JP6155566B2 - Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element - Google Patents

Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element Download PDF

Info

Publication number
JP6155566B2
JP6155566B2 JP2012149963A JP2012149963A JP6155566B2 JP 6155566 B2 JP6155566 B2 JP 6155566B2 JP 2012149963 A JP2012149963 A JP 2012149963A JP 2012149963 A JP2012149963 A JP 2012149963A JP 6155566 B2 JP6155566 B2 JP 6155566B2
Authority
JP
Japan
Prior art keywords
layer
light
concavo
convex
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012149963A
Other languages
Japanese (ja)
Other versions
JP2014013668A (en
Inventor
康宏 池田
康宏 池田
寛 坂本
寛 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012149963A priority Critical patent/JP6155566B2/en
Publication of JP2014013668A publication Critical patent/JP2014013668A/en
Application granted granted Critical
Publication of JP6155566B2 publication Critical patent/JP6155566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機LED素子用の積層基板、及び有機LED素子に関する。   The present invention relates to a laminated substrate for an organic LED element and an organic LED element.

有機LED素子は、透明基板、透明電極、有機層、及び反射電極をこの順で有する。有機層の発光光は、透明電極、及び透明基板を透過し、透明基板の取り出し面から外部に放出される。透明電極から該透明電極よりも低い屈折率の透明基板に臨界角以上の入射角で入射する光は、透明電極と透明基板との界面で全反射される。また、透明基板から該透明基板よりも低い屈折率の空気に臨界角以上の入射角で入射する光は、透明基板と空気との界面で全反射される。光取り出し面と反射電極との間を何度も往復する間に、光は熱に変換されるか、有機LED素子の側面から放出される。   The organic LED element has a transparent substrate, a transparent electrode, an organic layer, and a reflective electrode in this order. The light emitted from the organic layer passes through the transparent electrode and the transparent substrate, and is emitted to the outside from the extraction surface of the transparent substrate. Light incident from the transparent electrode to the transparent substrate having a lower refractive index than the transparent electrode at an incident angle greater than the critical angle is totally reflected at the interface between the transparent electrode and the transparent substrate. In addition, light incident from a transparent substrate into air having a refractive index lower than that of the transparent substrate at an incident angle greater than the critical angle is totally reflected at the interface between the transparent substrate and air. The light is converted into heat or emitted from the side surface of the organic LED element while reciprocating between the light extraction surface and the reflective electrode many times.

そこで、光取り出し効率を向上するため、透明電極と透明基板との間に凹凸層を設ける技術が提案されている(例えば、特許文献1参照)。凹凸層は透過型の回折格子を形成する。透明電極から回折格子に入射する光のうち、大部分は回折格子を透過し、残部は回折格子で反射される。   Therefore, in order to improve the light extraction efficiency, a technique for providing an uneven layer between the transparent electrode and the transparent substrate has been proposed (see, for example, Patent Document 1). The uneven layer forms a transmission type diffraction grating. Most of the light incident on the diffraction grating from the transparent electrode is transmitted through the diffraction grating, and the rest is reflected by the diffraction grating.

回折格子で反射される光は、回折格子による干渉効果によって入射角よりも小さい反射角で反射するので、反射電極で反射され回折格子に再度入射するとき、ほとんどの光は回折格子を透過する。   Since the light reflected by the diffraction grating is reflected at a reflection angle smaller than the incident angle due to the interference effect of the diffraction grating, most of the light is transmitted through the diffraction grating when it is reflected by the reflective electrode and reenters the diffraction grating.

回折格子を透過する光は、0次回折光、1次回折光、2次回折光等に分かれ、透明基板の光取り出し面に入射する。この入射角が臨界角未満の光は、光取り出し面から外部に放出される。一方、この入射角が臨界角以上の光の大部分は、光取り出し面で全反射された後、光取り出し面と反射電極との間を1回以上往復する間に、回折格子を透過することで、臨界角未満の入射角に変化し、最終的に光取り出し面から外部に放出される。   The light that passes through the diffraction grating is divided into zero-order diffracted light, first-order diffracted light, second-order diffracted light, and the like, and enters the light extraction surface of the transparent substrate. Light whose incident angle is less than the critical angle is emitted to the outside from the light extraction surface. On the other hand, most of the light whose incident angle is greater than or equal to the critical angle is totally reflected by the light extraction surface, and then passes through the diffraction grating during one or more round trips between the light extraction surface and the reflective electrode. Thus, the incident angle is changed to an incident angle less than the critical angle, and finally emitted from the light extraction surface.

特開平11−283751号公報Japanese Patent Laid-Open No. 11-283951

従来の技術では、十分な光取り出し効率が得られなかった。   In the conventional technique, sufficient light extraction efficiency cannot be obtained.

本発明は、上記課題に鑑みてなされたものであって、光取り出し効率が高い有機LED素子用の積層基板の提供を目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at provision of the laminated substrate for organic LED elements with high light extraction efficiency.

上記課題を解決するため、本発明の一態様による有機LED素子用の積層基板は、
透明基板、該透明基板上に設けられる凹凸層、及び該凹凸層の凹凸面上に設けられる平坦化層を備え、有機層の発光光を、前記平坦化層、及び前記凹凸層を介して、前記透明基板における前記凹凸層側と反対側の面から外部に取り出すためのものであって、
前記凹凸層は、基材、及び該基材中に分散する光散乱材を含み、回折格子を形成する

In order to solve the above problems , a multilayer substrate for an organic LED element according to an aspect of the present invention is provided.
Comprising a transparent substrate, a concavo-convex layer provided on the transparent substrate, and a planarization layer provided on the concavo-convex surface of the concavo-convex layer, and emitting light of the organic layer through the planarization layer and the concavo-convex layer, For taking out from the surface opposite to the concavo-convex layer side in the transparent substrate,
The uneven layer, the substrate, and a light scattering material dispersed in the base material seen including, to form a diffraction grating.

本発明によれば、光取り出し効率が高い有機LED素子用の積層基板が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the laminated substrate for organic LED elements with high light extraction efficiency is provided.

本発明の第1実施形態による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by 1st Embodiment of this invention. 図1の透過型の回折格子によって光の全反射が低減されることを説明するための図である。It is a figure for demonstrating that the total reflection of light is reduced with the transmission type diffraction grating of FIG. レイリー散乱の概念図Rayleigh scattering concept ミー散乱の概念図Conceptual diagram of Mie scattering ミー散乱によって光の向きが正面方向に揃うことを確認するためのシミュレーションのモデル図Simulation model for confirming that the light direction is aligned to the front direction by Mie scattering シミュレーションの結果を示す図Diagram showing simulation results 第1実施形態の第1変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 1st modification of 1st Embodiment. 第1実施形態の第2変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 2nd modification of 1st Embodiment. 本発明の第2実施形態による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by 2nd Embodiment of this invention. 図9のプリズムによって光の全反射が低減されることを説明するための図The figure for demonstrating that the total reflection of light is reduced by the prism of FIG. 第2実施形態の第1変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 1st modification of 2nd Embodiment. 第2実施形態の第2変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 2nd modification of 2nd Embodiment. 本発明の第3実施形態による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by 3rd Embodiment of this invention. 図13のレンズによって光の全反射が低減されることを説明するための図The figure for demonstrating that the total reflection of light is reduced with the lens of FIG. 第3実施形態の第1変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 1st modification of 3rd Embodiment. 第3実施形態の第2変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 2nd modification of 3rd Embodiment. 本発明の第4実施形態による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by 4th Embodiment of this invention. 図17のモスアイ構造による光の透過の説明図Explanatory drawing of light transmission by the moth-eye structure of FIG. 第4実施形態の第1変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 1st modification of 4th Embodiment. 第4実施形態の第2変形例による有機LED素子を示す断面図Sectional drawing which shows the organic LED element by the 2nd modification of 4th Embodiment.

以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して、説明を省略する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.

[第1実施形態]
図1は、本発明の第1実施形態による有機LED素子を示す断面図である。図1において、便宜上、凹凸層30の凹凸を誇張して示す。
[First Embodiment]
FIG. 1 is a cross-sectional view illustrating an organic LED element according to a first embodiment of the present invention. In FIG. 1, the unevenness of the uneven layer 30 is exaggerated for convenience.

有機LED素子10は、ボトムエミッションタイプであって、透明基板20、凹凸層30、平坦化層40、透明電極50、有機層60、及び反射電極70をこの順で有する。透明基板20、凹凸層30、及び平坦化層40で積層基板11が構成され、透明電極50、有機層60、及び反射電極70等で発光素子12が構成される。照明用の場合、1つの発光素子12が平坦化層40上に形成されてよい。画像表示用の場合、発光素子12は画素毎に設けられ、複数の発光素子12が平坦化層40上に配列される。   The organic LED element 10 is a bottom emission type, and includes a transparent substrate 20, an uneven layer 30, a planarization layer 40, a transparent electrode 50, an organic layer 60, and a reflective electrode 70 in this order. The laminated substrate 11 is composed of the transparent substrate 20, the uneven layer 30, and the planarizing layer 40, and the light emitting element 12 is composed of the transparent electrode 50, the organic layer 60, the reflective electrode 70, and the like. In the case of illumination, one light emitting element 12 may be formed on the planarization layer 40. In the case of image display, the light emitting element 12 is provided for each pixel, and the plurality of light emitting elements 12 are arranged on the planarization layer 40.

有機層60の発光光は、透明電極50、平坦化層40、凹凸層30、透明基板20を透過し、透明基板20の光取り出し面21から外部に放出される。光取り出し面21は、透明基板20における凹凸層30側と反対側の面である。   The light emitted from the organic layer 60 is transmitted through the transparent electrode 50, the planarizing layer 40, the concavo-convex layer 30, and the transparent substrate 20, and is emitted to the outside from the light extraction surface 21 of the transparent substrate 20. The light extraction surface 21 is a surface on the opposite side to the uneven layer 30 side in the transparent substrate 20.

本実施形態では、凹凸層30が回折格子31を形成する。回折格子31は、平坦化層40側に設けられる。以下の説明で、回折格子31での入射角、反射角は、光取り出し面21に対して垂直な方向(以下、「正面方向」という)と、光の進行方向とのなす角を意味する。   In the present embodiment, the uneven layer 30 forms the diffraction grating 31. The diffraction grating 31 is provided on the planarization layer 40 side. In the following description, the incident angle and the reflection angle at the diffraction grating 31 mean an angle formed by a direction perpendicular to the light extraction surface 21 (hereinafter referred to as “front direction”) and the light traveling direction.

(透明基板)
透明基板20は、例えばガラス基板、樹脂基板であってよい。透明基板20は、耐湿性の高いガラス基板であることが好ましい。ガラス基板のガラスとしては、アルカリガラス、ホウケイ酸ガラス、及び石英ガラス等が挙げられる。一般的には、ソーダライムガラス等のアルカリシリケートガラスが用いられる。ガラスの屈折率は、例えば1.4〜1.9である。透明基板20の屈折率は、透明電極50の屈折率以下であることが好ましい。樹脂基板の樹脂としては、アクリル樹脂、ポリカーボネート樹脂等が挙げられる。樹脂基板の耐湿性を高めるため、樹脂基板上に耐湿バリア層が設けられてよい。耐湿バリア層は、酸化ケイ素等の金属酸化物、窒化ケイ素等の金属窒化物、ダイヤモンドライクカーボン(DLC)、ガラス等で形成される。
(Transparent substrate)
The transparent substrate 20 may be a glass substrate or a resin substrate, for example. The transparent substrate 20 is preferably a glass substrate with high moisture resistance. Examples of the glass of the glass substrate include alkali glass, borosilicate glass, and quartz glass. In general, alkali silicate glass such as soda lime glass is used. The refractive index of glass is, for example, 1.4 to 1.9. The refractive index of the transparent substrate 20 is preferably equal to or lower than the refractive index of the transparent electrode 50. Examples of the resin for the resin substrate include an acrylic resin and a polycarbonate resin. In order to improve the moisture resistance of the resin substrate, a moisture barrier layer may be provided on the resin substrate. The moisture resistant barrier layer is formed of a metal oxide such as silicon oxide, a metal nitride such as silicon nitride, diamond-like carbon (DLC), glass, or the like.

本明細書において、「屈折率」とは、Heランプd線(波長:587.6nm)を用いて25℃で測定した屈折率を意味する。屈折率はアッベの屈折率計により測定される。   In this specification, “refractive index” means a refractive index measured at 25 ° C. using a He lamp d-line (wavelength: 587.6 nm). The refractive index is measured with an Abbe refractometer.

透明基板20の厚さは、例えば0.001mm〜2.0mmである。好ましくは0.001mm〜1.0mmである。   The thickness of the transparent substrate 20 is, for example, 0.001 mm to 2.0 mm. Preferably it is 0.001 mm-1.0 mm.

(透明電極)
透明電極50は、有機層60に正孔を供給する陽極である。透明電極50の材料としては、ITO(Indium Tin Oxide)、SnO、ZnO、IZO(Indium Zinc Oxide)、AZO(ZnO−Al:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO−Ga:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO、TaドープTiO等が挙げられる。これらの材料の屈折率は、例えば1.7〜2.2である。透明電極50は、2種以上の材料を用いて形成される積層膜であってもよい。
(Transparent electrode)
The transparent electrode 50 is an anode that supplies holes to the organic layer 60. The material of the transparent electrode 50 includes ITO (Indium Tin Oxide), SnO 2 , ZnO, IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO— Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 and the like. The refractive index of these materials is, for example, 1.7 to 2.2. The transparent electrode 50 may be a laminated film formed using two or more materials.

透明電極50の厚さは、例えば50nm以上である。50nm未満では、電気抵抗が高くなる。   The thickness of the transparent electrode 50 is, for example, 50 nm or more. If it is less than 50 nm, the electrical resistance becomes high.

(有機層)
有機層60は、一般的な構成であってよく、少なくとも発光層を含み、必要に応じて正孔注入層、正孔輸送層、電子輸送層、電子注入層を含む。例えば、有機層60は、陽極側から、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層をこの順で含む。
(Organic layer)
The organic layer 60 may have a general configuration and includes at least a light emitting layer, and includes a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer as necessary. For example, the organic layer 60 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side.

正孔注入層は、陽極とのイオン化ポテンシャルの差が小さい材料で形成される。高分子では、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)等が用いられる。低分子では、フタロシアニン系の銅フタロシアニン(CuPc)等が用いられる。   The hole injection layer is formed of a material having a small difference in ionization potential from the anode. As the polymer, polyethylenedioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is used. For low molecules, phthalocyanine-based copper phthalocyanine (CuPc) or the like is used.

