature is higher than the firing temperature of the conventional metal oxide sintered body forming step. When firing at a conventional firing temperature, bubbles (pores) are hardly generated in the thermistor wafer after firing. When the powder (molded body) formed into a disk shape is fired at a predetermined temperature, a part of the material melts and a plurality of pores are irregularly formed during solidification. The pores are, for example, spherical and elliptical. The firing temperature and firing time are preferably set so that the maximum diameter of the pores is about 5 to 20 (μm). For example, a disk-shaped powder (molded body) is fired under conditions of 1570 (° C.) and 4 hours.

(2)研磨工程
円板状の金属酸化物焼結体の第一面11及び第二面12を研磨し、厚さ0.5(mm)のサーミスタウエハを得る。本実施形態の円板状の金属酸化物焼結体の第一面11及び第二面12は、円板状の金属酸化物焼結体が備える面のうち、最も面積が大きい円状の面である。研磨工程によって、上記した焼成によって金属酸化物焼結体内に形成された、不規則に存在する複数のポアの一部が研磨されて、金属酸化物焼結体の外部に露出した凹部状のポアであるオープンポアとなる。それにより第一面11及び第二面12の各々に凹部15が形成される。第一面11及び第二面12は各々、最大高さ粗さRzが、0.8(μm)以下となるように研磨されていることが好ましい。最大高さ粗さRzが第一面11及び第二面12の各々が研磨された場合、サーミスタ部10の第一面11及び第二面12の各々に電極部20を形成する際に、電極部20の材料である金属ペーストが凹部15に行き渡りやすい。即ち、凸部23が凹部15を満たす形状となりやすい。
(2) Polishing Step The first surface 11 and the second surface 12 of the disk-shaped metal oxide sintered body are polished to obtain a thermistor wafer having a thickness of 0.5 (mm). The first surface 11 and the second surface 12 of the disk-shaped metal oxide sintered body of the present embodiment are the circular surfaces having the largest area among the surfaces of the disk-shaped metal oxide sintered body. It is. In the polishing step, a part of the plurality of irregularly formed pores formed in the metal oxide sintered body by the above-described firing is polished, and the recessed pores exposed to the outside of the metal oxide sintered body are polished. It becomes an open pore. Thereby, a recess 15 is formed in each of the first surface 11 and the second surface 12. The first surface 11 and the second surface 12 are preferably polished so that the maximum height roughness Rz is 0.8 (μm) or less. When each of the first surface 11 and the second surface 12 has a maximum height roughness Rz, the electrode portion 20 is formed on each of the first surface 11 and the second surface 12 of the thermistor portion 10. The metal paste, which is the material of the portion 20, can easily reach the recess 15. That is, the convex portion 23 tends to have a shape that fills the concave portion 15.

(3)塗布工程
研磨工程を経た板状の金属酸化物焼結体の第一面11及び第二面12の各々に、導電性金属を含む金属ペーストを塗布する。具体的にはまず、導電性金属の粉末をバインダーと共に混練して金属ペーストを得る。導電性金属の粉末は、例えば平均粒径2(μm)のPtの粉末である。バインダーは、例えば、エトセル及びターピネオールである。金属ペーストの粘度は、研磨工程を経た導電性酸化物の表面粗さを考慮して定められる。その後、研磨工程を経たサーミスタウエハの第一面11及び第二面12の各々に、金属ペーストをスクリーン印刷する。金属ペーストは、第一面11及び第二面12の各々に形成された凹部15に行き渡る。
(3) Application process A metal paste containing a conductive metal is applied to each of the first surface 11 and the second surface 12 of the plate-like metal oxide sintered body that has undergone the polishing process. Specifically, first, a conductive metal powder is kneaded with a binder to obtain a metal paste. The conductive metal powder is, for example, a Pt powder having an average particle diameter of 2 (μm). The binder is, for example, etosel or terpineol. The viscosity of the metal paste is determined in consideration of the surface roughness of the conductive oxide that has undergone the polishing process. Thereafter, a metal paste is screen-printed on each of the first surface 11 and the second surface 12 of the thermistor wafer that has undergone the polishing process. The metal paste reaches the recesses 15 formed in each of the first surface 11 and the second surface 12.

