JP6153241B2 - Liver dysfunction prevention and improvement agent - Google Patents

Liver dysfunction prevention and improvement agent Download PDF

Info

Publication number
JP6153241B2
JP6153241B2 JP2011179202A JP2011179202A JP6153241B2 JP 6153241 B2 JP6153241 B2 JP 6153241B2 JP 2011179202 A JP2011179202 A JP 2011179202A JP 2011179202 A JP2011179202 A JP 2011179202A JP 6153241 B2 JP6153241 B2 JP 6153241B2
Authority
JP
Japan
Prior art keywords
liver
concentration
serum
ozonized
fat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011179202A
Other languages
Japanese (ja)
Other versions
JP2013040143A (en
Inventor
晃良 柳田
晃良 柳田
晃治 永尾
晃治 永尾
小島 浩一
浩一 小島
永井 利治
利治 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority to JP2011179202A priority Critical patent/JP6153241B2/en
Publication of JP2013040143A publication Critical patent/JP2013040143A/en
Application granted granted Critical
Publication of JP6153241B2 publication Critical patent/JP6153241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

本発明は、オゾン化油脂を含有する肝機能障害予防改善剤、肝機能障害予防改善用飲食品及び肝機能障害予防改善用飼料に関する。   The present invention relates to an agent for preventing and improving liver dysfunction containing ozonized fats and oils, a food and drink for preventing and improving liver dysfunction, and a feed for preventing and improving liver dysfunction.

近年、生活習慣に関係して発症する病態としてメタボリックシンドローム(内臓脂肪症候群)が注目されている。メタボリックシンドロームは、内臓脂肪型肥満に加え、高血糖、高血圧、脂質異常(高中性脂肪血症、低HDLコレステロール血症)のうちいずれか2以上の危険因子を併せもつ状態をいい、脳梗塞、脳出血、虚血性心疾患、大動脈瘤等の動脈硬化性疾患の発症の危険性を増大させることから、その予防・改善が重要な課題となっている。メタボリックシンドロームの危険因子とされる高血糖、高血圧、脂質異常については、それぞれ独立に進行するものではなく、互いに相関した病気であるという認識が広まっており、脂肪蓄積による肥満が糖尿病等の合併症の一因であることが明らかになっている。最近の研究によると、過食、運動不足、生活習慣の多様化によるストレスが生体の防御反応に変調や破綻をもたらし、低レベルの炎症状態が長期化した慢性炎症が引き起こされることによって種々の病態が起こるとも指摘されており、不可逆的な臓器の機能不全を生じる慢性炎症が、メタボリックシンドローム、アテローム硬化等の動脈硬化性疾患、インスリン非依存性糖尿病、脂質異常、癌等の発症や進展の原因であるとして注目されている。また、肥満による内臓脂肪の蓄積によって脂肪組織で発生する炎症性変化についての報告もなされており、肥満に伴う合併症への影響が指摘されている。   In recent years, metabolic syndrome (visceral fat syndrome) has attracted attention as a pathological condition that develops in relation to lifestyle habits. Metabolic syndrome refers to a condition with two or more risk factors of hyperglycemia, hypertension, and lipid abnormalities (high triglyceremia, low HDL cholesterolemia) in addition to visceral fat obesity, cerebral infarction, Since it increases the risk of the onset of arteriosclerotic diseases such as cerebral hemorrhage, ischemic heart disease, aortic aneurysm, prevention and improvement thereof is an important issue. Hyperglycemia, hypertension, and lipid abnormalities, which are risk factors for metabolic syndrome, are not independent of each other and are widely recognized as being related to each other. Obesity due to fat accumulation is a complication such as diabetes. It has become clear that this is one of the causes. According to recent research, stress caused by overeating, lack of exercise, and diversification of lifestyle habits can lead to modulation and failure of the body's defense response, resulting in chronic inflammation with prolonged low-level inflammatory conditions. It is also pointed out that chronic inflammation that causes irreversible organ dysfunction is the cause of the onset and progression of metabolic syndrome, arteriosclerotic diseases such as atherosclerosis, non-insulin dependent diabetes mellitus, lipid abnormalities, cancer, etc. It is attracting attention as being. In addition, inflammatory changes that occur in adipose tissue due to the accumulation of visceral fat due to obesity have been reported, and the influence on complications associated with obesity has been pointed out.

脂肪細胞は、アディポサイトカインと呼ばれる種々の生理活性物質を分泌することにより恒常性維持、エネルギー代謝等の生体機能調節に関与していることが解明されてきており、アディポサイトカインには、動脈硬化を改善させるアディポネクチン、レプチンや、動脈硬化を促進させるTNFα、プラスミノーゲン活性化抑制因子(plasminogen activator inhibitor-1;PAI−1)、IL−6、MCP−1、アンジオポエチン様タンパク質2(Angptl2)、ヘパリン結合性上皮増殖因子様増殖因子(heparin binding-epidermal growth factor-like growth factor;HB−EGF)等が知られている。肥満の脂肪組織ではマクロファージ等の炎症細胞の浸潤を伴う慢性炎症が生じており、アディポサイトカインの分泌異常が起こり、インスリン抵抗性の改善に働くアディポネクチンの減少が認められる。このようなアディポサイトカインによる調節の破綻は、全身でのインスリン抵抗性を引き起こし、糖尿病等の合併症の発症の一因となっており、アディポサイトカインは、メタボリックシンドロームの病態形成に重要な役割を果たしていると考えられている。このような慢性炎症は、内臓脂肪特に肝脂肪の蓄積が生じている場合に深刻である。   It has been elucidated that adipocytes are involved in the regulation of biological functions such as homeostasis and energy metabolism by secreting various physiologically active substances called adipocytokines. Adiponectin and leptin to improve, TNFα to promote arteriosclerosis, plasminogen activator inhibitor-1 (PAI-1), IL-6, MCP-1, angiopoietin-like protein 2 (Angptl2), heparin A binding epidermal growth factor-like growth factor (HB-EGF) and the like are known. In obese adipose tissue, chronic inflammation accompanied by infiltration of inflammatory cells such as macrophages occurs, abnormal secretion of adipocytokines occurs, and adiponectin that works to improve insulin resistance is decreased. Such disruption of regulation by adipocytokines causes insulin resistance throughout the body and contributes to the development of complications such as diabetes. Adipocytokines play an important role in the pathogenesis of metabolic syndrome. It is believed that Such chronic inflammation is serious when accumulation of visceral fat, especially liver fat, occurs.

肝機能障害あるいは生活習慣病・肥満の予防・治療に関しては、従来から、アルギン酸カリウムを有効成分とする肥満・脂肪肝予防改善剤、内臓脂肪・肝臓脂質蓄積抑制剤(特許文献1参照)、チャの花部又はその抽出物を有効成分とする体脂肪低減促進剤、脂質代謝促進剤、脂肪肝等の肝障害の予防・治療剤、摂食抑制剤(特許文献2参照)、醤油粕又はその抽出物を有効成分とするPPAR活性化剤、脂肪酸代謝活性化剤、体脂肪燃焼促進剤、肥満抑制剤、脂肪肝抑制剤、抗糖尿病剤(特許文献3参照)等の多数の技術が知られている。   As for the prevention and treatment of liver dysfunction or lifestyle-related diseases / obesity, conventionally, an agent for improving obesity / fatty liver prevention, visceral fat / liver lipid accumulation inhibitor (see Patent Document 1), potassium alginate as an active ingredient, cha Body fat reduction promoter, lipid metabolism promoter, preventive / therapeutic agent for liver disorders such as fatty liver, antifeedant (see Patent Document 2), soy sauce cake or its Numerous techniques such as PPAR activator, fatty acid metabolism activator, body fat burning promoter, obesity inhibitor, fatty liver inhibitor, anti-diabetic agent (see Patent Document 3), etc., containing an extract as an active ingredient are known. ing.

脂肪酸は、生物のエネルギー源としてあるいは生理活性物質の生合成の材料として重要な物質であり、炭素数や二重結合の有無により様々な生理活性を示すことが知られているが、特に、脂肪酸を有効成分とする薬剤として、S2U型(Sは炭素数20から24の飽和脂肪酸残基で、Uは炭素数16以上の不飽和脂肪酸残基)のトリグリセリドを有効成分とする肝機能改善剤(特許文献4参照)、魚油を含有することを特徴とする肝臓トリグリセリド濃度低下剤(特許文献5参照)、プニカ酸またはそのエステルを有効成分とする体脂肪の蓄積に起因する疾患の治療剤(特許文献6参照)、5,11,14−エイコサトリエン酸を有効成分とする血中中性脂肪低下剤、肝臓中性脂肪合成抑制剤(特許文献7参照)、中鎖脂肪酸および/または中鎖脂肪酸を含むグリセリン脂肪酸エステルを有効成分とする体脂肪・皮下脂肪低減剤、糖尿病、高血圧、高脂血症、脂肪肝、痛風等の肥満由来疾患の予防および/または改善剤(特許文献8参照)等がある。   Fatty acids are important substances as biological energy sources or biosynthetic biosynthetic materials, and are known to exhibit various physiological activities depending on the number of carbon atoms and the presence or absence of double bonds. As an active ingredient, a liver function improving agent (S2U type (S is a saturated fatty acid residue having 20 to 24 carbon atoms, U is an unsaturated fatty acid residue having 16 or more carbon atoms) triglyceride) Patent Document 4), a liver triglyceride concentration-reducing agent containing fish oil (see Patent Document 5), a therapeutic agent for diseases caused by accumulation of body fat containing punicic acid or its ester as an active ingredient (patent Reference 6), blood neutral fat lowering agent, liver neutral fat synthesis inhibitor (see Patent Reference 7), medium chain fatty acid and / or 5,11,14-eicosatrienoic acid as an active ingredient Body fat / subcutaneous fat reducing agent comprising a glycerin fatty acid ester containing a chain fatty acid as an active ingredient, an agent for preventing and / or improving obesity-derived diseases such as diabetes, hypertension, hyperlipidemia, fatty liver and gout (see Patent Document 8) ) Etc.

