JP6155091B2 - モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム - Google Patents

モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム Download PDF

Info

Publication number
JP6155091B2
JP6155091B2 JP2013105415A JP2013105415A JP6155091B2 JP 6155091 B2 JP6155091 B2 JP 6155091B2 JP 2013105415 A JP2013105415 A JP 2013105415A JP 2013105415 A JP2013105415 A JP 2013105415A JP 6155091 B2 JP6155091 B2 JP 6155091B2
Authority
JP
Japan
Prior art keywords
plane
tracking
image
images
mosaic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013105415A
Other languages
English (en)
Other versions
JP2014228881A (ja
JP2014228881A5 (ja
Inventor
信博 知原
信博 知原
宣隆 木村
宣隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013105415A priority Critical patent/JP6155091B2/ja
Publication of JP2014228881A publication Critical patent/JP2014228881A/ja
Publication of JP2014228881A5 publication Critical patent/JP2014228881A5/ja
Application granted granted Critical
Publication of JP6155091B2 publication Critical patent/JP6155091B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Circuits (AREA)

Description

本発明は、移動するカメラによって撮影された複数枚の時系列画像データから、広範囲の画像を生成するモザイク画像生成装置及び生成方法並びにプログラムに係り、特に、撮影対象が起伏や大きな高低差がある被写体に用いるのに適したモザイク画像生成方式に関する。
近年、被災地での情報収集や農耕地や山林などの観測のために航空機が情報収集に利用されている。航空機が収集する情報の中でも特に地上を撮影した画像情報はさまざまな用途に利用される。中でも時系列的に連続する複数の撮影画像を繋ぎ合わせることで生成できるモザイク画像は、撮影地域全体を俯瞰する事ができるため撮影地域全体の状況把握に有効である。
そのため、航空機に搭載したカメラで撮影した時系列的に連続する複数の撮影画像を繋ぎ合わせて広域かつ高解像度な広域モザイク画像を生成する技術が重要となっている。なおモザイク画像生成技術の用途は広範囲の空撮画像生成に限らず、風景画像を合成したパノラマ画像生成などにも利用でき応用範囲は広い。
次に、従来の一般的なモザイク画像の生成方法を説明する。
図18はモザイク画像生成処理の概念を示す図である。モザイク画像生成では、まず図18の(a)に示す通りカメラで撮影した時系列的に連続する2枚の画像(Im−1),(Im−2)に対してコーナー特徴などの画像的特徴を利用して特徴点を検出する。次に、図18の(b)に示す通り、二枚の画像(Im−1),(Im−2)の特徴点情報から、特徴点同士の対応付けを行い、対応する特徴点のペアを対応点とする。次に、二枚の画像内の撮影対象の全体を平面と仮定し、画像間の対応点から画像平面の幾何関係の推定を行い、幾何関係情報を得る。
幾何関係情報のうち一般的に利用されるのは、平面間の透視投影変換を表すホモグラフィ行列であり、二枚の画像内の対応点の座標をそれぞれ[u v]としたときに、次の式の通り画像間の対応点の座標変換を表す次式として表現される。
Figure 0006155091
最後に、図18の(c)に示す通り、二枚の画像(Im−1),(Im−2)間の幾何関係から、二枚の画像が重なる様に新しい方の画像を変形させて作成済みのモザイク画像に重ね合せることで、モザイク画像の更新を行う。
しかし、この従来の方法では、起伏のある地形や画面内に大きな高低差のある物体が写っている場合に、撮影対象の全体に関して、平面仮定が成立せず、ズレや歪が発生し高精度なモザイク画像を生成できないという課題があった。
図19、図20および図21は、このズレや歪が発生する要因を示した図である。
図19では、航空機100に搭載されたカメラを頂点とする例えば四角錐の撮影対象領域50内が撮影対象になるものとする。撮影対象領域50内において、地面40及び道路45はほぼ平坦であり、この道路45に沿って背の低いポスト46があり、その後方に高さの高いビル30があるものと仮定する。図19の様に、撮影対象に、起伏や大きな高低差がある場合、所定の高度を水平に飛行する航空機100上で二つの異なる地点P20およびP10から撮影された空撮画像を取得すると、図20に示す様な空撮画像(a)および(b)が撮影される。地点P20(t=t0)で撮影された空撮画像(Im−20)が図20(b)、地点P10(t=t1)で撮影された空撮画像(Im−10)が図20(a)であるとする。なお、図20(a)の符号31と図20(b)の符号32は同じビル、図20(a)の符号41と図20(b)の符号42は同じ地面を、示している。
図20(a)と図20(b)の差異は、二つの別々の地点P10およびP20から同一の地形を撮影した空撮画像(Im−10),(Im−20)において、カメラから遠い距離の停止物体(地面41,42)およびポスト46は画像間での動きが小さいのに対して、カメラに近い距離の停止物体(高いビル31および32)は画像間での動きが大きくなる、視差という現象に起因している。
従って、図21に示す様に、撮影対象に起伏や大きな高低差がある場合、図21(a)に示す様に、撮影対象の全体にわたって、平面仮定に基づいて2枚の撮像画像(Im−10),(Im−20)の特徴点同士(P90−Q90,P400−Q400等)を対応付けたとしても、地形の起伏により図21(b)に示す様に視差(例えば、△P90と△P400)が発生しているため、全体を重ね合せ繋ぎ合わせたモザイク画像((Im−100),(Im−20)には、図21(c)に示す様にズレや歪が生じてしまうという問題があった。
この問題は、衛星写真など高高度から撮影された画像に比べて、撮影対象とカメラ間の距離が比較的小さい航空写真などで、より顕著に発生する。
この様な問題に対して、特許文献1や特許文献2では、撮影対象に大きな起伏があっても、高精度なモザイク画像生成を行う方法が提案されている。
特許文献1では、撮影対象の時系列画像データから自動的に対象の三次元形状を検出し復元しながらパノラマ画像を生成することで高精度なモザイク画像を生成している。
特許文献2には、位置姿勢センサや飛行計画から求まる位置姿勢情報に基づいて地面平面の動きベクトルを推定、実際の画像内の動きベクトルと比較して地面平面を判定して画像間の位置合わせを行っている。
特開2002−259952号公報 特開2002−150264号公報