(5)熱処理工程
塗布工程を経たサーミスタウエハを熱処理し、電極部20を焼き付ける。1250℃で48時間という条件下で行われる。熱処理工程によって、金属ペーストからなる電極部20が金属酸化物焼結体の第一面11及び第二面12に形成される。
(5) Heat treatment step The thermistor wafer that has undergone the coating step is heat treated, and the electrode portion 20 is baked. The reaction is carried out at 1250 ° C. for 48 hours. By the heat treatment step, the electrode portion 20 made of a metal paste is formed on the first surface 11 and the second surface 12 of the metal oxide sintered body.

(6)切断工程
熱処理工程を経た金属酸化物焼結体及び金属層を切断して、金属酸化物焼結体をサーミスタ部10とし、金属層を一対の電極部20とする複数のサーミスタチップにする。サーミスタチップは、例えば、0.50(mm)×0.50(mm)×0.35(mm)の直方体状である。
(7)接合工程
切断工程で切り出されたサーミスタチップが備える一対の電極部20に、一対のリード線40を金属ペーストを用いて接合する。金属ペーストは、導電性金属の粉末とバインダーとを混練して得られる。導電性金属は、例えば、Auであり、バインダーは、例えば、エトセル及びターピネオールである。以上の工程によって、サーミスタ素子1が得られる。
(6) Cutting step The metal oxide sintered body and the metal layer that have undergone the heat treatment step are cut into a plurality of thermistor chips having the metal oxide sintered body as the thermistor portion 10 and the metal layer as the pair of electrode portions 20. To do. The thermistor chip has, for example, a rectangular parallelepiped shape of 0.50 (mm) × 0.50 (mm) × 0.35 (mm).
(7) Joining process A pair of lead wires 40 are joined to the pair of electrode portions 20 included in the thermistor chip cut out in the cutting process using a metal paste. The metal paste is obtained by kneading a conductive metal powder and a binder. The conductive metal is, for example, Au, and the binder is, for example, etosel and terpineol. The thermistor element 1 is obtained through the above steps.

上記サーミスタ素子1によれば、サーミスタ素子1に、サーミスタ部10と電極部20とを引き剥がす、厚み方向Dの力が加わった場合、凸部23は、厚み方向Dと垂直な面50において凹部15の開口14よりも外側になる部位を有しているため、凹部15に引っかかる。このため、凹部15又は凸部23が変形されることなく凸部23が凹部15から引き抜かれない。したがってサーミスタ素子1は、凹凸のみが形成されたサーミスタ部の第一面及び第二面に電極部が形成される従来のサーミスタ素子よりも、サーミスタ部10と電極部20との接合強度が大きく、電極部20がサーミスタ部10から剥がれにくい。サーミスタ素子1は、サーミスタ部10と一対の電極部20との間の化学的結合力のみでは十分な接合強度が得られない場合にも、凹部15と凸部23による物理的結合力によって一対の電極部20とサーミスタ部10との間の接合強度を高めることができる。   According to the thermistor element 1, when a force in the thickness direction D is applied to the thermistor element 1 to peel off the thermistor portion 10 and the electrode portion 20, the convex portion 23 is a concave portion on the surface 50 perpendicular to the thickness direction D. Since it has a part which becomes outside the opening 14 of 15, it is caught in the recess 15. For this reason, the convex part 23 is not pulled out from the concave part 15 without the concave part 15 or the convex part 23 being deformed. Therefore, the thermistor element 1 has a larger bonding strength between the thermistor part 10 and the electrode part 20 than the conventional thermistor element in which the electrode part is formed on the first surface and the second surface of the thermistor part where only the irregularities are formed, The electrode part 20 is difficult to peel off from the thermistor part 10. Even when the thermistor element 1 cannot obtain a sufficient bonding strength only by the chemical bonding force between the thermistor portion 10 and the pair of electrode portions 20, The bonding strength between the electrode part 20 and the thermistor part 10 can be increased.

本発明のサーミスタ素子1の製造方法は、上記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更が加えられてもよい。例えば、以下の(A)から(E)までの変形が適宜加えられてもよい。   The method for manufacturing the thermistor element 1 of the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. For example, the following modifications (A) to (E) may be added as appropriate.