オレイン酸を多く含むオリーブ油等の油脂をオゾニド化して得られるオゾン化油脂は、欧州で古くから製造され、外傷等治療薬として利用されており、効率的、安定的に製造する多数の方法が開発され(特許文献9、10参照)その利用が進められている。また、オゾン化油脂は、近年までに抗菌作用、抗酸化作用、抗腫瘍作用、抗炎症作用等の多様な生理活性を示すことが明らかになっており、感染症、潰瘍、かさぶた、火傷や他の消化管の組織病変等の局所治療、にきび、スキンケア等の美容のためのオゾン化油脂をチオクト酸と組み合わせることにより作用を促進させて医薬、美容、飼料又は食品添加物に用いる技術(特許文献11参照)等が知られている。しかしながら、オゾン化油脂が、メタボリックシンドロームの病態に作用することや、肝機能障害の予防改善に有効であることは知られていない。   Ozonated fats and oils obtained by converting oleic acid and other fats and oils that contain a large amount of oleic acid have been manufactured in Europe for a long time and used as therapeutic agents for trauma, etc., and many methods have been developed for efficient and stable production. (See Patent Documents 9 and 10). Ozonated oils and fats have been shown to exhibit various physiological activities such as antibacterial action, antioxidant action, antitumor action, and anti-inflammatory action by recent years, such as infections, ulcers, scabs, burns and others. Technology for use in medicine, beauty, feed or food additives by promoting action by combining ozonized oils and fats for topical treatment of tissue lesions of gastrointestinal tract, acne, skin care, etc. with thioctic acid (patent document) 11) and the like. However, it is not known that ozonized fats and oils are effective in the pathology of metabolic syndrome and effective in preventing and improving liver dysfunction.

特開2011−021012号公報JP 2011-021012 A 特開2009−185004号公報JP 2009-185004 A 特開2009−242382号公報JP 2009-242382 A 特開2008−247791号公報JP 2008-247771 A 特開2008−184429号公報JP 2008-184429 A 特開2008−150307号公報JP 2008-150307 A 特開2006−232711号公報JP 2006-232711 A 国際公開第2004/022049号International Publication No. 2004/022049 米国特許第2857410号明細書U.S. Pat. No. 2,857,410 米国特許第5183911号明細書US Pat. No. 5,183,911 米国特許出願公開第2005/0113441号明細書US Patent Application Publication No. 2005/0113441

本発明の課題は、容易に調製でき、慣用されている物質を有効成分とする肝機能障害予防改善剤、肝機能障害予防改善用飲食品及び肝機能障害予防改善用飼料を提供することにある。   An object of the present invention is to provide an agent for preventing and improving liver dysfunction, a food and drink for preventing and improving liver dysfunction, and a feed for preventing and improving liver dysfunction, which can be easily prepared and contains a commonly used substance as an active ingredient. .

本発明者らは、肥満モデルラットを用いて、オゾン化油投与/非投与グループを比較した結果、(i)体重や白色脂肪組織量については、両グループでほとんど違いが認められなかったが、(ii)肥満による肝臓機能障害に深く関わる因子である、肝臓脂肪量、アスパラギン酸アミノ基転移酵素(aspartate aminotransferase;AST)、アラニンアミノ基転移酵素(alanine aminotransferase;ALT)、及び血清プラスミノーゲン活性化抑制因子(plasminogen activator inhibitor-1;PAI−1)の血中濃度については、オゾン化油投与グループにおいて顕著な減少が認められたという新たな知見を見いだし、本発明を完成するに至った。   As a result of comparing the ozonized oil administration / non-administration groups using obese model rats, the present inventors found that (i) body weight and white adipose tissue amount were hardly different between the two groups. (Ii) Liver fat mass, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and serum plasminogen activity, which are factors deeply associated with liver dysfunction due to obesity As for the blood concentration of plasminogen activator inhibitor-1 (PAI-1), a new finding was found that a remarkable decrease was observed in the ozonized oil administration group, and the present invention was completed.

すなわち本発明は、
(1)オゾン化オリーブ油を有効成分として含有することを特徴とする代謝異常により発生する肝機能障害予防改善剤や、
(2)血中のプラスミノーゲン活性化抑制因子(PAI−1)の濃度の上昇を抑制するために用いられる上記(1)に記載の予防改善剤や、
(3)保健機能食品として用いられることを特徴とする上記(1)又は(2)に記載の予防改善剤や、
(4)飼料添加物として用いられることを特徴とする上記(1)又は(2)に記載の予防改善剤に関する。
That is, the present invention
(1) a preventive / ameliorating agent for liver dysfunction caused by metabolic abnormalities characterized by containing ozonized olive oil as an active ingredient;
(2) and prevention improving agent according to (1) used in order to suppress the increase in the concentration of plasminogen activator inhibitor in the blood (PAI-1),
(3) The preventive / ameliorating agent according to (1) or (2) above, which is used as a health functional food ,
(4) The preventive / ameliorating agent according to (1) or (2) above, which is used as a feed additive .

上記本発明の肝機能障害予防改善剤は、肝臓脂肪蓄積を抑制、すなわち肝臓へのトリグリセリドの蓄積を抑制し、脂質のうちトリグリセリドのみを選択的に血中へ放出させることができ、また、血中のPAI−1の濃度を低減ないし上昇抑制する効果を有することから、本発明の別の態様として、オゾン化油脂を含有する肝臓脂肪蓄積抑制ないし低減剤、オゾン化油脂を含有する肝臓トリグリセリド蓄積抑制ないし低減剤、オゾン化油脂を含有する血中PAI−1濃度の低減ないし上昇抑制剤の他、オゾン化油脂を含有する肝臓脂肪蓄積抑制ないし低減用飲食品又は飼料等を挙げることができる。   The agent for preventing or improving liver dysfunction according to the present invention suppresses liver fat accumulation, that is, suppresses accumulation of triglyceride in the liver, and can selectively release only triglyceride among lipids into the blood. Since it has the effect of reducing or increasing the concentration of PAI-1 in the liver, as another aspect of the present invention, as an aspect of the present invention, the liver fat accumulation-inhibiting or reducing agent containing ozonized oil and fat, the liver triglyceride accumulation containing ozonized oil and fat In addition to a suppressor or reducer, a decrease or increase inhibitor of blood PAI-1 concentration containing ozonated oils and fats, there can be mentioned food and drink or feed for liver fat accumulation inhibition or reduction containing ozonized oils and fats.

本発明によれば、代謝異常により発生する肝機能障害を予防し、又はその症状を改善することができる。また、メタボリックシンドロームの病態形成、進行を抑制することができる。具体的には、肝臓へのトリグリセリドの蓄積を抑制し、脂質のうちトリグリセリドのみを選択的に血中へ放出させることができ、血中のPAI−1の濃度を低減ないし上昇抑制する効果が得られる。また、肝機能障害マーカーであるAST、ALTの血中濃度を低減させることができる。   According to the present invention, it is possible to prevent or improve symptoms of liver dysfunction caused by metabolic abnormalities. Moreover, the pathogenesis and progression of metabolic syndrome can be suppressed. Specifically, the accumulation of triglycerides in the liver can be suppressed, and only triglycerides among lipids can be selectively released into the blood, and the effect of reducing or increasing the concentration of PAI-1 in the blood is obtained. It is done. In addition, blood concentrations of AST and ALT, which are markers for liver dysfunction, can be reduced.

被検ラットにおけるトリグリセリド濃度、血清タンパク質濃度と肝機能障害マーカーとの関係を単回帰分析した結果を示す図である。トリグリセリドとしては、肝臓トリグリセリド濃度(mg/g)、血清トリグリセリド濃度(mg/dL)。血清タンパク質としては、血清PAI−1濃度(ng/mL)、血清C反応性タンパク(CRP)濃度(pg/mL)、血清アディポネクチン濃度(μg/mL)、血清単球走化活性因子1(MCP−1)濃度(pg/mL)。肝機能障害マーカーとしては、アスパラギン酸アミノ基転移酵素(AST)活性(IU/L)を用いた。It is a figure which shows the result of having performed the single regression analysis on the relationship between the triglyceride density | concentration in a test rat, serum protein density | concentration, and a liver dysfunction marker. As triglycerides, liver triglyceride concentration (mg / g), serum triglyceride concentration (mg / dL). Serum proteins include serum PAI-1 concentration (ng / mL), serum C-reactive protein (CRP) concentration (pg / mL), serum adiponectin concentration (μg / mL), serum monocyte chemotactic factor 1 (MCP) -1) Concentration (pg / mL). Aspartic acid aminotransferase (AST) activity (IU / L) was used as a liver dysfunction marker.

本発明においてオゾン化油脂とは、不飽和脂肪酸を含む油脂にオゾンを導通して得られる物質であって、不飽和脂肪酸の二重結合がオゾニド化されて生成されるトリオキソランを含む油脂をいう。オゾン化油脂は、不飽和脂肪酸を含む液状の油脂を容器に収容し、オゾン/酸素混合気体を常温下、1〜5L/min程度の流速で油脂を攪拌しながら導通することにより調製することができる。原料となる油脂としては、不飽和脂肪酸であるオレイン酸、リノール酸、又はリノレイン酸を含む油脂であることが好ましく、特にオレイン酸を高い割合で含む常温で液体の油脂が好適に用いられる。このような油脂として、オリーブ油、菜種油、紅花油、ひまわり油等の植物油・食用油を挙げることができる。常温で液体の油脂を用いるとオゾン化油が得られ、オリーブ油を用いるとオゾン化オリーブ油が得られる。また、油脂としては不純物を留去したものを用いることが好ましく、油脂の溶媒として、ジクロロメタン、クロロホルム、四塩化炭素、シクロヘキサン、メタノール、酢酸エチル等を用いることができる。導通させるオゾン/酸素混合気体は、気体酸素の無声放電による方法、紫外線照射による方法、希硫酸を電気分解する方法等の公知の生成方法により調製することができる。   In the present invention, the ozonized oil / fat is a substance obtained by conducting ozone to an oil / fat containing an unsaturated fatty acid, and means an oil / fat containing trioxolane produced by the ozonization of a double bond of an unsaturated fatty acid. Ozonated fats and oils can be prepared by storing liquid fats and oils containing unsaturated fatty acids in a container and conducting an ozone / oxygen mixed gas at room temperature at a flow rate of about 1 to 5 L / min while stirring the fats and oils. it can. The oil or fat used as the raw material is preferably an oil or fat containing oleic acid, linoleic acid, or linolenic acid, which are unsaturated fatty acids, and oils and fats that are liquid at room temperature containing oleic acid in a high proportion are particularly suitable. Examples of such fats and oils include vegetable oils and edible oils such as olive oil, rapeseed oil, safflower oil, and sunflower oil. When oil and fat that are liquid at room temperature are used, ozonized oil is obtained, and when olive oil is used, ozonized olive oil is obtained. Moreover, it is preferable to use what distilled the impurity as fats and oils, and a solvent of fats and oils can use dichloromethane, chloroform, carbon tetrachloride, cyclohexane, methanol, ethyl acetate, etc. The ozone / oxygen mixed gas to be conducted can be prepared by a known production method such as a method using silent discharge of gaseous oxygen, a method using ultraviolet irradiation, or a method of electrolyzing dilute sulfuric acid.