正孔輸送層は、正孔注入層から注入された正孔を発光層に輸送する。正孔輸送層の材料としては、例えば、トリフェニルアミン誘導体、N,N'−ビス(1−ナフチル)−N,N'−ジフェニル−1,1'−ビフェニル−4,4'−ジアミン(NPD)、N,N'−ジフェニル−N,N'−ビス[N−フェニル−N−(2−ナフチル)−4'−アミノビフェニル−4−イル]−1,1'−ビフェニル−4,4'−ジアミン(NPTE)、1,1−ビス[(ジ−4−トリルアミノ)フェニル]シクロヘキサン(HTM2)及びN,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−1,1'−ジフェニル−4,4'−ジアミン(TPD)等が用いられる。正孔輸送層の厚さは、10nm〜150nmが好ましい。厚さは薄ければ薄いほど低電圧化できるが、電極間短絡の問題から10nm〜150nmであることが好ましい。   The hole transport layer transports holes injected from the hole injection layer to the light emitting layer. Examples of the material for the hole transport layer include a triphenylamine derivative, N, N′-bis (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD). ), N, N′-diphenyl-N, N′-bis [N-phenyl-N- (2-naphthyl) -4′-aminobiphenyl-4-yl] -1,1′-biphenyl-4,4 ′ -Diamine (NPTE), 1,1-bis [(di-4-tolylamino) phenyl] cyclohexane (HTM2) and N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1 ' -Diphenyl-4,4'-diamine (TPD) or the like is used. The thickness of the hole transport layer is preferably 10 nm to 150 nm. The thinner the thickness is, the lower the voltage can be. However, the thickness is preferably 10 nm to 150 nm from the problem of short circuit between electrodes.

発光層は、陽極及び陰極から注入された電子と正孔との再結合によって生じるエネルギーで発光する。発光層におけるホスト材料への発光色素のドーピングは、高い発光効率を得ると共に、発光波長を変換させる。発光層の有機材料には、低分子系と高分子系の材料がある。さらに、発光機構によって、蛍光材料、りん光材料に分類される。発光層の有機材料には、例えば、トリス(8−キノリノラート)アルミニウム錯体(Alq3)、ビス(8−ヒドロキシ)キナルジンアルミニウムフェノキサイド(Alq′2OPh)、ビス(8−ヒドロキシ)キナルジンアルミニウム−2,5−ジメチルフェノキサイド(BAlq)、モノ(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)リチウム錯体(Liq)、モノ(8−キノリノラート)ナトリウム錯体(Naq)、モノ(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)リチウム錯体、モノ(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)ナトリウム錯体及びビス(8−キノリノラート)カルシウム錯体(Caq2)等のキノリン誘導体の金属錯体、テトラフェニルブタジエン、フェニルキナクドリン(QD)、アントラセン、ペリレン並びにコロネン等が挙げられる。ホスト材料としては、キノリノラート錯体が好ましく、特に、8−キノリノール及びその誘導体を配位子としたアルミニウム錯体が好ましい。   The light emitting layer emits light with energy generated by recombination of electrons and holes injected from the anode and the cathode. Doping of the luminescent dye into the host material in the luminescent layer obtains high luminous efficiency and converts the emission wavelength. Organic materials for the light emitting layer include low molecular weight materials and high molecular weight materials. Further, it is classified into a fluorescent material and a phosphorescent material according to the light emission mechanism. Examples of the organic material for the light emitting layer include tris (8-quinolinolato) aluminum complex (Alq3), bis (8-hydroxy) quinaldine aluminum phenoxide (Alq′2OPh), and bis (8-hydroxy) quinaldine aluminum-2. , 5-dimethylphenoxide (BAlq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex (Liq), mono (8-quinolinolato) sodium complex (Naq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex, mono (2,2,6,6-tetramethyl-3,5-heptanedionate) sodium complex and bis (8 -Quinolinolate) metal complexes of quinoline derivatives such as calcium complexes (Caq2), tetraphenylbutadiene, E D Lucina click polyhedrin (QD), anthracene, perylene and coronene, and the like. As the host material, a quinolinolate complex is preferable, and an aluminum complex having 8-quinolinol and a derivative thereof as a ligand is particularly preferable.

電子輸送層は、電極から注入された電子を輸送する。電子輸送層の材料としては、例えば、キノリノールアルミニウム錯体(Alq3)、オキサジアゾール誘導体(例えば、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)及び2−(4−t−ブチルフェニル)−5−(4−ビフェニル)−1,3,4−オキサジアゾール(PBD)等)、トリアゾール誘導体、バソフェナントロリン誘導体、シロール誘導体等が用いられる。   The electron transport layer transports electrons injected from the electrode. Examples of the material for the electron transport layer include quinolinol aluminum complex (Alq3), oxadiazole derivatives (for example, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND) and 2- (4-t-butylphenyl) -5- (4-biphenyl) -1,3,4-oxadiazole (PBD) etc.), triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like are used.

電子注入層は、例えば陰極表面にリチウム(Li)、セシウム(Cs)等のアルカリ金属をドーピングした層であってよい。   The electron injection layer may be a layer obtained by doping an alkali metal such as lithium (Li) or cesium (Cs) on the cathode surface, for example.

(反射電極)
反射電極70は、有機層60に電子を供給する陰極である。反射電極70は、有機層60の発光光を有機層60側に反射する。
(Reflective electrode)
The reflective electrode 70 is a cathode that supplies electrons to the organic layer 60. The reflective electrode 70 reflects the light emitted from the organic layer 60 toward the organic layer 60 side.

反射電極70は、アルカリ金属(例えばAl)、アルカリ土類金属(例えばMg)、周期表第3族の金属のうち少なくともいずれか1種を含む。例えば、反射電極70は、MgAgの共蒸着膜、LiF若しくはLiOの薄膜蒸着膜の上にAlを蒸着した積層膜、又はアルカリ土類金属(例えばCa、Ba)の層にアルミニウム(Al)を積層した積層膜であってよい。 The reflective electrode 70 includes at least one of an alkali metal (for example, Al), an alkaline earth metal (for example, Mg), and a metal of Group 3 of the periodic table. For example, the reflective electrode 70 may be a MgAg co-deposited film, a laminated film obtained by depositing Al on a LiF or Li 2 O thin film deposited film, or an aluminum (Al) layer on an alkaline earth metal (eg, Ca, Ba) layer. It may be a laminated film in which are laminated.

(凹凸層)
凹凸層30は、例えばインプリント法で透明基板20上に形成される。インプリント法では、透明基板20とモールドとの間に成形材料の層を挟み、モールドの凹凸パターンが転写した凹凸層30を透明基板20上に形成する。凹凸層30の凹凸パターンは、モールドの凹凸パターンが略反転したパターンである。
(Uneven layer)
The uneven layer 30 is formed on the transparent substrate 20 by, for example, an imprint method. In the imprint method, a layer of a molding material is sandwiched between the transparent substrate 20 and a mold, and the uneven layer 30 to which the uneven pattern of the mold is transferred is formed on the transparent substrate 20. The concavo-convex pattern of the concavo-convex layer 30 is a pattern in which the concavo-convex pattern of the mold is substantially inverted.

透明基板20がガラス基板の場合、ガラス基板は、ガラスと成形材料との密着を高めるため、予め表面処理が施されたものであってよい。表面処理としては、プライマー処理、オゾン処理、プラズマエッチング処理等が挙げられる。プライマーとしては、シランカップリング剤、シラザン等が用いられる。   When the transparent substrate 20 is a glass substrate, the glass substrate may be subjected to a surface treatment in advance in order to enhance the adhesion between the glass and the molding material. Examples of the surface treatment include primer treatment, ozone treatment, plasma etching treatment, and the like. As the primer, a silane coupling agent, silazane or the like is used.

光インプリント法では、光硬化性樹脂を含む成形材料の層の表面にモールドの凹凸パターンを押し付け、光を照射し、成形材料の層を固化(硬化)させることで凹凸層30を形成する。   In the photoimprint method, the concave / convex layer 30 is formed by pressing a concave / convex pattern of a mold against the surface of a layer of a molding material containing a photocurable resin, irradiating light, and solidifying (curing) the layer of the molding material.

光硬化性樹脂を硬化させる光としては、例えば紫外光、可視光、赤外光等が挙げられる。紫外光の光源としては、紫外線蛍光灯、紫外線LED、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯等が挙げられる。可視光の光源としては、可視光蛍光灯、可視光白熱灯、可視光LED等が用いられる。   Examples of the light that cures the photocurable resin include ultraviolet light, visible light, and infrared light. Examples of the ultraviolet light source include ultraviolet fluorescent lamps, ultraviolet LEDs, low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, xenon lamps, and carbon arc lamps. As a light source for visible light, a visible light fluorescent lamp, a visible light incandescent lamp, a visible light LED, or the like is used.

光インプリント法では、室温での成型が可能であり、モールドと透明基板20との線膨張係数差による歪みが発生しにくく、転写精度が良い。尚、硬化反応の促進のため、成形材料の層は加熱されてもよい。   In the optical imprint method, molding at room temperature is possible, distortion due to a difference in linear expansion coefficient between the mold and the transparent substrate 20 hardly occurs, and transfer accuracy is good. Note that the layer of the molding material may be heated to accelerate the curing reaction.

一方、熱インプリント法では、熱可塑性樹脂を含む成形材料の層を加熱により軟化し、軟化した成形材料の層の表面にモールドを押し付け、成形材料の層を冷却して固化させることで、凹凸層30を形成する。   On the other hand, in the thermal imprint method, a molding material layer containing a thermoplastic resin is softened by heating, the mold is pressed against the surface of the softened molding material layer, and the molding material layer is cooled and solidified, thereby causing unevenness. Layer 30 is formed.

加熱源としては、加熱光を照射する光源(例えばハロゲンランプ、レーザ)、ヒータ等が用いられる。加熱温度は、熱可塑性樹脂のガラス転移温度以上である。   As the heating source, a light source (for example, a halogen lamp or a laser) that radiates heating light, a heater, or the like is used. The heating temperature is equal to or higher than the glass transition temperature of the thermoplastic resin.

成形材料の層は、必要に応じて、後述の光散乱材を含む。   The layer of a molding material contains the below-mentioned light-scattering material as needed.

尚、本実施形態の凹凸層30は、インプリント法で形成されるが、フォトリソグラフィ法、EB描画法、干渉露光法等で形成されてもよい。   In addition, although the uneven | corrugated layer 30 of this embodiment is formed by the imprint method, you may form by the photolithographic method, EB drawing method, interference exposure method, etc.

凹凸層30は、透過型の回折格子31を形成する。回折格子31は2次元の回折格子であってよい。回折格子31は複数の凸部を有し、複数の凸部の底面は同一平面上に配列される。複数の凸部は、周期的に配列され、例えば正六方格子状、準六方格子状、正四方格子状、準四方格子状に配列される。最も近い凸部同士のピッチP1は、可視光の波長の1倍〜数倍程度(300nm<P1≦5μm)であり、凹凸層30の屈折率や平坦化層40の屈折率、凸部の高さH1等に応じて適宜設計されるが、例えば500nmである。凸部の高さH1は、10nm以上5μm以下である。10nm以上であると十分な回折効率を得られやすい。5μm以下であると凹凸層を製造しやすい。凸部の形状は、多種多様であってよく、例えば円錐形状、円錐台形状、角錐形状(例えば四角錐形状、三角錐形状)、角錐台形状、釣鐘形状、円柱形状、角柱形状等が挙げられる。尚、回折格子31は、1次元の回折格子でもよい。   The uneven layer 30 forms a transmission type diffraction grating 31. The diffraction grating 31 may be a two-dimensional diffraction grating. The diffraction grating 31 has a plurality of convex portions, and the bottom surfaces of the plurality of convex portions are arranged on the same plane. The plurality of convex portions are periodically arranged, for example, in a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape. The pitch P1 between the nearest protrusions is about 1 to several times the wavelength of visible light (300 nm <P1 ≦ 5 μm), and the refractive index of the uneven layer 30, the refractive index of the planarizing layer 40, and the height of the protrusions Although it is designed appropriately according to the height H1, etc., it is 500 nm, for example. The height H1 of the convex part is 10 nm or more and 5 μm or less. When the thickness is 10 nm or more, sufficient diffraction efficiency is easily obtained. When the thickness is 5 μm or less, it is easy to produce the uneven layer. The shape of the convex portion may be various, and examples thereof include a cone shape, a truncated cone shape, a pyramid shape (for example, a quadrangular pyramid shape and a triangular pyramid shape), a truncated pyramid shape, a bell shape, a cylindrical shape, and a prism shape. . The diffraction grating 31 may be a one-dimensional diffraction grating.

透過型の回折格子31は、平坦化層40から凹凸層30へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。   The transmissive diffraction grating 31 transmits light incident at various incident angles from the planarizing layer 40 to the concave-convex layer 30, and aligns the direction of most transmitted light in the front direction. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved.

また、透過型の回折格子31は、平坦化層40から凹凸層30に入射するときの光の全反射を抑える役割を果たす。   The transmissive diffraction grating 31 plays a role of suppressing total reflection of light when entering the concave / convex layer 30 from the planarizing layer 40.

図2は、図1の透過型の回折格子によって光の全反射が低減されることを説明するための図である。図2において、便宜上、発光素子12、光散乱材34、44の図示を省略する。   FIG. 2 is a diagram for explaining that the total reflection of light is reduced by the transmission type diffraction grating of FIG. 2, illustration of the light emitting element 12 and the light-scattering materials 34 and 44 is abbreviate | omitted for convenience.

一般的に、隣接する高屈折率層と低屈折率層との間の界面が平坦な場合、高屈折率層から低屈折率層に臨界角以上の入射角で入射する光は全反射してしまう。   In general, when the interface between the adjacent high refractive index layer and the low refractive index layer is flat, light incident from the high refractive index layer to the low refractive index layer at an incident angle greater than the critical angle is totally reflected. End up.

本実施形態では、高屈折率層としての平坦化層40と、低屈折率層としての凹凸層30との界面が微細な凹凸構造を有し、凹凸層30が透過型の回折格子31を形成する。そのために、界面が平坦な場合に全反射してしまう光の大部分が、図2に示すように0次回折光R0、1次回折光R1、2次回折光R2等に分かれ、回折格子31を透過し、凹凸部30内を伝播する。よって、平坦化層40から凹凸層30に入射するときの光の全反射を抑えることができる。   In this embodiment, the interface between the planarization layer 40 as the high refractive index layer and the uneven layer 30 as the low refractive index layer has a fine uneven structure, and the uneven layer 30 forms a transmission type diffraction grating 31. To do. Therefore, most of the light that is totally reflected when the interface is flat is divided into zero-order diffracted light R0, first-order diffracted light R1, second-order diffracted light R2, etc. as shown in FIG. And propagates in the concavo-convex portion 30. Therefore, it is possible to suppress the total reflection of light when entering the concavo-convex layer 30 from the planarizing layer 40.

尚、界面が平坦な場合に界面で全反射せずに界面を透過する光の大部分が、回折格子31を透過するように、回折格子31の凸部のピッチP1や高さH1が最適化されてよい。また、回折格子31で反射される光は、回折格子31による干渉効果によって入射角よりも小さい反射角で反射するので、反射電極70で反射され回折格子31に再度入射するとき、ほとんどの光は回折格子31を透過する。   In addition, when the interface is flat, the pitch P1 and the height H1 of the convex portions of the diffraction grating 31 are optimized so that most of the light transmitted through the interface without being totally reflected at the interface is transmitted through the diffraction grating 31. May be. In addition, since the light reflected by the diffraction grating 31 is reflected at a reflection angle smaller than the incident angle due to the interference effect by the diffraction grating 31, most of the light is reflected by the reflection electrode 70 and incident on the diffraction grating 31 again. The light passes through the diffraction grating 31.