上記のとおり、従来の技術においても、撮影対象に平面仮定が成立しない程の大きな起伏があっても、時系列的に連続する複数の撮影画像を繋ぎ合わせて高精度なモザイク画像生成を行う方法が開示されている。
しかし、特許文献1の方法では、三次元地形形状の復元の演算量が多く実時間でのモザイク画像生成が困難となり、ユーザへの実時間でのモザイク画像の提示やモザイク画像生成状況の動的な飛行計画へのフィードバックなどが行えないという問題がある。
また、特許文献2の方法では、別途位置姿勢センサ情報が必要になる上に、位置姿勢センサが非常に高精度でなければ高精度なモザイク画像は生成できないという問題がある。
本発明は上記の問題を鑑みて行われたもので、平面仮定が成立しない程の起伏のある被写体を撮影した画像であっても、パノラマ画像を生成したり、別途位置・姿勢センサを使用したりすることなく、高精度なモザイク画像を実時間で作成することのできるモザイク画像生成方式を提供することを目的としている。
本発明の代表的な物の一例を示すと、次のとおりである。モザイク画像生成装置は、時系列的に連続した複数枚の画像からモザイク画像を生成するモザイク画像生成装置であって、前記時系列的に連続した2枚の画像から、該画像内で重複した領域内の同一点の組である対応点を求める対応点検出手段と、前記複数枚の画像において特定平面を追跡する平面追跡手段と、画像更新手段とを備え、前記平面追跡手段は、前記対応点のうち、前記特定平面上にある対応点のみから、前記2枚の画像間の幾何関係を推定する幾何関係推定部を有し、前記画像更新手段は、前記2枚の画像間の前記幾何関係に基づき、前記モザイク画像を生成することを特徴とする。
本発明によると、撮影対象に平面仮定が成立しない程に奥行き方向に対して大きな起伏のある場合でも、別途位置・姿勢センサを使用することなく、高精度なモザイク画像を実時間で生成することができる。
本発明の第一の実施例に係るモザイク画像生成装置の構成例を示す図。 図1のモザイク画像生成装置を含む、モザイク画像生成・利用システムの構成例を示す図。 図1の対応点検出部の構成例を示す図。 図3の特徴点抽出部の処理フローを示す図。 図1のモザイク画像生成装置の運用形態の一例を示す図。 第一の実施例の特徴点抽出処理の概念を示す図。 第一の実施例の対応点探索処理の概念を示す図。 図3の平面追跡部の構成例を示す図。 追跡平面内対応点抽出部の処理フローを示す図。 追跡平面新規対応点抽出部の処理フローを示す図。 図3の画像更新部の構成例を示す図。 モザイク画像更新部の処理フローを示す図。 モザイク画像生成結果の例を示す図。 本発明の第二の実施例に係る平面追跡部の構成例を示す図。 第二の実施例の複数平面抽出処理の概念を示す図。 第二の実施例の複数平面抽出部の処理フローを示す図。 第二の実施例の追跡平面判定部の処理フローを示す図。 一般的なモザイク画像生成処理の概念を示す図。 撮影対象に起伏や大きな高低差がある場合を説明する図。 撮影対象に起伏や大きな高低差がある場合の撮影画像例を示す図。 撮影対象に起伏や大きな高低差がある場合にモザイク画像に生じる歪の例を示す図。
本発明は、時系列的に連続した複数の撮影画像内から画像特徴に基づいて特徴点を検出し、同一領域を撮像した2枚の撮影画像の対から特徴点に基づいて画像間における同一点の対応関係を対応点として検出、特定の平面を追跡対象として、対応点の中から、既に時系列的に前の画像内において追跡平面上に存在すると判定されている対応点を追跡対応点として抽出し、追跡対応点のみから撮影画像間の幾何関係を推定し、撮影画像間の全対応点のうち、前記幾何関係を満足する対応点を追跡平面上に存在すると判定し、一方で、前記幾何関係に基づいて追跡平面が一致する様に撮影画像をモザイク画像に変形・重畳することでモザイク画像を更新する。
これにより、撮影対象に平面仮定が成立しえないほど奥行き方向に対して大きな起伏がある場合においても、撮影対象内の特定平面を追跡し追跡平面で画像を重ねることで、歪みの少ない高精度なモザイク画像を実時間で生成できるようにしたものである。また、モザイク画像を生成する過程で導出された幾何関係からカメラの高精度な位置・姿勢推定を行うことができる。
以下、本発明の第1の実施例に係るモザイク画像生成装置について、図面を参照しながら説明する。
[モザイク画像生成装置]
図1は、本発明の第1の実施例に係るモザイク画像生成装置の構成を示す図である。また、図2は、モザイク画像生成装置を含む、モザイク画像生成・利用システムの構成例を示す図である。
本発明によるモザイク画像生成装置200は、記憶装置210と、対応点検出部220と平面追跡部230と画像更新部240を備える。
モザイク画像生成装置200は、CPU、メモリ、記憶装置、入出力装置、インターフェイス等を備えたコンピュータにより構成されている。メモリには、各種のプログラムが格納されており、動作時にはCPUがそれらを読み出して実行する。主なプログラムとしては、対応点検出処理プログラム、平面追跡処理プログラム、画像更新処理プログラムがある。これらのプログラムをCPUで実行することにより、コンピュータ(モザイク画像生成装置)を、対応点検出部220、平面追跡部230、及び、画像更新部240として機能させる。
図2に示したように、このモザイク画像生成装置200は、画像記録・処理装置120、第一の記憶装置140、及び、表示装置250と共に、地上局110に設置される。航空機100等の移動体に搭載されたカメラ130により任意の時間間隔でほぼ同じ対象を撮影した少なくとも2枚の撮影画像260は、第一の記憶装置140やモザイク画像生成装置200の記憶装置210に、時系列画像データとして格納されている。画像データは、画面上の各点の座標値とその点の色情報とがセットになったものを、テーブル化して、保持される。地上局110には、モザイク画像を利用するための再生装置150が接続されている。さらに、モザイク画像を利用するために、地上局110は、さらに、ネットワーク160を介して、第二の記憶装置を有するサーバ170や端末装置180に接続可能に構成されている。
図1に戻って、記憶装置210の時系列画像データは、対応点検出部220に画像データとして提供される。対応点検出部220は、撮影画像260を画像解析し、対応点情報270を生成して平面追跡部230に、歪補正画像320を画像更新部240に出力する。平面追跡部230は、対応点情報270を入力し、特定平面の追跡を行い、時系列的に連続した撮影画像間の特定平面での幾何関係推定結果280と、追跡に成功したか失敗したかの判定結果を追跡判定結果340として画像更新部240に出力する。
画像更新部240は、幾何関係推定結果280と歪補正画像320からモザイク画像290の更新とカメラの位置姿勢推定を行い、表示装置250にモザイク画像290と位置姿勢情報350を出力する。表示装置250は、地上局110において、モザイク画像290と位置姿勢情報350をユーザに提示する。なお、モザイク画像290のデータは、記憶装置(フレームバッファ)にも保持される。
[対応点検出部]
図3は、モザイク画像生成装置200の対応点検出部220の構成例を示す図である。対応点検出部220は、特徴点抽出部300と対応点探索部310によって構成される。特徴点抽出部300は、カメラ130から入力した撮影画像260から特徴点を抽出し、歪補正画像320と特徴点情報330を出力する。歪補正画像320は、画像更新部240に入力される。対応点探索部310は、歪補正画像320と特徴点情報330を入力して、時系列的に連続した歪補正画像320のペアから対となる特徴点を探索し、対応点情報270として平面追跡部230に出力する。
[特徴点抽出部]