本発明の肝機能障害予防改善剤は、肝臓の機能障害の発症の予防や、機能障害の軽減、治癒等の症状の改善に用いられる。肝機能障害の原因としては、代謝異常、アルコール摂取、ウイルス感染、免疫異常、遺伝的要因等があるが、本発明は特に代謝異常により発生する肝機能障害の予防改善に用いられる。予防改善する肝機能障害としては、肝不全、黄疸、肝腫大、腹水の蓄積、門脈圧亢進、肝性脳症、胆汁うっ滞等の徴候や症状を伴う肝臓の障害を挙げることができ、具体的には、脂肪肝、肝硬変、急性肝炎、慢性肝炎等の疾患例示することができる。また、本発明の肝機能障害予防改善剤は、肝臓へのトリグリセリドの蓄積を抑制する作用を有することから、特に、肥満時における肝臓脂肪蓄積の抑制に有効であり、脂肪肝やメタボリックシンドロームの発症の予防・症状改善のために用いることができる。また、本発明の肝機能障害予防改善剤は、血中のPAI−1の濃度を低減ないし上昇抑制させるため又は血中AST若しくはALT濃度を低減させるために用いることができる。PAI−1は、炎症により肝臓、血管及び脂肪細胞から分泌され、血中PAI−1濃度の上昇は、メタボリックシンドロームにおいて亢進が認められるほか、血栓傾向及び血管病変の憎悪因子としても重要であり、肝炎あるいはがんの予防や治療に関係があるという報告もある。したがって、肝機能障害予防改善作用を有するオゾン化油脂は、血栓症・肝炎の予防改善、がんの成長・転移抑制のために用いることもできる。   The agent for preventing and improving liver dysfunction of the present invention is used for preventing the onset of liver dysfunction, reducing symptoms of dysfunction, and improving symptoms such as healing. Causes of liver dysfunction include metabolic abnormalities, alcohol intake, viral infections, immune abnormalities, genetic factors, and the like. The present invention is particularly used for preventing and improving liver dysfunction caused by metabolic abnormalities. Liver dysfunction to prevent and improve can include liver failure with signs and symptoms such as liver failure, jaundice, hepatomegaly, ascites accumulation, portal hypertension, hepatic encephalopathy, cholestasis, Specifically, diseases such as fatty liver, cirrhosis, acute hepatitis and chronic hepatitis can be exemplified. The agent for improving and preventing liver dysfunction according to the present invention has an action of suppressing the accumulation of triglycerides in the liver, and is particularly effective in suppressing the accumulation of liver fat during obesity, and the onset of fatty liver and metabolic syndrome. Can be used to prevent or improve symptoms. The agent for preventing or improving liver dysfunction of the present invention can be used for reducing or suppressing the increase in blood PAI-1 concentration or for reducing blood AST or ALT concentration. PAI-1 is secreted from the liver, blood vessels and adipocytes due to inflammation, and the increase in blood PAI-1 concentration is not only increased in the metabolic syndrome, but also important as a thrombotic tendency and an aversion factor of vascular lesions, There are reports that it is related to the prevention and treatment of hepatitis or cancer. Therefore, ozonized oils and fats having an effect of improving and preventing liver dysfunction can also be used for the prevention and improvement of thrombosis and hepatitis, and the suppression of cancer growth and metastasis.

本発明の肝機能障害予防改善剤は、投与経路に応じ、薬理・製剤学的に許容される剤型に製剤化することができる。投与経路は、全身投与、局所経路のいずれでもよいが経口投与により腸管を経由してオゾン化油脂を投与することが好ましい。剤型としては、錠剤、カプセル剤、顆粒剤、散剤、液剤、シロップ剤、又はゼリー剤として経口投与用の製剤とし、体内組織・器官に直接投与する場合は注射剤としてもよい。肝機能障害予防改善剤は、賦形剤、結合剤、崩壊剤、分散剤、滑沢剤、コーティング剤、保存剤、着色剤、香味剤等の添加剤が使用されていてもよく、腸溶性あるいは徐放性の放出制御がなされていてもよい。   The liver dysfunction preventive / ameliorating agent of the present invention can be formulated into a pharmacologically / pharmaceutically acceptable dosage form according to the administration route. The administration route may be either systemic administration or local route, but it is preferable to administer ozonized oils and fats via the intestinal tract by oral administration. The dosage form may be a tablet, capsule, granule, powder, liquid, syrup, or jelly preparation for oral administration, or an injection for direct administration to a body tissue / organ. Additives such as excipients, binders, disintegrants, dispersants, lubricants, coating agents, preservatives, colorants, flavoring agents, etc. may be used for the liver dysfunction prevention / amelioration agent. Alternatively, controlled release control may be performed.

本発明の肝機能障害予防改善剤の投与方法は特に制限されず、経口投与、静脈内投与を症状に応じて選択することができるが、薬剤が腸管吸収を経る経口投与を用いることが好ましい。本発明の肝機能障害予防改善剤の投与量は、年齢、体重、性別、症状、薬剤への感受性等に応じて適宜決定される。通常、10〜1000mg/kg/dayの投与量の範囲で、好ましくは50〜500mg/kg/dayの投与量の範囲で、一日あたり単回あるいは複数回に分けて投与されるが、症状の改善の状況に応じて投与量を調節してよい。   The administration method of the agent for preventing and improving liver dysfunction according to the present invention is not particularly limited, and oral administration and intravenous administration can be selected according to the symptoms, but oral administration in which the drug undergoes intestinal absorption is preferably used. The dosage of the agent for preventing and improving liver dysfunction according to the present invention is appropriately determined according to age, weight, sex, symptom, sensitivity to drugs and the like. Usually, it is administered in a dose range of 10 to 1000 mg / kg / day, preferably in a dose range of 50 to 500 mg / kg / day, in a single dose or divided into multiple doses per day. The dosage may be adjusted according to the situation of improvement.

肝機能障害予防改善作用を有するオゾン化油脂は、飲食品又は飼料に添加することにより、肝機能障害予防改善用飲食品又は肝機能障害予防改善用飲飼料とすることができる。また、本発明の肝機能障害予防改善用飲食品、肝機能障害予防改善用飲飼料は、肥満時における肝臓脂肪蓄積の抑制に有効であり、脂肪肝やメタボリックシンドロームの発症の予防・症状改善のために用いることができる。また、本発明の肝機能障害予防改善用飲食品、肝機能障害予防改善用飲飼料は、血中のPAI−1の濃度を低減ないし上昇抑制させるため又は血中AST若しくはALT濃度を低減させるために用いることができる。飲食品としては、バター、マーガリン、ショートニング、ラード等の食用油脂類、醤油、ソース、マヨネーズ、ドレッシング等の調味料、畜肉・魚肉・野菜・果実加工食品・惣菜類、乳製品、菓子・氷菓子類、酒類、乳飲料、果実飲料・茶飲料等の清涼飲料等の食品・飲料のいずれについても一般食品又は保健機能食品として用いることができ、飼料としてはペット、家畜、家禽、養殖魚等のいずれの給餌用途にも用いることができる。これらの飲食品又は飼料には、その製造工程又は流通過程において、肝機能障害予防改善作用がある旨の表示を付すことにより、肝機能障害予防改善作用を有さない一般の飲食品又は飼料と区別することができる。   By adding the ozonized oil and fat having a liver dysfunction prevention / improvement action to a food or drink or a feed, it can be made into a food or drink for preventing or improving a liver dysfunction or a feed for preventing or improving a liver dysfunction. In addition, the food and drink for preventing and improving liver dysfunction according to the present invention and the diet for preventing and improving liver dysfunction are effective in suppressing the accumulation of liver fat during obesity, and the prevention and improvement of symptoms of fatty liver and metabolic syndrome. Can be used for In addition, the food and drink for preventing and improving liver dysfunction according to the present invention and the feed for preventing and improving liver dysfunction are for reducing or suppressing the concentration of PAI-1 in the blood or for reducing the blood AST or ALT concentration. Can be used. Foods and drinks include edible fats and oils such as butter, margarine, shortening, lard, seasonings such as soy sauce, sauce, mayonnaise, dressing, livestock meat, fish, vegetables, fruit processed foods, side dishes, dairy products, confectionery, ice confectionery All kinds of foods and beverages such as soft drinks such as alcoholic beverages, alcoholic beverages, milk beverages, fruit beverages and tea beverages can be used as general foods or health functional foods, and feeds such as pets, livestock, poultry, and cultured fish It can be used for any feeding application. These foods and drinks and feeds are labeled with general foods and drinks or feeds that have no liver dysfunction prevention / improvement action by indicating that they have a liver dysfunction prevention / improvement action in the manufacturing process or distribution process. Can be distinguished.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

オゾン化油脂が有する肝機能及びメタボリックシンドロームの病態発症への生理作用を、肥満モデルラットを被検動物として動物実験により確認した。   The liver function of the ozonized oil and fat and the physiological effects of metabolic syndrome on pathogenesis were confirmed by animal experiments using obese model rats as test animals.

被検動物としては、レプチン受容体の劣性変異遺伝子faのホモ接合体であるZucker(fa/fa)ラットと、野生型の優勢遺伝子ホモ接合体Zucker(+/+)ラットの5週齢の雄の個体を用いた。Zucker(fa/fa)ラットは、摂食・エネルギー代謝に関与するレプチンの受容体遺伝子の異常により、レプチンによる伝達経路が障害されており、過食、肥満、高脂血症、脂肪肝を呈するモデル動物である。5週齢雄Zucker(fa/fa)ラットと5週齢雄Zucker(+/+)ラットは、日本エスエルシー株式会社から購入した。   The test animals include Zucker (fa / fa) rats that are homozygotes for the leptin receptor recessive mutant gene fa and 5-week-old males of wild-type dominant gene homozygotes Zucker (+ / +) rats. Individuals were used. Zucker (fa / fa) rat is a model that shows overeating, obesity, hyperlipidemia, and fatty liver, because the leptin receptor gene involved in feeding and energy metabolism is impaired by the leptin transmission pathway. Is an animal. 5-week-old male Zucker (fa / fa) rats and 5-week-old male Zucker (+ / +) rats were purchased from SLC Japan.