ところで、透過型の回折格子31では、光の干渉によって、回折格子31を透過した光の強度に角度依存性があり、複数の特定の角度で透過光の強度が強くなる。また、透過光の波長毎に、透過光の強度が強くなる角度が異なる。   By the way, in the transmission type diffraction grating 31, the intensity of the light transmitted through the diffraction grating 31 is angle-dependent due to the interference of light, and the intensity of the transmitted light is increased at a plurality of specific angles. Further, the angle at which the intensity of the transmitted light is increased is different for each wavelength of the transmitted light.

そこで、凹凸層30は、図1に示すように、樹脂等の基材33、及び基材33中に分散する光散乱材34を含んでよい。光散乱材34は、凹凸層30内を伝播する光を散乱することで、光の強度の角度依存性を低減し、また、光の色(波長)の角度依存性を低減する。   Therefore, as shown in FIG. 1, the uneven layer 30 may include a base material 33 such as a resin and a light scattering material 34 dispersed in the base material 33. The light scattering material 34 scatters the light propagating through the concavo-convex layer 30, thereby reducing the angle dependency of the light intensity and reducing the angle dependency of the light color (wavelength).

基材33は、基材33と透明基板20との界面での反射を抑えるため、透明基板20との屈折率差が0.3以下の材料で構成されることが好ましい。光ナノインプリントの場合、基材33を形成する光硬化性樹脂として、例えば、シルセスキオキサン系樹脂、ポリイミド系樹脂が用いられる。シルセスキオキサン系樹脂、ポリイミド系樹脂は耐熱性にも優れている。熱ナノインプリントの場合、基材33を形成する熱可塑性樹脂として、例えば、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ポリアミド系樹脂、ポリエポキシ系樹脂等が好適である。基材33の屈折率は、透明基板20の屈折率よりも高くても低くてもよいが、透明基板20の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 33 and the transparent substrate 20, the base material 33 is preferably made of a material having a refractive index difference from the transparent substrate 20 of 0.3 or less. In the case of optical nanoimprint, for example, a silsesquioxane resin or a polyimide resin is used as the photocurable resin that forms the base material 33. Silsesquioxane resins and polyimide resins are also excellent in heat resistance. In the case of thermal nanoimprint, for example, (meth) acrylic resin, polyester resin, polyolefin resin, cellulose resin, polyamide resin, polyepoxy resin, etc. are suitable as the thermoplastic resin forming the base material 33. . The refractive index of the base material 33 may be higher or lower than the refractive index of the transparent substrate 20, but is preferably equal to or lower than the refractive index of the transparent substrate 20.

光散乱材34は、基材33と異なる屈折率を有し、基材33よりも低い屈折率を有する空気、基材33よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 34 has a refractive index different from that of the base material 33 and is composed of air having a lower refractive index than the base material 33, a metal oxide having a higher refractive index than the base material 33, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

金属酸化物の粒子の平均粒子径としては、動的光散乱法により測定される粒径分布のピーク値が用いられる。光散乱材34が空気の場合、例えば凹凸層30の断面を走査型電子顕微鏡(SEM)にて観察し、視野中に含まれる光散乱材から無作為に10個抽出し、それらの径を測定し、平均化することにより求めることができる。   As the average particle size of the metal oxide particles, the peak value of the particle size distribution measured by the dynamic light scattering method is used. When the light scattering material 34 is air, for example, the cross section of the concavo-convex layer 30 is observed with a scanning electron microscope (SEM), 10 random light scattering materials included in the field of view are extracted, and the diameters thereof are measured. And can be obtained by averaging.

光散乱材34の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材34の平均球相当径が10μmを超えると、光散乱材34が基材33中に分散しにくく、偏在しやすい。一方、光散乱材34の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 34 is preferably 300 nm to 10 μm. When the average equivalent sphere diameter of the light scattering material 34 exceeds 10 μm, the light scattering material 34 is difficult to disperse in the base material 33 and tends to be unevenly distributed. On the other hand, if the average sphere equivalent diameter of the light scattering material 34 is less than 300 nm, it is too shorter than the wavelength of visible light, so Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong. Efficiency is reduced.

図3は、レイリー散乱の概念図である。図4は、ミー散乱の概念図である。図3、図4において、白丸Mは散乱粒子、太線L1は入射光、細線L2はレイリー散乱による散乱光、細線L3はミー散乱による散乱光を表す。細線L2、L3の矢印方向は散乱光の進行方向、細線L2、L3の長さは散乱光の強度を表す。   FIG. 3 is a conceptual diagram of Rayleigh scattering. FIG. 4 is a conceptual diagram of Mie scattering. 3 and 4, white circles M represent scattered particles, thick lines L1 represent incident light, thin lines L2 represent scattered light due to Rayleigh scattering, and thin lines L3 represent scattered light due to Mie scattering. The arrow directions of the thin lines L2 and L3 indicate the traveling direction of the scattered light, and the lengths of the thin lines L2 and L3 indicate the intensity of the scattered light.

本実施形態の光散乱材34の平均球相当径は300nm〜10μmであり可視光の波長と同程度以上であるので、ミー散乱(図4参照)が支配的になり、前方散乱が強くなる。光散乱材34の平均球相当径が300nm〜10μmであると、凹凸層30内を伝播する光の向きを正面方向に揃えることができる。   Since the average spherical equivalent diameter of the light scattering material 34 of the present embodiment is 300 nm to 10 μm, which is equal to or greater than the wavelength of visible light, Mie scattering (see FIG. 4) becomes dominant and forward scattering becomes strong. When the average sphere equivalent diameter of the light scattering material 34 is 300 nm to 10 μm, the direction of light propagating in the uneven layer 30 can be aligned in the front direction.

図5は、ミー散乱によって光の向きが正面方向に揃うことを確認するためのシミュレーションのモデル図である。図6は、シミュレーションの結果を示す図であって、光の強度と伝播方向との関係を示す図である。図6において、実線N1は光散乱層から前方に出射する光の強度と伝播方向との関係を示し、破線N2は光散乱層へ入射する光の強度と伝播方向との関係を示し、一点鎖線N3は光散乱層から後方に出射する光の強度と伝播方向との関係を示す。図6において、原点からの距離が光の強度を表し、角度が光の伝播方向を表す。光の伝播方向は、正面方向を0°とし、正面方向とのなす角で表す。   FIG. 5 is a model diagram of a simulation for confirming that the light directions are aligned in the front direction by Mie scattering. FIG. 6 is a diagram showing a result of the simulation, and is a diagram showing a relationship between the light intensity and the propagation direction. In FIG. 6, a solid line N1 indicates the relationship between the intensity of light emitted forward from the light scattering layer and the propagation direction, and a broken line N2 indicates the relationship between the intensity of light incident on the light scattering layer and the propagation direction. N3 represents the relationship between the intensity of light emitted backward from the light scattering layer and the propagation direction. In FIG. 6, the distance from the origin represents the light intensity, and the angle represents the light propagation direction. The light propagation direction is represented by an angle between the front direction and 0 °.

シミュレーションでは、図5に示すように、基材33A(屈折率2.0)の途中に、基材33A中に光散乱材34A(粒径500nm、屈折率1.45)を分散した光散乱層30A(層厚1μm)を設け、光散乱層30Aから出射する光の強度の角度依存性を光線追跡法(ソフト名:「LightTools」、CYBERNET社製)により求めた。光散乱層30A中に占める光散乱材34Aの体積割合は60%とした。また、基材33Aの図中上端及び図中下端には光吸収率100%の境界面を設定した。   In the simulation, as shown in FIG. 5, a light scattering layer in which a light scattering material 34A (particle size 500 nm, refractive index 1.45) is dispersed in the base material 33A in the middle of the base material 33A (refractive index 2.0). 30A (layer thickness: 1 μm) was provided, and the angle dependency of the intensity of light emitted from the light scattering layer 30A was determined by a ray tracing method (software name: “LightTools”, manufactured by CYBERNET). The volume ratio of the light scattering material 34A in the light scattering layer 30A was 60%. Further, a boundary surface having a light absorption rate of 100% was set at the upper end in the drawing and the lower end in the drawing of the base material 33A.

図6に示すように、ミー散乱によって光の向きを正面方向に揃えることができ、−42°〜42°の範囲内の光の強度を増やすことができた。尚、透明基板20であるガラス基板(屈折率1.5)と空気(屈折率1.0)との界面(光取り出し面21)における臨界角は42°程度である。   As shown in FIG. 6, the direction of light can be aligned in the front direction by Mie scattering, and the intensity of light within a range of −42 ° to 42 ° can be increased. The critical angle at the interface (light extraction surface 21) between the glass substrate (refractive index 1.5) and air (refractive index 1.0), which is the transparent substrate 20, is about 42 °.

ミー散乱によって光の向きが正面方向に揃うのは、(1)前方散乱が支配的であること、(2)入射光の向きが正面方向から傾くほど、光散乱層30Aの通過にかかる距離が長くなり、光の散乱回数が増えることによる。   The direction of light is aligned in the front direction by Mie scattering. (1) The forward scattering is dominant, and (2) the distance required for the light scattering layer 30A to pass through as the direction of the incident light is inclined from the front direction. This is due to the increase in the number of light scattering times.

元々向きが正面方向の入射光は、散乱回数が少なく、前方散乱が支配的であることから、光散乱層30A内を伝搬する間に向きがほとんど変わらない。一方、向きが斜め方向の入射光は、散乱回数が多いので、光散乱層30A内を伝搬する間に徐々に向きが正面方向に変わる。よって、ミー散乱によって光の向きが全体的に正面方向に揃う。   Since the incident light whose direction is originally in the front direction has a small number of scatterings and the forward scattering is dominant, the direction of the incident light hardly changes while propagating in the light scattering layer 30A. On the other hand, since the incident light having the oblique direction has a large number of scattering times, the direction gradually changes to the front direction while propagating through the light scattering layer 30A. Therefore, the light direction is entirely aligned in the front direction due to Mie scattering.

尚、基材43の屈折率、光散乱材44の屈折率、平均球相当径、体積割合、凹凸層30の厚みは、適宜設計される。   The refractive index of the base material 43, the refractive index of the light scattering material 44, the average sphere equivalent diameter, the volume ratio, and the thickness of the uneven layer 30 are appropriately designed.

(平坦化層)
平坦化層40は、凹凸層30上に設けられ、凹凸層30の凹凸を吸収する。平坦化層40の平坦面上に設けられる透明電極50、有機層60、及び反射電極70が設計通りの性能を発揮できる。
(Flattening layer)
The planarization layer 40 is provided on the uneven layer 30 and absorbs the unevenness of the uneven layer 30. The transparent electrode 50, the organic layer 60, and the reflective electrode 70 provided on the flat surface of the flattening layer 40 can exhibit the performance as designed.

平坦化層40は、例えばウェットコート法で凹凸層30の凹凸面上に形成される。平坦化層40の形成前に、凹凸層30を熱処理する工程が行われてよい。凹凸層30の樹脂の重合率の向上や、凹凸層30の複屈折の除去が可能である。   The planarization layer 40 is formed on the concavo-convex surface of the concavo-convex layer 30 by, for example, a wet coat method. Before the planarization layer 40 is formed, a step of heat treating the uneven layer 30 may be performed. It is possible to improve the polymerization rate of the resin of the uneven layer 30 and to remove the birefringence of the uneven layer 30.

ウェットコート法は、流動性樹脂を凹凸層30上に塗布し、固化させることで平坦化層40を形成する。流動性樹脂には、必要に応じて光散乱材が添加される。ウェットコート法としては、例えば、スピンコート法、スプレーコート法、ロールコート法、ダイコート法等が挙げられる。   In the wet coating method, the planarizing layer 40 is formed by applying a fluid resin on the uneven layer 30 and solidifying it. A light scattering material is added to the flowable resin as necessary. Examples of the wet coating method include spin coating, spray coating, roll coating, and die coating.

平坦化層40は、樹脂等の30基材43、及び基材43中に分散する光散乱材44を含んでよい。光散乱材44は、凹凸層30の光散乱材34と同様に、平坦化層40内を伝播する光の向きを正面方向に揃え、平坦化層40から回折格子31に入射する光の向きを正面方向に揃える。   The planarization layer 40 may include a 30 base material 43 such as a resin and a light scattering material 44 dispersed in the base material 43. Similar to the light scattering material 34 of the concavo-convex layer 30, the light scattering material 44 aligns the direction of light propagating in the planarization layer 40 in the front direction, and changes the direction of light incident on the diffraction grating 31 from the planarization layer 40. Align in the front direction.

一般的に、回折格子に入射する光の向きが正面方向に揃っているほど、回折格子を透過する光の向きが正面方向に揃いやすい。   Generally, as the direction of light incident on the diffraction grating is aligned in the front direction, the direction of light transmitted through the diffraction grating is more easily aligned in the front direction.

本実施形態では、平坦化層40中の光散乱材44が平坦化層40から回折格子31に入射する光の向きを正面方向に揃えるので、回折格子31を透過する光の向きが正面方向に揃いやすく、光取り出し効率を向上できる。   In the present embodiment, since the light scattering material 44 in the planarization layer 40 aligns the direction of light incident on the diffraction grating 31 from the planarization layer 40 with the front direction, the direction of the light transmitted through the diffraction grating 31 is the front direction. It is easy to align and light extraction efficiency can be improved.

基材43は、基材43と透明電極50との界面での反射を抑えるため、透明電極50との屈折率差が0.3以下の材料で構成されることが好ましい。光ナノインプリントの場合、基材43を形成する光硬化性樹脂として、例えば、シルセスキオキサン系樹脂、ポリイミド系樹脂が用いられる。シルセスキオキサン系樹脂、ポリイミド系樹脂は耐熱性にも優れている。熱ナノインプリントの場合、基材43を形成する熱可塑性樹脂として、例えば、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ポリアミド系樹脂、ポリエポキシ系樹脂等が好適である。基材43は、屈折率の調整のため、光を散乱しない程度の大きさの無機系ナノ微粒子を含んでもよい。無機系ナノ微粒子の粒径は1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましい。粒径が1nm未満であると、結晶性が乏しくなり、屈折率等の粒子特性を発現することが難しくなる。一方、粒径が100nmを超えると、レイリー散乱の影響が出始め、後方散乱成分が増加し光取り出し効率低下の要因となるためである。基材43の屈折率は、透明電極50の屈折率よりも高くても低くてもよいが、透明電極50の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 43 and the transparent electrode 50, the base material 43 is preferably made of a material having a refractive index difference from the transparent electrode 50 of 0.3 or less. In the case of optical nanoimprint, for example, a silsesquioxane resin or a polyimide resin is used as the photocurable resin that forms the base material 43. Silsesquioxane resins and polyimide resins are also excellent in heat resistance. In the case of thermal nanoimprinting, for example, (meth) acrylic resin, polyester resin, polyolefin resin, cellulose resin, polyamide resin, polyepoxy resin, and the like are suitable as the thermoplastic resin forming the base material 43. . The base material 43 may include inorganic nanoparticles having a size that does not scatter light in order to adjust the refractive index. The particle size of the inorganic nanoparticles is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm. When the particle size is less than 1 nm, the crystallinity becomes poor, and it becomes difficult to express particle characteristics such as refractive index. On the other hand, when the particle diameter exceeds 100 nm, the influence of Rayleigh scattering starts to appear, the backscattering component increases, and the light extraction efficiency decreases. The refractive index of the base material 43 may be higher or lower than the refractive index of the transparent electrode 50, but is preferably equal to or lower than the refractive index of the transparent electrode 50.

