JP6156001B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP6156001B2
JP6156001B2 JP2013190795A JP2013190795A JP6156001B2 JP 6156001 B2 JP6156001 B2 JP 6156001B2 JP 2013190795 A JP2013190795 A JP 2013190795A JP 2013190795 A JP2013190795 A JP 2013190795A JP 6156001 B2 JP6156001 B2 JP 6156001B2
Authority
JP
Japan
Prior art keywords
tire
rib
vehicle
radial direction
outer side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013190795A
Other languages
Japanese (ja)
Other versions
JP2015054676A (en
Inventor
裕太 内田
裕太 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2013190795A priority Critical patent/JP6156001B2/en
Publication of JP2015054676A publication Critical patent/JP2015054676A/en
Application granted granted Critical
Publication of JP6156001B2 publication Critical patent/JP6156001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気入りタイヤに関し、さらに詳しくは、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を改善する空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that improves steering stability at high speed running and durability at high speed running with a camber.

従来、例えば、特許文献1では、少なくとも1つのカーカスおよびベルト層と、前記ベルト層のタイヤ径方向外側に有機繊維コードからなる補強コードがタイヤ周方向に沿って螺旋状に巻き付けられたベルトカバー層と、タイヤ赤道面を挟んで溝面積比率が異なるトレッド面を有するトレッド部とを備える空気入りタイヤにおいて、前記トレッド面は、子午断面においてタイヤ赤道面を挟んで溝面積比率の小さい側にタイヤ径方向最外位置を配置したトレッドプロファイルを有し、かつ各タイヤ幅方向最外端でのタイヤ径方向最外位置からタイヤ径方向への前記トレッドプロファイルの落ち込み量を等しく形成した空気入りタイヤが記載されている。   Conventionally, for example, in Patent Document 1, at least one carcass and belt layer, and a belt cover layer in which a reinforcing cord made of an organic fiber cord is spirally wound around the tire radial direction outside the belt layer in the tire radial direction. And a tread portion having a tread surface having a different tread surface ratio across the tire equatorial plane, wherein the tread surface has a tire diameter on a side having a smaller groove area ratio across the tire equatorial plane in the meridional section. A pneumatic tire having a tread profile in which the outermost position in the direction is arranged and the amount of depression of the tread profile from the outermost position in the tire radial direction to the tire radial direction at each outermost end in the tire width direction is equally described. Has been.

この特許文献1に記載の空気入りタイヤは、タイヤ赤道面を挟んで溝面積比率が異なるトレッド面を有するトレッド部を備えたことにより、溝面積比率の大きい側(すなわち溝が多い側)で排水性能が得られると共に、溝面積比率の小さい側(すなわち溝が少なく剛性が高い側)で乾燥路面での操縦安定性が得られるため、排水性能と操縦安定性とを両立することができる。しかも、この空気入りタイヤによれば、トレッド面が、子午断面においてタイヤ赤道面を挟んで溝面積比率の小さい側、すなわちトレッド部の剛性の高い側にタイヤ径方向最外位置を配置したトレッドプロファイルを有することにより、剛性の高い側で接地圧を高くして接地領域全体として接地圧を均一化させるので、高速走行での耐久性の悪化を伴うことなく、タイヤ赤道面を挟むトレッド部の剛性差が起因となるコニシティの悪化を抑制することができる。   The pneumatic tire described in Patent Document 1 includes a tread portion having a tread surface having a different groove area ratio across the tire equator plane, so that drainage is performed on the side having a larger groove area ratio (that is, the side having more grooves). Performance can be obtained, and steering stability on a dry road surface can be obtained on the side having a small groove area ratio (that is, a side having few grooves and high rigidity), so that both drainage performance and steering stability can be achieved. Moreover, according to this pneumatic tire, the tread surface has a tread profile in which the outermost position in the tire radial direction is arranged on the side where the groove area ratio is small across the tire equatorial plane in the meridional section, that is, on the side where the rigidity of the tread portion is high. Since the contact pressure is increased on the high-rigidity side to make the contact pressure uniform throughout the contact area, the rigidity of the tread part that sandwiches the tire equator surface without deteriorating durability at high speeds The deterioration of conicity caused by the difference can be suppressed.

特開2011−230699号公報JP 2011-230699 A

ところで、近年では、車両の高性能化に伴い、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を両立する要望がある。ここで、操縦安定性の確保は、トレッド部に形成されるリブの接地性を高めるようにトレッド面の輪郭よりもリブの輪郭をタイヤ径方向外側に突出させることが有効である。一方、キャンバー付き車両への適用の場合、車両装着時でのタイヤ赤道面より内側のリブが外側のリブと比較して接地長が長くなることから高速走行での耐久性が低下する傾向となる。このため、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を両立することは難しい課題がある。   By the way, in recent years, with the improvement in performance of vehicles, there is a demand for achieving both handling stability at high speed running and durability at high speed running with a camber. Here, in order to ensure steering stability, it is effective to project the rib contour outward in the tire radial direction from the tread surface contour so as to improve the ground contact property of the rib formed in the tread portion. On the other hand, in the case of application to a vehicle with a camber, since the contact length becomes longer on the inner rib than the outer rib on the tire equator when the vehicle is mounted, durability at high speed tends to decrease. . For this reason, it is difficult to achieve both steering stability at high speed and durability at high speed with camber.

この発明は、上記に鑑みてなされたものであって、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を両立することのできる空気入りタイヤを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a pneumatic tire that can achieve both steering stability at high speed running and durability at high speed running with a camber.

上述した課題を解決し、目的を達成するために、本発明の空気入りタイヤは、トレッド面にタイヤ周方向に沿って延在する複数の主溝により、タイヤ赤道面を堺にしたタイヤ幅方向両側に少なくとも2本のリブが形成され、かつ車両装着時での車両内外の向きが指定される空気入りタイヤにおいて、前記タイヤ赤道面よりも車両外側の領域の前記リブは、前記トレッド面の輪郭線よりもタイヤ径方向外側に突出し、かつ前記タイヤ赤道面からタイヤ幅方向外側に向かって各前記リブの突出量が大きく形成されており、前記タイヤ赤道面よりも車両内側の領域の前記リブは、前記輪郭線よりもタイヤ径方向内側に凹んで、当該凹みのラインの曲率半径の中心が前記トレッド面よりもタイヤ径方向外側に位置し、かつタイヤ幅方向外側から前記タイヤ赤道面に向かって各前記リブの凹み量が小さく形成されることを特徴とする。   In order to solve the above-described problems and achieve the object, the pneumatic tire of the present invention is a tire width direction in which the tire equatorial plane is a ridge by a plurality of main grooves extending along the tire circumferential direction on the tread surface. In a pneumatic tire in which at least two ribs are formed on both sides and the direction inside and outside the vehicle is specified when the vehicle is mounted, the rib in the region outside the vehicle from the tire equator plane has an outline of the tread surface The rib protrudes outward in the tire radial direction from the line, and the protruding amount of each rib is increased from the tire equatorial plane toward the outer side in the tire width direction, and the rib in the region inside the vehicle from the tire equatorial plane is The center of the radius of curvature of the dent line is located on the outer side in the tire radial direction with respect to the tread surface, and from the outer side in the tire width direction. Wherein the recess of each said rib toward ya equatorial plane is smaller.

この空気入りタイヤによれば、車両外側において、リブを輪郭線よりもタイヤ径方向外側に突出させることで、リブの接地性が向上するため、高速走行時の操縦安定性を向上することができる。しかも、車両内側において、リブを輪郭線よりもタイヤ径方向内側に凹ませることで、リブの過度の接地が緩和するため、各リブ間で接地長が均一化され、キャンバー付き高速走行での耐久性を向上することができる。この結果、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を両立することができる。しかも、車両外側において、各リブの突出量が、タイヤ赤道面からタイヤ幅方向外側に向かって大きく形成されていることで、各リブの接地性が均一化するため、高速走行時の操縦安定性を向上する効果が顕著に得られる。また、車両内側において、各リブの凹み量が、タイヤ幅方向外側からタイヤ赤道面に向かって小さく形成されていることで、リブの過度の接地が均一して緩和するため、キャンバー付き高速走行での耐久性を向上する効果が顕著に得られる。従って、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を高い次元で両立することができる。   According to this pneumatic tire, on the vehicle outer side, by projecting the rib to the outer side in the tire radial direction from the contour line, the grounding property of the rib is improved, so that the steering stability during high speed traveling can be improved. . In addition, because the ribs are recessed inward in the tire radial direction from the contour line on the inner side of the vehicle, excessive grounding of the ribs is alleviated, so that the ground contact length is uniform between the ribs and durability at high speed running with a camber Can be improved. As a result, it is possible to achieve both handling stability at high speed and durability at high speed with camber. In addition, since the protruding amount of each rib is greatly increased from the tire equatorial plane toward the outer side in the tire width direction on the vehicle outer side, the ground contact property of each rib is uniformed, so that steering stability during high-speed driving is achieved. The effect of improving is remarkably obtained. In addition, the amount of dents on each rib on the inner side of the vehicle is reduced from the outer side in the tire width direction toward the tire equatorial plane. The effect of improving the durability is significantly obtained. Therefore, it is possible to achieve both a high level of driving stability at high speeds and durability at high speeds with camber at a high level.