オゾン化油脂は、オリーブ油をオゾン化したオゾン化オリーブ油を食餌に添加、混合することにより被検動物に与えた。オゾン化オリーブ油は、120gのオリーブ油(和光純薬工業株式会社製)を3倍容のジクロロメタンに溶解し、0℃に冷却して攪拌しながら、オゾン発生器ED−OG−R6(エコデザイン株式会社製)に酸素ガスを5L/minで供給して発生させた4g/hのオゾンガスを2.5時間通気して調製した(オリーブ油の分子量を885.4、オリーブ油中のオレイン酸含有量を80%、分子内二重結合数を3として、オゾン化反応率は約64%であった)。得られたオゾニドの部分構造については、NMRにより確認した。オゾン化した後、含まれているジクロロメタンを真空乾燥によって除去してオゾン化オリーブ油試料とした。食餌は、米国立栄養研究所によるAIN−76げっ歯類標準飼料組成に準じ、表1に示す組成で調製した。Zucker(+/+)ラット及びZucker(fa/fa)ラットにそれぞれ給餌する対照食(Normal及びControl)としては、コーン油6.5%とオレイン酸を多く含むオリーブ油0.5%とを含む食餌を用い、Zucker(fa/fa)に給餌する実験食としては、低オゾン化油脂投与群(Low Ozone群;LO群)については、コーン油6.5%とオリーブ油0.45%とオゾン化オリーブ油0.05%とを含む食餌を用い、高オゾン化油脂投与群(High ozone群;HO群)については、コーン油6.5%とオゾン化オリーブ油0.5%とを含む食餌を用いた。   The ozonized fats and oils were given to the test animals by adding and mixing ozonized olive oil obtained by ozonizing olive oil to the diet. Ozonized olive oil was prepared by dissolving 120 g of olive oil (manufactured by Wako Pure Chemical Industries, Ltd.) in 3 volumes of dichloromethane, cooling to 0 ° C. and stirring, while generating ozone generator ED-OG-R6 (Ecodesign Corporation). Made by supplying oxygen gas at a rate of 5 L / min and venting 2.5 g of ozone gas for 2.5 hours (the molecular weight of olive oil is 885.4, and the oleic acid content in olive oil is 80%) The number of double bonds in the molecule was 3, and the ozonization reaction rate was about 64%). The partial structure of the obtained ozonide was confirmed by NMR. After ozonization, the contained dichloromethane was removed by vacuum drying to obtain an ozonized olive oil sample. The diet was prepared with the composition shown in Table 1 according to the AIN-76 rodent standard feed composition by the National Institute of Nutrition. Control diets (Normal and Control) fed to Zucker (+ / +) and Zucker (fa / fa) rats, respectively, include diet containing 6.5% corn oil and 0.5% olive oil rich in oleic acid. As an experimental food to be fed to Zucker (fa / fa), as for the low ozonized oil and fat administration group (Low Ozone group; LO group), corn oil 6.5%, olive oil 0.45% and ozonized olive oil A diet containing 0.05% was used, and a diet containing 6.5% corn oil and 0.5% ozonized olive oil was used for the high ozonized oil / fat administration group (High ozone group; HO group).

Figure 0006153241
Figure 0006153241

肥満型のZucker(fa/fa)ラット及び野生型のZucker(+/+)ラットは、室温23±2℃、明期12時間(7〜19時)、暗期12時間(19〜翌7時)の光条件の動物室内で、食餌を19時〜翌9時の間給餌することによりそれぞれ飼育した。始めにZucker(fa/fa)ラット及びZucker(+/+)ラットをそれぞれ対照食を給餌して1週間予備飼育した後、Zucker(fa/fa)ラットについては、対照食投与群、低オゾン化油脂投与群、高オゾン化油脂投与群の3群に分けて各食餌を給餌して4週間同時飼育(pair feeding)し、Zucker(+/+)ラットについては、ポジティブコントロールとして対照食の給餌を4週間継続した。各ラットの体重及び摂食量は飼育期間中、毎日測定し、本飼育最終日に9時間絶食させた後の終体重を測定した。その結果を表2に示す。   Obese Zucker (fa / fa) rats and wild-type Zucker (+ / +) rats are room temperature 23 ± 2 ° C., light period 12 hours (7-19 o'clock), dark period 12 hours (19-next 7 o'clock) ) Were kept in the animal room under the light conditions by feeding from 19:00 to next 9 o'clock. First, Zucker (fa / fa) rats and Zucker (+ / +) rats were each fed a control diet and preliminarily raised for 1 week. Divided into 3 groups, oil-fat administration group and high ozonized oil-fat administration group, each diet was fed and paired for 4 weeks. For Zucker (+ / +) rats, the control diet was fed as a positive control. Continued for 4 weeks. The body weight and food intake of each rat were measured every day during the breeding period, and the final weight after fasting for 9 hours on the final breeding day was measured. The results are shown in Table 2.

終体重を測定した後、各ラットをジエチルエーテルにより麻酔し、腹部大動脈採血による屠殺を行って、血液、肝臓、脂肪組織を摘出した。摘出した肝臓及び脂肪組織については重量を測定した。その結果を表2に示す。血液については、静置した後、遠心分離(3000rpm,15分,4℃)を行うことにより血清を得た。ここで得られた被検ラットの肝臓、脂肪組織、血清を以下の測定試験に供した。   After measuring the final body weight, each rat was anesthetized with diethyl ether and sacrificed by abdominal aorta blood sampling to remove blood, liver, and adipose tissue. The removed liver and adipose tissue were weighed. The results are shown in Table 2. The blood was allowed to stand and then centrifuged (3000 rpm, 15 minutes, 4 ° C.) to obtain serum. The liver, adipose tissue, and serum of the test rat obtained here were subjected to the following measurement test.

Figure 0006153241
Figure 0006153241

各ラットの体重、摂食量、白色脂肪組織重量、肝臓重量を比較した結果、野生型ラットと比較して肥満型ラットの体重、摂食量、肝臓重量、白色脂肪組織重量が顕著に増加しており、摂食効率について有意差は認められなかった。また、終体重、摂食量、白色脂肪組織重量については、肥満型ラットの群間において差は見られなかったが、肝臓重量では、オゾン化油脂の摂食により、LO群で7%の低下傾向、HO群で19%の有意な低下が認められた。   As a result of comparing the body weight, food intake, white adipose tissue weight, and liver weight of each rat, the body weight, food intake, liver weight, and white adipose tissue weight of obese rats were significantly increased compared to wild type rats. There was no significant difference in feeding efficiency. Moreover, there was no difference in the final body weight, food intake, and white adipose tissue weight among the groups of obese rats, but the liver weight decreased by 7% in the LO group due to the consumption of ozonized oils and fats. In the HO group, a significant decrease of 19% was observed.

[肝臓脂質濃度の測定]
得られた被検ラットの肝臓に含まれるトリグリセリド、コレステロール、リン脂質の各総量を測定するために、ラットから摘出した肝臓の総脂質成分をFolchらの方法(Folch J et al., J. Biol. Chem., 226, 497-509, 1957)により、以下の操作で抽出・濃縮して肝臓脂質抽出液を調製した。摘出した肝臓0.1gを7.5mLのメタノール、15mLのクロロホルムと共にホモジナイズし、その後37℃で30分加温し、クロロホルム・メタノール混合液(chloroform:methanol=2:1,v/v)を添加して25mLとした混合液を濾過した。続いて、濾液に蒸留水を約20%容加え、転倒混和し、一晩低温室(4℃)に静置した。静置後分離したクロロホルム層をアルゴンガス使用の下、エバポレーターを用いて減圧濃縮し、石油エーテルに再溶解して総量を25mLとした溶液を肝臓脂質抽出液とした。
[Measurement of liver lipid concentration]
In order to measure the total amount of triglycerides, cholesterol and phospholipids contained in the liver of the obtained test rats, the total lipid components of the liver extracted from the rats were analyzed by the method of Folch et al. (Folch J et al., J. Biol Chem., 226, 497-509, 1957), a liver lipid extract was prepared by extraction and concentration by the following procedure. 0.1 g of the extracted liver was homogenized with 7.5 mL of methanol and 15 mL of chloroform, and then heated at 37 ° C. for 30 minutes, and a chloroform / methanol mixture (chloroform: methanol = 2: 1, v / v) was added. And the mixed solution made to 25 mL was filtered. Subsequently, about 20% of distilled water was added to the filtrate, mixed by inversion, and left overnight in a low temperature room (4 ° C.). The chloroform layer separated after standing was concentrated under reduced pressure using an evaporator under argon gas, and re-dissolved in petroleum ether to make a total volume of 25 mL as a liver lipid extract.

[肝臓トリグリセリド濃度]
肝臓トリグリセリド濃度については、Fletcherらの方法(Fletcher MJ. Et al., Clin. Chim. Acta., 22, 393-397, 1968)により定量した。Zucker(fa/fa)ラットについては0.5mL、Zucker(+/+)ラットについては2mLの肝臓脂質抽出液を乾燥し、それぞれ5mLのクロロホルムと1.0gのシリカゲル(Mallinckrodt Baker社製)を添加し、シェイカーで5分間振とうした後、遠心分離(3000rpm、10分、10℃)を行った。その上清を1mL採取して乾燥した後、2mLのイソプロパノール・蒸留水混合液(isopropanol:HO=9:1,v/v)と0.6mLの5%KOH溶液(in isopropanol:HO=2:3)を加え攪拌した後、60〜70℃の水浴中で30分間加温して鹸化を行った。室温に戻した後、1mLの0.003molメタ過ヨウ素酸ナトリウムと0.5mLのアセチルアセトン溶液を加えて攪拌し、50℃の水浴中で30分間加温して発色させた。再び室温に戻した後、波長405nmにおける吸光度を測定した。その結果を表3に示す。
[Liver triglyceride concentration]
The liver triglyceride concentration was quantified by the method of Fletcher et al. (Fletcher MJ. Et al., Clin. Chim. Acta., 22, 393-397, 1968). 0.5 mL for Zucker (fa / fa) rats and 2 mL of liver lipid extract for Zucker (+ / +) rats were dried, and 5 mL chloroform and 1.0 g silica gel (Mallinckrodt Baker) were added. Then, after shaking for 5 minutes with a shaker, centrifugation (3000 rpm, 10 minutes, 10 ° C.) was performed. After 1 mL of the supernatant was collected and dried, 2 mL of an isopropanol / distilled water mixture (isopropanol: H 2 O = 9: 1, v / v) and 0.6 mL of a 5% KOH solution (in isopropanol: H 2) After adding O = 2: 3) and stirring, the mixture was heated in a water bath at 60 to 70 ° C. for 30 minutes for saponification. After returning to room temperature, 1 mL of 0.003 mol sodium metaperiodate and 0.5 mL of acetylacetone solution were added and stirred, and heated in a 50 ° C. water bath for 30 minutes for color development. After returning to room temperature again, the absorbance at a wavelength of 405 nm was measured. The results are shown in Table 3.