基材43は、凹凸層30の基材33と異なる屈折率を有する。基材43は、透明基板20よりも高い屈折率を有する透明電極50と接するので、透明基板20と接する凹凸層30の基材33よりも高い屈折率を有することが好ましい。   The base material 43 has a refractive index different from that of the base material 33 of the uneven layer 30. Since the base material 43 is in contact with the transparent electrode 50 having a higher refractive index than the transparent substrate 20, it is preferable that the base material 43 has a higher refractive index than the base material 33 of the uneven layer 30 in contact with the transparent substrate 20.

光散乱材44は、基材43と異なる屈折率を有し、基材43よりも低い屈折率を有する空気、基材43よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 44 has a refractive index different from that of the base material 43 and is composed of air having a lower refractive index than the base material 43, a metal oxide having a higher refractive index than the base material 43, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材44の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材44の平均球相当径が10μmを超えると、光散乱材44が基材43中に分散しにくく、偏在しやすい。光散乱材44の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 44 is preferably 300 nm to 10 μm. When the average sphere equivalent diameter of the light scattering material 44 exceeds 10 μm, the light scattering material 44 is difficult to disperse in the base material 43 and is likely to be unevenly distributed. If the average equivalent sphere diameter of the light scattering material 44 is less than 300 nm, it is too short than the wavelength of visible light, so Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong, so that the light extraction efficiency is improved. descend.

光散乱材44の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなる。光散乱材44の平均球相当径が300nm〜10μmであると、平坦化層40内を伝播する光の向きを正面方向に揃えることができる。   When the average spherical equivalent diameter of the light scattering material 44 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant and forward scattering becomes strong. When the average sphere equivalent diameter of the light scattering material 44 is 300 nm to 10 μm, the direction of light propagating through the planarizing layer 40 can be aligned in the front direction.

光取り出し面21に臨界角以上の入射角で入射する光は、光取り出し面21で全反射される。全反射された光は、光取り出し面21と光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、回折格子31を透過することで、また、光散乱材34、44で繰り返し散乱されることで、臨界角未満の入射角に変化し、最終的に光取り出し面21から外部に放出される。   Light incident on the light extraction surface 21 at an incident angle greater than the critical angle is totally reflected by the light extraction surface 21. The totally reflected light passes through the diffraction grating 31 during one or more round trips between the light extraction surface 21 and the light reflection surface (for example, the interface between the reflective electrode 70 and the organic layer 60). By being repeatedly scattered by the light scattering materials 34 and 44, the incident angle is changed to an incident angle less than the critical angle, and finally emitted from the light extraction surface 21 to the outside.

尚、本実施形態では凹凸層30及び平坦化層40の両方が光散乱材を含むが、いずれか一方が光散乱材を含んでいればよい。   In the present embodiment, both the concavo-convex layer 30 and the flattening layer 40 include a light scattering material, but either one may include a light scattering material.

例えば、図7に示すように、凹凸層30が光散乱材34を含み、平坦化層43が光散乱材44を含まなくてもよい。図7に示す例(第1変形例)の場合、透過型の回折格子31は、平坦化層43から凹凸層30へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。また、透過型の回折格子31は、平坦化層43から凹凸層30へ入射するときの光の全反射を抑える役割を果たす。凹凸層30中の光散乱材34は、凹凸層30内を伝播する光を散乱し、回折格子31による光の強度の角度依存性を低減し、また、回折格子31による光の色(波長)の角度依存性を低減する。また、凹凸層30中の光散乱材34は、凹凸層30内を伝播する光の向きを正面方向に揃え、光取り出し効率を向上する。   For example, as shown in FIG. 7, the uneven layer 30 may include the light scattering material 34, and the planarization layer 43 may not include the light scattering material 44. In the case of the example shown in FIG. 7 (first modification), the transmissive diffraction grating 31 transmits light incident from the planarizing layer 43 to the concave-convex layer 30 at various incident angles, and the direction of most transmitted light. Align in the front direction. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved. The transmissive diffraction grating 31 plays a role of suppressing total reflection of light when entering the concave / convex layer 30 from the planarizing layer 43. The light scattering material 34 in the concavo-convex layer 30 scatters light propagating through the concavo-convex layer 30, reduces the angle dependency of the light intensity by the diffraction grating 31, and the color (wavelength) of the light by the diffraction grating 31. To reduce the angle dependence. In addition, the light scattering material 34 in the concavo-convex layer 30 aligns the direction of light propagating in the concavo-convex layer 30 with the front direction, and improves light extraction efficiency.

また、図8に示すように、平坦化層40が光散乱材44を含み、凹凸層33が光散乱材34を含まなくてもよい。図8に示す例(第2変形例)の場合、透過型の回折格子31は、平坦化層40から凹凸層33へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。また、透過型の回折格子31は、平坦化層40から凹凸層33へ入射するときの光の全反射を抑える役割を果たす。平坦化層40中の光散乱材44は、平坦化層40内を伝搬する光の向きを正面方向に揃える。平坦化層40から回折格子31に入射する光の向きが正面方向に揃い、回折格子31を透過する光の向きが正面方向に効率的に揃いやすく、光取り出し効率がさらに向上する。   Further, as shown in FIG. 8, the planarization layer 40 may include the light scattering material 44, and the uneven layer 33 may not include the light scattering material 34. In the case of the example shown in FIG. 8 (second modification), the transmissive diffraction grating 31 transmits light incident at various incident angles from the planarizing layer 40 to the uneven layer 33, and the direction of most transmitted light. Align in the front direction. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved. Further, the transmission type diffraction grating 31 plays a role of suppressing total reflection of light when entering the uneven layer 33 from the planarizing layer 40. The light scattering material 44 in the planarization layer 40 aligns the direction of light propagating in the planarization layer 40 with the front direction. The direction of light incident on the diffraction grating 31 from the planarization layer 40 is aligned in the front direction, the direction of light transmitted through the diffraction grating 31 is easily aligned in the front direction, and the light extraction efficiency is further improved.

[第2実施形態]
上記第1実施形態では、凹凸層30が回折格子31を形成する。一方、本実施形態では、凹凸層が複数のプリズムを形成する点で相違する。以下、主に相違点について説明する。
[Second Embodiment]
In the first embodiment, the concavo-convex layer 30 forms the diffraction grating 31. On the other hand, the present embodiment is different in that the uneven layer forms a plurality of prisms. Hereinafter, differences will be mainly described.

図9は、本発明の第2実施形態による有機LED素子を示す断面図である。図9において、便宜上、凹凸層130の凹凸を誇張して示す。   FIG. 9 is a cross-sectional view showing an organic LED element according to the second embodiment of the present invention. In FIG. 9, the unevenness of the uneven layer 130 is exaggerated for convenience.

有機LED素子110は、ボトムエミッションタイプであって、透明基板20、凹凸層130、平坦化層140、透明電極50、有機層60、及び反射電極70をこの順で有する。透明基板20、凹凸層130、及び平坦化層140で積層基板111が構成され、透明電極50、有機層60、及び反射電極70等で発光素子12が構成される。照明用の場合、1つの発光素子12が平坦化層140上に形成されてよい。画像表示用の場合、発光素子12は画素毎に設けられ、複数の発光素子12が平坦化層140上に配列される。   The organic LED element 110 is a bottom emission type, and includes the transparent substrate 20, the uneven layer 130, the planarization layer 140, the transparent electrode 50, the organic layer 60, and the reflective electrode 70 in this order. The laminated substrate 111 is composed of the transparent substrate 20, the uneven layer 130, and the planarization layer 140, and the light emitting element 12 is composed of the transparent electrode 50, the organic layer 60, the reflective electrode 70, and the like. In the case of illumination, one light emitting element 12 may be formed on the planarization layer 140. In the case of image display, the light emitting element 12 is provided for each pixel, and the plurality of light emitting elements 12 are arranged on the planarization layer 140.

有機層60の発光光は、透明電極50、平坦化層140、凹凸層130、透明基板20を透過し、透明基板20の光取り出し面21から外部に放出される。光取り出し面21は、透明基板20における凹凸層130側と反対側の面である。   The light emitted from the organic layer 60 passes through the transparent electrode 50, the planarization layer 140, the uneven layer 130, and the transparent substrate 20, and is emitted to the outside from the light extraction surface 21 of the transparent substrate 20. The light extraction surface 21 is a surface on the opposite side to the uneven layer 130 side in the transparent substrate 20.

本実施形態では、凹凸層130が複数のプリズム131を形成する。プリズム131は、平坦化層140側に設けられる。以下の説明で、プリズム131での入射角、反射角は、光取り出し面21に対して垂直な方向(以下、「正面方向」という)と、光の進行方向とのなす角を意味する。   In the present embodiment, the uneven layer 130 forms a plurality of prisms 131. The prism 131 is provided on the planarization layer 140 side. In the following description, the incident angle and the reflection angle at the prism 131 mean an angle formed by a direction perpendicular to the light extraction surface 21 (hereinafter referred to as “front direction”) and the light traveling direction.

(凹凸層)
凹凸層130は、例えばインプリント法で透明基板20上に形成される。インプリント法では、透明基板20とモールドとの間に成形材料の層を挟み、モールドの凹凸パターンが転写した凹凸層130を透明基板20上に形成する。凹凸層130の凹凸パターンは、モールドの凹凸パターンが略反転したパターンである。成形材料の層は、必要に応じて、後述の光散乱材を含む。
(Uneven layer)
The uneven layer 130 is formed on the transparent substrate 20 by, for example, an imprint method. In the imprint method, a layer of a molding material is sandwiched between the transparent substrate 20 and a mold, and an uneven layer 130 to which the uneven pattern of the mold is transferred is formed on the transparent substrate 20. The concavo-convex pattern of the concavo-convex layer 130 is a pattern in which the concavo-convex pattern of the mold is substantially inverted. The layer of a molding material contains the below-mentioned light-scattering material as needed.

尚、本実施形態の凹凸層130は、インプリント法で形成されるが、フォトリソグラフィ法、EB描画法、干渉露光法等で形成されてもよい。   In addition, although the uneven | corrugated layer 130 of this embodiment is formed by the imprint method, you may form by the photolithographic method, EB drawing method, interference exposure method, etc.

凹凸層130は、複数のプリズム131を形成する。複数のプリズム131の底面は同一平面上に配列される。複数のプリズム131は、周期的に配列され、例えば正六方格子状、準六方格子状、正四方格子状、準四方格子状に配列される。最も近いプリズム131同士のピッチP2は、可視光の波長よりも十分に大きい(5μm<P2≦50μm)。プリズムの高さH2は5μm以上50μm以下が好ましい。プリズム131の形状は、多種多様であってよく、例えば角錐形状(例えば四角錐形状、三角錐形状)、角錐台形状等が挙げられる。   The uneven layer 130 forms a plurality of prisms 131. The bottom surfaces of the plurality of prisms 131 are arranged on the same plane. The plurality of prisms 131 are periodically arranged, for example, a regular hexagonal lattice, a quasi-hexagonal lattice, a regular tetragonal lattice, or a quasi-tetragonal lattice. The pitch P2 between the nearest prisms 131 is sufficiently larger than the wavelength of visible light (5 μm <P2 ≦ 50 μm). The height H2 of the prism is preferably 5 μm or more and 50 μm or less. The shape of the prism 131 may be various, and examples thereof include a pyramid shape (for example, a quadrangular pyramid shape and a triangular pyramid shape), a truncated pyramid shape, and the like.

プリズム131は、平坦化層140から凹凸層130へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。   The prism 131 transmits light incident at various incident angles from the planarizing layer 140 to the uneven layer 130, and aligns the direction of most transmitted light in the front direction. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved.

プリズム131は、平坦化層140から凹凸層130へ入射するときの光の全反射を抑える役割を果たす。   The prism 131 plays a role of suppressing total reflection of light when entering the uneven layer 130 from the planarizing layer 140.

図10は、図9のプリズムによって光の全反射が低減されることを説明するための図である。図10において、便宜上、発光素子12、光散乱材134、144の図示を省略する。   FIG. 10 is a diagram for explaining that the total reflection of light is reduced by the prism of FIG. 9. 10, illustration of the light emitting element 12 and the light-scattering materials 134 and 144 is abbreviate | omitted for convenience.

一般的に、隣接する高屈折率層と低屈折率層との間の界面が平坦な場合、高屈折率層から低屈折率層に臨界角以上の入射角で入射する光は全反射してしまう。   In general, when the interface between the adjacent high refractive index layer and the low refractive index layer is flat, light incident from the high refractive index layer to the low refractive index layer at an incident angle greater than the critical angle is totally reflected. End up.

本実施形態では、高屈折率層としての平坦化層140と、低屈折率層としての凹凸層130との界面が微細な凹凸構造を有し、凹凸層130がプリズム131を形成する。そのために、界面が平坦な場合に全反射してしまう光の大部分が、図10に示すようにプリズム131の傾斜面を透過し、凹凸層130内に伝播する。プリズム131の一方の傾斜面を透過した光は、例えばプリズム131の他方の傾斜面で反射され、透明基板20に向けて伝播する。よって、平坦化層140から凹凸層130へ入射するときの光の全反射を抑えることができる。   In this embodiment, the interface between the planarization layer 140 as the high refractive index layer and the uneven layer 130 as the low refractive index layer has a fine uneven structure, and the uneven layer 130 forms the prism 131. Therefore, most of the light that is totally reflected when the interface is flat is transmitted through the inclined surface of the prism 131 and propagates into the uneven layer 130 as shown in FIG. The light transmitted through one inclined surface of the prism 131 is reflected by, for example, the other inclined surface of the prism 131 and propagates toward the transparent substrate 20. Therefore, it is possible to suppress the total reflection of light when entering the uneven layer 130 from the planarizing layer 140.

尚、界面が平坦な場合に界面で全反射せずに界面を透過する光の大部分が、プリズム131を透過するように、プリズム131のピッチP2や高さH2が最適化されてよい。   In addition, when the interface is flat, the pitch P2 and the height H2 of the prism 131 may be optimized so that most of the light transmitted through the interface without being totally reflected at the interface is transmitted through the prism 131.