また、本発明の空気入りタイヤでは、前記タイヤ赤道面上に配置されて前記タイヤ赤道面から車両外側にリブ幅の50%以上の領域がある車両外側のセンターリブは、前記輪郭線よりもタイヤ径方向外側に突出して形成されていることを特徴とする。   Further, in the pneumatic tire according to the present invention, the center rib on the vehicle outer side which is disposed on the tire equator plane and has an area of 50% or more of the rib width on the vehicle outer side from the tire equator plane is more tire than the contour line. It is characterized by projecting radially outward.

この空気入りタイヤによれば、センターリブを突出させることにより、接地性がより向上するため、高速走行時の操縦安定性を向上する効果をより顕著に得ることができる。   According to this pneumatic tire, since the ground contact property is further improved by projecting the center rib, the effect of improving the steering stability during high speed traveling can be obtained more remarkably.

また、本発明の空気入りタイヤでは、前記輪郭線よりもタイヤ径方向外側に突出する前記リブは、突出量がリブ幅の0.7%以上2.0%以下であり、前記輪郭線よりもタイヤ径方向内側に凹む前記リブは、凹み量がリブ幅の0.7%以上2.5%以下であることを特徴とする。   In the pneumatic tire of the present invention, the rib protruding outward in the tire radial direction from the contour line has a protrusion amount of 0.7% or more and 2.0% or less of the rib width, and is more than the contour line. The ribs recessed inward in the tire radial direction have a recess amount of 0.7% to 2.5% of the rib width.

この空気入りタイヤによれば、リブの突出量を、そのリブ幅の0.7%以上2.0%以下とし、かつリブの凹み量を、そのリブ幅の0.7%以上2.5%以下とすることで、高速走行での操縦安定性とキャンバー付き高速走行での耐久性との両性能を損なうことなく高度に維持することができる。   According to this pneumatic tire, the protruding amount of the rib is 0.7% or more and 2.0% or less of the rib width, and the recessed amount of the rib is 0.7% or more and 2.5% of the rib width. By setting it as the following, it can maintain to high altitude without impairing both performance of steering stability in high-speed driving, and durability in high-speed driving with a camber.

また、本発明の空気入りタイヤでは、前記輪郭線よりもタイヤ径方向外側に突出する前記リブは、突出量がリブ幅の0.7%以上2.0%以下であり、前記輪郭線よりもタイヤ径方向内側に凹む前記リブは、凹み量がリブ幅の0.7%以上2.5%以下であり、かつ前記タイヤ赤道面上に配置されて前記タイヤ赤道面から車両外側にリブ幅の50%以上の領域がある車両外側のセンターリブは、前記輪郭線よりもタイヤ径方向外側に突出して形成され、その突出量がリブ幅の0.7%以上2.5%以下であることを特徴とする。   In the pneumatic tire of the present invention, the rib protruding outward in the tire radial direction from the contour line has a protrusion amount of 0.7% or more and 2.0% or less of the rib width, and is more than the contour line. The ribs recessed inward in the tire radial direction have a recess amount of not less than 0.7% and not more than 2.5% of the rib width, and are disposed on the tire equatorial plane so that the rib width extends from the tire equatorial plane to the vehicle outer side. The center rib on the vehicle outer side having a region of 50% or more is formed to protrude outward in the tire radial direction from the contour line, and the protruding amount is 0.7% or more and 2.5% or less of the rib width. Features.

この空気入りタイヤによれば、センターリブを突出させることにより、接地性がより向上するため、高速走行時の操縦安定性を向上する効果をより顕著に得ることができる。そして、リブの突出量を、そのリブ幅の0.7%以上2.0%以下とし、かつリブの凹み量を、そのリブ幅の0.7%以上2.5%以下とし、センターリブの突出量を、そのリブ幅の0.7%以上2.5%以下とすることで、高速走行での操縦安定性とキャンバー付き高速走行での耐久性との両性能を損なうことなくより高度に維持することができる。   According to this pneumatic tire, since the ground contact property is further improved by projecting the center rib, the effect of improving the steering stability during high speed traveling can be obtained more remarkably. The rib protrusion amount is 0.7% to 2.0% of the rib width, and the rib recess amount is 0.7% to 2.5% of the rib width. By setting the protruding amount to 0.7% or more and 2.5% or less of the rib width, it is more advanced without impairing both the handling stability at high speed and the durability at high speed with camber. Can be maintained.

本発明に係る空気入りタイヤは、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を両立することができる。   The pneumatic tire according to the present invention can achieve both steering stability at high speed and durability at high speed with camber.

図1は、本発明の実施形態に係る空気入りタイヤの子午断面図である。FIG. 1 is a meridional sectional view of a pneumatic tire according to an embodiment of the present invention. 図2は、本発明の実施形態に係る空気入りタイヤの他の例のトレッド部の子午断面図である。FIG. 2 is a meridional sectional view of a tread portion of another example of the pneumatic tire according to the embodiment of the present invention. 図3は、本発明の実施形態に係る空気入りタイヤの他の例のトレッド部の子午断面図である。FIG. 3 is a meridional sectional view of a tread portion of another example of the pneumatic tire according to the embodiment of the present invention. 図4は、本発明の実施形態に係る空気入りタイヤの他の例のトレッド部の子午断面図である。FIG. 4 is a meridional sectional view of a tread portion of another example of the pneumatic tire according to the embodiment of the present invention. 図5は、本発明の実施形態に係る空気入りタイヤの他の例のトレッド部の子午断面図である。FIG. 5 is a meridional sectional view of a tread portion of another example of the pneumatic tire according to the embodiment of the present invention. 図6は、本発明の実施形態に係る空気入りタイヤの他の例のトレッド部の子午断面図である。FIG. 6 is a meridional sectional view of a tread portion of another example of the pneumatic tire according to the embodiment of the present invention. 図7は、本発明の実施形態に係る空気入りタイヤのトレッド部の子午断面拡大図である。FIG. 7 is an enlarged meridian cross-sectional view of the tread portion of the pneumatic tire according to the embodiment of the present invention. 図8は、本発明の実施形態に係る空気入りタイヤのトレッド部の子午断面拡大図である。FIG. 8 is a meridional cross-sectional enlarged view of the tread portion of the pneumatic tire according to the embodiment of the present invention. 図9は、本発明の実施形態に係る空気入りタイヤのトレッド部の子午断面拡大図である。FIG. 9 is an enlarged meridian cross-sectional view of the tread portion of the pneumatic tire according to the embodiment of the present invention. 図10は、本発明の実施形態に係る空気入りタイヤのトレッド部の子午断面拡大図である。FIG. 10 is an enlarged meridian cross-sectional view of the tread portion of the pneumatic tire according to the embodiment of the present invention. 図11は、本発明の実施形態に係る空気入りタイヤのトレッド部の子午断面拡大図である。FIG. 11 is an enlarged meridian cross-sectional view of the tread portion of the pneumatic tire according to the embodiment of the present invention. 図12は、本発明の実施例に係る空気入りタイヤの性能試験の結果を示す図表である。FIG. 12 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention. 図13は、本発明の実施例に係る空気入りタイヤの性能試験の結果を示す図表である。FIG. 13 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention.

以下に、本発明の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、この実施形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。また、この実施形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。   Embodiments of the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. The constituent elements of this embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same. Further, a plurality of modifications described in this embodiment can be arbitrarily combined within the scope obvious to those skilled in the art.