図4は、特徴点抽出部300の処理内容を示したフロー図である。特徴点抽出部300では、処理を開始したら、画像読込ステップ400を実行する。この画像読込ステップ400では、特徴点抽出部300の外部、例えば記憶装置210、から撮影画像260の読み込みを行い、レンズ歪補正ステップ410を実行する。レンズ歪補正ステップ410では、外部から設定するレンズ歪補正係数を用いて、撮影画像260のレンズ歪補正を行った画像を歪補正画像320として出力し、注目点配置ステップ420及び特徴点抽出ステップ430を実行する。レンズ歪補正係数は、事前にカメラキャリブレーションを行い求めたものを用いる。特徴点抽出ステップ430によって得られた特徴点抽出データは、記憶装置210等に保持される。
次に、本実施例のモザイク画像生成装置の運用形態について説明する。
図5は、モザイク画像生成装置200の運用形態の一例を表した図である。本実施例のモザイク画像生成装置の運用形態の一例として、航空機100にカメラ130を搭載し、モザイク画像生成装置200と表示装置250を、図1に示したように、自動車に設置された地上局110に設置する構成が考えられる。この例では、道路に沿ったコース60を飛行する航空機100のカメラ130により、時系列的に連続して撮影された画像260−2((第一の画像、t=t0)、260−1(第二の画像、t=t1)のデータが、無線通信によりアンテナを備えた地上局110に送信される。この例では、地面40の及び道路45が比較的平坦であり、この道路45に沿って背の低いポスト46があり、その後方に高さの高いビル30があるものと仮定する。
なお、撮影画像260のデータに関しては、カメラ130で撮影された時系列的に連続した撮影画像を航空機100側の記憶装置に一旦保持し、この画像データを、搬送可能な記録媒体等を介して、地上局110の記憶装置に移すようにしても良い。また、カメラ130モザイク画像生成装置の全体が航空機100側に搭載される構成や、モザイク画像生成装置200の機能が航空機100側と地上局110側に分けて搭載される場合も、本発明に含まれるものとする。また、本発明の航空機は、無線操縦される無人航空機(UAV)を含む。さらに、本発明における画像は、空撮画像に限定されるものではなく、自動車のような地上を移動する物体に搭載されたカメラ等により、連続的に撮影された画像についても、適用可能である。
図6は、図4の注目点配置処理及び特徴点抽出処理の概念を示した図である。2枚の画像(a−1)、(a−2)には、異なる地点(時刻t=t0、t=t1)から、同一領域、例えば同じ道路や同じビルが、重複して撮像されている。
注目点配置ステップ420では、図6の(a−1)に示すように、撮影画像260−1に対応する歪補正画像320の全体に、破線で示したグリッド状の微小な各矩形領域にそれぞれ注目点A01(座標x=a1,y=a1,色情報a1),−,An(座標x=an,y=an,色情報an)を配置する。同様に、図6の(a−2)に示すように、撮影画像260−2に対応する歪補正画像の全体にも、グリッド状の微小な各矩形領域にそれぞれ注目点B01(座標x=b1,y=b1,色情報b1),−,Bn(座標x=bn,y=bn,色情報bn)を配置する。
次に、特徴点抽出ステップ430では、重複して撮像されている同じ対象物の特徴点を抽出する。すなわち、歪補正画像320内から各注目点A01、B01等を探索開始位置として、図6の(b−1)に示す様に、該注目点の周囲一定範囲内、すなわち各矩形領域から画像特徴を小数画素精度で探索し、画像特徴の小数画素精度の座標位置などを特徴点情報として出力する。例えば、撮影画像260−1に対応する歪補正画像320において、注目点A90(座標x=−,y=−)を探索開始位置として、同じ矩形領内に道路45の縁である特徴点P90(座標x=−,y=−)を抽出する。また、注目点A100(座標x=a100,y=a100)を探索開始位置として、同じ矩形領内にビル31の地表上の1つのコーナーである特徴点P100(座標x=−,y=−)を抽出し、さらに、注目点A600(座標x=a600,y=a600)を探索開始位置として、同じ矩形領内にビル31の屋上のコーナーである特徴点P600(座標x=−,y=−)を抽出する。そして、これらの各座標位置などを特徴点情報として出力する。同様に、図6(b−2)に示す様に、撮影画像260−2に対応する歪補正画像においても、特徴点Q90(座標x=−,y=−),Q100(座標x=−,y=−),Q600(座標x=−,y=−)等を抽出し、それらの座標位置や色情報などを特徴点情報として出力する。
本実施例では画像特徴にはコーナー特徴を用いるが、画像間の対応付けが可能な画像特徴であれば、本発明ではこの方法に限らない。小数画素精度で画像特徴を探索することで、特徴点位置の精度を高め、後述の処理の精度を向上することができる。
また、グリッド状に注目点を配置し各注目点の周囲の画像特徴を探索することで、仮に歪補正画像320内で追跡平面以外の領域に大きな画像特徴が偏在していた場合でも、歪補正画像320全体から満遍なく画像特徴を抽出することができ、追跡平面以外に偏ることなく、平面追跡を継続することができる。
本発明では画面全体から満遍なく特徴点を検出する方法であれば、それらを採用可能であり、上記方法に限らない。
なお、ある矩形領域の近傍に、ビル31の外縁等を示す特徴点がない時は、その矩形領域に関する特徴点情報は出力されない。このようにして得られた特徴点抽出データは、例えば、テーブル形式でまとめられ、記憶装置210等に保持される。
[対応点探索部]
図7は、図3の対応点探索部310の処理の概念を示す図である。
対応点探索部310では、特徴点抽出部300から歪補正画像と図7の(a−1)、(a−2)に示す様なP90、Q90等の特徴点情報(特徴点抽出データ)330を入力し、時系列的に連続した二枚の歪補正画像320およびその特徴点情報330から、図7の(b−1)、(b−2)に示す様に、対応点Pi,Qiの探索を行い、対応点情報270として平面追跡部230へと出力する。
このとき、時系列上で連続した二枚の歪補正画像320のうち、前の歪補正画像320の特徴点と一致する次の歪補正画像320内の対応点をPyramidLK(LucasKanade)法を用いて探索し、次の歪補正画像320の特徴点と一致する前の歪補正画像320内の対応点をPyramidLK法を用いて探索するように、両方の歪補正画像320から対応点を探索する。例えば、時系列的に連続してほぼ同一領域を撮像した2枚の撮影画像(260−2,206−1)の歪補正画像から、2つの画像間における同一点の対応関係を対応点として、図7の(b−1)の特徴点P90(座標x=−,y=−)と、図7の(b−2)の特徴点Q90(座標x=−,y=−)とが、同じ道路の同じ縁に相当する対応点として抽出される。また、図7の(b−1)のP400(座標x=−,y=−)と、図7の(b−2)の特徴点Q400(座標x=−,y=−)とが、同じビルの屋上の同じコーナーに相当する対応点として抽出される。これらの各対応点Pi,Qiとそれらの位置情報等がテーブル化されたものが対応点情報270であり、記憶装置210等に保持される。
このように、時系列上で連続した両方の歪補正画像320から対応点Pi,Qiを探索することで、後述の平面追跡処理が対応点情報270をベースとして行うことが出来る。
本実施の形態では、対応点の探索方法はPyramidLK法を使用しているが、本発明では二枚の画像間の対応関係を導出できる方法であれば、PyramidLKに限らない。
[平面追跡部]
図8は、図1の平面追跡部230の構成を示した図である。
平面追跡部230は、追跡平面内対応点抽出部500と追跡平面幾何推定部510と追跡平面対応点更新部520から構成される。