ところで、光の屈折率は光の波長によって異なり、光の波長毎に光の屈折角が異なる。そのため、光の屈折を利用するプリズムの場合、プリズム131を見る角度が変わると、プリズム131を透過した光の色(波長)が変わる。   By the way, the refractive index of light differs depending on the wavelength of light, and the refraction angle of light differs for each wavelength of light. Therefore, in the case of a prism that utilizes light refraction, when the angle at which the prism 131 is viewed changes, the color (wavelength) of the light transmitted through the prism 131 changes.

そこで、凹凸層130は、図9に示すように、樹脂等の基材133、及び基材133中に分散する光散乱材134を含んでよい。光散乱材134は、凹凸層130内を伝播する光を散乱することで、光の色(波長)の角度依存性を低減する。   Therefore, as shown in FIG. 9, the uneven layer 130 may include a base material 133 such as a resin and a light scattering material 134 dispersed in the base material 133. The light scattering material 134 scatters the light propagating through the concavo-convex layer 130 to reduce the angle dependency of the color (wavelength) of the light.

基材133は、基材133と透明基板20との界面での反射を抑えるため、第1実施形態と同様に、透明基板20との屈折率差が0.3以下の材料で構成されることが好ましい。基材133の屈折率は、透明基板20の屈折率よりも高くても低くてもよいが、透明基板20の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 133 and the transparent substrate 20, the base material 133 is made of a material having a refractive index difference from the transparent substrate 20 of 0.3 or less, as in the first embodiment. Is preferred. The refractive index of the base material 133 may be higher or lower than the refractive index of the transparent substrate 20, but is preferably equal to or lower than the refractive index of the transparent substrate 20.

光散乱材134は、基材133と異なる屈折率を有し、基材133よりも低い屈折率を有する空気、基材133よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 134 has a refractive index different from that of the base material 133 and is composed of air having a refractive index lower than that of the base material 133, a metal oxide having a refractive index higher than that of the base material 133, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材134の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材134の平均球相当径が10μmを超えると、光散乱材134が基材133中に分散しにくく、偏在しやすい。一方、光散乱材134の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 134 is preferably 300 nm to 10 μm. When the average equivalent sphere diameter of the light scattering material 134 exceeds 10 μm, the light scattering material 134 is difficult to disperse in the base material 133 and tends to be unevenly distributed. On the other hand, when the average equivalent sphere diameter of the light scattering material 134 is less than 300 nm, since the wavelength of visible light is too short, Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong. Efficiency is reduced.

光散乱材134の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなり、凹凸層130内を伝播する光の向きを正面方向に揃えることができる。   When the average equivalent sphere diameter of the light scattering material 134 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant, forward scattering becomes strong, and the direction of light propagating in the uneven layer 130 is aligned in the front direction. be able to.

(平坦化層)
平坦化層140は、凹凸層130上に設けられ、凹凸層130の凹凸を吸収する。平坦化層140の平坦面上に設けられる透明電極50、有機層60、及び反射電極70が設計通りの性能を発揮できる。
(Flattening layer)
The planarization layer 140 is provided on the uneven layer 130 and absorbs the unevenness of the uneven layer 130. The transparent electrode 50, the organic layer 60, and the reflective electrode 70 provided on the flat surface of the flattening layer 140 can exhibit the performance as designed.

平坦化層140は、例えばウェットコート法で凹凸層130の凹凸面上に形成される。平坦化層140の形成前に、凹凸層130を熱処理する工程が行われてよい。凹凸層130の樹脂の重合率の向上や、凹凸層130の複屈折の除去が可能である。   The planarization layer 140 is formed on the uneven surface of the uneven layer 130 by, for example, a wet coating method. Before the planarization layer 140 is formed, a process of heat-treating the uneven layer 130 may be performed. It is possible to improve the polymerization rate of the resin of the uneven layer 130 and to remove birefringence of the uneven layer 130.

平坦化層140は、樹脂等の基材143、及び基材143中に分散する光散乱材144を含んでよい。光散乱材144は、凹凸層130の光散乱材134と同様に、平坦化層140内を伝播する光の向きを正面方向に揃え、平坦化層140からプリズム131に入射する光の向きを正面方向に揃える。   The planarization layer 140 may include a base material 143 such as a resin and a light scattering material 144 dispersed in the base material 143. Similar to the light scattering material 134 of the concavo-convex layer 130, the light scattering material 144 aligns the direction of light propagating in the planarization layer 140 with the front direction, and the direction of light incident on the prism 131 from the planarization layer 140 is the front direction. Align in the direction.

一般的に、プリズムに入射する光の向きが正面方向に揃っているほど、プリズムを透過する光の向きが正面方向に揃いやすい。   In general, the more the direction of light incident on the prism is aligned in the front direction, the easier it is for the direction of light transmitted through the prism to be aligned in the front direction.

本実施形態では、平坦化層140からプリズム131に入射する光の向きが正面方向に揃っているので、プリズム131を透過する光の向きが正面方向に効率的に揃いやすく、光取り出し効率が向上する。   In the present embodiment, since the direction of light incident on the prism 131 from the planarization layer 140 is aligned in the front direction, the direction of light transmitted through the prism 131 is easily easily aligned in the front direction, and light extraction efficiency is improved. To do.

基材143は、基材143と透明電極50との界面での反射を抑えるため、第1実施形態と同様に、透明電極50との屈折率差が0.3以下の材料で構成されることが好ましい。基材143の屈折率は、透明電極50の屈折率よりも高くても低くてもよいが、透明電極50の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 143 and the transparent electrode 50, the base material 143 is made of a material having a refractive index difference with the transparent electrode 50 of 0.3 or less, as in the first embodiment. Is preferred. The refractive index of the substrate 143 may be higher or lower than the refractive index of the transparent electrode 50, but is preferably equal to or lower than the refractive index of the transparent electrode 50.

基材143は、凹凸層130の基材133と異なる屈折率を有する。基材143は、透明基板20よりも高い屈折率を有する透明電極50と接するので、透明基板20と接する凹凸層130の基材133よりも高い屈折率を有することが好ましい。   The base material 143 has a refractive index different from that of the base material 133 of the uneven layer 130. Since the base material 143 is in contact with the transparent electrode 50 having a higher refractive index than the transparent substrate 20, the base material 143 preferably has a higher refractive index than the base material 133 of the uneven layer 130 in contact with the transparent substrate 20.

光散乱材144は、基材143と異なる屈折率を有し、基材143よりも低い屈折率を有する空気、基材143よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 144 has a refractive index different from that of the base material 143 and is composed of air having a lower refractive index than the base material 143, a metal oxide having a higher refractive index than the base material 143, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材144の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材144の平均球相当径が10μmを超えると、光散乱材144が基材143中に分散しにくく、偏在しやすい。光散乱材144の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 144 is preferably 300 nm to 10 μm. If the average equivalent sphere diameter of the light scattering material 144 exceeds 10 μm, the light scattering material 144 is difficult to disperse in the base material 143 and tends to be unevenly distributed. When the average sphere equivalent diameter of the light scattering material 144 is less than 300 nm, it is too short than the wavelength of visible light, so Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong. descend.

光散乱材144の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなる。光散乱材144の平均球相当径が300nm〜10μmであると、平坦化層140内を伝播する光の向きを正面方向に揃えることができる。   When the average sphere equivalent diameter of the light scattering material 144 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant and forward scattering becomes strong. When the average sphere equivalent diameter of the light scattering material 144 is 300 nm to 10 μm, the direction of light propagating in the planarization layer 140 can be aligned in the front direction.

光取り出し面21に臨界角以上の入射角で入射する光は、光取り出し面21で全反射される。全反射された光は、光取り出し面21と光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、プリズム131を透過することで、また、光散乱材134、144で繰り返し散乱されることで、臨界角未満の入射角に変化し、最終的に光取り出し面21から外部に放出される。   Light incident on the light extraction surface 21 at an incident angle greater than the critical angle is totally reflected by the light extraction surface 21. The totally reflected light passes through the prism 131 while reciprocating between the light extraction surface 21 and the light reflection surface (for example, the interface between the reflection electrode 70 and the organic layer 60) one or more times. By being repeatedly scattered by the scattering materials 134 and 144, the incident angle is changed to an incident angle less than the critical angle, and finally emitted from the light extraction surface 21 to the outside.

尚、本実施形態では凹凸層130及び平坦化層140の両方が光散乱材を含むが、いずれか一方が光散乱材を含んでいればよい。   In the present embodiment, both the concavo-convex layer 130 and the flattening layer 140 include a light scattering material, but either one may include a light scattering material.

例えば、図11に示すように、凹凸層130が光散乱材134を含み、平坦化層143が光散乱材144を含まなくてもよい。図11に示す例(第1変形例)の場合、プリズム131は、平坦化層143から凹凸層130へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。また、プリズム131は、平坦化層143から凹凸層130へ入射するときの光の全反射を抑える役割を果たす。凹凸層130中の光散乱材134は、凹凸層130内を伝播する光を散乱し、プリズム131による光の強度の角度依存性を低減し、また、プリズム131による光の色(波長)の角度依存性を低減する。また、凹凸層130中の光散乱材134は、凹凸層130内を伝播する光の向きを正面方向に揃え、光取り出し効率を向上する。   For example, as shown in FIG. 11, the uneven layer 130 may include the light scattering material 134, and the planarization layer 143 may not include the light scattering material 144. In the case of the example shown in FIG. 11 (first modification), the prism 131 transmits light incident from the planarizing layer 143 to the uneven layer 130 at various incident angles, and the direction of most transmitted light is directed to the front direction. Align. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved. In addition, the prism 131 plays a role of suppressing total reflection of light when entering the uneven layer 130 from the planarizing layer 143. The light scattering material 134 in the concavo-convex layer 130 scatters light propagating through the concavo-convex layer 130, reduces the angle dependency of the light intensity by the prism 131, and the angle of the color (wavelength) of the light by the prism 131. Reduce dependency. In addition, the light scattering material 134 in the concavo-convex layer 130 aligns the direction of light propagating in the concavo-convex layer 130 with the front direction, and improves light extraction efficiency.

また、図12に示すように、平坦化層140のみが光散乱材144を含み、凹凸層133は光散乱材134を含まなくてもよい。図12に示す例(第2変形例)の場合、プリズム131は、平坦化層140から凹凸層133へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。また、プリズム131が、平坦化層140から凹凸層133へ入射するときの光の全反射を抑える役割を果たす。平坦化層140中の光散乱材144は、平坦化層140内を伝搬する光の向きを正面方向に揃える。平坦化層140からプリズム131に入射する光の向きが正面方向に揃い、プリズム131を透過する光の向きが正面方向に効率的に揃いやすく、光取り出し効率がさらに向上する。   Further, as shown in FIG. 12, only the planarization layer 140 includes the light scattering material 144, and the uneven layer 133 does not need to include the light scattering material 134. In the case of the example shown in FIG. 12 (second modified example), the prism 131 transmits light incident at various incident angles from the planarizing layer 140 to the concave-convex layer 133, and most of the transmitted light is directed in the front direction. Align. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved. In addition, the prism 131 plays a role of suppressing total reflection of light when entering the uneven layer 133 from the planarizing layer 140. The light scattering material 144 in the planarization layer 140 aligns the direction of light propagating in the planarization layer 140 with the front direction. The direction of light incident on the prism 131 from the planarization layer 140 is aligned in the front direction, the direction of light transmitted through the prism 131 is easily aligned in the front direction, and the light extraction efficiency is further improved.

[第3実施形態]
上記第2実施形態では、凹凸層130が複数のプリズム131を形成する。一方、本実施形態では、凹凸層が複数のレンズを形成する点で相違する。以下、主に相違点について説明する。
[Third Embodiment]
In the second embodiment, the uneven layer 130 forms the plurality of prisms 131. On the other hand, the present embodiment is different in that the uneven layer forms a plurality of lenses. Hereinafter, differences will be mainly described.

図13は、本発明の第3実施形態による有機LED素子を示す断面図である。図13において、便宜上、凹凸層230の凹凸を誇張して示す。   FIG. 13 is a cross-sectional view showing an organic LED element according to the third embodiment of the present invention. In FIG. 13, the unevenness of the uneven layer 230 is exaggerated for convenience.

有機LED素子210は、ボトムエミッションタイプであって、透明基板20、凹凸層230、平坦化層240、透明電極50、有機層60、及び反射電極70をこの順で有する。透明基板20、凹凸層230、及び平坦化層240で積層基板211が構成され、透明電極50、有機層60、及び反射電極70等で発光素子12が構成される。照明用の場合、1つの発光素子12が平坦化層240上に形成されてよい。画像表示用の場合、発光素子12は画素毎に設けられ、複数の発光素子12が平坦化層240上に配列される。   The organic LED element 210 is a bottom emission type, and includes the transparent substrate 20, the uneven layer 230, the planarization layer 240, the transparent electrode 50, the organic layer 60, and the reflective electrode 70 in this order. The laminated substrate 211 is composed of the transparent substrate 20, the uneven layer 230, and the planarization layer 240, and the light emitting element 12 is composed of the transparent electrode 50, the organic layer 60, the reflective electrode 70, and the like. In the case of illumination, one light emitting element 12 may be formed on the planarization layer 240. In the case of image display, the light emitting element 12 is provided for each pixel, and the plurality of light emitting elements 12 are arranged on the planarization layer 240.

有機層60の発光光は、透明電極50、平坦化層240、凹凸層230、透明基板20を透過し、透明基板20の光取り出し面21から外部に放出される。光取り出し面21は、透明基板20における凹凸層230側と反対側の面である。   The light emitted from the organic layer 60 is transmitted through the transparent electrode 50, the planarization layer 240, the uneven layer 230, and the transparent substrate 20, and is emitted to the outside from the light extraction surface 21 of the transparent substrate 20. The light extraction surface 21 is a surface on the opposite side to the uneven layer 230 side in the transparent substrate 20.

本実施形態では、凹凸層230が複数のレンズ231を形成する。レンズ231は、平坦化層240側に設けられる。以下の説明で、レンズ231での入射角、反射角は、光取り出し面21に対して垂直な方向(以下、「正面方向」という)と、光の進行方向とのなす角を意味する。   In the present embodiment, the uneven layer 230 forms a plurality of lenses 231. The lens 231 is provided on the planarization layer 240 side. In the following description, the incident angle and the reflection angle at the lens 231 mean an angle formed by a direction perpendicular to the light extraction surface 21 (hereinafter referred to as “front direction”) and a light traveling direction.

(凹凸層)
凹凸層230は、例えばインプリント法で透明基板20上に形成される。インプリント法では、透明基板20とモールドとの間に成形材料の層を挟み、モールドの凹凸パターンが転写した凹凸層230を透明基板20上に形成する。凹凸層230の凹凸パターンは、モールドの凹凸パターンが略反転したパターンである。成形材料の層は、必要に応じて、後述の光散乱材を含む。
(Uneven layer)
The uneven layer 230 is formed on the transparent substrate 20 by, for example, an imprint method. In the imprint method, a layer of a molding material is sandwiched between the transparent substrate 20 and a mold, and an uneven layer 230 to which the uneven pattern of the mold is transferred is formed on the transparent substrate 20. The concavo-convex pattern of the concavo-convex layer 230 is a pattern in which the concavo-convex pattern of the mold is substantially inverted. The layer of a molding material contains the below-mentioned light-scattering material as needed.