図1は、本実施形態に係る空気入りタイヤの子午断面図であり、図2〜図6は、本実施形態に係る空気入りタイヤの他の例のトレッド部の子午断面図であり、図7〜図11は、本実施形態に係る空気入りタイヤのトレッド部の子午断面拡大図である。   1 is a meridional sectional view of a pneumatic tire according to the present embodiment, and FIGS. 2 to 6 are meridional sectional views of tread portions of other examples of the pneumatic tire according to the present embodiment. FIG. 11 is an enlarged meridian cross-sectional view of the tread portion of the pneumatic tire according to the present embodiment.

以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸(図示せず)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、前記回転軸を中心軸とする周り方向をいう。また、タイヤ幅方向とは、前記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。タイヤ赤道面CLとは、空気入りタイヤ1の回転軸に直交するとともに、空気入りタイヤ1のタイヤ幅の中心を通る平面である。タイヤ幅は、タイヤ幅方向の外側に位置する部分同士のタイヤ幅方向における幅、つまり、タイヤ幅方向においてタイヤ赤道面CLから最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。本実施形態では、タイヤ赤道線にタイヤ赤道面と同じ符号「CL」を付す。   In the following description, the tire radial direction refers to a direction orthogonal to the rotation axis (not shown) of the pneumatic tire 1, and the tire radial direction inner side refers to the side toward the rotation axis in the tire radial direction, the tire radial direction outer side. Means the side away from the rotation axis in the tire radial direction. Further, the tire circumferential direction refers to a direction around the rotation axis as a central axis. Further, the tire width direction means a direction parallel to the rotation axis, the inner side in the tire width direction means the side toward the tire equator plane (tire equator line) CL in the tire width direction, and the outer side in the tire width direction means the tire width direction. Is the side away from the tire equatorial plane CL. The tire equatorial plane CL is a plane that is orthogonal to the rotation axis of the pneumatic tire 1 and passes through the center of the tire width of the pneumatic tire 1. The tire width is the width in the tire width direction between the portions located outside in the tire width direction, that is, the distance between the portions farthest from the tire equatorial plane CL in the tire width direction. The tire equator line is a line along the tire circumferential direction of the pneumatic tire 1 on the tire equator plane CL. In the present embodiment, the same sign “CL” as that of the tire equator plane is attached to the tire equator line.

本実施形態の空気入りタイヤ1は、図1に示すようにトレッド部2と、その両側のショルダー部3と、各ショルダー部3から順次連続するサイドウォール部4およびビード部5とを有している。また、この空気入りタイヤ1は、カーカス層6と、ベルト層7と、ベルト補強層8とを備えている。   As shown in FIG. 1, the pneumatic tire 1 according to the present embodiment includes a tread portion 2, shoulder portions 3 on both sides thereof, and a sidewall portion 4 and a bead portion 5 that are sequentially continuous from the shoulder portions 3. Yes. The pneumatic tire 1 includes a carcass layer 6, a belt layer 7, and a belt reinforcing layer 8.

トレッド部2は、ゴム材(トレッドゴム)からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ1の輪郭となる。トレッド部2の外周表面、つまり、走行時に路面と接触する踏面には、トレッド面21が形成されている。トレッド面21は、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なストレート主溝である少なくとも3本(図1では3本であり、図2では4本であり、図3では5本である)の主溝22が設けられている。そして、トレッド面21は、これら複数の主溝22により、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なリブ23が少なくとも4本(図1では4本であり、図2では5本であり、図3では6本である)形成されている。また、図には明示しないが、トレッド面21は、各リブ23において、主溝22よりも溝深さが浅く形成されて主溝22に交差するラグ溝が設けられている。リブ23は、ラグ溝によってタイヤ周方向で複数に分割される。また、ラグ溝は、トレッド部2のタイヤ幅方向最外側でタイヤ幅方向外側に開口して形成されている。なお、ラグ溝は、主溝22に連通している形態、または主溝22に連通していない形態の何れであってもよい。   The tread portion 2 is made of a rubber material (tread rubber), is exposed at the outermost side in the tire radial direction of the pneumatic tire 1, and the surface thereof is the contour of the pneumatic tire 1. A tread surface 21 is formed on the outer peripheral surface of the tread portion 2, that is, on the tread surface that contacts the road surface during traveling. The tread surface 21 extends in the tire circumferential direction and has at least three straight main grooves parallel to the tire equator line CL (three in FIG. 1, four in FIG. 2, and five in FIG. 3). The main groove 22 is provided. The tread surface 21 extends along the tire circumferential direction by the plurality of main grooves 22 and has at least four ribs 23 (four in FIG. 1 and five in FIG. 2) parallel to the tire equator line CL. (In FIG. 3, the number is 6). Although not clearly shown in the drawing, the tread surface 21 is provided with a lug groove that is formed with a groove depth shallower than the main groove 22 and intersects the main groove 22 in each rib 23. The rib 23 is divided into a plurality in the tire circumferential direction by lug grooves. Further, the lug groove is formed to open to the outer side in the tire width direction on the outermost side in the tire width direction of the tread portion 2. Note that the lug groove may have either a form communicating with the main groove 22 or a form not communicating with the main groove 22.

ショルダー部3は、トレッド部2のタイヤ幅方向両外側の部位である。また、サイドウォール部4は、空気入りタイヤ1におけるタイヤ幅方向の最も外側に露出したものである。また、ビード部5は、ビードコア51とビードフィラー52とを有する。ビードコア51は、スチールワイヤであるビードワイヤをリング状に巻くことにより形成されている。ビードフィラー52は、カーカス層6のタイヤ幅方向端部がビードコア51の位置で折り返されることにより形成された空間に配置されるゴム材である。   The shoulder portion 3 is a portion on both outer sides in the tire width direction of the tread portion 2. Further, the sidewall portion 4 is exposed at the outermost side in the tire width direction of the pneumatic tire 1. The bead unit 5 includes a bead core 51 and a bead filler 52. The bead core 51 is formed by winding a bead wire, which is a steel wire, in a ring shape. The bead filler 52 is a rubber material disposed in a space formed by folding the end portion in the tire width direction of the carcass layer 6 at the position of the bead core 51.

カーカス層6は、各タイヤ幅方向端部が、一対のビードコア51でタイヤ幅方向内側からタイヤ幅方向外側に折り返され、かつタイヤ周方向にトロイド状に掛け回されてタイヤの骨格を構成するものである。このカーカス層6は、タイヤ周方向に対する角度がタイヤ子午線方向に沿いつつタイヤ周方向にある角度を持って複数並設されたカーカスコード(図示せず)が、コートゴムで被覆されたものである。カーカスコードは、有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。このカーカス層6は、少なくとも1層で設けられている。   The carcass layer 6 is configured such that each tire width direction end portion is folded back from the tire width direction inner side to the tire width direction outer side by a pair of bead cores 51 and is wound around in a toroidal shape in the tire circumferential direction. It is. The carcass layer 6 is formed by coating a plurality of carcass cords (not shown) arranged in parallel at an angle in the tire circumferential direction with an angle with respect to the tire circumferential direction being along the tire meridian direction. The carcass cord is made of organic fibers (polyester, rayon, nylon, etc.). The carcass layer 6 is provided as at least one layer.

ベルト層7は、少なくとも2層のベルト71,72を積層した多層構造をなし、トレッド部2においてカーカス層6の外周であるタイヤ径方向外側に配置され、カーカス層6をタイヤ周方向に覆うものである。ベルト71,72は、タイヤ周方向に対して所定の角度(例えば、20度〜30度)で複数並設されたコード(図示せず)が、コートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。また、重なり合うベルト71,72は、互いのコードが交差するように配置されている。   The belt layer 7 has a multilayer structure in which at least two belts 71 and 72 are laminated, and is disposed on the outer side in the tire radial direction which is the outer periphery of the carcass layer 6 in the tread portion 2 and covers the carcass layer 6 in the tire circumferential direction. It is. The belts 71 and 72 are made by coating a plurality of cords (not shown) arranged in parallel at a predetermined angle (for example, 20 degrees to 30 degrees) with a coat rubber with respect to the tire circumferential direction. The cord is made of steel or organic fiber (polyester, rayon, nylon, etc.). Further, the overlapping belts 71 and 72 are arranged so that the cords intersect each other.