(A)本実施形態のサーミスタ素子1のサーミスタ部10には、(Y0.9Sr0.1)(Al0.60Mn0.38Cr0.02)Oの組成を有するペロブスカイト型の結晶構造の金属酸化物である導電体が含まれているが、これに限定されることはない。具体的には、ペロブスカイト型結晶構造を示す化学式ABOのAサイトとして、Y,Nd,Sm,Gd,Yb,Sr,Ca,Mg等を含んでもよい。また、Bサイトとして、Al,Cr,Mn,Fe,Co等をサーミスタ部10に含ませて、サーミスタ素子1を構成してもよい。このような場合であっても、同様の効果を得ることができる。 (A) The thermistor portion 10 of the thermistor element 1 of the present embodiment has a perovskite type having a composition of (Y 0.9 Sr 0.1 ) (Al 0.60 Mn 0.38 Cr 0.02 ) O 3 . A conductor which is a metal oxide having a crystal structure is included, but is not limited thereto. Specifically, Y, Nd, Sm, Gd, Yb, Sr, Ca, Mg, or the like may be included as the A site of the chemical formula ABO 3 showing a perovskite crystal structure. Further, the thermistor element 1 may be configured by including Al, Cr, Mn, Fe, Co or the like as the B site in the thermistor section 10. Even in such a case, the same effect can be obtained.

(B)サーミスタ素子1は、特開2012−74604号公報の図3に示すように、サーミスタ部10,電極部20,接合部30,及びリード線40の一部が、ガラス層で被覆されてもよい。ガラス層の材料としては、結晶化ガラスであってもよいし、非晶質ガラスであってもよい。このようにした場合、サーミスタ素子1の実使用時に、サーミスタ部10が外部の雰囲気の影響を受けて特性が変化するのを効果的に抑制することができる。また、接合部30がガラス層で被覆されるため、リード線40及び電極部20の接続状態を安定して維持することができる。この場合上記サーミスタ素子1の製造工程において、S7の接合工程の後に、公知のガラス層を形成する工程が実行されればよい。   (B) As shown in FIG. 3 of Japanese Patent Application Laid-Open No. 2012-74604, the thermistor element 1 has a thermistor portion 10, an electrode portion 20, a joint portion 30, and a lead wire 40 partially covered with a glass layer. Also good. The material of the glass layer may be crystallized glass or amorphous glass. In this case, when the thermistor element 1 is actually used, it is possible to effectively suppress the thermistor portion 10 from changing its characteristics due to the influence of the external atmosphere. Moreover, since the junction part 30 is coat | covered with a glass layer, the connection state of the lead wire 40 and the electrode part 20 can be maintained stably. In this case, in the manufacturing process of the thermistor element 1, a step of forming a known glass layer may be performed after the bonding step of S7.

(C)凹部15の形状は、上述の第一特定形状であればどのような形状でもよい。したがって、例えば、図4の変形例1の凹部15のように、厚み方向Dに対して傾いた楕円形状であってもよい。他の例では、図4の変形例2及び3の凹部15のように円状及び楕円形状以外の形状であってもよい。変形例1及び2のように、第一特定形状を有する凹部15の第一投影図形51は、サーミスタ部10の厚み方向Dと垂直な方向のうちの一部の方向において、第二投影図形52の外側になる部位をもってもよい。第一投影図形51の形状は、厚み方向Dに垂直な方向毎の開口14に対して最も外側になる部位の位置を示している。   (C) The shape of the recess 15 may be any shape as long as it is the first specific shape described above. Therefore, for example, an elliptical shape inclined with respect to the thickness direction D may be used like the concave portion 15 of the first modification of FIG. In another example, shapes other than a circular shape and an elliptical shape may be used, such as the concave portion 15 of the modified examples 2 and 3 in FIG. As in the modified examples 1 and 2, the first projected graphic 51 of the recess 15 having the first specific shape is the second projected graphic 52 in a part of the directions perpendicular to the thickness direction D of the thermistor section 10. You may have the site | part which becomes outside. The shape of the first projected graphic 51 indicates the position of the outermost portion with respect to the opening 14 in each direction perpendicular to the thickness direction D.

変形例1のように、第一特定形状を有する凹部15の第二投影図形52は、凹部15の厚み方向Dに垂直な切断面のうち、面積が最大となる切断面であってもよい。つまり、第一特定形状を有する凹部15の第一投影図形51は、凹部15の厚み方向Dに垂直な切断面のうち、面積が最大となる切断面にならなくてもよい。変形例1において複数の凹部15の形状が全て同様な形状である場合、複数の凹部15の少なくとも一部は、厚み方向Dに対して互いに異なる方向に傾いている方が好ましい。   As in the first modification, the second projected pattern 52 of the recess 15 having the first specific shape may be a cut surface having the maximum area among the cut surfaces perpendicular to the thickness direction D of the recess 15. That is, the first projected graphic 51 of the concave portion 15 having the first specific shape may not be a cut surface having the largest area among the cut surfaces perpendicular to the thickness direction D of the concave portion 15. In the first modification, when all of the plurality of recesses 15 have the same shape, it is preferable that at least some of the plurality of recesses 15 are inclined in different directions with respect to the thickness direction D.