尚、本実施形態の凹凸層230は、インプリント法で形成されるが、フォトリソグラフィ法、EB描画法、干渉露光法等で形成されてもよい。   In addition, although the uneven | corrugated layer 230 of this embodiment is formed by the imprint method, you may form by the photolithographic method, EB drawing method, interference exposure method, etc.

凹凸層230は、複数のレンズ231を形成する。複数のレンズ231は、周期的に配列され、例えば正六方格子状、準六方格子状、正四方格子状、準四方格子状に配列される。最も近いレンズ231同士のピッチP3は、可視光の波長よりも十分に大きい(5μm<P3≦50μm)。レンズ231は、図13に示すように平坦化層240側から見て凹レンズでもよいし、凸レンズでもよい。   The uneven layer 230 forms a plurality of lenses 231. The plurality of lenses 231 are periodically arranged, for example, in a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape. The pitch P3 between the closest lenses 231 is sufficiently larger than the wavelength of visible light (5 μm <P3 ≦ 50 μm). As shown in FIG. 13, the lens 231 may be a concave lens or a convex lens as viewed from the planarization layer 240 side.

レンズ231は、平坦化層240から凹凸層230へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。   The lens 231 transmits light incident at various incident angles from the planarizing layer 240 to the concave-convex layer 230, and aligns the direction of most transmitted light in the front direction. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved.

レンズ231は、平坦化層240から凹凸層230へ入射するときの光の全反射を抑える役割を果たす。   The lens 231 plays a role of suppressing total reflection of light when entering the uneven layer 230 from the planarizing layer 240.

図14は、図13のレンズによって光の全反射が低減されることを説明するための図である。図14において、便宜上、発光素子12、光散乱材234、244の図示を省略する。   FIG. 14 is a diagram for explaining that the total reflection of light is reduced by the lens of FIG. In FIG. 14, illustration of the light emitting element 12 and the light scattering materials 234 and 244 is omitted for convenience.

一般的に、隣接する高屈折率層と低屈折率層との間の界面が平坦な場合、高屈折率層から低屈折率層に臨界角以上の入射角で入射する光は全反射してしまう。   In general, when the interface between the adjacent high refractive index layer and the low refractive index layer is flat, light incident from the high refractive index layer to the low refractive index layer at an incident angle greater than the critical angle is totally reflected. End up.

本実施形態では、高屈折率層としての平坦化層240と、低屈折率層としての凹凸層230との界面が微細な凹凸構造を有し、凹凸層230がレンズ231を形成する。そのため、界面が平坦な場合に全反射してしまう光の大部分が、図14に示すようにレンズ231の曲面を透過し、凹凸層230内を伝播する。よって、平坦化層240から凹凸層230へ入射するときの光の全反射を抑えることができる。   In this embodiment, the interface between the planarization layer 240 as the high refractive index layer and the uneven layer 230 as the low refractive index layer has a fine uneven structure, and the uneven layer 230 forms the lens 231. Therefore, most of the light that is totally reflected when the interface is flat passes through the curved surface of the lens 231 and propagates through the uneven layer 230 as shown in FIG. Therefore, it is possible to suppress the total reflection of light when entering the concavo-convex layer 230 from the planarizing layer 240.

尚、界面が平坦な場合に界面で全反射せずに界面を透過する光の大部分が、レンズ231を透過するように、レンズ231のピッチP3や高さが最適化されてよい。   In addition, when the interface is flat, the pitch P3 and the height of the lens 231 may be optimized so that most of the light transmitted through the interface without being totally reflected at the interface is transmitted through the lens 231.

ところで、屈折を利用するレンズの場合、レンズを透過した光の波長ごとに、透過光の強度が強くなる角度が異なる。   By the way, in the case of a lens using refraction, the angle at which the intensity of transmitted light is increased differs for each wavelength of light transmitted through the lens.

そこで、凹凸層230は、図13に示すように、樹脂等の基材233、及び基材233中に分散する光散乱材234を含んでよい。光散乱材234は、凹凸層230内を伝播する光を散乱することで、光の強度の角度依存性を低減し、また、光の色(波長)の角度依存性を低減する。   Therefore, as shown in FIG. 13, the uneven layer 230 may include a base material 233 such as a resin and a light scattering material 234 dispersed in the base material 233. The light scattering material 234 scatters the light propagating through the uneven layer 230, thereby reducing the angle dependency of the light intensity, and reducing the angle dependency of the color (wavelength) of the light.

基材233は、基材233と透明基板20との界面での反射を抑えるため、第1実施形態と同様に、透明基板20との屈折率差が0.3以下の材料で構成されることが好ましい。基材233の屈折率は、透明基板20の屈折率よりも高くても低くてもよいが、透明基板20の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 233 and the transparent substrate 20, the base material 233 is made of a material having a refractive index difference with the transparent substrate 20 of 0.3 or less, as in the first embodiment. Is preferred. The refractive index of the base material 233 may be higher or lower than the refractive index of the transparent substrate 20, but is preferably equal to or lower than the refractive index of the transparent substrate 20.

光散乱材234は、基材233と異なる屈折率を有し、基材233よりも低い屈折率を有する空気、基材233よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 234 has a refractive index different from that of the base material 233, and is composed of air having a lower refractive index than the base material 233, a metal oxide having a higher refractive index than the base material 233, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材234の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材234の平均球相当径が10μmを超えると、光散乱材234が基材233中に分散しにくく、偏在しやすい。一方、光散乱材234の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 234 is preferably 300 nm to 10 μm. If the average equivalent sphere diameter of the light scattering material 234 exceeds 10 μm, the light scattering material 234 is difficult to disperse in the base material 233 and tends to be unevenly distributed. On the other hand, when the average sphere equivalent diameter of the light scattering material 234 is less than 300 nm, since the wavelength of visible light is too short, Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong. Efficiency is reduced.

光散乱材234の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなり、凹凸層230内を伝播する光の向きを正面方向に揃えることができる。   When the average equivalent sphere diameter of the light scattering material 234 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant, forward scattering becomes strong, and the direction of light propagating in the uneven layer 230 is aligned in the front direction. be able to.

(平坦化層)
平坦化層240は、凹凸層230上に設けられ、凹凸層230の凹凸を吸収する。平坦化層240の平坦面上に設けられる透明電極50、有機層60、及び反射電極70が設計通りの性能を発揮できる。
(Flattening layer)
The planarization layer 240 is provided on the uneven layer 230 and absorbs the unevenness of the uneven layer 230. The transparent electrode 50, the organic layer 60, and the reflective electrode 70 provided on the flat surface of the flattening layer 240 can exhibit the performance as designed.

平坦化層240は、例えばウェットコート法で凹凸層230の凹凸面上に形成される。平坦化層240の形成前に、凹凸層230を熱処理する工程が行われてよい。凹凸層230の樹脂の重合率の向上や、凹凸層230の複屈折の除去が可能である。   The planarization layer 240 is formed on the uneven surface of the uneven layer 230 by, for example, a wet coat method. Before the planarization layer 240 is formed, a step of heat treating the uneven layer 230 may be performed. It is possible to improve the polymerization rate of the resin of the uneven layer 230 and to remove the birefringence of the uneven layer 230.

平坦化層240は、樹脂等の基材243、及び基材243中に分散する光散乱材244を含んでよい。光散乱材244は、凹凸層230の光散乱材234と同様に、平坦化層240内を伝播する光の向きを正面方向に揃え、平坦化層240からレンズ231に入射する光の向きを正面方向に揃える。   The planarization layer 240 may include a base material 243 such as a resin and a light scattering material 244 dispersed in the base material 243. Similar to the light scattering material 234 of the concavo-convex layer 230, the light scattering material 244 aligns the direction of light propagating in the planarization layer 240 with the front direction, and the direction of light incident on the lens 231 from the planarization layer 240 is the front direction. Align in the direction.

一般的に、レンズに入射する光の向きが正面方向に揃っているほど、レンズを透過する光の向きが正面方向に揃いやすい。   Generally, the more the direction of light incident on the lens is aligned in the front direction, the easier it is for the direction of light transmitted through the lens to be aligned in the front direction.

本実施形態では、平坦化層240からレンズ231に入射する光の向きが正面方向に揃っているので、レンズ231を透過する光の向きが正面方向に効率的に揃いやすく、光取り出し効率が向上する。   In the present embodiment, since the direction of light incident on the lens 231 from the planarization layer 240 is aligned in the front direction, the direction of light transmitted through the lens 231 is easily aligned efficiently in the front direction, and light extraction efficiency is improved. To do.

基材243は、基材243と透明電極50との界面での反射を抑えるため、第1実施形態と同様に、透明電極50との屈折率差が0.3以下の材料で構成されることが好ましい。基材243の屈折率は、透明電極50の屈折率よりも高くても低くてもよいが、透明電極50の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 243 and the transparent electrode 50, the base material 243 is made of a material having a refractive index difference with the transparent electrode 50 of 0.3 or less, as in the first embodiment. Is preferred. The refractive index of the substrate 243 may be higher or lower than the refractive index of the transparent electrode 50, but is preferably equal to or lower than the refractive index of the transparent electrode 50.

基材243は、凹凸層230の基材233と異なる屈折率を有する。基材243は、透明基板20よりも高い屈折率を有する透明電極50と接するので、透明基板20と接する凹凸層230の基材233よりも高い屈折率を有することが好ましい。   The base material 243 has a refractive index different from that of the base material 233 of the uneven layer 230. Since the base material 243 is in contact with the transparent electrode 50 having a higher refractive index than the transparent substrate 20, the base material 243 preferably has a higher refractive index than the base material 233 of the uneven layer 230 in contact with the transparent substrate 20.

光散乱材244は、基材243と異なる屈折率を有し、基材243よりも低い屈折率を有する空気、基材243よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 244 has a refractive index different from that of the base material 243 and is composed of air having a lower refractive index than the base material 243, a metal oxide having a higher refractive index than the base material 243, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材244の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材244の平均球相当径が10μmを超えると、光散乱材244が基材243中に分散しにくく、偏在しやすい。光散乱材244の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 244 is preferably 300 nm to 10 μm. If the average equivalent sphere diameter of the light scattering material 244 exceeds 10 μm, the light scattering material 244 is difficult to disperse in the base material 243 and tends to be unevenly distributed. If the average equivalent sphere diameter of the light scattering material 244 is less than 300 nm, it is too short than the wavelength of visible light, so Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong, so that the light extraction efficiency is improved. descend.

光散乱材244の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなる。光散乱材244の平均球相当径が300nm〜10μmであると、平坦化層240内を伝播する光の向きを正面方向に揃えることができる。   When the average spherical equivalent diameter of the light scattering material 244 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant and forward scattering becomes strong. When the average sphere equivalent diameter of the light scattering material 244 is 300 nm to 10 μm, the direction of light propagating in the planarization layer 240 can be aligned in the front direction.

光取り出し面21に臨界角以上の入射角で入射する光は、光取り出し面21で全反射される。全反射された光は、光取り出し面21と光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、レンズ231を透過することで、また、光散乱材234、244で繰り返し散乱されることで、臨界角未満の入射角に変化し、最終的に光取り出し面21から外部に放出される。   Light incident on the light extraction surface 21 at an incident angle greater than the critical angle is totally reflected by the light extraction surface 21. The totally reflected light passes through the lens 231 during one or more round trips between the light extraction surface 21 and the light reflection surface (for example, the interface between the reflective electrode 70 and the organic layer 60), By being repeatedly scattered by the scattering materials 234 and 244, the incident angle is changed to an incident angle less than the critical angle and finally emitted from the light extraction surface 21 to the outside.

尚、本実施形態では凹凸層230及び平坦化層240の両方が光散乱材を含むが、いずれか一方が光散乱材を含んでいればよい。   In the present embodiment, both the concavo-convex layer 230 and the planarization layer 240 include a light scattering material, but either one may include a light scattering material.

例えば、図15に示すように、凹凸層230が光散乱材234を含み、平坦化層243が光散乱材244を含まなくてもよい。図15に示す例(第1変形例)の場合、レンズ231は、平坦化層243から凹凸層230へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。また、レンズ231は、平坦化層243から凹凸層230へ入射するときの光の全反射を抑える役割を果たす。凹凸層230中の光散乱材234は、凹凸層230内を伝播する光を散乱し、レンズ231による光の強度の角度依存性を低減し、また、レンズ231による光の色(波長)の角度依存性を低減する。また、凹凸層230中の光散乱材234は、凹凸層230内を伝播する光の向きを正面方向に揃え、光取り出し効率を向上する。   For example, as illustrated in FIG. 15, the uneven layer 230 may include the light scattering material 234, and the planarization layer 243 may not include the light scattering material 244. In the case of the example shown in FIG. 15 (first modification), the lens 231 transmits light incident from the planarizing layer 243 to the uneven layer 230 at various incident angles, and the direction of most of the transmitted light is directed to the front direction. Align. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved. Further, the lens 231 plays a role of suppressing total reflection of light when entering the uneven layer 230 from the planarizing layer 243. The light scattering material 234 in the concavo-convex layer 230 scatters the light propagating through the concavo-convex layer 230, reduces the angle dependency of the light intensity by the lens 231, and the angle of the color (wavelength) of the light by the lens 231. Reduce dependency. Further, the light scattering material 234 in the uneven layer 230 aligns the direction of light propagating in the uneven layer 230 with the front direction, and improves the light extraction efficiency.

また、図16に示すように、平坦化層240が光散乱材244を含み、凹凸層233が光散乱材234を含まなくてもよい。図15に示す例(第2変形例)の場合、レンズ231が、平坦化層240から凹凸層233へ様々な入射角で入射する光を透過させ、大部分の透過光の向きを正面方向に揃える。よって、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上することができる。また、レンズ231は、平坦化層240から凹凸層233へ入射するときの光の全反射を抑える役割を果たす。平坦化層240中の光散乱材244は、平坦化層240内を伝搬する光の向きを正面方向に揃える。平坦化層240からレンズ231に入射する光の向きが正面方向に揃い、レンズ231を透過する光の向きが正面方向に効率的に揃いやすく、光取り出し効率がさらに向上する。   Further, as shown in FIG. 16, the planarization layer 240 may include the light scattering material 244 and the uneven layer 233 may not include the light scattering material 234. In the case of the example shown in FIG. 15 (second modification), the lens 231 transmits light incident at various incident angles from the planarizing layer 240 to the uneven layer 233, and the direction of most of the transmitted light is directed to the front direction. Align. Therefore, total reflection at the interface such as the light extraction surface 21 can be suppressed, and the light extraction efficiency can be improved. In addition, the lens 231 plays a role of suppressing total reflection of light when entering the uneven layer 233 from the planarizing layer 240. The light scattering material 244 in the planarization layer 240 aligns the direction of light propagating in the planarization layer 240 with the front direction. The direction of light incident on the lens 231 from the planarizing layer 240 is aligned in the front direction, the direction of light transmitted through the lens 231 is easily aligned in the front direction, and the light extraction efficiency is further improved.