ベルト補強層8は、ベルト層7の外周であるタイヤ径方向外側に配置されてベルト層7をタイヤ周方向に覆うものである。ベルト補強層8は、タイヤ周方向に略平行(±5度)でタイヤ幅方向に複数並設されたコード(図示せず)がコートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。図1で示すベルト補強層8は、ベルト層7のタイヤ幅方向端部を覆うように配置されている。ベルト補強層8の構成は、上記に限らず、図には明示しないが、ベルト層7全体を覆うように配置された構成、または、例えば2層の補強層を有し、タイヤ径方向内側の補強層がベルト層7よりもタイヤ幅方向で大きく形成されてベルト層7全体を覆うように配置され、タイヤ径方向外側の補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成、あるいは、例えば2層の補強層を有し、各補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成であってもよい。すなわち、ベルト補強層8は、ベルト層7の少なくともタイヤ幅方向端部に重なるものである。また、ベルト補強層8は、帯状(例えば幅10[mm])のストリップ材をタイヤ周方向に巻き付けて設けられている。   The belt reinforcing layer 8 is disposed on the outer side in the tire radial direction which is the outer periphery of the belt layer 7 and covers the belt layer 7 in the tire circumferential direction. The belt reinforcing layer 8 is formed by coating a plurality of cords (not shown) arranged substantially parallel (± 5 degrees) in the tire circumferential direction and in the tire width direction with a coat rubber. The cord is made of steel or organic fiber (polyester, rayon, nylon, etc.). The belt reinforcing layer 8 shown in FIG. 1 is disposed so as to cover the end of the belt layer 7 in the tire width direction. The configuration of the belt reinforcing layer 8 is not limited to the above, and is not clearly shown in the figure. However, the belt reinforcing layer 8 is configured to cover the entire belt layer 7 or has two reinforcing layers, for example, on the inner side in the tire radial direction. The reinforcing layer is formed so as to be larger in the tire width direction than the belt layer 7 and is disposed so as to cover the entire belt layer 7, and the reinforcing layer on the outer side in the tire radial direction is disposed so as to cover only the end portion in the tire width direction of the belt layer 7. Alternatively, for example, a configuration in which two reinforcing layers are provided and each reinforcing layer is disposed so as to cover only the end portion in the tire width direction of the belt layer 7 may be employed. That is, the belt reinforcing layer 8 overlaps at least the end portion in the tire width direction of the belt layer 7. The belt reinforcing layer 8 is provided by winding a strip-shaped strip material (for example, a width of 10 [mm]) in the tire circumferential direction.

また、本実施形態の空気入りタイヤ1は、車両装着時での車両内外の向きが指定されている。そして、トレッド部2において、タイヤ赤道面CLを基準に車両の内側寄りを車両内側といい、車両の外側寄りを車両外側という。車両内側および車両外側に対する向きの指定は、図には明示しないが、例えば、サイドウォール部4に設けられた指標により示される。なお、車両内側および車両外側の指定は、車両に装着した場合に限らない。例えば、リム組みした場合に、タイヤ幅方向において、車両の内側および外側に対するリムの向きが決まっている。このため、空気入りタイヤ1は、リム組みした場合、タイヤ幅方向において、車両内側および車両外側に対する向きが指定される。   In the pneumatic tire 1 of the present embodiment, the direction inside and outside the vehicle is specified when the vehicle is mounted. In the tread portion 2, the inner side of the vehicle is referred to as the vehicle inner side and the outer side of the vehicle is referred to as the outer side of the vehicle with reference to the tire equatorial plane CL. The designation of the direction with respect to the vehicle inner side and the vehicle outer side is not clearly shown in the drawing, but is indicated by, for example, an index provided on the sidewall portion 4. In addition, designation | designated of a vehicle inner side and a vehicle outer side is not restricted to the case where it mounts | wears with a vehicle. For example, when the rim is assembled, the direction of the rim with respect to the inside and outside of the vehicle is determined in the tire width direction. For this reason, when the pneumatic tire 1 is assembled with a rim, the orientation with respect to the vehicle inner side and the vehicle outer side is designated in the tire width direction.

また、車両装着時での車両内外の向きが指定されていることで、上述したトレッド部2のリブ23を、図1〜図6に示すように、タイヤ赤道面CLよりも車両外側の領域のリブ23outとし、車両内側の領域のリブ23inとする。さらに細かくは、図1〜図6に示すように、車両最外側の主溝22よりも車両外側のリブ23outを車両外側ショルダーリブ23out−shとし、車両最内側の主溝22よりも車両内側のリブ23inを車両内側ショルダーリブ23in−shとする。また、図2および図6に示すように、タイヤ赤道面CL上に配置されるリブ23をセンターリブ23ceとする。図2および図6に示すセンターリブ23ceは、タイヤ赤道面CL上にリブ幅のタイヤ幅方向中央が配置される、すなわちタイヤ赤道面CLから車両外側および車両内側にリブ幅の50%の領域がある。また、図4に示すように、タイヤ赤道面CL上に配置されているセンターリブ23ceにおいて、タイヤ赤道面CL上にリブ幅のタイヤ幅方向中央が配置されておらず、車両外側にリブ幅の50%以上の領域があるリブ23を、車両外側のセンターリブ23ceといい、車両外側の領域のリブ23outに含める。また、図には明示しないが、タイヤ赤道面CL上に配置されているセンターリブ23ceにおいて、タイヤ赤道面CL上にリブ幅のタイヤ幅方向中央が配置されておらず、車両内側の領域にリブ幅の50%を超えて配置されているリブ23を、車両内側のセンターリブ23ceという。また、図1、図3、図5に示すように、タイヤ赤道面CL上に配置される主溝22をセンター主溝22ceとする。   In addition, by designating the inside / outside direction of the vehicle when the vehicle is mounted, the rib 23 of the tread portion 2 described above is located in a region outside the vehicle from the tire equatorial plane CL as shown in FIGS. Let it be rib 23out, and let it be rib 23in in the area inside the vehicle. More specifically, as shown in FIGS. 1 to 6, a rib 23out on the vehicle outer side than the main groove 22 on the outermost side of the vehicle is a vehicle outer shoulder rib 23out-sh, and the inner groove 22 on the vehicle inner side of the main groove 22 on the innermost side of the vehicle. The rib 23in is referred to as a vehicle inner shoulder rib 23in-sh. Further, as shown in FIGS. 2 and 6, the rib 23 arranged on the tire equatorial plane CL is defined as a center rib 23ce. The center rib 23ce shown in FIGS. 2 and 6 has a center in the tire width direction of the rib width on the tire equatorial plane CL, that is, a region of 50% of the rib width from the tire equatorial plane CL to the vehicle outer side and the vehicle inner side. is there. Further, as shown in FIG. 4, in the center rib 23ce arranged on the tire equatorial plane CL, the center of the tire width direction of the rib width is not arranged on the tire equatorial plane CL, and the rib width on the outer side of the vehicle is not arranged. The rib 23 having a region of 50% or more is referred to as a center rib 23ce outside the vehicle, and is included in the rib 23out in the region outside the vehicle. Further, although not shown in the drawing, in the center rib 23ce arranged on the tire equatorial plane CL, the center of the rib width in the tire width direction is not arranged on the tire equatorial plane CL, and the rib is formed in the region inside the vehicle. The ribs 23 arranged to exceed 50% of the width are referred to as center ribs 23ce inside the vehicle. Further, as shown in FIGS. 1, 3, and 5, the main groove 22 disposed on the tire equatorial plane CL is defined as a center main groove 22ce.

このような空気入りタイヤ1は、トレッド面21にタイヤ周方向に沿って延在する複数の主溝22により、タイヤ赤道面CLを堺にしたタイヤ幅方向両側に少なくとも2本のリブ23が形成されている。そして、図7〜図9に示すように、新品時、タイヤ赤道面CLよりも車両外側の領域のリブ23out,23out−shは、トレッド面21の輪郭線Lよりもタイヤ径方向外側に突出し、かつタイヤ赤道面CLからタイヤ幅方向外側に向かって各リブ23out,23out−shの突出量(最大突出量:輪郭線Lと突出部分との最大距離)G1,G2が大きく形成されている。また、タイヤ赤道面CLよりも車両内側の領域のリブ23in,23in−shは、輪郭線Lよりもタイヤ径方向内側に凹んで、当該凹みのラインの曲率半径の中心Sがトレッド面21よりもタイヤ径方向外側に位置し、かつタイヤ幅方向外側からタイヤ赤道面CLに向かって各リブ23in,23in−shの凹み量(最大凹み量:輪郭線Lと凹み部分との最大距離)D1,D2が小さく形成されている。   In such a pneumatic tire 1, at least two ribs 23 are formed on both sides in the tire width direction with the tire equatorial plane CL as a ridge by a plurality of main grooves 22 extending along the tire circumferential direction on the tread surface 21. Has been. 7 to 9, when new, the ribs 23out and 23out-sh in the region outside the vehicle from the tire equatorial plane CL protrude outward in the tire radial direction from the contour line L of the tread surface 21. Further, the protruding amounts (maximum protruding amount: maximum distance between the contour line L and the protruding portion) G1, G2 of the ribs 23out, 23out-sh from the tire equatorial plane CL toward the outer side in the tire width direction are formed large. Further, the ribs 23in and 23in-sh in the vehicle inner side area than the tire equatorial plane CL are recessed inward in the tire radial direction from the contour line L, and the center S of the radius of curvature of the recessed line is more than that of the tread surface 21. Depression amount of each rib 23in, 23in-sh (maximum dent amount: maximum distance between contour line L and dent portion) D1, D2 located on the outer side in the tire radial direction and from the outer side in the tire width direction toward the tire equatorial plane CL Is formed small.