追跡平面内対応点抽出部500は、対応点検出部220から対応点情報270を、追跡平面対応点更新部520から前画像における追跡平面内特徴点情報550を入力し、対をなす画像間の平面追跡を行い、その判定結果340を画像更新部240に出力し、また、対をなす画像の追跡平面内に含まれる対応点の抽出を行い、その結果を追跡平面対応点情報530として追跡平面幾何推定部510に出力する。(追跡平面内対応点抽出部の詳細な動作は図9で説明する。)
追跡平面幾何推定部510では、追跡平面内対応点情報530を入力し、二枚の画像間の幾何関係を推定し、幾何関係推定結果280を追跡平面幾何学的関係結果として追跡平面対応点更新部520及び画像更新部240に出力する。
追跡平面対応点更新部520では、幾何推定結果280を入力とし、新規対応点から幾何関係推定結果280を満たす対応点を抜き出し、追跡平面内特徴点情報550として追跡平面内対応点抽出部500に出力する(詳細な動作は、図10で説明する)。
このように、平面追跡部230は、時系列的に連続してほぼ同一領域を撮像した2枚の撮影画像(第一、第二の画像)の対応点の中から、既に時系列的に前の画像(第一の画像)内において追跡平面上に存在すると判定されている対応点を追跡対応点として抽出し、追跡対応点のみから2枚の撮影画像(第一、第二の画像)間の幾何関係を推定し、2枚の撮影画像間の全対応点のうち、前記幾何関係を満足する対応点を追跡平面上に存在する対応点と判定する。
本実施例の平面追跡部230によると、モザイク画像生成に必要な二枚の画像間の幾何関係推定を利用して特定平面の追跡を行うため、特定平面のための演算量は少なく実時間処理が可能となる。
[追跡平面内対応点抽出部]
図9は、図8の追跡平面内対応点抽出部500の処理内容を示したフロー図である。追跡平面内対応点抽出部500は、処理を開始したら平面内特徴点情報読込ステップ600を実行する。この平面内特徴点情報読込ステップ600では、前画像(第一の画像)で追跡平面内と判定されている特徴点P,Qの情報を追跡平面内特徴点情報550として読み込む。
継続判定ステップ610では、追跡平面内特徴点情報550の特徴点P,Qの数が平面内特徴点数閾値以上かの判定を行い、閾値以上なら追跡判定結果340を真として画像更新部240に出力し、第二の画像に対して平面内対応点抽出ステップ620を実行し、閾値未満なら追跡判定結果340を偽として画像更新部240に出力し、新規平面選択ステップ630を実行する。
これにより、時系列的に連続した二枚の画像間で平面追跡が実行出来ている間は、追跡平面内特徴点情報550の特徴点P,Qの数は十分な数存在するため、平面内対応点抽出ステップ620が実行され平面追跡が継続されるが、初回起動時もしくは前フレーム(第一の画像)で平面追跡に失敗した場合は、新規平面ステップ630を実行し、第一の画像として新たな平面を抽出して追跡対象とする。
平面内対応点抽出ステップ620では、対応点検出部220から入力した二枚の画像の対応点情報270のうち、追跡平面内特徴点情報500と一致する特徴点を含む対応点Pi,Qiを平面内対応点530として抽出し出力する。
一方で、新規平面選択ステップ630では、
初回動作の場合は、小型のUAVは一般に平坦な地面など平地から離陸するため、最初の画像の撮影時には(第一の画像)の画面全体に平面である平地が撮影されていると仮定し、画面全体を追跡することを意図して、
また、前フレームで平面追跡に失敗した場合には、撮影対象が平地から台地や森林地帯に差し掛かったために画面内から追跡対象の平面が無くなったと仮定し、第一の画像として別の追跡平面を見つけることを意図して、
対応点検出部220から入力した対応点情報270の全てを平面内対応点530として出力する。
なお、本実施例の新規平面選択ステップ630では地面平面を追跡することを想定した処理となっているが、用途に応じて処理を変えるべきであり、例えば、他の新規平面選択の方法として、道路面を検出してその面を追跡したり、平面追跡に失敗する度にユーザが追跡平面を再設定する場合も本発明の範囲内である。
[追跡平面の幾何関係推定部]
図8の追跡平面幾何推定部510は、追跡平面内対応点抽出部500から入力した平面内対応点情報530から追跡平面の幾何関係を推定し、幾何関係推定結果280を追跡平面対応点更新部520と画像更新部240に出力する。
本実施例の幾何関係推定では、ホモグラフィ推定とRANSAC(RANdomSAmpleConsensus)法を使用する。これにより、平面追跡が実行出来ている場合の対応点探索ミスや移動物体、初回動作時や平面追跡に失敗した場合に次の追跡平面以外の対応点を外れ値として除外して射影変換に基づいた幾何関係を推定することができる。
なお、本発明における幾何関係推定は、ホモグラフィ推定とRANSAC法の組み合わせに限定されるものではなく、アフィン推定など他の幾何関係推定方法を使用する場合でも本発明の範囲内である。
[追跡平面対応点更新部]
図8の追跡平面対応点更新部520では、対応点探索部から入力した全ての対応点情報(Pi,Qi)270に対して処理を行う。
図10は、追跡平面対応点更新部520で対応点情報270毎に実行される処理内容を示したフロー図である。
追跡平面対応点更新部520は処理を開始したら、まず座標変換ステップ700を実行する。座標変換ステップ700では、対応点探索部220から入力した対応点情報(Pi,Qi)270のうち次画像の特徴点座標を追跡平面幾何推定部510から入力した追跡平面の幾何関係推定結果280に基づき座標変換を行い、仮に追跡平面上に存在すると仮定した場合の前画像での対応座標を求め、座標差分ステップ710を実行する。座標差分ステップ710では、対応点情報270の前画像での特徴点座標と対応座標の距離を対応座標間距離(ΔP,ΔQ)として算出し、差分判定ステップ720を実行する。
差分判定ステップ720では、対応座標間距離が対応座標距離閾値(ΔZ)以下であれば追跡平面内対応点追加ステップ730を実行し、対応座標間距離(ΔP,ΔQ)が座標差分閾値よりも大きければこの対応点情報270に対する処理フローを終了する。
例えば、図7の(b−1)の特徴点P90と、図7の(b−2)の特徴点Q90とは、カメラから遠い停止物体、すなわち平坦な地面上の道路の同じ縁に相当する対応点であり、点P90とQ90の対応座標間距離(ΔP90)は、対応座標距離閾値(ΔZ)以下となり、幾何関係を満足する対応点となる。一方、図7の(b−1)の特徴点P400と、図7の(b−2)の特徴点Q400とは、カメラから近い停止物体、すなわち高いビルの屋上の同じコーナーに相当する対応点であり、点P400とQ400の対応座標間距離(ΔP400)は、対応座標距離閾値(ΔZ)よりも大きく、幾何関係を満足しない対応点となる。
ΔP90(=P90−Q90)<ΔZ
ΔP400(=P400−Q400)>ΔZ
従って、特徴点P90とQ90は、追跡平面内対応点追加ステップ730の対象になるが、点P400とQ400は、追跡平面内対応点追加ステップ730の対象とならない。換言すると、この例では、平坦な地面が特定平面となり、この特定平面上の各特徴点は追跡平面内対応点となるが、高いビルの屋上の平面は特定平面とはならず、屋上の各特徴点は追跡平面内対応点にならない。一方、高さの異なる高層ビル群が多数存在する市街地であっても、高層ビル群の間に連続した平坦な道路がある場合には、この道路を特定平面とし、道路上の各特徴点を追跡平面内対応点とする。
追跡平面内対応点追加ステップ730では、追跡平面内対応点に対応点情報270の次画像における特徴点情報を追跡平面内特徴点情報550に追加して、本対応点に対する処理フローを終了する。追跡平面対応点更新部520は、全ての対応点情報270に対する処理が終了したら、平面内特徴点情報550を追跡平面内対応点抽出部500に出力する。
[画像更新部]
図11は、画像更新部240の構成の概要を示した図である。