[第4実施形態]
上記第1実施形態では、凹凸層30が回折格子31を形成する。一方、本実施形態では、凹凸層がモスアイ構造を有する点で相違する。以下、主に相違点について説明する。
[Fourth Embodiment]
In the first embodiment, the concavo-convex layer 30 forms the diffraction grating 31. On the other hand, the present embodiment is different in that the uneven layer has a moth-eye structure. Hereinafter, differences will be mainly described.

図17は、本発明の第4実施形態による有機LED素子を示す断面図である。図17において、便宜上、モスアイ構造331の凹凸を誇張して示す。   FIG. 17 is a sectional view showing an organic LED element according to the fourth embodiment of the present invention. In FIG. 17, the unevenness of the moth-eye structure 331 is exaggerated for convenience.

有機LED素子310は、ボトムエミッションタイプであって、透明基板20、凹凸層330、平坦化層340、透明電極50、有機層60、及び反射電極70をこの順で有する。透明基板20、凹凸層330、及び平坦化層340で積層基板311が構成され、透明電極50、有機層60、及び反射電極70等で発光素子12が構成される。照明用の場合、1つの発光素子12が平坦化層340上に形成されてよい。画像表示用の場合、発光素子12は画素毎に設けられ、複数の発光素子12が平坦化層340上に配列される。   The organic LED element 310 is a bottom emission type, and includes the transparent substrate 20, the uneven layer 330, the planarization layer 340, the transparent electrode 50, the organic layer 60, and the reflective electrode 70 in this order. The laminated substrate 311 is constituted by the transparent substrate 20, the uneven layer 330, and the planarizing layer 340, and the light emitting element 12 is constituted by the transparent electrode 50, the organic layer 60, the reflective electrode 70, and the like. In the case of illumination, one light emitting element 12 may be formed on the planarization layer 340. In the case of image display, the light emitting element 12 is provided for each pixel, and the plurality of light emitting elements 12 are arranged on the planarization layer 340.

有機層60の発光光は、透明電極50、平坦化層340、凹凸層330、透明基板20を透過し、透明基板20の光取り出し面21から外部に放出される。光取り出し面21は、透明基板20における凹凸層330側と反対側の面である。   The light emitted from the organic layer 60 is transmitted through the transparent electrode 50, the planarization layer 340, the uneven layer 330, and the transparent substrate 20, and is emitted to the outside from the light extraction surface 21 of the transparent substrate 20. The light extraction surface 21 is a surface on the opposite side to the uneven layer 330 side in the transparent substrate 20.

本実施形態では、凹凸層330がモスアイ構造331を有する。モスアイ構造331は、平坦化層340側に設けられる。以下の説明で、モスアイ構造331での入射角、反射角は、光取り出し面21に対して垂直な方向(以下、「正面方向」という)と、光の進行方向とのなす角を意味する。   In the present embodiment, the uneven layer 330 has a moth-eye structure 331. The moth-eye structure 331 is provided on the planarization layer 340 side. In the following description, the incident angle and the reflection angle in the moth-eye structure 331 mean an angle formed by a direction perpendicular to the light extraction surface 21 (hereinafter referred to as “front direction”) and the light traveling direction.

(凹凸層)
凹凸層330は、例えばインプリント法で透明基板20上に形成される。インプリント法では、透明基板20上に設けられる成形材料の層の表面にモールドの凹凸パターンを転写することにより凹凸層330を形成する。凹凸層330は、モールドの凹凸パターンが略反転した凹凸パターンを有する。成形材料の層は、必要に応じて、後述の光散乱材を含む。
(Uneven layer)
The uneven layer 330 is formed on the transparent substrate 20 by, for example, an imprint method. In the imprint method, the concavo-convex layer 330 is formed by transferring the concavo-convex pattern of the mold onto the surface of the layer of the molding material provided on the transparent substrate 20. The uneven layer 330 has an uneven pattern in which the uneven pattern of the mold is substantially inverted. The layer of a molding material contains the below-mentioned light-scattering material as needed.

尚、本実施形態の凹凸層330は、インプリント法で形成されるが、フォトリソグラフィ法、EB描画法、干渉露光法等で形成されてもよい。   In addition, although the uneven | corrugated layer 330 of this embodiment is formed by the imprint method, you may form by the photolithographic method, EB drawing method, interference exposure method, etc.

凹凸層330の平坦化層340側の部分は、モスアイ構造331を構成する。モスアイ構造331は複数の凸部を有し、複数の凸部の底面は同一平面上に配列される。複数の凸部は、周期的に配列され、例えば正六方格子状、準六方格子状、正四方格子状、準四方格子状に配列される。最も近い凸部同士のピッチP4は、可視光の波長以下(P4≦300nm)であり、代表的には250nmである。凸部の高さH4は、代表的には300nmである。隣り合う凸部は、接していても離れていてもよいが、凹凸層330と平坦化層340との界面での反射率を効率的に低減するため、裾部が重なるように配置されていることが好ましい。凸部の形状は、多種多様であってよく、例えば円錐形状、円錐台形状、角錐形状、角錐台形状、釣鐘形状等が挙げられる。   A portion of the uneven layer 330 on the flattening layer 340 side constitutes a moth-eye structure 331. The moth-eye structure 331 has a plurality of protrusions, and the bottom surfaces of the plurality of protrusions are arranged on the same plane. The plurality of convex portions are periodically arranged, for example, in a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape. The pitch P4 between the nearest convex portions is equal to or less than the wavelength of visible light (P4 ≦ 300 nm), and is typically 250 nm. The height H4 of the convex portion is typically 300 nm. Adjacent protrusions may be in contact or separated from each other, but are arranged so that the skirts overlap in order to efficiently reduce the reflectance at the interface between the uneven layer 330 and the planarization layer 340. It is preferable. The shape of the convex portion may be various, and examples thereof include a cone shape, a truncated cone shape, a pyramid shape, a truncated pyramid shape, and a bell shape.

図18は、図17のモスアイ構造331による光の透過の説明図である。図18において、便宜上、発光素子12、光散乱材334、344の図示を省略する。   FIG. 18 is an explanatory diagram of light transmission by the moth-eye structure 331 of FIG. In FIG. 18, illustration of the light emitting element 12 and the light scattering materials 334 and 344 is omitted for convenience.

モスアイ構造331では、光取り出し面21と垂直な方向における屈折率が連続的に変化するので、光の入射角や光の波長に関係なく反射率が低く(1%以下)、透過率が高く、図18に矢印で示すようにほとんどの光が透過するので、光取り出し効率が良い。また、従来の多層膜による反射率低減膜(Anti−Reflection=AR)膜と比べて、モスアイ構造331では、光の回折や光の分光が生じないので、見る角度が変わるときに光取り出し面21の明るさや色(波長)が変わりにくい。   In the moth-eye structure 331, since the refractive index in the direction perpendicular to the light extraction surface 21 continuously changes, the reflectance is low (1% or less) and the transmittance is high regardless of the incident angle of light and the wavelength of light. Since most of the light is transmitted as shown by the arrows in FIG. 18, the light extraction efficiency is good. In addition, the moth-eye structure 331 does not cause light diffraction or light spectroscopy as compared with a conventional multilayer-film reflectance reduction film (Anti-Reflection = AR) film, and therefore the light extraction surface 21 when the viewing angle changes. The brightness and color (wavelength) of the are difficult to change.

凹凸層330は、樹脂等の基材333、及び基材333中に分散する光散乱材334を含んでよい。凹凸層330を透過する光は、光散乱材334で散乱され、光取り出し面21に入射する。この入射角が臨界角未満の光は、光取り出し面21から外部に放出される。一方、この入射角が臨界角以上の光の大部分は、光取り出し面21で全反射された後、光取り出し面21と、光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、光散乱材334によって繰り返し散乱され、臨界角未満の入射角に変化し、最終的に光取り出し面21から取り出される。   The uneven layer 330 may include a base material 333 such as a resin and a light scattering material 334 dispersed in the base material 333. The light transmitted through the uneven layer 330 is scattered by the light scattering material 334 and enters the light extraction surface 21. Light having an incident angle less than the critical angle is emitted from the light extraction surface 21 to the outside. On the other hand, most of the light whose incident angle is greater than or equal to the critical angle is totally reflected by the light extraction surface 21, and then the light extraction surface 21 and the light reflection surface (for example, the interface between the reflective electrode 70 and the organic layer 60). While being reciprocated once or more, the light scattering material 334 repeatedly scatters, changes to an incident angle less than the critical angle, and is finally extracted from the light extraction surface 21.

基材333は、基材333と透明基板20との界面での反射を抑えるため、第1実施形態と同様に、透明基板20との屈折率差が0.3以下の材料で構成されることが好ましい。基材333の屈折率は、透明基板20の屈折率よりも高くても低くてもよいが、透明基板20の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 333 and the transparent substrate 20, the base material 333 is made of a material having a refractive index difference from the transparent substrate 20 of 0.3 or less, as in the first embodiment. Is preferred. The refractive index of the base material 333 may be higher or lower than the refractive index of the transparent substrate 20, but is preferably equal to or lower than the refractive index of the transparent substrate 20.

光散乱材334は、基材333と異なる屈折率を有し、基材333よりも低い屈折率を有する空気、基材333よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 334 has a refractive index different from that of the base material 333 and is composed of air having a lower refractive index than the base material 333, a metal oxide having a higher refractive index than the base material 333, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材334の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材334の平均球相当径が10μmを超えると、光散乱材334が基材333中に分散しにくく、偏在しやすい。一方、光散乱材334の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 334 is preferably 300 nm to 10 μm. If the average equivalent sphere diameter of the light scattering material 334 exceeds 10 μm, the light scattering material 334 is difficult to disperse in the base material 333 and tends to be unevenly distributed. On the other hand, when the average sphere equivalent diameter of the light scattering material 334 is less than 300 nm, since the wavelength of visible light is too short, Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong. Efficiency is reduced.

光散乱材334の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなり、凹凸層330内を伝播する光の向きを正面方向に揃えることができ、光取り出し面21等の界面での全反射を低減できる。   When the average equivalent sphere diameter of the light scattering material 334 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant, forward scattering becomes strong, and the direction of light propagating in the uneven layer 330 is aligned in the front direction. Thus, total reflection at the interface such as the light extraction surface 21 can be reduced.

(平坦化層)
平坦化層340は、凹凸層330上に設けられ、凹凸層330の凹凸を吸収する。平坦化層340の平坦面上に設けられる透明電極50、有機層60、及び反射電極70が設計通りの性能を発揮できる。
(Flattening layer)
The planarization layer 340 is provided on the uneven layer 330 and absorbs the unevenness of the uneven layer 330. The transparent electrode 50, the organic layer 60, and the reflective electrode 70 provided on the flat surface of the flattening layer 340 can exhibit the performance as designed.

平坦化層340は、例えばウェットコート法で凹凸層330の凹凸面上に形成される。平坦化層340の形成前に、凹凸層330の樹脂の架橋反応を進める工程(例えば熱処理工程)が行われてよい。   The planarization layer 340 is formed on the uneven surface of the uneven layer 330 by, for example, a wet coat method. Before the planarization layer 340 is formed, a step (for example, a heat treatment step) for proceeding with a crosslinking reaction of the resin of the uneven layer 330 may be performed.

平坦化層340は、樹脂等の基材343、及び基材343中に分散する光散乱材344を含んでよい。平坦化層340を透過する光は、光散乱材344で散乱され、光取り出し面21に入射する。この入射角が臨界角未満の光は、光取り出し面21から外部に放出される。一方、この入射角が臨界角以上の光の大部分は、光取り出し面21で全反射された後、光取り出し面21と、光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、光散乱材344によって繰り返し散乱され、臨界角未満の入射角に変化し、最終的に光取り出し面21から取り出される。   The planarization layer 340 may include a base material 343 such as a resin and a light scattering material 344 dispersed in the base material 343. The light transmitted through the planarization layer 340 is scattered by the light scattering material 344 and enters the light extraction surface 21. Light having an incident angle less than the critical angle is emitted from the light extraction surface 21 to the outside. On the other hand, most of the light whose incident angle is greater than or equal to the critical angle is totally reflected by the light extraction surface 21, and then the light extraction surface 21 and the light reflection surface (for example, the interface between the reflective electrode 70 and the organic layer 60). While being reciprocated once or more, the light scattering material 344 repeatedly scatters, changes to an incident angle less than the critical angle, and finally is extracted from the light extraction surface 21.

基材343は、基材343と透明電極50との界面での反射を抑えるため、第1実施形態と同様に、透明電極50との屈折率差が0.3以下の材料で構成されることが好ましい。基材343の屈折率は、透明電極50の屈折率よりも高くても低くてもよいが、透明電極50の屈折率以下であることが好ましい。   In order to suppress reflection at the interface between the base material 343 and the transparent electrode 50, the base material 343 is made of a material having a refractive index difference from the transparent electrode 50 of 0.3 or less, as in the first embodiment. Is preferred. The refractive index of the base material 343 may be higher or lower than the refractive index of the transparent electrode 50, but is preferably equal to or lower than the refractive index of the transparent electrode 50.

基材343は、凹凸層330の基材333と異なる屈折率を有する。基材343は、透明基板20よりも高い屈折率を有する透明電極50と接するので、透明基板20と接する凹凸層330の基材333よりも高い屈折率を有することが好ましい。   The base material 343 has a refractive index different from that of the base material 333 of the uneven layer 330. Since the base material 343 is in contact with the transparent electrode 50 having a higher refractive index than the transparent substrate 20, the base material 343 preferably has a higher refractive index than the base material 333 of the uneven layer 330 in contact with the transparent substrate 20.

光散乱材344は、基材343と異なる屈折率を有し、基材343よりも低い屈折率を有する空気、基材343よりも高い屈折率を有する金属酸化物、又は両方で構成される。金属酸化物としては、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化スズ(SnO)等が挙げられる。 The light scattering material 344 has a refractive index different from that of the base material 343, and is formed of air having a lower refractive index than the base material 343, a metal oxide having a higher refractive index than the base material 343, or both. Examples of the metal oxide include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), and the like.

光散乱材344の平均球相当径(平均粒子径)は、好ましくは300nm〜10μmである。光散乱材344の平均球相当径が10μmを超えると、光散乱材344が基材343中に分散しにくく、偏在しやすい。光散乱材344の平均球相当径が300nm未満になると、可視光の波長よりも短すぎるので、レイリー散乱(図3参照)が支配的になり、後方散乱が強くなるので、光の取り出し効率が低下する。   The average sphere equivalent diameter (average particle diameter) of the light scattering material 344 is preferably 300 nm to 10 μm. If the average equivalent sphere diameter of the light scattering material 344 exceeds 10 μm, the light scattering material 344 is difficult to disperse in the base material 343 and tends to be unevenly distributed. If the average equivalent sphere diameter of the light scattering material 344 is less than 300 nm, it is too shorter than the wavelength of visible light, so Rayleigh scattering (see FIG. 3) becomes dominant and backscattering becomes strong. descend.