ここで、輪郭線Lとは、図7に示すように、主溝22に挟んで配置されるリブ23outやリブ23inの場合、子午断面において、リブ23out,23inのタイヤ幅方向の両側に隣接する2つの主溝22における4つの開口端Pのうちの少なくとも3つを通り、トレッド面21のタイヤ径方向内側に中心を持って最大曲率半径で描ける円弧をいう。なお、リブ23out,23inのリブ幅Wout,Winは、リブ23out,23inの両側に隣接する2つの主溝22におけるリブ23out,23in寄りの2つの開口端Pの間のタイヤ幅方向の距離である。   Here, the contour line L is adjacent to both sides of the ribs 23out and 23in in the tire width direction in the meridional section in the case of the ribs 23out and the ribs 23in disposed between the main grooves 22 as shown in FIG. An arc that passes through at least three of the four open ends P in the two main grooves 22 and can be drawn with the maximum curvature radius with the center on the inner side in the tire radial direction of the tread surface 21. The rib widths Wout and Win of the ribs 23out and 23in are distances in the tire width direction between the two opening ends P near the ribs 23out and 23in in the two main grooves 22 adjacent to both sides of the ribs 23out and 23in. .

また、輪郭線Lとは、図8に示すように、ショルダーリブ23out−shの場合、子午断面において、ショルダーリブ23out−shに接地端Tを有し、当該接地端TをP1とし、車両最外側の主溝22の車両外側寄りの開口端をP2とし、車両最外側の主溝22の車両内側寄りの開口端をP3としたとき、P1,P2,P3を通り、トレッド面21のタイヤ径方向内側に中心を持つ曲率半径の円弧をいう。なお、ショルダーリブ23out−shのリブ幅Wout−shは、接地端T(P1)と開口端P2との間のタイヤ幅方向の距離である。   Further, as shown in FIG. 8, in the case of the shoulder rib 23out-sh, the contour line L has a grounding end T at the shoulder rib 23out-sh in the meridional section, and the grounding end T is defined as P1. When the opening end of the outer main groove 22 closer to the vehicle outer side is P2 and the opening end of the outermost main groove 22 closer to the vehicle inner side is P3, the tire diameter of the tread surface 21 passes through P1, P2, P3. An arc with a radius of curvature centered in the direction. The rib width Wout-sh of the shoulder rib 23out-sh is a distance in the tire width direction between the ground contact end T (P1) and the opening end P2.

また、輪郭線Lとは、図9に示すように、ショルダーリブ23in−shの場合、ショルダーリブ23out−shの場合と同様に、子午断面において、ショルダーリブ23in−shに接地端Tを有し、当該接地端TをP1とし、車両最内側の主溝22の車両内側寄りの開口端をP2とし、車両最内側の主溝22の車両外側寄りの開口端をP3としたとき、P1,P2,P3を通り、トレッド面21のタイヤ径方向内側に中心を持つ曲率半径の円弧をいう。なお、ショルダーリブ23in−shのリブ幅Win−shは、接地端T(P1)と開口端P2との間のタイヤ幅方向の距離である。   Further, as shown in FIG. 9, in the case of the shoulder rib 23in-sh, the contour line L has a grounding end T on the shoulder rib 23in-sh in the meridional section as in the case of the shoulder rib 23out-sh. When the grounding end T is P1, the opening end of the innermost main groove 22 on the inner side of the vehicle is P2, and the opening end of the innermost main groove 22 on the outer side of the vehicle is P3, P1, P2 , P3, and an arc of curvature radius having a center on the inner side in the tire radial direction of the tread surface 21. The rib width Win-sh of the shoulder rib 23in-sh is a distance in the tire width direction between the ground contact end T (P1) and the opening end P2.

なお、図10に示すように(図10では、リブ23outを示す)、主溝22の開口端に面取Cが施されている場合、タイヤ径方向最外側に位置する端点を開口端として輪郭線Lを規定する。   In addition, as shown in FIG. 10 (in FIG. 10, rib 23out is shown), when chamfering C is given to the opening end of the main groove 22, the end point located on the outermost side in the tire radial direction is defined as the opening end. A line L is defined.

また、接地端Tとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填するとともに正規荷重をかけたとき、この空気入りタイヤ1のトレッド部2のトレッド面21が路面と接地する領域において、タイヤ幅方向の両最外端をいい、タイヤ周方向に連続する。   Further, the ground contact end T means that when the pneumatic tire 1 is assembled to a regular rim and filled with a regular internal pressure and a regular load is applied, the tread surface 21 of the tread portion 2 of the pneumatic tire 1 is a road surface. In the contact area, both outermost ends in the tire width direction are continuous in the tire circumferential direction.

正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、あるいは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「LOAD CAPACITY」である。   The regular rim is “standard rim” defined by JATMA, “Design Rim” defined by TRA, or “Measuring Rim” defined by ETRTO. The normal internal pressure is “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO. The normal load is “maximum load capacity” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.

このように、本実施形態の空気入りタイヤ1では、タイヤ赤道面CLよりも車両外側の領域のリブ23out,23out−shは、トレッド面21の輪郭線Lよりもタイヤ径方向外側に突出し、かつタイヤ赤道面CLからタイヤ幅方向外側に向かって各リブ23out,23out−shの突出量G1,G2が徐々に大きく形成されており、タイヤ赤道面CLよりも車両内側の領域のリブ23in,23in−shは、輪郭線Lよりもタイヤ径方向内側に凹んで、当該凹みのラインの曲率半径の中心Sがトレッド面21よりもタイヤ径方向外側に位置し、かつタイヤ幅方向外側からタイヤ赤道面CLに向かって各リブ23in,23in−shの凹み量D1,D2が徐々に小さく形成される。   Thus, in the pneumatic tire 1 of the present embodiment, the ribs 23out and 23out-sh in the region outside the vehicle from the tire equatorial plane CL protrude outward in the tire radial direction from the contour line L of the tread surface 21; The protruding amounts G1 and G2 of the ribs 23out and 23out-sh are gradually increased from the tire equatorial plane CL toward the outer side in the tire width direction, and the ribs 23in and 23in− in the region on the vehicle inner side than the tire equatorial plane CL are formed. sh is recessed inward in the tire radial direction from the contour line L, the center S of the radius of curvature of the line of the recess is located on the outer side in the tire radial direction from the tread surface 21, and the tire equatorial plane CL from the outer side in the tire width direction. The recesses D1 and D2 of the ribs 23in and 23in-sh are gradually reduced toward the bottom.