[肝臓コレステロール濃度]
肝臓コレステロール濃度については、コレステロールE−テストワコー(和光純薬工業株式会社製)を用いて、コレステロールオキシダーゼ・DAOS法(Allain C.C. et al., Clin. Chim. Acta., 20, 470-475, 1974)により測定した。1mLの肝臓脂質抽出液を乾燥し、10μLの10%トリトン(in isopropanol)を添加して攪拌し、続いて1.5mLの発色試薬を添加して攪拌した。その後、37℃で5分間加温し、1.5mLのクロロホルムを添加して、シェイカーで5分間振とうし、遠心分離(3000rpm,20分,10℃)を行い、その上清の波長600nmにおける吸光度を測定した。その結果を表3に示す。
[Hepatic cholesterol concentration]
Regarding the liver cholesterol concentration, cholesterol E-test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and cholesterol oxidase DAOS method (Allain CC et al., Clin. Chim. Acta., 20, 470-475, 1974 ). 1 mL of liver lipid extract was dried, 10 μL of 10% triton (in isopropanol) was added and stirred, followed by addition of 1.5 mL of color reagent and stirring. Then, warm at 37 ° C. for 5 minutes, add 1.5 mL of chloroform, shake with a shaker for 5 minutes, perform centrifugation (3000 rpm, 20 minutes, 10 ° C.), and the supernatant at a wavelength of 600 nm. Absorbance was measured. The results are shown in Table 3.

[肝臓リン脂質]
肝臓リン脂質濃度については、Rouserらの方法(Fletcher MJ. et al., Clin. Chim. Acta., 22, 393-397, 1968)により定量した。0.5mLの肝臓脂質抽出液を乾燥し、1mLの70%過塩素酸を添加した後、溶液が無色になるまで180〜190℃で30〜60分間熱分解を行った。続いて、液温を室温に戻し、5mLの蒸留水と1mLの2.5%モリブデン酸アンモニウム溶液と1mLの10%アスコルビン酸水溶液とを添加して攪拌し、100℃の沸騰浴中で5分間加温して発色させた。再び室温に戻した後、波長820nmにおける吸光度を測定した。その結果を表3に示す。
[Liver phospholipids]
The liver phospholipid concentration was quantified by the method of Rouser et al. (Fletcher MJ. Et al., Clin. Chim. Acta., 22, 393-397, 1968). After 0.5 mL of the liver lipid extract was dried and 1 mL of 70% perchloric acid was added, pyrolysis was performed at 180 to 190 ° C. for 30 to 60 minutes until the solution became colorless. Subsequently, the liquid temperature was returned to room temperature, 5 mL of distilled water, 1 mL of 2.5% ammonium molybdate solution and 1 mL of 10% ascorbic acid aqueous solution were added and stirred, and the mixture was stirred in a boiling bath at 100 ° C. for 5 minutes. Colored by heating. After returning to room temperature again, the absorbance at a wavelength of 820 nm was measured. The results are shown in Table 3.

Figure 0006153241
Figure 0006153241

被検ラットの肝臓に含まれるトリグリセリド、コレステロール、リン脂質の総量を測定した結果、肝臓1g当たりでは、トリグリセリド濃度については、野生型と比較して肥満型において有意な増加が認められ、リン脂質濃度については、有意な低下が認められた。オゾン化油脂摂取により、トリグリセリド濃度についてはHO群で47%の有意な低下が、リン脂質濃度ではHO群で25%の有意な増加が認められた。肝臓全体では、トリグリセリド、コレステロール及びリン脂質濃度のいずれについても野生型に比べ肥満型において有意な蓄積が認められた。オゾン化油脂の摂食により、トリグリセリドの蓄積についてはHO群で57%の顕著な抑制を示した。   As a result of measuring the total amount of triglyceride, cholesterol and phospholipid contained in the liver of the test rat, the triglyceride concentration per gram of liver was significantly increased in the obese type compared to the wild type, and the phospholipid concentration A significant decrease was observed for. With the intake of ozonized fats and oils, the triglyceride concentration was significantly decreased by 47% in the HO group, and the phospholipid concentration was significantly increased by 25% in the HO group. In the whole liver, significant accumulation was observed in the obese type compared to the wild type for all of the triglyceride, cholesterol and phospholipid concentrations. Ingestion of ozonized fats and oils showed a remarkable suppression of 57% in the HO group for the accumulation of triglycerides.

[血清脂質濃度及びグルコース濃度の測定]
得られた被検ラットの血清に含まれるトリグリセリド、コレステロール、リン脂質、遊離脂肪酸、グルコース濃度を測定した。
[Measurement of serum lipid concentration and glucose concentration]
Triglyceride, cholesterol, phospholipid, free fatty acid, and glucose concentration contained in the serum of the obtained test rat were measured.

[血清トリグリセリド]
血清グリセリド濃度については、トリグリセライドE−テストワコー(和光純薬工業株式会社製)を用いて、GPO・DAOS法により、波長600nmにおける吸光度を測定して定量した。
[Serum triglyceride]
The serum glyceride concentration was quantified by measuring the absorbance at a wavelength of 600 nm by triglyceride E-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) by the GPO / DAOS method.

[血清コレステロール]
血清コレステロール濃度については、コレステロールE−テストワコー(和光純薬工業株式会社製)を用いて、コレステロールオキシダーゼ・DAOS法により、波長600nmにおける吸光度を測定して定量した。その結果を表4に示す。
[Serum cholesterol]
The serum cholesterol concentration was quantified by measuring the absorbance at a wavelength of 600 nm by cholesterol oxidase / DAOS method using cholesterol E-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.). The results are shown in Table 4.

[血清リン脂質]
血清リン脂質濃度については、リン脂質C−テストワコー(和光純薬工業株式会社製)を用いて、コリンオキシダーゼ・DAOS法により、波長600nmにおける吸光度を測定して定量した。その結果を表4に示す。
[Serum phospholipids]
The serum phospholipid concentration was quantified by measuring the absorbance at a wavelength of 600 nm by the choline oxidase DAOS method using Phospholipid C-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.). The results are shown in Table 4.

[血清遊離脂肪酸]
血清遊離脂肪酸濃度については、NEFA C−テストワコー(和光純薬工業株式会社製)を用いて、ACS・ACOD法により、波長550nmにおける吸光度を測定して定量した。その結果を表4に示す。
[Serum free fatty acids]
The serum free fatty acid concentration was quantified by measuring the absorbance at a wavelength of 550 nm by the ACS / ACOD method using NEFA C-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.). The results are shown in Table 4.

[血清グルコース]
血清グルコース濃度については、グルコースCII−テストワコー(和光純薬工業株式会社製)を用いて、ムタローゼ・GOD法により、波長505nmにおける吸光度を測定して定量した。その結果を表4に示す。
[Serum glucose]
The serum glucose concentration was quantified by measuring the absorbance at a wavelength of 505 nm using a glucose CII-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) by the mutarose / GOD method. The results are shown in Table 4.

Figure 0006153241
Figure 0006153241

被検ラットの血清に含まれるトリグリセリド、コレステロール、リン脂質、遊離脂肪酸、グルコースを測定した結果、トリグリセリド濃度、コレステロール濃度、リン脂質濃度及び遊離脂肪酸濃度について、野生型と比較して肥満型において有意な増加が認められた。オゾン化油脂の摂食により、トリグリセリド濃度についてはHO群で顕著な上昇が、遊離脂肪酸濃度についてはLO群で13%の上昇傾向、HO群で32%の有意な上昇が、コレステロール濃度についてはLO群で14%の低下傾向、HO群で18%の有意な低下が認められた。グルコース濃度については、群間で差は認められなかった。   As a result of measuring triglyceride, cholesterol, phospholipid, free fatty acid and glucose contained in the serum of the test rat, the triglyceride concentration, cholesterol concentration, phospholipid concentration and free fatty acid concentration were significant in the obese type compared to the wild type. An increase was observed. By eating ozonized fats and oils, the triglyceride concentration increased significantly in the HO group, the free fatty acid concentration increased by 13% in the LO group, the significant increase by 32% in the HO group, and the cholesterol concentration decreased by LO. There was a 14% decrease trend in the group and a significant decrease of 18% in the HO group. Regarding the glucose concentration, no difference was observed between the groups.

[血清タンパク濃度の測定]
得られた被検ラットの血清に含まれる血清プラスミノーゲン活性化抑制因子(PAI−1)、血清C反応性タンパク(C-reactive protein;CRP)、血清インスリン、血清アディポネクチン、血清単球走化活性因子1(monocyte chemoattractant protein-1;MCP−1)濃度を測定した。
[Measurement of serum protein concentration]
Serum plasminogen activation inhibitor (PAI-1), serum C-reactive protein (CRP), serum insulin, serum adiponectin, and serum monocyte chemotaxis contained in the serum of the obtained test rats The concentration of active factor 1 (monocyte chemoattractant protein-1; MCP-1) was measured.

[血清プラスミノーゲン活性化抑制因子(PAI−1)]
血清PAI−1濃度については、IMUCLONETMRat PAI-1 ELISA(American Diagnostica Inc.製)を用いてELISA法により測定した。その結果を表5に示す。
[Serum plasminogen activation inhibitor (PAI-1)]
Serum PAI-1 concentration was measured by ELISA using IMUCLONE Rat PAI-1 ELISA (manufactured by American Diagnostica Inc.). The results are shown in Table 5.