(D)凸部23の形状は、上述の第二特定形状を有する形状であればどのような形状でもよい。凸部23は、凹部15の一部を満たす形状であってもよい。全ての凹部15に、第二特定形状を有する凸部23が形成される必要はない。サーミスタ部10と一対の電極部20との間の接合強度を高める観点から、凹部15の数に対する凸部23の数である凸部形成割合が大きいほど、凸部形成割合が小さい場合に比べ好ましい。   (D) The shape of the convex portion 23 may be any shape as long as it has the above-described second specific shape. The convex portion 23 may have a shape that satisfies a part of the concave portion 15. The convex portions 23 having the second specific shape need not be formed in all the concave portions 15. From the viewpoint of increasing the bonding strength between the thermistor portion 10 and the pair of electrode portions 20, the larger the convex portion forming ratio, which is the number of convex portions 23 relative to the number of concave portions 15, is preferable than the case where the convex portion forming ratio is small. .

(E)サーミスタ素子1の製造方法は適宜変更されてよい。例えば、本実施形態のサーミスタ部10の前駆体である金属酸化物焼結体は、上記した(1)金属酸化物焼結体工程では、一軸プレス機を用いて得られた成形体を得て、その成形体を焼成するようにしているが、これに限定されることはない。例えば、導電体仮焼粉に絶縁性の金属酸化物、適宜のバインダー等を添加してシート成形を行い、得られたシート成形体(例えば、厚み1.0mm)を所定の温度で焼成して、金属酸化物焼結体内に複数のポアを形成するようにしてもよい。他の例では、凹部15の形成方法は適宜変更されてよい。   (E) The manufacturing method of the thermistor element 1 may be changed as appropriate. For example, the metal oxide sintered body that is the precursor of the thermistor portion 10 of the present embodiment is obtained in the above-described (1) metal oxide sintered body step by obtaining a molded body obtained using a uniaxial press machine. The molded body is fired, but is not limited to this. For example, an insulating metal oxide, an appropriate binder, and the like are added to the calcined conductor powder to perform sheet molding, and the obtained sheet molded body (for example, thickness 1.0 mm) is fired at a predetermined temperature. A plurality of pores may be formed in the metal oxide sintered body. In other examples, the formation method of the recessed part 15 may be changed suitably.

1 サーミスタ素子
10 サーミスタ部
11 第一面
12 第二面
14 開口
15 凹部
20 電極部
23 凸部
30 接合部
40 リード線
50 面
51 第一投影図形
52 第二投影図形
53 第三投影図形
DESCRIPTION OF SYMBOLS 1 Thermistor element 10 Thermistor part 11 1st surface 12 2nd surface 14 Opening 15 Concave part 20 Electrode part 23 Convex part 30 Joint part 40 Lead wire 50 Surface 51 First projection figure 52 Second projection figure 53 Third projection figure

Claims (1)

温度に応じて抵抗値が変化する板状の金属酸化物焼結体であるサーミスタ部と、
板状の前記サーミスタ部の第一面及び前記第一面とは反対側の第二面の各々に形成された一対の電極部と、
前記一対の電極部の各々に接続された一対のリード線と
を備えたサーミスタ素子であって、
前記サーミスタ部の前記第一面及び前記第二面は各々研磨されており、
前記サーミスタ部の前記第一面及び前記第二面は各々、前記サーミスタ部の厚み方向に凹んだ凹部であって、前記厚み方向と垂直な面に対して前記凹部全体を投影した場合の第一投影図形が、前記垂直な面に対して前記凹部の開口を投影した場合の第二投影図形の外側となる部分を有する凹部を複数備え、
前記一対の電極部の各々は、前記凹部の少なくとも一部を満たす凸部であって、前記垂直な面に対して自身を投影した場合の第三投影図形が前記第二投影図形の外側となる部分を有する凸部を複数有することを特徴とするサーミスタ素子。
A thermistor part which is a plate-like metal oxide sintered body whose resistance value changes according to temperature;
A pair of electrode portions formed on each of the first surface of the plate-like thermistor portion and the second surface opposite to the first surface;
A thermistor element comprising a pair of lead wires connected to each of the pair of electrode portions,
Each of the first surface and the second surface of the thermistor portion is polished,
Each of the first surface and the second surface of the thermistor part is a recessed part that is recessed in the thickness direction of the thermistor part, and is the first when the entire recessed part is projected on a surface perpendicular to the thickness direction. The projection figure includes a plurality of recesses having a portion that is outside the second projection figure when the opening of the recess is projected onto the vertical plane,
Each of the pair of electrode parts is a convex part that fills at least a part of the concave part, and a third projection figure when projecting itself onto the vertical plane is outside the second projection figure. A thermistor element comprising a plurality of convex portions having portions.
JP2013113056A 2013-05-29 2013-05-29 Thermistor element Active JP6158595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113056A JP6158595B2 (en) 2013-05-29 2013-05-29 Thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113056A JP6158595B2 (en) 2013-05-29 2013-05-29 Thermistor element