光散乱材344の平均球相当径が300nm〜10μmの場合、ミー散乱(図4参照)が支配的になり、前方散乱が強くなり、凹凸層340内を伝播する光の向きを正面方向に揃えることができ、光取り出し面21等の界面での全反射を低減できる。   When the average equivalent sphere diameter of the light scattering material 344 is 300 nm to 10 μm, Mie scattering (see FIG. 4) becomes dominant, forward scattering becomes strong, and the direction of light propagating in the uneven layer 340 is aligned in the front direction. Thus, total reflection at the interface such as the light extraction surface 21 can be reduced.

尚、本実施形態では凹凸層330及び平坦化層340の両方が光散乱材を含むが、いずれか一方が光散乱材を含んでいればよい。   In the present embodiment, both the concavo-convex layer 330 and the planarization layer 340 include a light scattering material, but either one may include a light scattering material.

例えば、図19に示すように、凹凸層330が光散乱材334を含み、平坦化層343が光散乱材344を含まなくてもよい。図19に示す例(第1変形例)の場合、モスアイ構造331は、光の入射角や光の波長に関係なく反射率が低く(1%以下)、透過率が高く、光取り出し効率が良い。また、光取り出し面21に臨界角以上の入射角で入射する光の大部分は、光取り出し面21で全反射された後、光取り出し面21と、光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、凹凸層330中の光散乱材334によって繰り返し散乱され、臨界角未満の入射角に変化し、最終的に光取り出し面21から取り出される。また、凹凸層330中の散乱材334は、凹凸層330内を伝播する光の向きを正面方向に揃え、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上する。   For example, as illustrated in FIG. 19, the uneven layer 330 may include the light scattering material 334, and the planarization layer 343 may not include the light scattering material 344. In the case of the example shown in FIG. 19 (first modified example), the moth-eye structure 331 has low reflectance (1% or less), high transmittance, and good light extraction efficiency regardless of the incident angle of light and the wavelength of light. . Also, most of the light incident on the light extraction surface 21 at an incident angle greater than the critical angle is totally reflected by the light extraction surface 21, and then the light extraction surface 21 and the light reflection surface (for example, the reflective electrode 70 and the organic layer). The light scattering material 334 in the concavo-convex layer 330 repeatedly scatters and changes to an incident angle less than the critical angle, and finally is extracted from the light extraction surface 21. . In addition, the scattering material 334 in the uneven layer 330 aligns the direction of light propagating in the uneven layer 330 with the front direction, suppresses total reflection at the interface such as the light extraction surface 21, and improves light extraction efficiency.

また、図20に示すように、平坦化層340が光散乱材344を含み、凹凸層333が光散乱材334を含まなくてもよい。図20に示す例(第2変形例)の場合、モスアイ構造331は、光の入射角や光の波長に関係なく反射率が低く(1%以下)、透過率が高く、光取り出し効率が良い。また、光取り出し面21に臨界角以上の入射角で入射する光の大部分は、光取り出し面21で全反射された後、光取り出し面21と、光反射面(例えば反射電極70と有機層60の界面)との間を1回以上往復する間に、平坦化層340中の光散乱材344によって繰り返し散乱され、臨界角未満の入射角に変化し、最終的に光取り出し面21から取り出される。また、平坦化層340中の散乱材344は、平坦化層340内を伝播する光の向きを正面方向に揃え、光取り出し面21等の界面での全反射を抑え、光取り出し効率を向上する。   In addition, as illustrated in FIG. 20, the planarization layer 340 may include the light scattering material 344 and the uneven layer 333 may not include the light scattering material 334. In the case of the example shown in FIG. 20 (second modified example), the moth-eye structure 331 has low reflectance (1% or less), high transmittance, and good light extraction efficiency regardless of the incident angle of light and the wavelength of light. . Also, most of the light incident on the light extraction surface 21 at an incident angle greater than the critical angle is totally reflected by the light extraction surface 21, and then the light extraction surface 21 and the light reflection surface (for example, the reflective electrode 70 and the organic layer). 60), the light scattering material 344 in the planarization layer 340 is repeatedly scattered by the light scattering material 344, changes to an incident angle less than the critical angle, and finally is extracted from the light extraction surface 21. It is. In addition, the scattering material 344 in the planarization layer 340 aligns the direction of light propagating in the planarization layer 340 with the front direction, suppresses total reflection at the interface such as the light extraction surface 21, and improves light extraction efficiency. .

以上、有機LED素子用の積層基板等について第1〜第4実施形態等を説明したが、本発明は上記実施形態に制限されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。   As mentioned above, although 1st-4th embodiment etc. were demonstrated about the laminated substrate for organic LED elements, this invention is not restrict | limited to the said embodiment. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.

10 有機LED素子
11 有機LED素子用の積層基板
12 発光素子
20 透明基板
30 凹凸層
31 回折格子
33 基材
34 光散乱材
40 平坦化層
43 基材
44 光散乱材
50 透明電極
60 有機層
70 反射電極
130 凹凸層
131 プリズム
230 凹凸層
231 レンズ
330 凹凸層
331 モスアイ構造
DESCRIPTION OF SYMBOLS 10 Organic LED element 11 Laminated substrate 12 for organic LED elements Light emitting element 20 Transparent substrate 30 Concavity and convexity layer 31 Diffraction grating 33 Base material 34 Light scattering material 40 Planarization layer 43 Base material 44 Light scattering material 50 Transparent electrode 60 Organic layer 70 Reflection Electrode 130 Concavity and convexity layer 131 Prism 230 Concavity and convexity layer 231 Lens 330 Concavity and convexity layer 331 Mosaic structure

Claims (9)

透明基板、該透明基板上に設けられる凹凸層、及び該凹凸層の凹凸面上に設けられる平坦化層を備え、有機層の発光光を、前記平坦化層、及び前記凹凸層を介して、前記透明基板における前記凹凸層側と反対側の面から外部に取り出すためのものであって、
前記凹凸層は、基材、及び該基材中に分散する光散乱材を含み、回折格子を形成する、有機LED素子用の積層基板。
Comprising a transparent substrate, a concavo-convex layer provided on the transparent substrate, and a planarization layer provided on the concavo-convex surface of the concavo-convex layer, and emitting light of the organic layer through the planarization layer and the concavo-convex layer, For taking out from the surface opposite to the concavo-convex layer side in the transparent substrate,
The uneven layer, the substrate, and a light scattering material dispersed in the base material seen including, forming a diffraction grating, laminated substrate for an organic LED element.
透明基板、該透明基板上に設けられる凹凸層、及び該凹凸層の凹凸面上に設けられる平坦化層を備え、有機層の発光光を、前記平坦化層、及び前記凹凸層を介して、前記透明基板における前記凹凸層側と反対側の面から外部に取り出すためのものであって、
前記凹凸層は、基材、及び該基材中に分散する光散乱材を含み、周期的に配列される複数のプリズムを形成する有機LED素子用の積層基板。
Comprising a transparent substrate, a concavo-convex layer provided on the transparent substrate, and a planarization layer provided on the concavo-convex surface of the concavo-convex layer, and emitting light of the organic layer through the planarization layer and the concavo-convex layer, For taking out from the surface opposite to the concavo-convex layer side in the transparent substrate,
The uneven layer includes a substrate, and a light scattering material dispersed in the base material to form a plurality of prisms that are periodically arranged, laminated substrate for an organic LED element.
透明基板、該透明基板上に設けられる凹凸層、及び該凹凸層の凹凸面上に設けられる平坦化層を備え、有機層の発光光を、前記平坦化層、及び前記凹凸層を介して、前記透明基板における前記凹凸層側と反対側の面から外部に取り出すためのものであって、
前記凹凸層は、基材、及び該基材中に分散する光散乱材を含み、周期的に配列される複数のレンズを形成する有機LED素子用の積層基板。
A transparent substrate, a concavo-convex layer provided on the transparent substrate, and a flattening layer provided on the concavo-convex surface of the concavo-convex layer, and emitting light of the organic layer through the flattening layer and the concavo-convex layer, For taking out from the surface opposite to the concavo-convex layer side in the transparent substrate,
The uneven layer includes a substrate, and a light scattering material dispersed in the base material to form a plurality of lenses that are periodically arranged, laminated substrate for an organic LED element.
透明基板、該透明基板上に設けられる凹凸層、及び該凹凸層の凹凸面上に設けられる平坦化層を備え、有機層の発光光を、前記平坦化層、及び前記凹凸層を介して、前記透明基板における前記凹凸層側と反対側の面から外部に取り出すためのものであって、
前記凹凸層は、基材、及び該基材中に分散する光散乱材を含み、複数の凸部が周期的に配列されるモスアイ構造を有する有機LED素子用の積層基板。
Comprising a transparent substrate, a concavo-convex layer provided on the transparent substrate, and a planarization layer provided on the concavo-convex surface of the concavo-convex layer, and emitting light of the organic layer through the planarization layer and the concavo-convex layer, For taking out from the surface opposite to the concavo-convex layer side in the transparent substrate,
The uneven layer, the substrate, and includes a light scattering material dispersed in the base material, has a moth-eye structure in which a plurality of convex portions are periodically arranged, laminated substrate for an organic LED element.
前記凹凸層中の光散乱材は金属酸化物の粒子であって、該粒子の平均粒径が300nm〜10μmである請求項1〜4のいずれか一項に記載の有機LED素子用の積層基板。 The multilayer substrate for an organic LED element according to any one of claims 1 to 4, wherein the light scattering material in the concavo-convex layer is a metal oxide particle, and the average particle size of the particle is 300 nm to 10 µm. . 前記平坦化層は、基材、及び該基材中に分散する光散乱材を含む、請求項1〜5のいずれか一項に記載の有機LED素子用の積層基板。 The said planarization layer is a laminated substrate for organic LED elements as described in any one of Claims 1-5 containing the base material and the light-scattering material disperse | distributed in this base material. 前記平坦化層中の光散乱材は金属酸化物の粒子であって、該粒子の平均粒径が300nm〜10μmである請求項に記載の有機LED素子用の積層基板。 The light-scattering material in the said planarization layer is a particle | grain of metal oxide, Comprising: The average particle diameter of this particle | grain is 300 nm-10 micrometers, The laminated substrate for organic LED elements of Claim 6 . 請求項1〜のいずれか一項に記載の積層基板、及び該積層基板の前記平坦化層上に設けられる透明電極を含む透明電極付き積層基板。 Transparent electrode laminated substrate comprising a laminated substrate, and the transparent electrode provided on the planarization layer of the laminated substrate according to any one of claims 1-7. 請求項1〜のいずれか一項に記載の積層基板、及び該積層基板の前記平坦化層上に設けられる発光素子を含む有機LED素子。 The laminated substrate according to any one of claims 1 to 7 and an organic LED element including a light emitting element provided in the laminate the planarization layer on the substrate.
JP2012149963A 2012-07-03 2012-07-03 Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element Active JP6155566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149963A JP6155566B2 (en) 2012-07-03 2012-07-03 Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149963A JP6155566B2 (en) 2012-07-03 2012-07-03 Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element

Publications (2)

Publication Number Publication Date
JP2014013668A JP2014013668A (en) 2014-01-23
JP6155566B2 true JP6155566B2 (en) 2017-07-05

Family

ID=50109243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149963A Active JP6155566B2 (en) 2012-07-03 2012-07-03 Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element

Country Status (1)

Country Link
JP (1) JP6155566B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166764A1 (en) * 2014-04-28 2015-11-05 コニカミノルタ株式会社 Light extraction layered body, organic electroluminescence element, and method for manufacturing same
JP6676872B2 (en) * 2014-09-10 2020-04-08 凸版印刷株式会社 EL element, lighting device, display device, and liquid crystal display device
US20170198882A1 (en) * 2014-09-26 2017-07-13 Konica Minolta, Inc. Light emitting device
JP2016100297A (en) * 2014-11-26 2016-05-30 凸版印刷株式会社 Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device
JP6575093B2 (en) * 2015-03-23 2019-09-18 東洋インキScホールディングス株式会社 Organic electroluminescence device and organic electroluminescence device
WO2017130278A1 (en) * 2016-01-25 2017-08-03 パイオニア株式会社 Light emitting device
US10777778B2 (en) 2017-06-26 2020-09-15 Kaneka Corporation Flexible organic EL panel
JPWO2019187265A1 (en) * 2018-03-26 2021-03-18 株式会社ホタルクス An organic EL element, an organic EL lighting device, and a film for light extraction that suppresses coloring of the organic EL element.
WO2021131010A1 (en) * 2019-12-27 2021-07-01 シャープ株式会社 Display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066814B2 (en) * 2005-03-11 2012-11-07 三菱化学株式会社 ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP2008010245A (en) * 2006-06-28 2008-01-17 Harison Toshiba Lighting Corp Light emitting device
JP5536977B2 (en) * 2007-03-30 2014-07-02 パナソニック株式会社 Surface emitter
JP2009245749A (en) * 2008-03-31 2009-10-22 Hitachi Displays Ltd Organic light-emitting element and method for manufacturing organic light-emitting element
JP5515799B2 (en) * 2010-01-29 2014-06-11 日本ゼオン株式会社 Laminate for surface light source device and surface light source device
JP5493923B2 (en) * 2010-01-29 2014-05-14 凸版印刷株式会社 Electroluminescence element, organic EL display, liquid crystal display device, lighting device
JP2011222421A (en) * 2010-04-13 2011-11-04 Asahi Kasei E-Materials Corp Light-emitting device
JP2012109262A (en) * 2012-01-30 2012-06-07 Japan Display Central Co Ltd Light emitting device

Also Published As

Publication number Publication date
JP2014013668A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP6155566B2 (en) Laminated substrate for organic LED element, laminated substrate with transparent electrode, and organic LED element
JP5711726B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
US20040217702A1 (en) Light extraction designs for organic light emitting diodes
TWI540780B (en) Organic electroluminescent element and lighting device
JP5297991B2 (en) Organic light emitting diode and light source device using the same
KR101289844B1 (en) Organic electroluminescent device
JP5981019B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
KR20050066970A (en) Electroluminescence device, planar light source and display using the same
JP6286809B2 (en) Organic electroluminescence element, lighting device and display device
US20110198987A1 (en) Planar light source device
JP2013191314A (en) Organic electroluminescent element
JP6573160B2 (en) Light emitting element
JP2003036969A (en) Light emitting element, and display unit and illumination device using the same
JP2005190931A (en) Electroluminescent element, and surface light source and display using it
JP2005353367A (en) Organic electroluminescent element and its manufacturing method
JP2009129912A (en) Organic electroluminescent element and its manufacturing method
KR20140116119A (en) Radiation-emitting organic component
KR101466831B1 (en) Light extraction substrate for oled, method of fabricating thereof and oled including the same
JP2015088418A (en) Organic el element, and image display apparatus and illumination apparatus including the same
JP2005322490A (en) Manufacturing method of electroluminescent display device
KR101677174B1 (en) Emitting device
KR102043174B1 (en) Light Scattering Film with Enhanced Extraction Performance
JP2007294438A (en) Organic el element
KR101919043B1 (en) Substrate
WO2014034308A1 (en) Organic light-emitting element, and organic light-emitting light source device using organic light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6155566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250