[血清C反応性タンパク(CRP)]
血清CRP濃度については、C-Reactive Protein ELISA Kit(Alpha Diagnostic International Inc.製)を用いてELISA法により測定した。その結果を表5に示す。
[Serum C-reactive protein (CRP)]
Serum CRP concentration was measured by ELISA using C-Reactive Protein ELISA Kit (Alpha Diagnostic International Inc.). The results are shown in Table 5.

[血清インスリン]
血清インスリン濃度については、レビス インスリン−ラットT(株式会社シバヤギ製)を用いてELISA法により測定した。その結果を表5に示す。
[Serum insulin]
Serum insulin concentration was measured by ELISA using Levis Insulin-Rat T (manufactured by Shiba Goat Co., Ltd.). The results are shown in Table 5.

[血清アディポネクチン]
血清アディポネクチン濃度については、マウス/ラットアディポネクチンELISAキット(大塚製薬株式会社製)を用いてELISA法により測定した。その結果を表5に示す。
[Serum adiponectin]
Serum adiponectin concentration was measured by ELISA using a mouse / rat adiponectin ELISA kit (manufactured by Otsuka Pharmaceutical Co., Ltd.). The results are shown in Table 5.

[血清単球走化活性因子1(MCP−1)]
血清MCP−1濃度については、MCP-1 Rat ELISA Kit(Invitrogen製)を用いてELISA法により測定した。その結果を表5に示す。
[Serum monocyte chemotactic factor 1 (MCP-1)]
Serum MCP-1 concentration was measured by ELISA using MCP-1 Rat ELISA Kit (Invitrogen). The results are shown in Table 5.

Figure 0006153241
Figure 0006153241

被検ラットの血清に含まれるPAI−1、CRP、インスリン、アディポネクチン、MCP−1濃度を測定した結果、PAI−1濃度については野生型と比較して肥満型において有意な増加が認められた。オゾン化油脂の摂食により、LO群で27%、HO群で38%の低下傾向を示した。CRP濃度、インスリン濃度及びアディポネクチン濃度については、群間に差は認められなかった。血清MCP−1濃度については、オゾン化油脂の摂食によりHO群で顕著な増加が認められた。   As a result of measuring the concentrations of PAI-1, CRP, insulin, adiponectin, and MCP-1 contained in the serum of the test rat, a significant increase was observed in the obese type as compared to the wild type. Due to the consumption of ozonized oils and fats, 27% in the LO group and 38% in the HO group were shown to decrease. There was no difference between the groups regarding CRP concentration, insulin concentration and adiponectin concentration. Regarding the serum MCP-1 concentration, a marked increase was observed in the HO group due to the consumption of ozonized fats and oils.

[肝機能障害指標酵素活性の測定]
得られた被検ラットの肝機能を、肝機能障害指標酵素としてアスパラギン酸アミノ基転移酵素(AST)活性及びアラニンアミノ基転移酵素(ALT)活性を測定することにより解析した。
[Measurement of liver dysfunction index enzyme activity]
The liver function of the obtained test rats was analyzed by measuring aspartate aminotransferase (AST) activity and alanine aminotransferase (ALT) activity as liver dysfunction indicator enzymes.

[アスパラギン酸アミノ基転移酵素(AST)]
AST活性については、トランスアミナーゼCII−テストワコー(和光純薬工業株式会社製)を用いて、POP・TOOS法により、波長555nmにおける吸光度を測定して定量した。その結果を表6に示す。
[Aspartate aminotransferase (AST)]
About AST activity, the light absorbency in wavelength 555nm was measured and quantified by POP * TOOS method using transaminase CII-Test Wako (made by Wako Pure Chemical Industries Ltd.). The results are shown in Table 6.

[アラニンアミノ基転移酵素(ALT)]
ALT活性については、トランスアミナーゼCII−テストワコー(和光純薬工業株式会社製)を用いて、POP・TOOS法により、波長555nmにおける吸光度を測定して定量した。その結果を表6に示す。
[Alanine aminotransferase (ALT)]
About ALT activity, the light absorbency in wavelength 555nm was measured and quantified by POP * TOOS method using transaminase CII-Test Wako (made by Wako Pure Chemical Industries Ltd.). The results are shown in Table 6.

Figure 0006153241
Figure 0006153241

被検ラットのAST活性及びALT活性を測定した結果、AST活性及びALT活性の両方について、野生型と比較して肥満型で有意な増加が認められた。オゾン化油脂の摂食によりAST活性についてはLO群で6%の低下傾向、HO群で29%の有意な低下を示し、ALT活性についてはHO群で33%の低下傾向が認められた。   As a result of measuring the AST activity and the ALT activity of the test rat, both the AST activity and the ALT activity were significantly increased in the obese type compared to the wild type. As a result of eating ozonized fats and oils, the AST activity showed a 6% decrease in the LO group, a 29% significant decrease in the HO group, and a 33% decrease in the HO activity in the HO group.

[肝臓トリグリセリド代謝関連酵素活性の測定]
得られた被検ラットの肝臓における肝臓トリグリセリド代謝関連酵素活性を測定した。肝臓トリグリセリド代謝関連酵素としては、脂肪酸合成酵素(Fatty Acid Synthase;FAS)、カルニチンパルミトイルトランスフェラーゼ(Carnitine Palmitoyltransferase;CPT)、ペルオキシソームβ酸化(Peroxisomal β-oxidation)関連酵素、ホスファチジン酸ホスホハイドロレース(Phosphatidate phosphohydrolase;PAP)を測定し、測定試料として、ラットから摘出した肝臓のホモジネートを以下の操作で調製した。摘出した肝臓2gを6倍容の0.25Mのスクロース(和光純薬株式会社製)と1mMのEDTA(片山化学工業株式会社製)を含む10mMトリス塩酸緩衝液(pH7.4)で氷冷下ホモジナイズした後、遠心分離(3000rpm,700×g,10分,4℃)を行った。続いて、その上清について遠心分離(12000rpm,10000×g,10分,4℃)を行い、ミトコンドリア画分を沈殿させた。さらにこの上清について遠心分離(40000rpm,125000×g,60分,4℃)を行い、上清の細胞質画分と沈殿したミクロソーム画分を得た。
[Measurement of liver triglyceride metabolism-related enzyme activity]
The liver triglyceride metabolism-related enzyme activity in the liver of the obtained test rat was measured. Examples of liver triglyceride metabolism-related enzymes include fatty acid synthase (FAS), carnitine palmitoyltransferase (CPT), peroxisomal β-oxidation-related enzymes, phosphatidate phosphohydrolase; PAP) was measured, and a liver homogenate excised from the rat was prepared as a measurement sample by the following procedure. 2 g of the extracted liver was cooled with 10 mM Tris-HCl buffer (pH 7.4) containing 6 volumes of 0.25 M sucrose (Wako Pure Chemical Industries, Ltd.) and 1 mM EDTA (Katayama Chemical Co., Ltd.). After homogenization, centrifugation (3000 rpm, 700 × g, 10 minutes, 4 ° C.) was performed. Subsequently, the supernatant was centrifuged (12000 rpm, 10,000 × g, 10 minutes, 4 ° C.) to precipitate the mitochondrial fraction. Further, this supernatant was centrifuged (40000 rpm, 125000 × g, 60 minutes, 4 ° C.) to obtain a cytoplasmic fraction of the supernatant and a precipitated microsomal fraction.

[脂肪酸合成酵素(Fatty Acid Synthase;FAS)]
脂肪酸合成酵素活性については、Kelleyらの方法(Kelley DS et al., Biochem. J., 235, 87-90, 1986)で測定した。アセチルCoA(Sigma-Aldrich社製) 0.05mM、NADPH(オリエンタル酵母株式会社製) 0.3mM、EDTA(片山化学工業株式会社製) 0.2mMを含む100mMリン酸カリウム緩衝液(pH7.0)に細胞質画分を添加し、30℃の下、波長340nmの吸光度を2分間計測することにより、ブランクでのNADPHの吸光度の減少を求めた。その後、最終濃度が0.2mMとなるようにマロニルCoA(Sigma-Aldrich社製)を添加して混和し、波長340nmの吸光度を3分間追跡して、次式に従い、マロニルCoA添加時に得られた反応時の吸光度の減少からブランクの吸光度の減少を差し引くことによりNADPHの減少速度を求め脂肪酸合成酵素活性を算出した。その結果を表7に示す。
脂肪酸合成酵素活性(nmol/min/mg protein)={(反応時の吸光度の減少−ブランクの吸光度の減少)/6220}×10×(反応液量mL/1000)×(1/測定時間min)×(1/タンパク質量mg)
なお、6220はNADPHのモル吸光係数である。
[Fatty Acid Synthase (FAS)]
The fatty acid synthase activity was measured by the method of Kelley et al. (Kelley DS et al., Biochem. J., 235, 87-90, 1986). 100 mM potassium phosphate buffer (pH 7.0) containing acetyl CoA (manufactured by Sigma-Aldrich) 0.05 mM, NADPH (manufactured by Oriental Yeast Co., Ltd.) 0.3 mM, EDTA (manufactured by Katayama Chemical Co., Ltd.) 0.2 mM The cytosolic fraction was added to the sample, and the absorbance at a wavelength of 340 nm was measured at 30 ° C. for 2 minutes to determine a decrease in NADPH absorbance in the blank. Thereafter, malonyl CoA (manufactured by Sigma-Aldrich) was added and mixed so that the final concentration was 0.2 mM, the absorbance at a wavelength of 340 nm was traced for 3 minutes, and obtained according to the following formula when malonyl CoA was added. The decrease rate of NADPH was determined by subtracting the decrease in absorbance of the blank from the decrease in absorbance during the reaction, and the fatty acid synthase activity was calculated. The results are shown in Table 7.
Fatty acid synthase activity (nmol / min / mg protein) = {(decrease in absorbance during reaction−decrease in absorbance of blank) / 6220} × 10 9 × (reaction volume mL / 1000) × (1 / measurement time min ) × (1 / protein amount mg)
6220 is the molar extinction coefficient of NADPH.