この空気入りタイヤ1によれば、車両外側において、リブ23out,23out−shを輪郭線Lよりもタイヤ径方向外側に突出させることで、リブ23out,23out−shの接地性が向上するため、高速走行時の操縦安定性を向上することが可能になる。しかも、車両内側において、リブ23in,23in−shを、凹みのラインの曲率半径の中心Sをトレッド面21よりもタイヤ径方向外側に位置させるように、輪郭線Lよりもタイヤ径方向内側に凹ませることで、リブ23in,23in−shの過度の接地が緩和するため、各リブ23間で接地長(トレッド面21が路面と接地する領域におけるタイヤ周方向の長さ)が均一化され、キャンバー付き高速走行での耐久性を向上することが可能になる。この結果、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を両立することが可能になる。しかも、車両外側において、各リブ23out,23out−shの突出量G1,G2が、タイヤ赤道面CLからタイヤ幅方向外側に向かって大きく形成されていることで、各リブ23out,23out−shの接地性が均一化するため、高速走行時の操縦安定性を向上する効果が顕著に得られる。また、車両内側において、各リブ23in,23in−shの凹み量D1,D2が、タイヤ幅方向外側からタイヤ赤道面CLに向かって小さく形成されていることで、リブ23in,23in−shの過度の接地が均一して緩和するため、キャンバー付き高速走行での耐久性を向上する効果が顕著に得られる。従って、高速走行での操縦安定性およびキャンバー付き高速走行での耐久性を高い次元で両立することができる。   According to the pneumatic tire 1, the ribs 23out and 23out-sh are protruded outward in the tire radial direction from the contour line L on the outer side of the vehicle, so that the ground contact property of the ribs 23out and 23out-sh is improved. It is possible to improve the handling stability during traveling. Moreover, on the vehicle inner side, the ribs 23in and 23in-sh are recessed inward in the tire radial direction from the contour line L so that the center S of the radius of curvature of the recessed line is positioned on the outer side in the tire radial direction from the tread surface 21. As a result, excessive contact between the ribs 23in and 23in-sh is alleviated, so that the contact length between the ribs 23 (the length in the tire circumferential direction in the region where the tread surface 21 contacts the road surface) is made uniform, and the camber It becomes possible to improve durability at high speed running. As a result, it is possible to achieve both steering stability at high speed running and durability at high speed running with a camber. Moreover, on the vehicle outer side, the protruding amounts G1 and G2 of the ribs 23out and 23out-sh are formed so as to increase from the tire equatorial plane CL toward the outer side in the tire width direction, whereby the grounding of the ribs 23out and 23out-sh is achieved. As a result, the effect of improving the steering stability during high-speed traveling is remarkably obtained. Further, on the vehicle inner side, the recesses D1 and D2 of the ribs 23in and 23in-sh are formed to be small from the outer side in the tire width direction toward the tire equatorial plane CL, so that the ribs 23in and 23in-sh are excessive. Since the ground contact is uniformly relieved, the effect of improving the durability at a high speed traveling with a camber is remarkably obtained. Therefore, it is possible to achieve both a high level of driving stability at high speeds and durability at high speeds with camber at a high level.

また、本実施形態の空気入りタイヤ1では、上記構成において、図2、図4および図11に示すように、タイヤ赤道面CL上に配置されてタイヤ赤道面CLから車両外側にリブ幅Wceの50%以上の領域がある車両外側のセンターリブ23ceは、輪郭線Lよりもタイヤ径方向外側に突出して形成されていることが好ましい。   Further, in the pneumatic tire 1 of the present embodiment, in the above configuration, as shown in FIGS. 2, 4, and 11, the pneumatic tire 1 is disposed on the tire equatorial plane CL and has a rib width Wce from the tire equatorial plane CL to the vehicle outer side. It is preferable that the center rib 23ce outside the vehicle having a region of 50% or more is formed so as to protrude outward in the tire radial direction from the contour line L.

ここで、輪郭線Lとは、図11に示すように、主溝22に挟んで配置されるセンターリブ23ceについて、子午断面において、センターリブ23ceのタイヤ幅方向の両側に隣接する2つの主溝22における4つの開口端Pのうちの少なくとも3つを通り、トレッド面21のタイヤ径方向内側に中心を持って最大曲率半径で描ける円弧をいう。そして、ここでも、車両外側において、各リブ23ce,23out,23out−shの突出量G3,G1,G2が、タイヤ赤道面CLからタイヤ幅方向外側に向かって大きく形成されている。   Here, as shown in FIG. 11, the contour line L is the two main grooves adjacent to both sides in the tire width direction of the center rib 23ce in the meridional section with respect to the center rib 23ce disposed between the main grooves 22. 22 is an arc that passes through at least three of the four open ends P at 22 and can be drawn with a maximum radius of curvature with the center in the tire radial direction of the tread surface 21. Also here, on the vehicle outer side, the protruding amounts G3, G1, G2 of the ribs 23ce, 23out, 23out-sh are formed larger from the tire equatorial plane CL toward the outer side in the tire width direction.

この空気入りタイヤ1によれば、センターリブ23ceを突出させることにより、接地性がより向上するため、高速走行時の操縦安定性を向上する効果をより顕著に得ることができる。なお、タイヤ赤道面CL上に配置されてタイヤ赤道面CLから車両外側にリブ幅Wceの50%未満の領域がある(車両内側にリブ幅Wceの50%を超える領域がある)車両内側のセンターリブ23ceは、突出や凹みがなく輪郭線Lに沿って形成されていることが、高速走行時の操縦安定性を向上する効果を得るうえで好ましい。   According to this pneumatic tire 1, since the ground contact property is further improved by projecting the center rib 23ce, the effect of improving the steering stability during high speed traveling can be obtained more remarkably. Note that there is a region that is arranged on the tire equator plane CL and that is less than 50% of the rib width Wce from the tire equator plane CL to the vehicle outer side (there is a region that exceeds 50% of the rib width Wce on the vehicle inner side). The ribs 23ce are preferably formed along the contour line L without protrusions or dents in order to obtain the effect of improving the steering stability during high-speed traveling.

また、本実施形態の空気入りタイヤ1では、輪郭線Lよりもタイヤ径方向外側に突出するリブ23out,23out−shは、突出量G1,G2がリブ幅Wout,Wout−shの0.7%以上2.0%以下であり、輪郭線Lよりもタイヤ径方向内側に凹むリブ23in,23in−shは、凹み量D1,D2がリブ幅Win,Win−shの0.7%以上2.5%以下であることが好ましい。   Further, in the pneumatic tire 1 of the present embodiment, the ribs 23out and 23out-sh that protrude outward in the tire radial direction from the contour line L have the protruding amounts G1 and G2 of 0.7% of the rib widths Wout and Wout-sh. The ribs 23in and 23in-sh which are 20% or more and 2.0% or less and are recessed inward in the tire radial direction from the contour line L have dents D1 and D2 of 0.7% or more and 2.5% of the rib widths Win and Win-sh % Or less is preferable.

この空気入りタイヤ1によれば、リブ23out,23out−shの突出量G1,G2を、そのリブ幅Wout,Wout−shの0.7%以上2.0%以下とし、かつリブ23in,23in−shの凹み量D1,D2を、そのリブ幅Win,Win−shの0.7%以上2.5%以下とすることで、高速走行での操縦安定性とキャンバー付き高速走行での耐久性との両性能を損なうことなく高度に維持することができる。   According to this pneumatic tire 1, the protrusion amounts G1, G2 of the ribs 23out, 23out-sh are 0.7% to 2.0% of the rib widths Wout, Wout-sh, and the ribs 23in, 23in- By setting the dents D1 and D2 of sh to be 0.7% to 2.5% of the rib widths Win and Win-sh, the handling stability at high speed and the durability at high speed with camber High performance can be maintained without impairing both performances.

また、本実施形態の空気入りタイヤ1では、輪郭線Lよりもタイヤ径方向外側に突出するリブ23out,23out−shは、突出量G1,G2がリブ幅Wout,Wout−shの0.7%以上2.0%以下であり、輪郭線Lよりもタイヤ径方向内側に凹むリブ23in,23in−shは、凹み量D1,D2がリブ幅Win,Win−shの0.7%以上2.5%以下であり、かつタイヤ赤道面CL上に配置されてタイヤ赤道面CLから車両外側にリブ幅Wceの50%以上の領域がある車両外側のセンターリブ23ceは、輪郭線Lよりもタイヤ径方向外側に突出して形成され、その突出量G3がリブ幅Wceの0.7%以上2.5%以下であることが好ましい。   Further, in the pneumatic tire 1 of the present embodiment, the ribs 23out and 23out-sh that protrude outward in the tire radial direction from the contour line L have the protruding amounts G1 and G2 of 0.7% of the rib widths Wout and Wout-sh. The ribs 23in and 23in-sh which are 20% or more and 2.0% or less and are recessed inward in the tire radial direction from the contour line L have dents D1 and D2 of 0.7% or more and 2.5% of the rib widths Win and Win-sh %, And the center rib 23ce on the vehicle outer side having an area of 50% or more of the rib width Wce on the outer side of the vehicle from the tire equatorial plane CL is more in the tire radial direction than the contour line L. It is preferable that the protrusion protrudes outward, and the protrusion amount G3 is 0.7% or more and 2.5% or less of the rib width Wce.