Publications (2)

Publication Number Publication Date
JP2014232800A JP2014232800A (en) 2014-12-11
JP6158595B2 true JP6158595B2 (en) 2017-07-05

Family

ID=52126018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113056A Active JP6158595B2 (en) 2013-05-29 2013-05-29 Thermistor element

Country Status (1)

Country Link
JP (1) JP6158595B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49348B1 (en) * 1970-12-25 1974-01-07
JPS5993094U (en) * 1982-12-16 1984-06-23 ティーディーケイ株式会社 Positive characteristic thermistor
JPS6288394A (en) * 1985-10-15 1987-04-22 日本電気株式会社 Manufacture of aluminum nitride ceramic substrate
JPS6288392A (en) * 1985-10-15 1987-04-22 日本電気株式会社 Ceramic substrate
JPH03274704A (en) * 1990-03-23 1991-12-05 Tdk Corp Surface roughening of thermistor material, thermistor material, thermistor wafer, and thermistor element
JP2561641B2 (en) * 1991-03-11 1996-12-11 太陽誘電株式会社 Manufacturing method of ceramic electronic components
JPH04285077A (en) * 1991-03-11 1992-10-09 Isuzu Motors Ltd Metal-ceramic composite body and its production
JPH0771460A (en) * 1993-08-31 1995-03-17 Nippon Thompson Co Ltd Manufacture of ceramic made hollow rolling body
JP3451404B2 (en) * 1993-12-24 2003-09-29 日本特殊陶業株式会社 Ceramic substrate
JP2004124258A (en) * 2002-09-10 2004-04-22 Mitsubishi Materials Corp Sintered alloy and production method therefor
JP2006186316A (en) * 2004-11-30 2006-07-13 Kyocera Corp Ceramic electronic component and laminated ceramic capacitor
JP2007158221A (en) * 2005-12-08 2007-06-21 Nichicon Corp Positive characteristic thermistor element and method of manufacturing same

Also Published As

Publication number Publication date
JP2014232800A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2001086717A1 (en) Electrostatic chuck
TW201125001A (en) Thermistor and method for producing same
JP5928608B2 (en) Thermistor device
JP2010108802A (en) Separator for battery and method for manufacturing the same
JP5506009B2 (en) Piezoelectric element, method for manufacturing the same, diaphragm, and vibration wave drive device
WO2001078456A1 (en) Ceramic heater
JP2016074586A (en) Conjugate
JP2007042615A (en) Ceramic heater, its manufacturing method and gas sensor element
JP2010080261A (en) Ceramic heater
JP6158595B2 (en) Thermistor element
JP6220296B2 (en) Heat resistant member and manufacturing method thereof
JP5158200B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2002188966A (en) Temperature sensor and its manufacturing method and manufacture control method
JP5162284B2 (en) Plasma generator
US6345437B1 (en) Process for the manufacturing of an arched metal ceramic substratum
JP6107062B2 (en) Chip thermistor
JP2014187065A (en) Method for manufacturing thermistor element
JP2015074573A (en) Sagger for firing and method for producing electronic component
JP6098208B2 (en) THERMISTOR ELEMENT AND MANUFACTURING METHOD THEREOF
JP2001230059A (en) Ceramic substrate for device of semiconductor manufacture and inspection
JP2011249533A (en) Piezoelectric element manufacturing method
JP2012162018A (en) Thermal head
JPH0917606A (en) Positive temperature coefficient thermistor
JP2001237301A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP3207315B2 (en) Piezoelectric / electrostrictive film type element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250