[カルニチンパルミトイルトランスフェラーゼ(Carnitine Palmitoyltransferase;CPT)]
カルニチンパルミトイルトランスフェラーゼ活性については、Markwellらの方法(Markwell MA, et al., J. Biol. Chem., 248, 10, 3426-3432, 1973)で測定した。パルミトイルCoA(フナコシ株式会社製) 0.0375mM、5,5´−ジチオビス(2−ニトロ安息香酸)(DTNB)(東京化成工業株式会社製) 0.25mM、EDTA(片山化学工業株式会社製) 1.25mM、トリトンX−100(和光純薬株式会社製) 0.1%を含む58mMトリス塩酸緩衝液(pH8.0)にミトコンドリア画分を添加し、27℃の下、波長412nmの吸光度を5分間計測することによりブランクでの還元型DTNBの増加を求めた。その後、最終濃度が1.25mMとなるようにL−カルニチン(Sigma-Aldrich社製)を添加して、総反応液量1mLでの波長412nmの吸光度を3分間追跡して、次式に従い、L−カルニチン添加時に得られた反応時の吸光度の増加からブランクの吸光度の増加を差し引くことにより、CoAの生成速度を求め、カルニチンパルミトイルトランスフェラーゼ活性を算出した。その結果を表7に示す。
カルニチンパルミトイルトランスフェラーゼ活性(nmol/min/mg protein)={(反応時の吸光度の増加−ブランクの吸光度の増加)/13600}×10×(反応液量mL/1000)×(1/タンパク質量mg)
なお、13600はCoAのモル吸光係数である。
[Carnitine Palmitoyltransferase (CPT)]
Carnitine palmitoyltransferase activity was measured by the method of Markwell et al. (Markwell MA, et al., J. Biol. Chem., 248, 10, 3426-3432, 1973). Palmitoyl CoA (Funakoshi Co., Ltd.) 0.0375 mM, 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) (Tokyo Chemical Industry Co., Ltd.) 0.25 mM, EDTA (Katayama Chemical Co., Ltd.) 1 .25 mM, Triton X-100 (manufactured by Wako Pure Chemical Industries, Ltd.) A mitochondrial fraction was added to 58 mM Tris-HCl buffer (pH 8.0) containing 0.1%, and the absorbance at 412 nm was 5 at 27 ° C. The increase in reduced DTNB in the blank was determined by measuring for minutes. Thereafter, L-carnitine (manufactured by Sigma-Aldrich) was added so that the final concentration was 1.25 mM, and the absorbance at a wavelength of 412 nm in a total reaction volume of 1 mL was traced for 3 minutes. -The production rate of CoA was determined by subtracting the increase in absorbance of the blank from the increase in absorbance at the time of reaction obtained when carnitine was added, and the carnitine palmitoyltransferase activity was calculated. The results are shown in Table 7.
Carnitine palmitoyltransferase activity (nmol / min / mg protein) = {(Increase in absorbance during reaction−Increase in absorbance of blank) / 13600} × 10 9 × (reaction volume mL / 1000) × (1 / protein amount mg )
Note that 13600 is the molar extinction coefficient of CoA.

[ペルオキシソームβ酸化(Peroxisomal β-oxidation)]
ペルオキシソームβ酸化活性については、Lazarowの方法(Lazarow PB, Methods Enzymol. Academic Press, New York, 72, 315-319, 1981)で測定した。NAD(オリエンタル酵母株式会社製)0.2mM、DTT(片山化学工業株式会社製) 1mM、牛血清アルブミン(Sigma-Aldrich社製) 75μg/mL、トリトンX−100(和光純薬株式会社製) 100μL、CoA(Sigma-Aldrich社製) 0.1mM、FAD(Sigma-Aldrich社製) 0.01mM、シアン化カリウム(片山化学工業株式会社製) 1mMを含む47mMトリス塩酸緩衝液(pH8.0)にミトコンドリア画分を添加し、37℃の下、波長340nmの吸光度を3分間計測することにより、ブランクでのNADHの吸光度の増加を求めた。その後、最終濃度が0.01mMとなるように1mMパルミトイルCoA(フナコシ株式会社製)を混合して、総反応液量1mLでの波長340nmの吸光度を5分間追跡して、次式に従い、パルミトイルCoA添加時に得られた反応時の吸光度の増加からブランクの吸光度の増加を差し引くことにより、NADHの生成速度を求め、ペルオキシソームβ酸化活性を算出した。その結果を表7に示す。
ペルオキシソームβ酸化活性(nmol/min/mg protein)={(反応時の吸光度の増加−ブランクの吸光度の増加)/6220}×10×(反応液量mL/1000)×(1/測定時間min)×(1/タンパク量mg)
なお、6220はNADHのモル吸光係数である。
[Peroxisomal β-oxidation]
Peroxisome β oxidation activity was measured by the method of Lazarow (Lazarow PB, Methods Enzymol. Academic Press, New York, 72, 315-319, 1981). NAD (manufactured by Oriental Yeast Co., Ltd.) 0.2 mM, DTT (manufactured by Katayama Chemical Co., Ltd.) 1 mM, bovine serum albumin (manufactured by Sigma-Aldrich) 75 μg / mL, Triton X-100 (manufactured by Wako Pure Chemical Industries, Ltd.) 100 μL CoA (Sigma-Aldrich) 0.1 mM, FAD (Sigma-Aldrich) 0.01 mM, potassium cyanide (Katayama Chemical Co., Ltd.) 1 mM mitochondrial fraction in 47 mM Tris-HCl buffer (pH 8.0) Minutes were added, and the absorbance at a wavelength of 340 nm was measured at 37 ° C. for 3 minutes to determine the increase in NADH absorbance in the blank. Thereafter, 1 mM palmitoyl CoA (manufactured by Funakoshi Co., Ltd.) was mixed so that the final concentration was 0.01 mM, and the absorbance at a wavelength of 340 nm in a total reaction volume of 1 mL was traced for 5 minutes. By subtracting the increase in the absorbance of the blank from the increase in the absorbance during the reaction obtained at the time of addition, the production rate of NADH was determined, and the peroxisome β-oxidation activity was calculated. The results are shown in Table 7.
Peroxisome β-oxidation activity (nmol / min / mg protein) = {(Increase in absorbance during reaction−Increase in absorbance of blank) / 6220} × 10 9 × (reaction volume mL / 1000) × (1 / measurement time min ) X (1 / protein amount mg)
6220 is the molar extinction coefficient of NADH.

[ホスファチジン酸ホスホハイドロレース(Phosphatidate phosphohydrolase;PAP)]
ホスファチジン酸ホスホハイドロレース活性については、Waltonらの方法(Walton, P. A. et al., Anal. Biochem., 151, 479-486, 1985)で測定した。0.9%塩化ナトリウムを用いて超音波処理により混合させたホスファチジルコリン(Sigma-Aldrich社製) 1.0mM、EDTA(片山化学工業株式会社製) 1.25mMを含む50mMトリス塩酸緩衝液(pH7.0)に最終濃度が3.25mMとなるよう塩化マグネシウム(和光純薬株式会社製)を添加した場合及び無添加の場合のそれぞれに対して、ミクロソーム画分を添加し、総容量を0.2mLとして、37℃で15分間インキュベートした。続いて、反応液に0.8mLの発色液(ラウリル硫酸ナトリウム(和光純薬株式会社製) 0.13%、アスコルビン酸 1.25%、モリブデン酸アンモニウム四水和物 0.32%を含む0.375M硫酸水溶液)を加え、45℃で20分間インキュベートすることにより反応生成物である無機リンを発色させ、波長820nmの吸光度を測定した。ホスファチジン酸(Sigma-Aldrich社製)とホスファチジルコリンが入っていない反応によりミクロソームからのリンの産生量を測定してブランクの無機リン量を求め、次式に従い、反応生成物である無機リン量を求めた。
無機リン産生量(μg)=反応によるリン産生量(ミクロソームからのリンの産生量+ホスファチジン酸とホスファチジルコリンからのリン産生量)
求めた無機リン産生量から次式に従いホスファチジン酸ホスホハイドロレース活性を算出した。その結果を表7に示す。
ホスファチジン酸ホスホハイドロレース活性(nmol/min/mg protein)=無機リン産生量×10×(1/30.97)×(1/15min)×(1/タンパク質mg)。
なお、リンの原子量を30.97とした。
[Phosphatidate phosphohydrolase (PAP)]
The phosphatidic acid phosphohydrolace activity was measured by the method of Walton et al. (Walton, PA et al., Anal. Biochem., 151, 479-486, 1985). Phosphatidylcholine (manufactured by Sigma-Aldrich) mixed by sonication using 0.9% sodium chloride 1.0 mM, EDTA (manufactured by Katayama Chemical Co., Ltd.) 50 mM Tris-HCl buffer (pH 7. The microsome fraction is added to each of the case where magnesium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is added to 0) so that the final concentration is 3.25 mM, and the total volume is 0.2 mL. And incubated at 37 ° C. for 15 minutes. Subsequently, the reaction solution contains 0.8 mL of color developing solution (0.1% sodium lauryl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), 1.25% ascorbic acid, and 0.32% ammonium molybdate tetrahydrate. .375M sulfuric acid aqueous solution) was added and incubated at 45 ° C. for 20 minutes to develop inorganic phosphorus as a reaction product, and the absorbance at a wavelength of 820 nm was measured. Measure the amount of phosphorus produced from microsomes by reaction without phosphatidic acid (Sigma-Aldrich) and phosphatidylcholine to determine the amount of inorganic phosphorus in the blank, and calculate the amount of inorganic phosphorus as the reaction product according to the following formula It was.
Inorganic phosphorus production (μg) = Phosphorus production by reaction (phosphorus production from microsomes + phosphorus production from phosphatidic acid and phosphatidylcholine)
The phosphatidic acid phosphohydrolace activity was calculated from the obtained inorganic phosphorus production amount according to the following formula. The results are shown in Table 7.
Phosphatidic acid phosphohydrolace activity (nmol / min / mg protein) = inorganic phosphorus production amount × 10 3 × (1 / 3.97) × (1/15 min) × (1 / protein mg).
The atomic weight of phosphorus was 30.97.

Figure 0006153241
Figure 0006153241

被検ラットの肝臓における肝臓トリグリセリド代謝関連酵素活性の測定の結果、脂肪酸合成酵素(FAS)、ペルオキシソームβ酸化活性、ホスファチジン酸ホスホハイドロレース活性については、野生型と比較して肥満型で有意な増加が認められた。オゾン化油脂の摂食による各酵素活性への影響は認められなかった。   As a result of measurement of liver triglyceride metabolism-related enzyme activity in the liver of test rats, fatty acid synthase (FAS), peroxisome β-oxidation activity, phosphatidic acid phosphohydrolase activity were significantly increased in obese type compared to wild type Was recognized. No effect on the enzyme activity was observed by eating ozonized fats and oils.