この空気入りタイヤ1によれば、センターリブ23ceを突出させることにより、接地性がより向上するため、高速走行時の操縦安定性を向上する効果をより顕著に得ることができる。そして、リブ23out,23out−shの突出量G1,G2を、そのリブ幅Wout,Wout−shの0.7%以上2.0%以下とし、かつリブ23in,23in−shの凹み量D1,D2を、そのリブ幅Win,Win−shの0.7%以上2.5%以下とし、センターリブ23ceの突出量G3を、そのリブ幅Wceの0.7%以上2.5%以下とすることで、高速走行での操縦安定性とキャンバー付き高速走行での耐久性との両性能を損なうことなくより高度に維持することができる。   According to this pneumatic tire 1, since the ground contact property is further improved by projecting the center rib 23ce, the effect of improving the steering stability during high speed traveling can be obtained more remarkably. The protrusion amounts G1 and G2 of the ribs 23out and 23out-sh are 0.7% to 2.0% of the rib widths Wout and Wout-sh, and the recesses D1 and D2 of the ribs 23in and 23in-sh. Is set to 0.7% to 2.5% of the rib widths Win and Win-sh, and the protruding amount G3 of the center rib 23ce is set to 0.7% to 2.5% of the rib width Wce. Thus, it is possible to maintain a higher level without impairing both the stability of driving at high speed and the durability at high speed with camber.

図12および図13は、本実施例に係る空気入りタイヤの性能試験の結果を示す図表である。本実施例では、条件が異なる複数種類の空気入りタイヤについて、高速操安性(高速走行時の操縦安定性)やキャンバー付き高速耐久性(キャンバー付き高速走行での耐久性)に関する性能試験が行われた。   12 and 13 are charts showing the results of the performance test of the pneumatic tire according to this example. In this example, performance tests on high speed maneuverability (steering stability during high speed driving) and high speed durability with camber (durability during high speed driving with camber) are performed for multiple types of pneumatic tires with different conditions. It was broken.

この試験では、タイヤサイズ295/35R21の空気入りタイヤを試験タイヤとした。   In this test, a pneumatic tire having a tire size of 295 / 35R21 was used as a test tire.

高速操安性の評価方法は、上記試験タイヤを21×10Jのリムにリム組みし、空気圧260kPaを充填し、試験車両(排気量4800ccの乗用車)に装着して、乾燥路面のテストコースを走行し、レーンチェンジ時およびコーナリング時における操舵性ならびに直進時における安定性について、熟練のテストドライバー1名による官能評価によって行う。この官能評価は、従来例の空気入りタイヤを基準(100)とした指数で示し、この指数が高いほど操縦安定性が優れていることを示している。   The method for evaluating high-speed safety is to assemble the test tire on a rim of 21 x 10 J, fill it with air pressure of 260 kPa, mount it on a test vehicle (passenger vehicle with a displacement of 4800 cc), and run on a dry road test course. The steering performance at the time of lane change and cornering and the stability at the time of going straight are performed by sensory evaluation by one skilled test driver. This sensory evaluation is indicated by an index based on a conventional pneumatic tire as a reference (100), and the higher this index is, the better the steering stability is.

キャンバー付き高速耐久性の評価方法は、上記試験タイヤを21×10Jのリムにリム組みし、空気圧340kPaを充填し、荷重を7.65kNを加え、キャンバー角−2.7度とし、ドラム耐久試験機で下記速度stepに乗っ取って走行させ、試験機がタイヤの故障を検知したときの速度を測定した。そして、従来例の空気入りタイヤを基準とし、何step向上できたか、もしくは何step低下したかを評価した。ここで、+1stepとは、+10km/hで20min走行できたこと、+0.5stepとは、+10km/hで10min走行できたことを示す。   The high-speed durability evaluation method with camber is as follows: The test tire is assembled on a rim of 21 × 10 J, filled with air pressure of 340 kPa, a load of 7.65 kN is applied, the camber angle is −2.7 degrees, and the drum durability test is performed. The machine was run at the following speed step, and the speed when the test machine detected a tire failure was measured. Then, using the conventional pneumatic tire as a reference, it was evaluated how many steps were improved or how many steps were reduced. Here, +1 step indicates that the vehicle can travel for 20 minutes at +10 km / h, and +0.5 step indicates that the vehicle can travel for 10 minutes at +10 km / h.

・step0…走行時間0min…速度0km/h
・step1…走行時間1min…速度0〜190km/h
・step2…走行時間5min…速度190km/h
・step3…走行時間5min…速度240km/h
・step4…走行時間10min…速度250km/h
・step5…走行時間10min…速度260km/h
・step6…走行時間10min…速度270km/h
・step7…走行時間20min…速度280km/h
・step8…走行時間20min…速度290km/h
・step9…走行時間20min…速度300km/h
・step10…走行時間20min…速度310km/h
以下、故障まで+1step(+10km/h、20min走行)ずつ速度アップ
・ Step0 ... Running time 0min ... Speed 0km / h
・ Step1 ... Running time 1min ... Speed 0-190km / h
・ Step2 ... Running time 5min ... Speed 190km / h
・ Step3 ... Running time 5min ... Speed 240km / h
・ Step4 ... Running time 10min ... Speed 250km / h
・ Step5: Travel time 10min ... Speed 260km / h
Step 6: Traveling time 10 min ... Speed 270 km / h
Step 7: Traveling time 20 min ... Speed 280 km / h
・ Step8 ... Running time 20min ... Speed 290km / h
・ Step9 ... Running time 20min ... Speed 300km / h
・ Step 10: Traveling time 20 min ... Speed 310 km / h
Thereafter, the speed is increased by +1 step (+10 km / h, 20 min running) until failure.

図12は、図1のリブ構造である。図12において、従来例1の空気入りタイヤは、各リブが突出せず凹んでいない。比較例1の空気入りタイヤは、車両外側リブが突出しているが、その他のリブは突出せず凹んでいない。比較例2の空気入りタイヤは、車両内側リブが凹んでいるが、その他のリブは突出せず凹んでいない。比較例3の空気入りタイヤは、車両外側リブおよび車両内側リブが突出している。比較例4の空気入りタイヤは、車両内側リブおよび車両外側リブが凹んでいる。   FIG. 12 shows the rib structure of FIG. In FIG. 12, in the pneumatic tire of Conventional Example 1, each rib does not protrude and is not recessed. In the pneumatic tire of Comparative Example 1, the outer ribs of the vehicle protrude, but the other ribs do not protrude and are not recessed. In the pneumatic tire of Comparative Example 2, the vehicle inner rib is recessed, but the other ribs do not protrude and are not recessed. In the pneumatic tire of Comparative Example 3, the vehicle outer rib and the vehicle inner rib protrude. In the pneumatic tire of Comparative Example 4, the vehicle inner rib and the vehicle outer rib are recessed.

一方、図12において、実施例1〜実施例9の空気入りタイヤは、車両外側リブが突出し、各リブの突出量がタイヤ赤道面からタイヤ幅方向外側に向かって大きく形成され、かつ車両内側リブが凹んでおり、各リブの凹み量がタイヤ幅方向外側からタイヤ赤道面に向かって小さく形成されている。実施例4〜実施例9の空気入りタイヤは、リブの突出量およびリブの凹み量が規定の範囲である。   On the other hand, in FIG. 12, in the pneumatic tires of Examples 1 to 9, the vehicle outer rib protrudes, and the protruding amount of each rib is increased from the tire equatorial plane toward the outer side in the tire width direction, and the vehicle inner rib. Is recessed, and the amount of recess of each rib is formed smaller from the outer side in the tire width direction toward the tire equatorial plane. In the pneumatic tires of Examples 4 to 9, the protruding amount of the ribs and the recessed amount of the ribs are within the specified ranges.

図13は、図2のリブ構造である。図13において、従来例2の空気入りタイヤは、各リブが突出せず凹んでいない。比較例5の空気入りタイヤは、車両外側リブが突出しているが、センターリブを含むその他のリブは突出せず凹んでいない。比較例6の空気入りタイヤは、車両内側リブが凹んでいるが、センターリブを含むその他のリブは突出せず凹んでいない。比較例7の空気入りタイヤは、センターリブを除き車両外側リブおよび車両内側リブが突出している。比較例8の空気入りタイヤは、センターリブを除き車両外側リブおよび車両内側リブが凹んでいる。   FIG. 13 shows the rib structure of FIG. In FIG. 13, in the pneumatic tire of Conventional Example 2, each rib does not protrude and is not recessed. In the pneumatic tire of Comparative Example 5, the vehicle outer rib protrudes, but the other ribs including the center rib do not protrude and are not recessed. In the pneumatic tire of Comparative Example 6, the vehicle inner rib is recessed, but other ribs including the center rib do not protrude and are not recessed. In the pneumatic tire of Comparative Example 7, the vehicle outer rib and the vehicle inner rib protrude except for the center rib. In the pneumatic tire of Comparative Example 8, the vehicle outer rib and the vehicle inner rib are recessed except for the center rib.

一方、図13において、実施例10〜実施例22の空気入りタイヤは、車両外側リブが突出し、車両内側リブが凹んでいる。実施例10〜実施例11、実施例19〜実施例22の空気入りタイヤは、さらにセンターリブが突出している。実施例15〜実施例22の空気入りタイヤは、リブの突出量およびリブの凹み量が規定の範囲である。   On the other hand, in FIG. 13, the pneumatic tires of Examples 10 to 22 have the vehicle outer rib protruding and the vehicle inner rib recessed. In the pneumatic tires of Examples 10 to 11 and Examples 19 to 22, the center rib protrudes further. In the pneumatic tires of Examples 15 to 22, the protruding amount of the ribs and the recessed amount of the ribs are within the specified ranges.

そして、図12および図13の試験結果に示すように、実施例1〜実施例22の空気入りタイヤは、高速操安性およびキャンバー付き高速耐久性がともに改善されていることが分かる。   And as shown to the test result of FIG. 12 and FIG. 13, it turns out that the high-speed stability and the high-speed durability with a camber are improved in the pneumatic tire of Example 1- Example 22.

1 空気入りタイヤ
2 トレッド部
21 トレッド面
22 主溝
22ce センター主溝
23 リブ
23out 車両外側のリブ
23out−sh 車両外側のショルダーリブ
23in 車両内側のリブ
23in−sh 車両内側のショルダーリブ
23ce センターリブ
CL タイヤ赤道面
L 輪郭線
P,P2,P3 主溝の開口端
S 曲率半径の中心
T(P1) 接地端
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 2 Tread part 21 Tread surface 22 Main groove 22ce Center main groove 23 Rib 23out Vehicle outer side rib 23out-sh Vehicle outer side shoulder rib 23in Vehicle inner side rib 23in-sh Vehicle inner side shoulder rib 23ce Center rib CL tire Equatorial plane L Contour line P, P2, P3 Open end of main groove S Center of radius of curvature T (P1) Grounding end

Claims (4)

トレッド面にタイヤ周方向に沿って延在する複数の主溝により、タイヤ赤道面を堺にしたタイヤ幅方向両側に少なくとも2本のリブが形成され、かつ車両装着時での車両内外の向きが指定される空気入りタイヤにおいて、
前記タイヤ赤道面よりも車両外側の領域の前記リブは、前記トレッド面の輪郭線よりもタイヤ径方向外側に突出し、かつ前記タイヤ赤道面からタイヤ幅方向外側に向かって各前記リブの突出量が大きく形成されており、
前記タイヤ赤道面よりも車両内側の領域の前記リブは、前記輪郭線よりもタイヤ径方向内側に凹んで、当該凹みのラインの曲率半径の中心が前記トレッド面よりもタイヤ径方向外側に位置し、かつタイヤ幅方向外側から前記タイヤ赤道面に向かって各前記リブの凹み量が小さく形成されることを特徴とする空気入りタイヤ。
A plurality of main grooves extending along the tire circumferential direction on the tread surface form at least two ribs on both sides in the tire width direction with the tire equator surface as a ridge, and the direction inside and outside the vehicle when the vehicle is mounted is In the specified pneumatic tire,
The ribs in the region outside the vehicle from the tire equator plane protrude outward in the tire radial direction from the outline of the tread surface, and the protruding amount of each rib from the tire equator plane toward the outer side in the tire width direction Is formed large,
The rib in the region on the vehicle inner side than the tire equator plane is recessed inward in the tire radial direction with respect to the contour line, and the center of the radius of curvature of the concave line is located on the outer side in the tire radial direction with respect to the tread surface. A pneumatic tire is characterized in that a dent amount of each rib is formed smaller from the outer side in the tire width direction toward the tire equatorial plane.
前記タイヤ赤道面上に配置されて前記タイヤ赤道面から車両外側にリブ幅の50%以上の領域がある車両外側のセンターリブは、前記輪郭線よりもタイヤ径方向外側に突出して形成されていることを特徴とする請求項1に記載の空気入りタイヤ。   A center rib on the vehicle outer side, which is disposed on the tire equator plane and has an area of 50% or more of the rib width on the vehicle outer side from the tire equator plane, is formed to protrude outward in the tire radial direction from the contour line. The pneumatic tire according to claim 1. 前記輪郭線よりもタイヤ径方向外側に突出する前記リブは、突出量がリブ幅の0.7%以上2.0%以下であり、前記輪郭線よりもタイヤ径方向内側に凹む前記リブは、凹み量がリブ幅の0.7%以上2.5%以下であることを特徴とする請求項1または2に記載の空気入りタイヤ。   The rib protruding outward in the tire radial direction from the contour line has a protruding amount of 0.7% or more and 2.0% or less of the rib width, and the rib recessed inward in the tire radial direction from the contour line is The pneumatic tire according to claim 1 or 2, wherein a dent amount is 0.7% or more and 2.5% or less of a rib width. 前記輪郭線よりもタイヤ径方向外側に突出する前記リブは、突出量がリブ幅の0.7%以上2.0%以下であり、前記輪郭線よりもタイヤ径方向内側に凹む前記リブは、凹み量がリブ幅の0.7%以上2.5%以下であり、かつ前記タイヤ赤道面上に配置されて前記タイヤ赤道面から車両外側にリブ幅の50%以上の領域がある車両外側のセンターリブは、前記輪郭線よりもタイヤ径方向外側に突出して形成され、その突出量がリブ幅の0.7%以上2.5%以下であることを特徴とする請求項1または2に記載の空気入りタイヤ。   The rib protruding outward in the tire radial direction from the contour line has a protruding amount of 0.7% or more and 2.0% or less of the rib width, and the rib recessed inward in the tire radial direction from the contour line is The dent amount is 0.7% or more and 2.5% or less of the rib width, and is disposed on the tire equator plane and has an area of 50% or more of the rib width on the vehicle outer side from the tire equator plane. The center rib is formed to protrude outward in the tire radial direction from the contour line, and the protruding amount is 0.7% or more and 2.5% or less of the rib width. Pneumatic tires.
JP2013190795A 2013-09-13 2013-09-13 Pneumatic tire Active JP6156001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013190795A JP6156001B2 (en) 2013-09-13 2013-09-13 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013190795A JP6156001B2 (en) 2013-09-13 2013-09-13 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2015054676A JP2015054676A (en) 2015-03-23
JP6156001B2 true JP6156001B2 (en) 2017-07-05

Family

ID=52819342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013190795A Active JP6156001B2 (en) 2013-09-13 2013-09-13 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6156001B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254166B2 (en) * 1997-05-16 2002-02-04 住友ゴム工業株式会社 Radial tires for heavy loads
JP2000118203A (en) * 1998-10-15 2000-04-25 Bridgestone Corp Pneumatic tire
JP2007007659A (en) * 2005-06-28 2007-01-18 Jfe Steel Kk Device and method for separating slit coil
JP4826681B1 (en) * 2010-11-17 2011-11-30 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2015054676A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5387707B2 (en) Pneumatic tire
JP5962481B2 (en) Pneumatic tire
JP5880782B2 (en) Pneumatic tire
JP5874867B1 (en) Pneumatic tire
JP5984957B2 (en) Pneumatic tire
JP7298622B2 (en) pneumatic tire
WO2020009049A1 (en) Pneumatic tire
JP2016107725A (en) Pneumatic tire
JP5895576B2 (en) Pneumatic tire
JP2016097785A (en) Pneumatic tire
JP5698439B2 (en) Pneumatic tire
JP2018079903A (en) Pneumatic tire
JP2018052318A (en) Pneumatic tire
WO2019159544A1 (en) Pneumatic tire
JP2013124046A (en) Pneumatic tire
JP2010179777A (en) Pneumatic tire
JP6085930B2 (en) Pneumatic tire
WO2017090136A1 (en) Pneumatic tire
JP6156001B2 (en) Pneumatic tire
JP6056330B2 (en) Pneumatic tire
JP5976989B2 (en) Pneumatic tire
JP5521730B2 (en) Pneumatic tire
JP2014118053A (en) Pneumatic tire
JP2019018676A (en) Pneumatic tire for motor cycle
JP2020001660A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350