画像更新部240は、モザイク画像更新部800とフレームバッファ810によって構成される。モザイク画像更新部800は、幾何関係に基づいて追跡平面が一致する様に2枚の撮影画像を1枚のモザイク画像に変形・重畳することで、モザイク画像290を更新する。すなわち、モザイク画像更新部800は、平面追跡部230の出力340と歪補正画像320と幾何関係推定結果280と、フレームバッファ810からのモザイク画像290を入力として、位置姿勢情報350と更新したモザイク画像290を表示装置250に出力し、更新したモザイク画像をフレームバッファ810に書き込む。
図12は、画像更新部240の処理内容を示したフロー図である。
モザイク画像更新部800は、処理を開始したらまず更新判定ステップ900を実行する。更新判定ステップ900では、平面追跡部230から入力した追跡判定結果340から、追跡判定結果340が真の場合は幾何関係積算ステップ910を、偽の場合はモザイク画像クリアステップ950を実行する。これにより、平面追跡が失敗した場合は、その都度モザイク画像290を生成し直すため、追跡平面の切り替わりによるモザイク画像の歪を抑えることができる。
幾何関係積算ステップ910では、平面追跡部230から入力した幾何関係推定結果340を絶対幾何関係に積算して絶対幾何関係を更新し、画像変形ステップ920を実行する。絶対幾何関係は、動作開始時に単位行列に初期化されるものとする。
画像変形ステップ920では、平面追跡部230から入力した歪補正画像320を絶対幾何関係に基づいて変形し、変形撮影画像を生成し、モザイク画像重畳ステップ930を実行する。モザイク画像重畳ステップ930では、フレームバッファ810から読み込んだモザイク画像290に変形撮影画像を重畳してモザイク画像の更新を行い、モザイク画像更新ステップ940を実行する。
モザイク画像更新ステップ940は、更新したモザイク画像290をフレームバッファ810に書き出し、モザイク画像更新部800の処理を終了する。モザイク画像クリアステップ950では、フレームバッファ810上のモザイク画像を消去し、絶対幾何関係を単位行列に、位置姿勢情報350を初期化しモザイク画像更新部800の処理を終了する。位置姿勢推定ステップ960では、絶対幾何関係からカメラの位置姿勢推定を行い、計算した位置姿勢情報350を出力する。
更新されたモザイク画像290は、2枚の画像の一方に、他方の画像が上書きされたものとなる。モザイク画像生成装置の画像更新部240の出力は、表示装置250や、再生装置150等に提供される。これにより、ユーザへの実時間でのモザイク画像の提示やモザイク画像生成状況の動的な飛行計画へのフィードバックなどが行える。
図13は、分かりやすさのために、二枚の画像を透過合成して示した、本実施例によるモザイク画像生成結果の例を示すものである。
本発明によると、図13の(a−1)、(a−2)の様に、撮影対象に平面仮定が成立しない程に奥行き方向に対して大きな起伏(31、32)のある場合でも、時系列上で連続した二枚の撮影画像内の特定平面(例えば平坦な地面41、42や平坦な道路45)を追跡し、追跡平面で撮影画像同士を重ね合せ、繋ぎ合せることにより、別途位置・姿勢センサを使用することなく、図13(b)の様に地面平面に歪の無い高精度なモザイク画像290を実時間で生成することができる。さらに、2枚の画像を上書きする場合でも、図13(c1)のように、第二の画像を上にしたモザイク画像や、(c2)のように、第一の画像上にしたモザイク画像を生成することもできる。
また、同一領域を撮像した2枚の撮像画像(a−1)、(a−2)から画像同士の幾何関係を推定し、その幾何関係推定過程で同時に特定平面(例えば平坦な地面や平坦な道路)の追跡を行うため、位置姿勢センサを使用することなく、少ない演算量で実時間にモザイク画像を生成できる。
また、撮影画像内の追跡平面から推定した2枚の画像同士の幾何関係からカメラの位置姿勢推定を行うことで、追跡平面に対する位置姿勢推定を高精度に行うことができる。
以下、本発明の第2の実施例に係るモザイク画像生成装置について、図面を参照しながら説明する。第1の実施例では、撮像対象の地面が比較的平坦であることを想定したが、撮像対象には、地面が起伏に富んでおり広い面積の平坦面を確保し難い場合もある。第2の実施例はこのような状況にも対応できるモザイク画像生成装置を提供するものである。
なお本実施例における装置は、平面追跡部以外は実施例1と同じため説明を省く。
[平面追跡部]
図14は、本実施例における平面追跡部230の構成を示した図である。
平面追跡部は、複数平面抽出部1000と追跡平面判定部1010によって構成される。
複数平面抽出部1000では、対応点検出部220から対応点情報270を、複数平面分の幾何関係推定結果とその幾何関係に合致する対応点の組となる平面推定結果である複数平面推定結果1020を生成し追跡平面判定部1010に出力する(詳細は図16で説明)。
追跡平面判定部1010では、複数平面抽出部1000から入力した複数平面推定結果1020の中から追跡平面に合致する特定平面を特定し、その特定平面の幾何関係を幾何関係推定結果280として、追跡判定結果340を画像更新部240に出力する(詳細は図17で説明)。
[複数平面抽出部]
図15は、複数平面抽出部1000の処理概念を示した図である。
図15の(a−1,a−2)の様に、対応点検出部240から2枚の撮影画像の対応点情報270が与えられた場合、複数平面抽出部1000により、図15の(b)では地面平面1300とビル平面1310の様に、同じ幾何関係が推定される対応点群の領域毎に複数の平面推定結果として特定平面を組分けする。例えば、対応点P90,Q90が含まれる地面平面1300において、応点P90、Q90間の移動量をΔPQ90とすると、地面平面1300の他の対応点間の移動量もΔPQ90とほぼ同じ値になっている。すなわち、地面平面1300内では、同じ幾何関係が推定される。一方、地面平面1300よりも高い位置(カメラから近い距離)に有るビルの屋上の平面1310において、対対応点P400、Q400間の移動量をΔPQ400とすると、ΔPQ400はΔPQ90よりも大きいものの、屋上の平面1310の各対応点間の移動量もΔPQ400とほぼ同じ値になっている。すなわち、屋上の平面1310内では、同じ幾何関係が推定される。このように、2枚の撮影画像の画面内には、対応する2つの特定平面が存在する。
図16は、本実施例における複数平面抽出部1000の処理フローを示した図である。複数平面抽出部1000では、画面内に複数の特定平面が存在すると仮定して、RANSAC法を用いた幾何関係推定を複数回繰り返すことによって、対応点検出部220から入力した対応点情報270から、幾何関係推定結果とその幾何関係に合致する対応点の組である平面推定結果を複数平面分求め、これら複数の平面推定結果を複数平面推定結果1020として出力する。複数平面抽出部1000は、平面推定結果1020として、例えば、抽出された特定平面毎に、対対応点P、Qの座標等を記録したテーブルを生成する。
複数平面抽出部1000は処理を開始したらまず対応点読込ステップ1100を実行する。対応点読込ステップ1100では、対応点検出部220から対応点情報270を読み込み、幾何関係推定対応点として幾何関係推定ステップ1110を実行する。
幾何関係推定ステップ1110では、幾何関係推定対応点からホモグラフィ推定とRANSAC法を使用して幾何関係の推定を行い、幾何関係推定結果とその幾何関係に合致する対応点の組を平面推定結果として、終了判定ステップ1120を実行する。
この際、画面内に複数の特定平面が存在すると仮定した場合、RANSAC法により最も合致する対応点数の多い特定平面上の幾何関係が推定結果として求められる。