[脂質排泄率の測定]
糞中脂質排泄率を池田らの方法(池田邦夫、「脂質の機能」、食品機能研究法、株式会社光琳、平成12年、P21−24)で測定した。各ラットの屠殺直前の2日間の糞を採取し、凍結乾燥した後粉砕した。0.25gを精秤し、7〜8mLあたり2滴程度の濃塩酸(和光純薬株式会社製)を滴下したヘプタン・ジエチルエーテル・精製エタノール混液(heptane:diethyl ether:purified ethanol=1:1:1、v/v)を4mL加え、1分間シェイカーで振とうし、3000rpmで10分間遠心分離した。上層を一定量回収し、ヘプタン・ジエチルエーテル・精製エタノール・脱イオン水混液(1:1:1:1、v/v、上層のみ)を4mL加え、1分間シェイカーで振とうし、3000rpmで10分間遠心分離した。続いてこの操作をもう一度繰り返し、上層を回収後、乾燥して重量を測定した。その結果を表8に示す。
[Measurement of lipid excretion rate]
Fecal lipid excretion rate was measured by the method of Ikeda et al. (Kunio Ikeda, “Function of Lipids”, Food Function Research Method, Koso Co., Ltd., 2000, P21-24). Feces were collected for 2 days immediately before sacrifice of each rat, lyophilized and ground. 0.25 g is precisely weighed and about 2 drops of concentrated hydrochloric acid (made by Wako Pure Chemical Industries, Ltd.) per 7 to 8 mL is added dropwise. A mixture of heptane, diethyl ether and purified ethanol (heptane: diethyl ether: purified ethanol = 1: 1: 1, 4 ml of v / v) was added, and the mixture was shaken with a shaker for 1 minute and centrifuged at 3000 rpm for 10 minutes. Collect a certain amount of the upper layer, add 4 mL of a mixed solution of heptane / diethyl ether / purified ethanol / deionized water (1: 1: 1: 1, v / v, upper layer only), shake with a shaker for 1 minute, and add 10 mL at 3000 rpm. Centrifuged for minutes. Subsequently, this operation was repeated once again, and after collecting the upper layer, it was dried and weighed. The results are shown in Table 8.

Figure 0006153241
Figure 0006153241

測定の結果、糞中脂質排泄率については、野生型と肥満型の群間で有意差は認められなかった。   As a result of the measurement, no significant difference was observed between the wild-type and obese-type groups in terms of fecal lipid excretion rate.

[オゾン化油脂給餌による結果]
本発明のオゾン化油脂を摂食させることにより、被検ラットの肝臓重量が減少し、グリセリドの肝臓への蓄積が抑制された。オゾン化油脂摂食による脂肪酸合成・脂肪酸分解系酵素活性への影響は認められず、糞中脂質排泄率も変動が認められなかったのに対し、血清中のトリグリセリド濃度は上昇していたことから、オゾン化油脂がグリセリドを肝臓から血中に放出する作用を有していることが確認された。また、これとは逆に血中コレステロールは有意に低下しており、オゾン化油脂の作用はトリグリセリドのみに選択的であることが確認された。ラットの血清に含まれる炎症因子であるPAI−1、CRP、MCP−1濃度を測定した結果、摂食によりPAI−1、CRPは低下傾向を示し、MCP−1は上昇した。また、抗炎症因子であるアディポネクチンについては、血清濃度が減少した。これらの各測定結果については、単回帰分析、Tukey-Kramer法およびStudent’s t test(W.S. Gosset, Biometrika, vol. 6, no. 1, p1-25, 1908)によって検定を行い、危険率5%未満を有意差として分析した。単回帰分析の結果、トリグリセリドの肝臓への蓄積の抑制とCRP、MCP−1、アディポネクチン濃度との関連性は低く、トリグリセリドの肝臓への蓄積の抑制と正の相関を示すのは、PAI−1濃度のみであることがわかった(図1)。本発明のオゾン化油脂の肝機能障害予防改善作用が、血中のPAI−1濃度の抑制を介したものであることが確認された。
[Results of feeding ozonized fats and oils]
By feeding the ozonized oil of the present invention, the liver weight of the test rat was reduced, and accumulation of glycerides in the liver was suppressed. No effects on fatty acid synthesis / degradation enzyme activity were observed with ozonized fats and fats, but no change in fecal lipid excretion rate was observed, but serum triglyceride concentration was increased It was confirmed that ozonized oils and fats have an action of releasing glycerides from the liver into the blood. Contrary to this, blood cholesterol was significantly reduced, and it was confirmed that the action of ozonized oils and fats was selective only to triglycerides. As a result of measuring the concentrations of PAI-1, CRP and MCP-1 which are inflammatory factors contained in rat serum, PAI-1 and CRP showed a tendency to decrease and MCP-1 increased due to feeding. In addition, serum concentration of adiponectin, an anti-inflammatory factor, decreased. Each of these measurement results is tested by simple regression analysis, Tukey-Kramer method and Student's t test (WS Gosset, Biometrika, vol. 6, no. 1, p1-25, 1908), and the risk rate is less than 5%. Were analyzed as significant differences. As a result of simple regression analysis, the relationship between the suppression of triglyceride accumulation in the liver and the concentrations of CRP, MCP-1, and adiponectin is low, and PAI-1 shows a positive correlation with the suppression of triglyceride accumulation in the liver. It was found that only the concentration (FIG. 1). It was confirmed that the effect of preventing and improving the liver dysfunction of the ozonized fat of the present invention is through the suppression of PAI-1 concentration in blood.

Claims (4)

オゾン化オリーブ油を有効成分として含有することを特徴とする代謝異常により発生する肝機能障害予防改善剤。 An agent for preventing or improving liver dysfunction caused by metabolic abnormalities, comprising ozonized olive oil as an active ingredient. 血中のプラスミノーゲン活性化抑制因子(PAI−1)の濃度の上昇を抑制するために用いられる請求項1に記載の予防改善剤。 Prevention improving agent according to claim 1 which is used to suppress an increase in the concentration of plasminogen activator inhibitor in the blood (PAI-1). 保健機能食品として用いられることを特徴とする請求項1又は2に記載の予防改善剤。The preventive / ameliorating agent according to claim 1 or 2, which is used as a health functional food. 飼料添加物として用いられることを特徴とする請求項1又は2に記載の予防改善剤。The prevention-improving agent according to claim 1 or 2, which is used as a feed additive.
JP2011179202A 2011-08-18 2011-08-18 Liver dysfunction prevention and improvement agent Active JP6153241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179202A JP6153241B2 (en) 2011-08-18 2011-08-18 Liver dysfunction prevention and improvement agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179202A JP6153241B2 (en) 2011-08-18 2011-08-18 Liver dysfunction prevention and improvement agent

Publications (2)

Publication Number Publication Date
JP2013040143A JP2013040143A (en) 2013-02-28
JP6153241B2 true JP6153241B2 (en) 2017-06-28

Family

ID=47888883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179202A Active JP6153241B2 (en) 2011-08-18 2011-08-18 Liver dysfunction prevention and improvement agent

Country Status (1)

Country Link
JP (1) JP6153241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105012485A (en) * 2015-08-14 2015-11-04 邹江 Traditional Chinese medicine granule for treating neonatal jaundice
EP3999619A4 (en) * 2019-07-16 2023-08-09 The Nisshin OilliO Group, Ltd. Method for manufacturing refined edible oil and/or fat, method for improving light exposure odor of edible oil and/or fat, and refined edible oil and/or fat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857410A (en) * 1956-09-28 1958-10-21 Cudahy Packing Company Method of producing ozonides of unsaturated fatty acids
US5183911A (en) * 1986-03-01 1993-02-02 Dr. J. Hansler Gmbh Process for the production of stable ozonized oils from unsaturated vegetable oils
ES2162586B1 (en) * 1999-11-25 2002-07-01 Moraleda Manuel Gomez COMPOSITION THAT INCLUDES OZONIZED OILS AND / OR OTHER NATURAL AND / OR SYNTHETIC SYNTHETIC PRODUCTS, AND ITS USE IN PHARMACEUTICAL, COSMETIC, DIETETIC OR FOOD SUPPLEMENT COMPOSITIONS, IN HUMAN AND VETERINARY FIELDS
JP2009051732A (en) * 2005-12-13 2009-03-12 Meiji Seika Kaisha Ltd Composition having ppar ligand activity

Also Published As

Publication number Publication date
JP2013040143A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP4391673B2 (en) Oil composition
WO2018017667A1 (en) Lipid formulations containing bioactive fatty acids and other bioactive agents
WO2006085687A1 (en) Composition containing dihomo-ϝ-linolenic acid (dgla) as the active ingredient
US20050148666A1 (en) Method for activating the lipid catabolic metabolism in enteric epithelium and improving the lipid metabolism in enteric epithelium
PT2429317T (en) Compositions rich in omega-3 fatty acids with a low content in phytanic acid
TW201134470A (en) Anaplerotic therapy for Alzheimer's disease and the aging brain
JP2005519939A (en) Treatment and prevention of inflammatory diseases
WO2007069758A1 (en) Composition having ppar ligand activity
US20080249171A1 (en) Method for activating the lipid catabolic metabolism in enteric epithelium and improving the lipid metabolism in enteric epithelium
US20220233488A1 (en) Very long chain fatty acids for treatment and alleviation of diseases
JP6153241B2 (en) Liver dysfunction prevention and improvement agent
JP2006306813A (en) Mast cell increase inhibitor
JP2006306866A (en) Adiponectin-increasing agent
JP2004075653A (en) Adipose decomposition accelerator and food or beverage
JP2011168540A (en) Anti-obesity action promoter, and adiponectin secretion promoter or inhibitor of reduction in the secretion of adiponectin
WO2004022049A1 (en) Slimming agents and foods and drinks comprising the same
JP4634065B2 (en) Adiponectin reduction inhibitor
US20080161413A1 (en) Agent for increasing adiponectin in blood
WO2004022051A1 (en) Peroxisome proliferator-activated receptor controllers
JP5479696B2 (en) In vivo plasmalogen increasing agent
JP5211529B2 (en) Liver function improving agent
JPWO2004022050A1 (en) Lipid metabolism regulator and food and drink
JP2021145563A (en) Lipid metabolism improving composition
He Effect of Selected Nutraceuticals on Trimethylamine-N-Oxide-Exacerbated Atherogenesis in Mice
Panda et al. Dietary Lipid Determines the Health of Airway Epithelia and the Lungs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6153241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250