なお、本発明における幾何関係推定はホモグラフィ推定とRANSAC法の組み合わせに限定されるものではなく、アフィン推定など他の幾何関係推定方法を使用する場合でも、推定結果の特定平面以外に含まれる対応点が外れ値として除去出来る方法であれば本発明の範囲内である。
終了判定ステップ1120では、幾何関係推定ステップ1110で求まった平面推定結果の対応点数が対応点数閾値以下になった場合、もしくは終了判定が一定回数実行された場合、または幾何関係推定対応点の対応点数から平面推定結果の対応点数を引いた数が残対応点数閾値以下になった場合に複数平面抽出部1000の処理を終了し、そうでない場合は対応点更新ステップ1130を実行する。
対応点更新ステップ1130では、複数平面推定結果1020に平面推定結果を追加し、幾何関係推定対応点から平面推定結果の対応点を除いたものを新たな幾何関係推定対応点として幾何関係ステップ1110を実行する。
[追跡平面判定部]
図14に戻って、追跡平面判定部1010では、複数平面抽出部1000から入力した複数平面推定結果1020の中から、前画像のモザイク画像生成処理時に追跡平面内と判定された特徴点の座標を含む特定平面を追跡平面と判定することで、追跡平面に合致する平面を特定し、その特定平面の幾何関係を幾何関係推定結果280として、追跡判定結果340を画像更新部240に出力する。
図17は、追跡平面判定部1010の処理内容を示したフロー図である。
追跡平面判定部1010は、処理を開始したら、追跡平面合致特徴点数を0に初期化して、まず平面推定読込ステップ1200を実行する。平面ステップ読込ステップ1200では、複数平面抽出部1000から入力した複数平面推定結果1020の中から平面推定結果を一平面分読み込み、合致特徴点数カウントステップ1210を実行する。合致特徴点数カウントステップ1210では、前画像のモザイク画像生成処理において特定平面と推定された対応点の前画像の特徴点情報である平面内特徴点情報と、平面推定結果に含まれる対応点のうち前画像の特徴点座標との距離が同一座標閾値以下となる特徴点数をカウントして、合致特徴点数として追跡平面判定ステップ1220を実行する。
追跡平面判定ステップ1220では、合致特徴点数が追跡平面合致特徴点数以上の場合は追跡平面更新ステップ1230を、そうでない場合は、終了判定ステップ1240を実行する。追跡平面更新ステップ1230では、追跡平面合致特徴点数に合致特徴点数を代入して、幾何関係推定結果にその平面推定結果の幾何関係を設定し、終了判定ステップ1240を実行する。終了判定ステップ1240では、複数平面推定結果の全ての平面推定結果に対する評価が完了した場合には追跡成否判定ステップ1250を、そうでない場合には次の平面推定結果に対する平面推定読込ステップ1200を実行する。
追跡成否判定ステップ1250では、幾何関係を幾何関係推定結果280として出力し、その幾何関係を含んだ平面推定結果の対応点数が成否判定閾値以上の場合は追跡判定結果340を真として、それ以外の場合は偽として出力する。
モザイク画像生成装置の画像更新部240の出力は、表示装置250や、再生装置150等に提供される。これにより、ユーザへの実時間でのモザイク画像の提示やモザイク画像生成状況の動的な飛行計画へのフィードバックなどが行える。
本実施例によると、撮影対象に平面仮定が成立しない程に奥行き方向に対して大きな起伏のある場合でも、撮影画像内の特定平面を追跡し、追跡平面で撮影画像同士を重ね合せることにより、別途位置・姿勢センサを使用することなく、地面平面に歪の無い高精度なモザイク画像を実時間で生成することができる。
また、同一領域を撮像した時系列上で連続した2枚の撮像画像から、画像同士の幾何関係を推定し、その幾何関係推定過程で同時に特定平面の追跡を行うため、位置姿勢センサを使用することなく、少ない演算量で実時間にモザイク画像を生成できる。
10 撮影地点、20 撮影地点、30 カメラから近い停止物体、31 カメラから近い停止物体、32 カメラから近い停止物体、40 カメラから遠い停止物体、41 カメラから遠い停止物体、42 カメラから遠い停止物体、100 航空機、110 地上局、200 モザイク画像生成装置、210 カメラ、220 対応点検出部、230 平面追跡部、240 画像更新部、250 表示装置、260 撮影画像、270 対応点情報、280 幾何関係推定結果、290 モザイク画像、300 特徴点抽出部、310 対応点探索部、320 歪補正画像、330 特徴点情報、340 追跡判定結果、350 位置姿勢情報、400 画像読込ステップ、410 レンズ歪補正ステップ、420 注目点配置ステップ、430 特徴点抽出ステップ、500 追跡平面内対応点抽出部、510 追跡平面幾何推定部、520 追跡平面対応点更新部、530 追跡平面対応点情報、550 追跡平面内特徴点情報、600 平面内特徴点情報読込ステップ、610 継続判定ステップ、620 平面内対応点抽出ステップ、630 新規平面選択ステップ、700 座標変換ステップ、710 座標差分ステップ、720 差分判定ステップ、730 追跡平面内対応点追加ステップ、800 モザイク画像更新部、810 フレームバッファ、900 更新判定ステップ、910 幾何関係積算ステップ、920 画像変形ステップ、930 モザイク画像重畳ステップ、940 モザイク画像更新ステップ、950 モザイク画像クリアステップ、1000 複数平面抽出部、1010 追跡平面判定部、1020 複数平面推定結果、1100 対応点読込ステップ、1110 幾何関係推定ステップ、1120 終了判定ステップ、1130 対応点更新ステップ、1200 平面ステップ読込ステップ、1210 合致特徴点数カウントステップ、1220 追跡平面判定ステップ、1230 追跡平面更新ステップ、1240 終了判定ステップ、1250 追跡成否判定ステップ、1300 地面平面、1310 ビル平面。

Claims (8)

  1. 時系列的に連続して同一領域を撮像した複数枚の画像からモザイク画像を生成するモザイク画像生成装置であって、
    前記時系列的に連続した2枚の画像から、該画像内で重複した領域内の同一点の組である対応点を求める対応点検出手段と、
    前記複数枚の画像において特定平面を追跡する平面追跡手段と、
    画像更新手段とを備え、
    前記平面追跡手段は、前記対応点のうち、前記特定平面上にある対応点のみから、前記2枚の画像間の幾何関係を推定する幾何関係推定部を有し、
    前記画像更新手段は、前記2枚の画像間の前記幾何関係に基づき、前記モザイク画像を生成し、
    前記平面追跡手段は、
    前記2枚の画像間の前記対応点から、追跡平面としての前記特定平面に含まれる対応点のみを平面内対応点として抽出する追跡平面内対応点抽出部と、
    前記平面内対応点から前記追跡平面の幾何関係を推定する追跡平面幾何推定部と、
    前記2枚の画像間の全対応点から前記幾何関係を満足する対応点のみを抽出する追跡平面対応点更新部とを備え、
    前記画像更新手段は、
    モザイク画像更新部とフレームバッファとを備え、
    前記モザイク画像更新部は、前記幾何関係に基づいて前記追跡平面が一致する様に前記2枚の撮影画像を1枚の画像に変形・重畳することで、前記モザイク画像を更新し、
    前記追跡平面内対応点抽出部は、
    前記特定平面の追跡に失敗した場合に、別の特定平面に追跡対象を切り替える機能と、作成済みの前記モザイク画像を破棄する機能とを備えることを特徴とするモザイク画像生成装置。
  2. 請求項1において、
    前記平面追跡手段は、
    前記2枚の画像間の対応点を異なる幾何関係となる組に分類する複数平面抽出部と、
    前記2枚の画像のうち時系列的に前の画像におけるモザイク画像生成で前記特定平面上に存在すると推定された対応点を含む幾何関係の組を探索する追跡平面判定部とを備えることを特徴とするモザイク画像生成装置。
  3. 時系列的に連続して同一領域を撮像した複数枚の画像からモザイク画像を生成するモザイク画像生成装置であって、
    前記時系列的に連続した2枚の画像から、該画像内で重複した領域内の同一点の組である対応点を求める対応点検出手段と、
    前記複数枚の画像において特定平面を追跡する平面追跡手段と、
    画像更新手段とを備え、
    前記平面追跡手段は、前記対応点のうち、前記特定平面上にある対応点のみから、前記2枚の画像間の幾何関係を推定する幾何関係推定部を有し、
    前記画像更新手段は、前記2枚の画像間の前記幾何関係に基づき、前記モザイク画像を生成し、
    前記平面追跡手段は、
    前記画像が航空機からカメラで撮影された空撮画像かつ前記特定平面が地面平面である場合に、前記航空機が地面平面から離着陸することを用いて、離着陸時の直下の平面を前記特定平面として追跡することを特徴とするモザイク画像生成装置。
  4. 請求項において、
    前記画像更新手段は、
    前記平面上の対応点のみから推定された前記幾何関係に基づいて前記カメラの位置姿勢の軌跡を推定し、
    表示装置に前記モザイク画像と前カメラの位置姿勢情報を出力する
    ことを特徴とするモザイク画像生成装置。
  5. 移動するカメラにより時系列的に連続して同一領域を撮影した複数枚の画像から、モザイク画像生成装置により、モザイク画像を生成する方法であって、
    前記モザイク画像生成装置は、対応点検出手段と、平面追跡手段と、画像更新手段とを備えており、
    前記対応点検出手段により、前記複数枚の画像のうち同じ領域が重複して撮像されている2画像から前記同じ領域内の同一点の組である対応点を求める対応点検出工程と、
    前記平面追跡手段により、
    前記複数枚の画像において特定平面を追跡平面として追跡する平面追跡工程と、
    前記対応点のうち前記特定平面上にあるもののみから前記2画像間の幾何関係を推定する幾何関係推定工程と、
    前記画像更新手段により、前記幾何関係に基づき前記2画像から前記モザイク画像を生成するモザイク画像更新工程とを有し、
    前記平面追跡工程は、
    前記2画像間の対応点から前記特定平面に含まれる対応点のみを平面内対応点として抽出する工程と、
    前記平面内対応点から前記追跡平面の幾何関係を推定する工程と、
    前記2画像間の全対応点から前記幾何関係を満足する対応点のみを抽出する工程とを含み、
    前記平面追跡工程は、
    前記特定平面の追跡に失敗した場合に、
    別の特定平面に追跡対象を切り替える工程と、
    作成済みの前記モザイク画像を破棄する工程とを含むことを特徴とするモザイク画像生成方法。
  6. 請求項において、
    前記平面追跡工程は、
    前記2画像間の対応点を異なる幾何関係となる組に分類する工程と、
    前記2画像のうち時系列的に前の画像におけるモザイク画像生成で前記特定平面上に存在する推定された対応点を含む幾何関係の組を探索する工程とを含むことを特徴とするモザイク画像生成方法。
  7. 移動するカメラにより時系列的に連続して同一領域を撮影した複数枚の画像から、モザイク画像生成装置により、モザイク画像を生成する方法であって、
    前記モザイク画像生成装置は、対応点検出手段と、平面追跡手段と、画像更新手段とを備えており、
    前記対応点検出手段により、前記複数枚の画像のうち同じ領域が重複して撮像されている2画像から前記同じ領域内の同一点の組である対応点を求める対応点検出工程と、
    前記平面追跡手段により、
    前記複数枚の画像において特定平面を追跡平面として追跡する平面追跡工程と、
    前記対応点のうち前記特定平面上にあるもののみから前記2画像間の幾何関係を推定する幾何関係推定工程と、
    前記画像更新手段により、前記幾何関係に基づき前記2画像から前記モザイク画像を生成するモザイク画像更新工程とを有し、
    前記平面追跡工程は、
    前記画像が航空機からカメラにより撮影された空撮画像でかつ前記特定平面が地面平面である場合に、前記航空機が地面平面から離着陸することを用いて、離着陸時の直下の平面を前記特定平面として追跡する、ことを特徴とするモザイク画像生成方法。
  8. 請求項において、
    前記平面上の対応点のみから推定された前記幾何関係に基づいて前記カメラの位置姿勢の軌跡を推定する工程を有することを特徴とするモザイク画像生成方法。
JP2013105415A 2013-05-17 2013-05-17 モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム Expired - Fee Related JP6155091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105415A JP6155091B2 (ja) 2013-05-17 2013-05-17 モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105415A JP6155091B2 (ja) 2013-05-17 2013-05-17 モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム

Publications (3)

Publication Number Publication Date
JP2014228881A JP2014228881A (ja) 2014-12-08
JP2014228881A5 JP2014228881A5 (ja) 2016-06-16
JP6155091B2 true JP6155091B2 (ja) 2017-06-28

Family

ID=52128709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105415A Expired - Fee Related JP6155091B2 (ja) 2013-05-17 2013-05-17 モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム

Country Status (1)

Country Link
JP (1) JP6155091B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454579B2 (ja) * 2015-03-27 2019-01-16 綜合警備保障株式会社 空撮画像処理システム及び空撮画像処理方法
KR101837403B1 (ko) * 2016-12-13 2018-04-19 국방과학연구소 고속 영상 모자이킹 방법 및 장치
JP7069609B2 (ja) * 2017-09-01 2022-05-18 コニカミノルタ株式会社 作物栽培支援装置
KR102211769B1 (ko) * 2017-12-07 2021-02-03 한국전자통신연구원 멀티 카메라 촬영 영상의 기하보정 방법 및 장치
KR102544043B1 (ko) * 2021-04-01 2023-06-15 네이버랩스 주식회사 드론 영상을 활용한 항공지도의 업데이트 방법 및 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265448A (ja) * 1998-03-17 1999-09-28 Hitachi Ltd 画像データの形状分離合成方法
JP2002150264A (ja) * 2000-11-07 2002-05-24 Nippon Telegr & Teleph Corp <Ntt> モザイク画像合成方法及びモザイク画像合成装置並びにモザイク画像合成プログラムを記録した記録媒体
JP4463099B2 (ja) * 2004-12-28 2010-05-12 株式会社エヌ・ティ・ティ・データ モザイク画像合成装置、モザイク画像合成プログラム及びモザイク画像合成方法
JP4724247B2 (ja) * 2007-10-30 2011-07-13 株式会社パスコ 家屋異動判定方法、家屋異動判定プログラム、家屋異動判定用画像生成方法、及び家屋異動判定用画像
WO2011153624A2 (en) * 2010-06-11 2011-12-15 Ambercore Software Inc. System and method for manipulating data having spatial coordinates

Also Published As

Publication number Publication date
JP2014228881A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
US10303966B2 (en) Method and system of image-based change detection
US10885328B2 (en) Determination of position from images and associated camera positions
US10182212B2 (en) Wide area intermittent video using non-orthorectified feature matching in long period aerial image capture with pixel-based georeferencing
Yahyanejad et al. Incremental mosaicking of images from autonomous, small-scale uavs
US8902308B2 (en) Apparatus and method for generating an overview image of a plurality of images using a reference plane
US9578310B2 (en) Automatic scene calibration
US8797400B2 (en) Apparatus and method for generating an overview image of a plurality of images using an accuracy information
Rumpler et al. Evaluations on multi-scale camera networks for precise and geo-accurate reconstructions from aerial and terrestrial images with user guidance
JP6510247B2 (ja) 測量データ処理装置、測量データ処理方法およびプログラム
JP6155091B2 (ja) モザイク画像生成装置及び生成方法並びにモザイク画像生成プログラム
CN111199578A (zh) 基于视觉辅助激光雷达的无人机三维环境建模方法
US10740608B2 (en) Wide area intermittent video using non-orthorectified feature matching in long period aerial image capture with pixel-based georeferencing
Verykokou et al. Oblique aerial images: a review focusing on georeferencing procedures
JP2003141575A (ja) 三次元データベース生成システム及び三次元データベース生成方法
He et al. Automated relative orientation of UAV-based imagery in the presence of prior information for the flight trajectory
Moussa et al. A fast approach for stitching of aerial images
JP3808833B2 (ja) 空中写真測量方法
Yahyanejad et al. Incremental, orthorectified and loop-independent mosaicking of aerial images taken by micro UAVs
He et al. Three-point-based solution for automated motion parameter estimation of a multi-camera indoor mapping system with planar motion constraint
Rau et al. Development of a large-format uas imaging system with the construction of a one sensor geometry from a multicamera array
CN113129422A (zh) 一种三维模型构建方法、装置、存储介质和计算机设备
Sheikh et al. Geodetic alignment of aerial video frames
CN113421332A (zh) 一种三维重建方法、装置、电子设备及存储介质
US10553022B2 (en) Method of processing full motion video data for photogrammetric reconstruction
Vasile et al. Efficient city-sized 3D reconstruction from ultra-high resolution aerial and ground video imagery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6155091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees