JP6153204B2 - Granulated product and production method thereof - Google Patents

Granulated product and production method thereof Download PDF

Info

Publication number
JP6153204B2
JP6153204B2 JP2014522680A JP2014522680A JP6153204B2 JP 6153204 B2 JP6153204 B2 JP 6153204B2 JP 2014522680 A JP2014522680 A JP 2014522680A JP 2014522680 A JP2014522680 A JP 2014522680A JP 6153204 B2 JP6153204 B2 JP 6153204B2
Authority
JP
Japan
Prior art keywords
granulated product
water
granular material
iron
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014522680A
Other languages
Japanese (ja)
Other versions
JPWO2014003120A1 (en
Inventor
英隆 宮原
英隆 宮原
田村 堅志
堅志 田村
山田 裕久
裕久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of JPWO2014003120A1 publication Critical patent/JPWO2014003120A1/en
Application granted granted Critical
Publication of JP6153204B2 publication Critical patent/JP6153204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Description

本発明は、造粒物及びその製造方法に関する。特に、多孔質無機鉱物の粉粒体と、核となる粒状物と、水溶性無機塩バインダーとを有する造粒物及び製造方法に関する。   The present invention relates to a granulated product and a method for producing the same. In particular, the present invention relates to a granulated product having a granular material of a porous inorganic mineral, a granular material serving as a core, and a water-soluble inorganic salt binder, and a production method.

近年、環境管理の一環として適用対象物質中における汚染物質による土壌や地下水の汚染に対する未然防止措置や汚染の拡散防止措置として環境保全を実施するために、土壌や水質の改良・浄化が活発に行われている。
それらの改良・浄化を行う方法として、多孔質無機鉱物に適用対象物質中における汚染物質を吸着させる方法がある。
In recent years, as a part of environmental management, soil and water quality has been actively improved and purified in order to implement environmental conservation as a preventive measure against contamination of soil and groundwater by pollutants in the applicable substances and as a measure to prevent the spread of pollution. It has been broken.
As a method of improving and purifying them, there is a method of adsorbing pollutants in applicable substances to porous inorganic minerals.

特許第3369631号公報Japanese Patent No. 3369631 特開2006−137636号公報JP 2006-137636 A

その多孔質無機鉱物には様々な形態があるが、粉粒体の形態でそのまま使用すると、流水した時に目詰まりを起こして処理能力の低下が生じる。そこで、多孔質無機鉱物の粉粒体の粒径を大きくして、土壌へ散布して流水した時の目詰まりに対応させる必要がある。
他方、従来から、土壌の改良・浄化に使用する吸着剤として、ゼオライトなどの微粒子多孔質無機鉱物が利用されているが、それを造粒するためのバインダーとしては、セメントを利用したもの(特許文献1)や水溶性ポリマーを利用したもの(特許文献2)などが提案されてきた。
There are various forms of the porous inorganic mineral, but if it is used as it is in the form of a granular material, clogging occurs when the water flows, resulting in a decrease in processing capacity. Therefore, it is necessary to increase the particle size of the porous inorganic mineral powder and cope with clogging when sprayed to the soil and run.
On the other hand, fine porous inorganic minerals such as zeolite have been used as adsorbents for soil improvement / purification, but cement is used as a binder for granulating them (patents) Documents 1) and those using water-soluble polymers (Patent Document 2) have been proposed.

しかし、従来の方法では多孔質無機鉱物吸着剤の細孔をバインダーが覆ったり、該吸着剤同士の接触に偏りが発生したりすることによって、浄化処理能力が低下したり、吸着剤の交換頻度に支障をきたしたりすることが課題となっている。   However, in the conventional method, the pores of the porous inorganic mineral adsorbent are covered with a binder, or the contact between the adsorbents is biased to reduce the purification processing capacity, and the adsorbent replacement frequency. It has become a problem to cause problems.

本発明は、土壌や水質中の適用対象物中における汚染物質を選択的に吸着することが可能であり、かつ自然界における汚染物質の除去作用を人工的に促進することが可能な、多孔質無機鉱物の粉粒体を含む造粒物及びその製造方法を提供することを課題とする。   The present invention is a porous inorganic material capable of selectively adsorbing contaminants in the application target in soil and water quality and artificially promoting the action of removing contaminants in nature. It is an object of the present invention to provide a granulated product containing a mineral powder and a method for producing the same.

上記課題を解決すべく鋭意検討した結果、本発明者は、多孔質無機鉱物の粉粒体と核となる粒状物と水溶性無機塩バインダーを配合し、造粒及び乾燥を行うことによって、吸着剤粒子である多孔質無機鉱物の粉粒体は点接触によって造粒物を形成し、この形成された造粒物によれば、浄化処理能力を損なうことなく土壌や水質中の対象汚染物質を選択的に吸着することが可能であることを見出した。すなわち、本発明は、以下の[1]〜[16]に示される構成を有する。   As a result of diligent studies to solve the above problems, the present inventor adsorbed by blending a granular material of a porous inorganic mineral, a granular material serving as a core, and a water-soluble inorganic salt binder, granulating and drying. The particles of porous inorganic minerals, which are agent particles, form a granulated product by point contact, and according to the formed granulated product, target pollutants in the soil and water quality can be removed without impairing the purification capacity. It was found that selective adsorption is possible. That is, this invention has the structure shown by the following [1]-[16].

[1](A)多孔質無機鉱物の粉粒体と、(B)核となる粒状物と、(C)水溶性無機塩バインダーを含んでなることを特徴とする造粒物。
[2]前記(A)多孔質無機鉱物の粉粒体の粒子径が0.01μm以上100μm以下であり、前記(B)核となる粒状物の粒子径が0.1mm超2mm以下であることを特徴とする[1]に記載の造粒物。
[3]前記(A)多孔質無機鉱物の粉粒体が、鉄水酸化物、粘土鉱物及びゼオライトからなる群から選択される少なくとも1種であることを特徴とする[1]又は[2]に記載の造粒物。
[4]前記鉄水酸化物が、シュベルトマナイト、ゲータイト、ジャロサイト、及びフェリハイドライトからなる群から選択される少なくとも1種であることを特徴とする[3]に記載の造粒物。
[5]前記粘土鉱物が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、又はスチブンサイトからなるスメクタイト類、マスコバイト、フロゴパイト、テニオライト、バイオタイト、マーガライト、クリントナイト、四珪素雲母、又はセリサイトからなる雲母類およびその変質鉱物であるバーミキュライト類、及びイモゴライト又はアロフェンからなる非晶性ケイ酸塩類からなる群から選択される少なくとも1種であることを特徴とする[3]に記載の造粒物。
[6]前記(B)核となる粒状物が多孔質粒状活性炭であることを特徴とする[1]〜[5]のいずれかに記載の造粒物。
[7]前記(B)核となる粒状物が多孔質粒状ゼオライトであることを特徴とする[1]〜[5]のいずれかに記載の造粒物。
[8]前記(C)水溶性無機塩バインダーが、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩、及びアンモニウム塩からなる群から選択される少なくとも1種の水溶性無機塩からなることを特徴とする[1]〜[7]のいずれかに記載の造粒物。
[9](c1)硝酸鉄、硫酸鉄、水酸化鉄、酸化鉄、硫酸鉄、シュウ酸鉄、硫酸アンモニウム鉄からなる群から選択される少なくとも1種の鉄化合物が更に含まれることを特徴とする[1]〜[8]のいずれかに記載の造粒物。
[10](D)無機フィラーが更に含まれることを特徴とする[1]〜[9]のいずれかに記載の造粒物。
[11]前記(A)多孔質無機鉱物の粉粒体と前記(B)核となる粒状物と前記(C)水溶性無機塩バインダーの配合比が、前記(A)多孔質無機鉱物の粉粒体100質量部に対して、前記(B)核となる粒状物が50〜300質量部(50以上300以下の質量部)、前記(C)水溶性無機塩バインダーが5〜100質量部(5以上100以下の質量部)であることを特徴とする[1]〜[10]のいずれかに記載の造粒物。
[12][1]〜[11]のいずれかに記載の造粒物の製造方法であって、
(A)多孔質無機鉱物の粉粒体と(B)核となる粒状物を混合する工程(α)と、
工程(α)で調製した混合物に(C)水溶性無機塩バインダーの水溶液を添加して混合及び造粒物を形成する工程(β)と、
工程(β)で得られた未乾燥の造粒物から水分を蒸発させ乾燥させる工程(γ)と、
からなることを特徴とする造粒物の製造方法。
[13]前記混合及び造粒物を形成する工程(β)において、(D)無機フィラーの粉体、溶液又はスラリーが更に添加されることを特徴とする[12]に記載の製造方法。
[14]前記混合及び造粒物を形成する工程(β)が、転動造粒、攪拌造粒、圧縮造粒、押出造粒、流動層造粒、及び噴霧造粒からなる群から選択されるいずれかの方法を用いて行われることを特徴とする[12]又は[13]に記載の製造方法。
[15]前記乾燥工程(γ)がスプレードライ、ドラムドライ、食品乾燥機、及び自然乾燥からなる群から選択されるいずれかの方法を用いて行われることを特徴とする[12]〜[14]のいずれかに記載の造粒物の製造方法。
[16]前記乾燥工程(γ)の温度が120℃以下であることを特徴とする[12]〜[15]のいずれかに記載の造粒物の製造方法。
[1] A granulated product comprising (A) a granular material of a porous inorganic mineral, (B) a granular material serving as a nucleus, and (C) a water-soluble inorganic salt binder.
[2] The particle diameter of the granular material of (A) porous inorganic mineral is 0.01 μm or more and 100 μm or less, and the particle diameter of the granular material serving as the core (B) is more than 0.1 mm and 2 mm or less. The granulated product according to [1], wherein
[3] The porous inorganic mineral powder (A) is at least one selected from the group consisting of iron hydroxide, clay mineral and zeolite [1] or [2] Granules described in 1.
[4] The granulated product according to [3], wherein the iron hydroxide is at least one selected from the group consisting of Schwertmannite, goethite, jarosite, and ferrihydrite.
[5] The clay mineral is a smectite consisting of montmorillonite, beidellite, nontronite, saponite, hectorite, or stevensite, mascobite, phlogopite, teniolite, biotite, margarite, clintonite, tetrasilicon mica, or sericite The structure according to [3], which is at least one selected from the group consisting of mica comprising a site and vermiculite which is an alteration mineral thereof, and amorphous silicate comprising imogolite or allophane. Grain.
[6] The granulated product according to any one of [1] to [5], wherein the granular material serving as the core (B) is porous granular activated carbon.
[7] The granulated product according to any one of [1] to [5], wherein the granular material serving as the core (B) is a porous granular zeolite.
[8] The (C) water-soluble inorganic salt binder comprises at least one water-soluble inorganic salt selected from the group consisting of potassium salt, sodium salt, calcium salt, magnesium salt, and ammonium salt. The granulated product according to any one of [1] to [7].
[9] (c1) The method further includes at least one iron compound selected from the group consisting of iron nitrate, iron sulfate, iron hydroxide, iron oxide, iron sulfate, iron oxalate, and ammonium iron sulfate. The granulated product according to any one of [1] to [8].
[10] The granulated product according to any one of [1] to [9], further comprising (D) an inorganic filler.
[11] (A) Porous inorganic mineral powder, wherein (A) porous inorganic mineral powder, (B) granular material serving as nucleus, and (C) water-soluble inorganic salt binder are mixed. 50 to 300 parts by mass (50 to 300 parts by mass) of the granular material serving as the nucleus (B) and 5 to 100 parts by mass of the water-soluble inorganic salt binder (C) with respect to 100 parts by mass of the granules. 5 to 100 parts by mass) The granulated product according to any one of [1] to [10].
[12] A method for producing a granulated product according to any one of [1] to [11],
(A) a step (α) of mixing a granular material of a porous inorganic mineral and (B) a granular material serving as a nucleus;
(C) adding an aqueous solution of a water-soluble inorganic salt binder to the mixture prepared in step (α) to form a mixture and granulated product (β);
A step (γ) of evaporating and drying water from the undried granulated product obtained in the step (β);
The manufacturing method of the granulated material characterized by comprising.
[13] The production method according to [12], wherein in the step (β) of forming the mixed and granulated product, powder (D) of inorganic filler, solution or slurry is further added.
[14] The step of forming the mixed and granulated product (β) is selected from the group consisting of rolling granulation, stirring granulation, compression granulation, extrusion granulation, fluidized bed granulation, and spray granulation. The method according to [12] or [13], which is performed using any one of the methods described above.
[15] The drying step (γ) is performed using any method selected from the group consisting of spray drying, drum drying, food dryer, and natural drying [12] to [14] ] The manufacturing method of the granulated material in any one of.
[16] The method for producing a granulated product according to any one of [12] to [15], wherein the temperature in the drying step (γ) is 120 ° C. or lower.

本発明によれば、自然界における汚染物質の人工的な除去作用を安定的に促進することが可能な、多孔質無機鉱物の粉粒体を含む造粒物を提供することができる。これにより、適用対象物質中(例えば地下水中)における汚染物質の浄化を、吸着剤同士の接触に偏りが発生することなく実施でき、浄化器具に与える負荷も低減できる。   ADVANTAGE OF THE INVENTION According to this invention, the granulated material containing the granular material of the porous inorganic mineral which can stably accelerate | stimulate the artificial removal action of the pollutant in nature can be provided. Thereby, the purification of the contaminants in the application target substance (for example, groundwater) can be performed without causing a bias in the contact between the adsorbents, and the load applied to the purification tool can be reduced.

本発明の造粒物の一例を示す拡大模式図である。It is an expansion schematic diagram which shows an example of the granulated material of this invention. 本発明の造粒物の別の一例を示す拡大模式図である。It is an expansion schematic diagram which shows another example of the granulated material of this invention. 合成したシュベルトマナイトのX線回折の測定結果である。It is a measurement result of the X-ray diffraction of the synthetic | combination Schwertmannite. カラムの例を示す模式図である(矢印12の方向に砒素模擬汚染水を通水する。)。It is a schematic diagram which shows the example of a column (arsenic simulated contamination water is passed in the direction of the arrow 12).

本発明の造粒物は、核となる粒状物の表面に、水溶性無機塩バインダーが接着剤となって多孔質無機鉱物粉粒体が付着して造粒された造粒物である。
図1は、本発明の造粒物の一例を示す拡大模式図である。
図1に示すように、本発明の造粒物31は、(A)多孔質無機鉱物の粉粒体と、(B)核となる粒状物と、(C)水溶性無機塩バインダーとからなる。(B)核となる粒状物は、その表面に(A)多孔質無機鉱物の粉粒体が付着することにより、(A)多孔質無機鉱物の粉粒体の核となる。(C)水溶性無機塩バインダーは、(A)多孔質無機鉱物の粉粒体と(B)核となる粒状物を接着するとともに、(B)核となる粒状物の表面で(A)多孔質無機鉱物の粉粒体同士を互いに接着して、造粒物を形成している。
また、図2は、本発明の造粒物の別の一例を示す拡大模式図である。図2に示すように、(C)水溶性無機塩バインダーの他に、さらに(c1)鉄化合物や(D)無機フィラーが含有されてもよい。その場合、(c1)鉄化合物と(D)無機フィラーの両方が含有されても、いずれか一方のみが含有されてもよい。
The granulated product of the present invention is a granulated product that is granulated by attaching a porous inorganic mineral granular material to the surface of a granular material serving as a core, with a water-soluble inorganic salt binder as an adhesive.
FIG. 1 is an enlarged schematic view showing an example of the granulated product of the present invention.
As shown in FIG. 1, the granulated product 31 of the present invention comprises (A) a porous inorganic mineral granular material, (B) a granular material serving as a nucleus, and (C) a water-soluble inorganic salt binder. . (B) The granular material used as a nucleus becomes the nucleus of the granular material of (A) porous inorganic mineral, when the granular material of (A) porous inorganic mineral adheres to the surface. (C) The water-soluble inorganic salt binder bonds (A) the porous inorganic mineral powder and (B) the granular material serving as the nucleus, and (B) the surface of the granular material serving as the nucleus (A) porous. Granules are formed by adhering powdered inorganic minerals to each other.
FIG. 2 is an enlarged schematic view showing another example of the granulated product of the present invention. As shown in FIG. 2, in addition to (C) the water-soluble inorganic salt binder, (c1) an iron compound and (D) an inorganic filler may further be contained. In that case, both (c1) the iron compound and (D) the inorganic filler may be contained, or only one of them may be contained.

(A)多孔質無機鉱物の粉粒体の粒子径Mは、平均粒子径で0.01μm〜100μm(0.01μm以上100μm以下)の範囲が好ましく、特に1.0〜50μm(1.0μm以上50μm以下)であることが、吸着効率の点からより好ましい。平均粒径が上記下限値(0.01μm)以上の場合には、製造が困難になる可能性や、フィルターなどの分離除去装置に使用した際のろ過速度を著しく低下させるという可能性を回避できるので好ましい。また、100μm以下の場合には、核となる粒状物の表面への被覆や複合化が十分に行えず、成形不良を起こしたりする可能性を回避できるので好ましい。   (A) The particle diameter M of the porous inorganic mineral particles is preferably 0.01 μm to 100 μm (0.01 μm or more and 100 μm or less) in average particle diameter, particularly 1.0 to 50 μm (1.0 μm or more). 50 μm or less) is more preferable from the viewpoint of adsorption efficiency. When the average particle size is not less than the above lower limit (0.01 μm), it is possible to avoid the possibility of difficulty in production and the possibility of significantly reducing the filtration rate when used in a separation and removal device such as a filter. Therefore, it is preferable. In addition, when the thickness is 100 μm or less, it is preferable because the surface of a granular material serving as a nucleus cannot be sufficiently coated or combined, and the possibility of causing molding defects can be avoided.

(B)核となる粒状物の粒子径Lは、その平均粒径は核の形成性より0.1mm〜2mm(0.1mm超2mm以下)の範囲が好ましく、特に0.2〜1mm(0.2mm超1mm未満)であることが、造粒収率の点からより好ましい。更に、粒子径が0.2mm以下の粒子が20%(個数)以下であることが好ましく、また、粒子径1mm以上の粒子が20%(個数)以下であることが同様の点から好ましい。   (B) The average particle diameter L of the granular material serving as the nucleus is preferably in the range of 0.1 mm to 2 mm (more than 0.1 mm and 2 mm or less), particularly 0.2 to 1 mm (0). .2 mm and less than 1 mm) is more preferable from the viewpoint of granulation yield. Furthermore, it is preferable that particles having a particle diameter of 0.2 mm or less are 20% (number) or less, and particles having a particle diameter of 1 mm or more are preferably 20% (number) or less from the same point.

平均粒径は、レーザー回折式の粒度測定装置や、電子顕微鏡などによる画像を直接目視により観察して統計処理することによって求めることができる。レーザー回折式粒度計による測定では、入射レーザー光の凝集粒子による回折挙動と、孤立した一次粒子による回折挙動とでは大きな差異を生じないため、測定された粒径が、一次粒子単体で存在するものの粒径なのか、あるいはこれが凝集した二次粒子の粒径なのかが互いに区別されない。したがって、該方法で測定した平均粒径は、凝集を起こしていない孤立した一次粒子も広義に含めた二次粒子の平均粒径を反映した平均値になるので電子顕微鏡などによる画像を直接目視により観測して統計処理によって求める方法と併用することが好ましい。   The average particle diameter can be obtained by directly observing an image with a laser diffraction type particle size measuring apparatus or an electron microscope and performing statistical processing. In the measurement with the laser diffraction particle size meter, there is no significant difference between the diffraction behavior of the incident laser beam due to the aggregated particles and the diffraction behavior of the isolated primary particles, so the measured particle size exists as a single primary particle. There is no distinction between the particle size or the size of the aggregated secondary particles. Therefore, the average particle size measured by this method is an average value reflecting the average particle size of the secondary particles including the isolated primary particles that have not been agglomerated in a broad sense. It is preferable to use together with the method of observing and obtaining by statistical processing.

本発明に使用される多孔質無機鉱物は、鉄水酸化物、粘土鉱物及びゼオライトからなる群から選択される少なくとも1種が好ましい。本発明に使用されるその粉粒体((A)多孔質無機鉱物の粉粒体)は、核となる粒状物の表面を被覆して造粒物を形成する。   The porous inorganic mineral used in the present invention is preferably at least one selected from the group consisting of iron hydroxide, clay mineral and zeolite. The granular material ((A) porous inorganic mineral granular material) used in the present invention forms a granulated material by covering the surface of the granular material as a core.

本発明に使用される鉄水酸化物としては、シュベルトマナイト、ゲータイト、ジャロサイト、及びフェリハイドライトからなる群から選択される少なくとも1種をあげることができる。特に吸着性能の観点から比表面積の高い粉粒体が得られる、シュベルトマナイトやフェリハイドライトが好適である。   Examples of the iron hydroxide used in the present invention include at least one selected from the group consisting of Schwertmannite, goethite, jarosite, and ferrihydrite. In particular, from the viewpoint of adsorption performance, Schwertmannite and ferrihydrite, which can obtain a granular material having a high specific surface area, are suitable.

本発明に使用される粘土鉱物としては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチブンサイトに代表されるスメクタイト類、マスコバイト、フロゴパイト、テニオライト、バイオタイト、マーガライト、クリントナイト、四珪素雲母などの雲母類およびその変質鉱物であるバーミキュライト類、イモゴライト、アロフェンの非晶性ケイ酸塩類などイオン交換可能なケイ酸塩が例示される。イオン交換能の高いスメクタイト類、バーミキュライト類、非晶性ケイ酸塩類を選択することによってより優れた吸着剤を得ることができる。   Examples of the clay mineral used in the present invention include montmorillonite, beidellite, nontronite, saponite, hectorite, smectites represented by stevensite, mascobite, phlogopite, teniolite, biotite, margarite, clintonite, tetrasilicon. Illustrative examples include mica such as mica and ion-exchangeable silicates such as vermiculites, imogolite, and allophane amorphous silicates, which are alteration minerals thereof. A better adsorbent can be obtained by selecting smectites, vermiculites, and amorphous silicates having high ion exchange capacity.

本発明に使用されるゼオライトとしては、特に制限はないが、例えば、ナトロライト、ゴンナルダイト、エディングトナイト、などに代表されるナトロライトグループ、アナルシム、リューサイト、ユガワラライトなどに代表されるアナルシムグループ、ギスモンダイン、ポーリンジャイト−K、フィリップサイト−Caなどに代表されるギスモンダイングループ、チャバザイト-Ca、エリオナイト−Na、ホージャサイト−Naなどに代表されるチャバザイトグループ、モルデナイト、フェリエライト−Mg、ミューティナアイトなどに代表されるモルデナイトグループ、ヒューランダイト−Ca、クリノプチロライト−Na、スティルバイト−Caなどに代表されるヒューランダイトグループ、コウレサイトなどに代表される構造未知のアルミノケイ酸塩グループなどの天然に産出する各グループのゼオライトおよび、A、L、X、Y、Na−P1、ZK−5、ZSM−11などに代表される合成ゼオライトなどが挙げられるが、好ましくは粒度の均一な合成ゼオライトであり、より好ましくはシリカとアルミナの質量比の差が小さいA、Xなどである。シリカとアルミナの質量比の差が大き過ぎない方が、表面の疎水性が増加して水溶性バインダーとの親和性が悪くなる虞を回避できるという点で好ましい。   The zeolite used in the present invention is not particularly limited. For example, the natrolite group represented by natrolite, gonnaldite, edding tonite, etc., the analsim group represented by analsim, leucite, yugawaralite, etc., gismondine , Gismondine Group represented by Poringite-K, Philipsite-Ca, Chabazite-Ca, Elionite-Na, Chabazite Group represented by Hojasite-Na, Mordenite, Ferrierite-Mg, Mu Structure unknowns such as mordenite group represented by Tinaite, Hulandite group represented by Hulandite-Ca, clinoptilolite-Na, Stillbite-Ca, Kouresite, etc. Examples include naturally occurring zeolites such as the minosilicate group, and synthetic zeolites such as A, L, X, Y, Na-P1, ZK-5, and ZSM-11. Synthetic zeolite having a uniform particle size, more preferably A, X, etc., which have a small difference in mass ratio between silica and alumina. It is preferable that the difference between the mass ratios of silica and alumina is not too large in order to avoid the possibility that the hydrophobicity of the surface increases and the affinity with the water-soluble binder deteriorates.

本発明に使用される(B)核となる粒状物としては、前記粒子径を満足すれば特に制限されず、難溶性のケイ砂、ガラスビーズの無機粒子、また微粒子状の粘土、酸化チタン、炭酸カルシウム等から選択される物質によって造粒された粒状物でもよい。   The granular material (B) used in the present invention is not particularly limited as long as the particle diameter is satisfied, hardly soluble silica sand, inorganic particles of glass beads, finely divided clay, titanium oxide, Granules granulated with a substance selected from calcium carbonate or the like may be used.

本発明に使用される(B)核となる粒状物に多孔質物質を使用すると、吸着剤としての性能がさらに向上することから、浄化剤として好適に利用することができる。多孔質な核となる粒状物としては、不均一非球体の活性炭(多孔質粒状活性炭)を好適に用いることができる。その原料となる炭としては特に制限はなく、例えば、ヤシ殻炭、コークス、木炭、石炭、又は樹脂炭化品等から得られるものでよい。   Since the performance as an adsorbent is further improved when a porous substance is used for the granular material (B) used in the present invention, it can be suitably used as a purifying agent. As the granular material serving as a porous core, heterogeneous non-spherical activated carbon (porous granular activated carbon) can be suitably used. There is no restriction | limiting in particular as charcoal used as the raw material, For example, what is obtained from coconut shell charcoal, coke, charcoal, coal, or resin carbonized goods etc. may be sufficient.

更に多孔質な核となる粒状物として多孔質粒状ゼオライトを使用することができる。使用されるゼオライトの種類には、特に制限はなく、核として好適な粒子径を有すれば(A)多孔質無機鉱物の粉粒体に例示したゼオライトを使用することも可能である。   Furthermore, a porous granular zeolite can be used as a granular material which becomes a porous core. There are no particular limitations on the type of zeolite used, and it is also possible to use zeolites exemplified in (A) porous inorganic mineral powders as long as they have a suitable particle size as a nucleus.

本発明に使用される(C)水溶性無機塩バインダーは、特に限定されないが、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩の少なくとも1種を好適に使用することができる。カウンターイオンとしては、例えば、Cl、NO 、SO 2−、CO 2−、HCO 2−、SiO 4?、B7−から選択されるアニオンとの組合せが好ましい。The water-soluble inorganic salt binder (C) used in the present invention is not particularly limited, but at least one of potassium salt, sodium salt, calcium salt, magnesium salt, and ammonium salt can be preferably used. The counter ion, for example, Cl -, NO 3 -? , SO 4 2-, CO 3 2-, HCO 3 2-, SiO 4 4, combination of anion selected from B 4 O 7- are preferred.

本発明では、(C)水溶性無機塩バインダーの他に、(c1)硝酸鉄、硫酸鉄、水酸化鉄、酸化鉄、硫酸鉄、シュウ酸鉄、硫酸アンモニウム鉄から選ばれる少なくとも1種の鉄化合物を添加することができる。鉄化合物を添加することによって成形する造粒物の強度を改良することができる。   In the present invention, in addition to (C) a water-soluble inorganic salt binder, (c1) at least one iron compound selected from iron nitrate, iron sulfate, iron hydroxide, iron oxide, iron sulfate, iron oxalate, and ammonium iron sulfate Can be added. By adding an iron compound, the strength of the granulated material to be molded can be improved.

本発明では、(C)水溶性無機塩バインダーの他に、シリカ、チタン酸カリウム、炭化珪素、珪酸ジルコン、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化アルミニウムから選択される(D)無機フィラーの1種以上を添加することができる。(D)無機フィラーは、粉体のみならず、溶液又はスラリーとして添加してもよい。無機フィラーを添加することで乾燥工程の短縮と同時に造粒物の多孔性が増し、実用性が向上する。   In the present invention, in addition to (C) a water-soluble inorganic salt binder, (D) one of inorganic fillers selected from silica, potassium titanate, silicon carbide, zircon silicate, titanium oxide, zinc oxide, magnesium oxide, and aluminum oxide. More seeds can be added. (D) You may add an inorganic filler not only as a powder but as a solution or a slurry. By adding an inorganic filler, the porosity of the granulated product is increased at the same time as the drying process is shortened, and the practicality is improved.

本発明の造粒物を構成する各成分の配合比は、強度等の観点から、(A)多孔質無機鉱物の粉粒体100質量部に対して、(B)核となる粒状物が50〜300質量部(50以上300以下の質量部)、(C)水溶性無機塩バインダーが5〜100質量部(5以上100以下の質量部)であることが好ましい。必要に応じて更に添加される(D)無機フィラーは、(A)多孔質無機鉱物の粉粒体100質量部に対して、50〜350質量部(50以上350以下の質量部)であることが好ましく、100〜300質量部(100以上300以下の質量部)であることが更に好ましく、70〜250質量部(70以上250以下の質量部)であることが更に好ましい。   The blending ratio of each component constituting the granulated product of the present invention is such that, from the viewpoint of strength and the like, (B) the granular material serving as the core is 50 with respect to 100 parts by mass of the porous inorganic mineral powder. It is preferable that -300 mass parts (50-300 mass parts) and (C) water-soluble inorganic salt binder are 5-100 mass parts (5-100 mass parts). The inorganic filler (D) further added as necessary is 50 to 350 parts by mass (50 parts by mass or more and 350 parts by mass or less) with respect to 100 parts by mass of the porous inorganic mineral powder (A). Is preferably 100 to 300 parts by mass (100 to 300 parts by mass), more preferably 70 to 250 parts by mass (70 to 250 parts by mass).

本発明に使用される水溶性無機塩バインダーは、使用するバインダーの性質にもよるが、一般には、得られる造粒物の吸着特性と濾過性をできるだけ高めるために、できるだけ少量でバインダー効果が発現するものが好ましい。そのため、水溶性無機塩バインダーの含有量は、造粒物中に5〜50%(5%以上50%以下)が好ましく、更に10〜30%(10%以上30%以下)が好ましい。また、水溶性無機塩バインダーは水等の溶媒に溶解して使用するがその量は適宜調整することができる。   Although the water-soluble inorganic salt binder used in the present invention depends on the properties of the binder used, in general, the binder effect is manifested in as little amount as possible in order to enhance the adsorption characteristics and filterability of the resulting granulated product as much as possible. Those that do are preferred. Therefore, the content of the water-soluble inorganic salt binder is preferably 5 to 50% (5% to 50%) in the granulated product, and more preferably 10 to 30% (10% to 30%). The water-soluble inorganic salt binder is used by dissolving in a solvent such as water, but the amount can be adjusted as appropriate.

水溶性無機塩バインダーに使用する溶媒の乾燥や造粒物の多孔性を安定化させる目的で(D)無機フィラーを使用することも可能であるが、その配合量は(A)多孔質無機鉱物の粉粒体100質量部に対して、50〜350質量部(50以上350以下の質量部)の範囲が好適であり、70〜250質量部(70以上250以下の質量部)が更に好ましい。   (D) Inorganic fillers can be used for the purpose of drying the solvent used in the water-soluble inorganic salt binder and stabilizing the porosity of the granulated product, but the blending amount is (A) porous inorganic mineral The range of 50 to 350 parts by mass (50 to 350 parts by mass) is preferable, and 70 to 250 parts by mass (70 to 250 parts by mass) is more preferable with respect to 100 parts by mass of the granular material.

本発明において、多孔質無機鉱物の粉粒体からの造粒物の製造方法は、(A)多孔質無機鉱物の粉粒体と(B)核となる粒状物を混合する混合工程(α)と、(C)水溶性無機塩バインダーと水を調製し、(α)で調製した混合物に添加して混合及び造粒物を形成する工程(β)と、(β)で得られた未乾燥の造粒物から水分を蒸発させ乾燥させる工程(γ)と、を含んでなる。
また、本発明において、多孔質無機鉱物の粉粒体からの造粒物の製造方法は、(A)多孔質無機鉱物の粉粒体と(B)核となる粒状物を混合する混合工程(α)と、(C)水溶性無機塩バインダーと水、(D)無機フィラーの粉体、溶液或いはスラリーを調製し、(α)で調製した混合物に添加して混合及び造粒物を形成する工程(β)と、(β)で得られた未乾燥の造粒物から水分を蒸発させ乾燥させる工程(γ)と、を含んでなる。
In this invention, the manufacturing method of the granulated material from the granular material of a porous inorganic mineral is the mixing process ((alpha)) which mixes the granular material used as (A) porous inorganic mineral, and (B) nucleus. And (C) preparing a water-soluble inorganic salt binder and water, adding to the mixture prepared in (α) to form a mixed and granulated product (β), and the undried obtained in (β) And a step (γ) of evaporating water from the granulated product and drying it.
Moreover, in this invention, the manufacturing method of the granulated material from the granular material of a porous inorganic mineral is the mixing process (A) the granular material of a porous inorganic mineral, and (B) the granular material used as a nucleus ( (α), (C) water-soluble inorganic salt binder and water, (D) powder, solution or slurry of inorganic filler are prepared and added to the mixture prepared in (α) to form a mixture and granulated product A step (β) and a step (γ) of evaporating and drying moisture from the undried granulated product obtained in (β).

水溶性無機塩バインダー水溶液を添加して混合する工程には、転動造粒または攪拌造粒、圧縮造粒、押出造粒、流動層造粒、噴霧造粒などの方法を用いることができる。具体的には、スーパーミキサー、ヘンシェルミキサー、リボンミキサー、ナウタミキサー、ローラコンパクタ、バンバリーミキサー、ブラベンダー、単軸もしくは多軸の押出機、スプレードライヤーなどが使用可能である。
また、例えば、スプレードライヤーを用いれば、混合と乾燥の両方を行うことも可能である。
In the step of adding and mixing the water-soluble inorganic salt binder aqueous solution, methods such as rolling granulation or stirring granulation, compression granulation, extrusion granulation, fluidized bed granulation, and spray granulation can be used. Specifically, a super mixer, a Henschel mixer, a ribbon mixer, a nauta mixer, a roller compactor, a Banbury mixer, a Brabender, a single or multi-screw extruder, a spray dryer, and the like can be used.
For example, if a spray dryer is used, it is also possible to perform both mixing and drying.

未乾燥の造粒物から水分を蒸発させ乾燥させる工程(γ)で用いる方法は、特に限定されるものではなく、例えば、自然乾燥をはじめ、スプレードライ、ドラムドライ、食品乾燥機、熱風乾燥装置、高周波乾燥装置等の方法を用いることができる。   The method used in the step (γ) of evaporating and drying moisture from the undried granulated product is not particularly limited. For example, natural drying, spray drying, drum drying, food dryer, hot air drying device A method such as a high-frequency drying apparatus can be used.

未乾燥の造粒物の乾燥温度については、多孔質無機鉱物の変質を起さないため120℃以下であることが好ましく、80〜120℃(80℃以上120℃以下)が水の蒸発が促進されるために更に好ましい。   The drying temperature of the undried granulated product is preferably 120 ° C. or lower so as not to cause alteration of the porous inorganic mineral, and 80 to 120 ° C. (80 ° C. to 120 ° C.) promotes evaporation of water. More preferably.

以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.

合成した試料を同定するため、粉末X線回折装置ULTIMA−IV(リガク製)を用いて40kV、30mA(Cu−Kα線)の条件下で回折パターンを測定した。また、粉末試料の粒子径を調べるために、使用した粉末試料を水あるいはイソプロピルアルコールに分散させ、レーザー回折式粒度分布測定装置SLAD-7100(島津製作所製)を用いて粒度分布を測定した。併せて走査型電子顕微鏡S−5500(日立製作所製)を用いて加速電圧7kVで観察し、観察像から500個の粒子についての2軸平均径を計測し、平均値を求めた。   In order to identify the synthesized sample, a diffraction pattern was measured under the conditions of 40 kV and 30 mA (Cu-Kα ray) using a powder X-ray diffractometer ULTIMA-IV (manufactured by Rigaku). In order to examine the particle size of the powder sample, the used powder sample was dispersed in water or isopropyl alcohol, and the particle size distribution was measured using a laser diffraction particle size distribution measuring apparatus SLAD-7100 (manufactured by Shimadzu Corporation). In addition, using a scanning electron microscope S-5500 (manufactured by Hitachi, Ltd.), the observation was performed at an acceleration voltage of 7 kV, and the biaxial average diameter of 500 particles was measured from the observed image to obtain the average value.

[製造例]
吸着剤である多孔質無機鉱物の粉粒体を製造するために、鉄水酸化物の調製を行った。先ず0.02MのNa2SO4溶液2リットルを60℃に加熱した。これに固体のFe(NO3)2・9H2Oを添加した。60℃で12分間維持し、さらに冷却し、pH3で保存した。これによって、多孔質鉄水酸化物のシュベルトマナイトが合成された。シュベルトマナイトのX線回折パターンを図3に示す。2θ=35°近傍にシュベルトマナイトを特徴づけるピークが観測されている。また、その粉粒体の平均粒子径(メディアン径)は9.8μmであった。
[Production example]
In order to produce a porous inorganic mineral powder as an adsorbent, an iron hydroxide was prepared. First, 2 liters of a 0.02M Na 2 SO 4 solution was heated to 60 ° C. Solid Fe (NO 3 ) 2 .9H 2 O was added thereto. Maintained at 60 ° C. for 12 minutes, further cooled and stored at pH 3. As a result, porous iron hydroxide schwertmannite was synthesized. The X-ray diffraction pattern of Schwertmannite is shown in FIG. A peak that characterizes Schwertmannite is observed in the vicinity of 2θ = 35 °. Moreover, the average particle diameter (median diameter) of the granular material was 9.8 μm.

(多孔質無機鉱物の粉粒体から造粒された造粒物の評価)
本発明の多孔質無機鉱物の粉粒体を含む造粒物は、土壌や水質中で使用することを前提としており、水溶性無機塩バインダーの配合量を変えることで強度を調整することが可能となる。
また、本実施例及び比較例では、水溶性無機塩バインダーを添加して混合及び造粒物を形成する方法として、水溶性無機塩バインダーを噴霧する方法を用いた。
製造される造粒物としては、以下の要件を満足することが望まれる。
(A)水溶性無機塩バインダーを噴霧した際に多孔質無機鉱物の粉粒体を含む造粒物が形成されること。
(B)水溶性無機塩バインダーを噴霧した際に核となる粒状物の表面が多孔質無機鉱物の粉粒体で覆われていること。
(C)多孔質無機鉱物の造粒物を製造し乾燥させた後、手で触っても多孔質無機鉱物粉粒体と核となる粒状物が分離しないこと。
(D)多孔質無機鉱物の造粒物を水の入った容器に投入した際に、静置条件にて多孔質無機鉱物の造粒物から気泡が出ること。
上記要件を加味して多孔質無機鉱物の造粒物を以下の基準で評価した。
◎:造粒物積算個数の90%以上が上記要件を満たしている。
○:上記要件を満たしている造粒物が60〜90%(60以上90%未満)である。
△:上記要件を満たしている造粒物が30〜60%(30超60%未満)である。
×:上記要件を満たしている造粒物が30%以下である。
(Evaluation of granulated product granulated from porous inorganic mineral powder)
The granulated product containing the porous inorganic mineral powder of the present invention is premised on use in soil and water, and the strength can be adjusted by changing the amount of the water-soluble inorganic salt binder. It becomes.
Moreover, in the present Example and the comparative example, the method of spraying a water-soluble inorganic salt binder was used as a method of adding a water-soluble inorganic salt binder and mixing and forming a granulated material.
It is desired that the granulated product to be manufactured satisfies the following requirements.
(A) When a water-soluble inorganic salt binder is sprayed, a granulated product containing a porous inorganic mineral powder is formed.
(B) The surface of the granular material which becomes the core when spraying the water-soluble inorganic salt binder is covered with a porous inorganic mineral powder.
(C) After a granulated product of a porous inorganic mineral is produced and dried, the porous inorganic mineral granular material and the core granular material are not separated even when touched by hand.
(D) When a granulated product of a porous inorganic mineral is put into a container containing water, bubbles are generated from the granulated product of the porous inorganic mineral under a standing condition.
In consideration of the above requirements, a granulated product of porous inorganic mineral was evaluated according to the following criteria.
A: 90% or more of the accumulated number of granules satisfies the above requirements.
(Circle): The granulated material which satisfy | fills the said requirements is 60 to 90% (60 or more and less than 90%).
(Triangle | delta): The granulated material which satisfy | fills the said requirements is 30 to 60% (more than 30 and less than 60%).
X: The granulated material which satisfy | fills the said requirements is 30% or less.

(砒素吸着試験)
内径12mmのガラス製カラムに、カラム吐出側から脱脂綿、ガラスビーズ、カラム材、ガラスビーズの順に所定量充填し、評価カラムを作製した(図4)。カラム材は、篩を使用して造粒後の試料の75μm以下の粒子をカットして作製した。全ての評価は、カラムに使用した造粒物中の多孔質無機鉱物量を換算し、同量の多孔質無機鉱物量で比較する。
(Arsenic adsorption test)
A predetermined amount of absorbent cotton, glass beads, column material, and glass beads was packed in this order into a glass column having an inner diameter of 12 mm from the column discharge side to produce an evaluation column (FIG. 4). The column material was prepared by cutting particles of 75 μm or less of the granulated sample using a sieve. For all evaluations, the amount of porous inorganic mineral in the granulated material used for the column is converted and compared with the same amount of porous inorganic mineral.

砒素吸着試験は、評価用カラムに砒素濃度1.06ppmの砒素模擬汚染水を通水し、通過後の溶液中に含まれる砒素濃度を誘導結合プラズマ質量分析装置(ICP−MS,パーキンエルマー社製)により吸着砒素総量を算出した。   In the arsenic adsorption test, arsenic simulated contaminated water with an arsenic concentration of 1.06 ppm was passed through an evaluation column, and the arsenic concentration contained in the solution after passing was measured by an inductively coupled plasma mass spectrometer (ICP-MS, manufactured by PerkinElmer). ) To calculate the total amount of adsorbed arsenic.

(実施例1)
多孔質無機鉱物の粉粒体として製造例で合成したシュベルトマナイト、核となる粒状物として平均粒子径242.9μmの粒状活性炭GW48/100(クラレケミカル株式会社)、水溶性無機塩バインダー水溶液として、塩化カルシウム/硫酸鉄/水=10/1/20(質量比)の混合水溶液を調製し、さらに無機フィラーとしてシリカ(平均粒子径31μm)を用意した。次にこれらを多孔質無機鉱物の粉粒体(g)/核となる粒状物(g)/水溶性無機塩バインダー水溶液(g)/無機フィラー(g)=2/3/3/2となるように計量した。パン型転動造粒機に多孔質無機鉱物の粉粒体/核となる粒状物/無機フィラーを投入し、60rpmで回転させながら水溶性無機塩バインダーを噴霧しながら混合した。得られた造粒物を自然乾燥させ篩にて粒径を揃えることにより評価用造粒物を作製した。以下の砒素吸着試験に使用した造粒物は1.86gであり、造粒物中のシュベルトマナイト量は0.37gであった。砒素吸着試験において、カラム材として使用される造粒物を構成する多孔質無機鉱物の総量は、比較例1で使用されるカラム材に充填する多孔質無機鉱物の総量と同量になるように調整した。
砒素吸着試験の結果は表1に示す。
また、造粒物の評価結果を表3に示す。
また、実施例1で形成された造粒物を構成する多孔質無機鉱物と核となる粒状物との分離は、該造粒物を水中で静置した状態で、8時間見られなかった。
Example 1
Schwertmannite synthesized in the production example as a granular material of a porous inorganic mineral, granular activated carbon GW48 / 100 (Kuraray Chemical Co., Ltd.) having an average particle size of 242.9 μm as a core granular material, a water-soluble inorganic salt binder aqueous solution A mixed aqueous solution of calcium chloride / iron sulfate / water = 10/1/20 (mass ratio) was prepared, and silica (average particle size 31 μm) was prepared as an inorganic filler. Next, the porous inorganic mineral powder (g) / core granular material (g) / water-soluble inorganic salt binder aqueous solution (g) / inorganic filler (g) = 2/3/3/2. Weighed as follows. Porous inorganic mineral particles / core particles / inorganic filler were put into a pan type rolling granulator and mixed while spraying a water-soluble inorganic salt binder while rotating at 60 rpm. The obtained granulated product was naturally dried, and a granulated product for evaluation was prepared by aligning the particle size with a sieve. The granulated material used in the following arsenic adsorption test was 1.86 g, and the amount of Schwermannite in the granulated material was 0.37 g. In the arsenic adsorption test, the total amount of the porous inorganic mineral constituting the granulated product used as the column material is the same as the total amount of the porous inorganic mineral filled in the column material used in Comparative Example 1. It was adjusted.
The results of the arsenic adsorption test are shown in Table 1.
Table 3 shows the evaluation results of the granulated product.
In addition, the separation of the porous inorganic mineral constituting the granulated product formed in Example 1 and the granular material serving as the nucleus was not observed for 8 hours in a state where the granulated product was allowed to stand in water.

表1の砒素吸着試験結果において、砒素濃度とは充填カラムを通過した後の溶液中に含まれる砒素濃度を測定したものである。また、砒素吸着量とは、多孔質無機鉱物のシュベルトマナイト1g当りに吸着した砒素の総量を算出したものである。本発明の多孔質無機物質の造粒物を、空間速度SV=10の条件で用いることにより、通水開始から72時間経過後においても、カラム通過後の溶液に含まれる砒素濃度は0.001mg/L未満(検出せず)となった。これは、環境基準値である0.01mg/L以下を十分満たすものであり、高い砒素除去能力を有するものであった。因みに、72時間経過後における砒素吸着量は、11.03mg/gであった。
また、カラム通過後の溶液に多孔質無機物質(すなわち、シュベルトマナイト)の漏出は発生しなかった。
In the arsenic adsorption test results in Table 1, the arsenic concentration is a value obtained by measuring the arsenic concentration contained in the solution after passing through the packed column. Further, the arsenic adsorption amount is calculated by calculating the total amount of arsenic adsorbed per 1 g of porous inorganic mineral Schwertmannite. By using the granulated product of the porous inorganic substance of the present invention under the condition of space velocity SV = 10, the arsenic concentration contained in the solution after passing through the column is 0.001 mg even after 72 hours have passed since the start of water flow. / L (not detected). This sufficiently satisfies the environmental standard value of 0.01 mg / L or less, and has a high arsenic removal capability. Incidentally, the amount of arsenic adsorption after 72 hours was 11.03 mg / g.
In addition, leakage of the porous inorganic substance (that is, schwertmannite) did not occur in the solution after passing through the column.

(比較例1)
製造例1で合成したシュベルトマナイト粉粒体を用いて、砒素吸着試験用カラムを作製した。実施例1と同様にSV=10の条件で砒素吸着試験を実施した結果、徐々に多孔質無機物質(すなわち、シュベルトマナイト)がカラムから漏出し、その後、目詰まり(カラム内で水みちができた)が発生した。その結果、通水から72時間経過後に、カラム通水後の溶液中に含まれる砒素濃度が環境基準値である0.01mg/Lを超過した(表2)。
(Comparative Example 1)
An arsenic adsorption test column was prepared using the Schwertmannite granular material synthesized in Production Example 1. As a result of conducting an arsenic adsorption test under the condition of SV = 10 in the same manner as in Example 1, the porous inorganic substance (that is, Schwertmannite) gradually leaks from the column, and then clogs (water spots in the column). Occurred). As a result, 72 hours after passing water, the arsenic concentration contained in the solution after passing the column exceeded the environmental standard value of 0.01 mg / L (Table 2).

(実施例2)
水溶性無機塩バインダーと無機フィラーを(株)地球環境技術研究所製水溶性無機バインダーFC2000に変更した以外は全て実施例1と同様にして評価した。FC2000は、塩化マグネシウム、酸化マグネシウム、硫酸鉄、シリカ等を有効成分として含む、塩基性の無機水溶液と無機粉体を混合したものである。造粒物の評価の結果を表3に示す。
また、実施例2で形成された造粒物を構成する多孔質無機鉱物と核となる粒状物との分離は、該造粒物を水中で静置した状態で、6時間見られなかった。
(Example 2)
Evaluation was performed in the same manner as in Example 1 except that the water-soluble inorganic salt binder and the inorganic filler were changed to the water-soluble inorganic binder FC2000 manufactured by Global Environment Research Institute. FC2000 is a mixture of a basic inorganic aqueous solution and inorganic powder containing magnesium chloride, magnesium oxide, iron sulfate, silica and the like as active ingredients. Table 3 shows the results of evaluation of the granulated product.
Moreover, the separation of the porous inorganic mineral constituting the granulated product formed in Example 2 and the granular material serving as a nucleus was not observed for 6 hours in a state where the granulated product was allowed to stand in water.

(実施例3)
実施例1で使用した多孔質無機鉱物の粉粒体、核となる粒状物、水溶性無機塩バインダー水溶液を多孔質無機鉱物の粉粒体(g)/核となる粒状物(g)/水溶性無機塩バインダー水溶液(g)/無機フィラー(g)=1/2/6/1となるように配合した以外は全て実施例1と同様にして評価した。造粒物の評価の結果を表3に示す。
また、実施例3で形成された造粒物においては、水中で静置した状態で、該造粒物を構成する多孔質無機鉱物と核となる粒状物との分離は8時間を超えても見られなかった。
(Example 3)
Porous inorganic mineral particles, core granules, and water-soluble inorganic salt binder aqueous solution used in Example 1 were used as porous inorganic mineral powder (g) / core granules (g) / water solution. Evaluation was performed in the same manner as in Example 1 except that the aqueous inorganic salt binder solution (g) / inorganic filler (g) = 1/2/6/1. Table 3 shows the results of evaluation of the granulated product.
Moreover, in the granulated product formed in Example 3, the separation between the porous inorganic mineral constituting the granulated product and the granular material serving as the core exceeds 8 hours when left in water. I couldn't see it.

(実施例4)
実施例1で使用した多孔質無機鉱物の粉粒体、核となる粒状物、水溶性無機塩バインダー水溶液を多孔質無機鉱物の粉粒体(g)/核となる粒状物(g)/水溶性無機塩バインダー水溶液(g)/無機フィラー(g)=2/1/3/4となるように配合した以外は全て実施例1と同様にして評価した。造粒物の評価の結果を表3に示す。
また、実施例4で形成された造粒物においては、水中で静置した状態で、該造粒物を構成する多孔質無機鉱物と核となる粒状物との分離は8時間を超えても見られなかった。
Example 4
Porous inorganic mineral particles, core granules, and water-soluble inorganic salt binder aqueous solution used in Example 1 were used as porous inorganic mineral powder (g) / core granules (g) / water solution. Evaluation was carried out in the same manner as in Example 1 except that the aqueous inorganic salt binder solution (g) / inorganic filler (g) = 2/1/3/4. Table 3 shows the results of evaluation of the granulated product.
In addition, in the granulated product formed in Example 4, the separation between the porous inorganic mineral constituting the granulated product and the granular material serving as the nucleus in a state of standing in water exceeds 8 hours. I couldn't see it.

(実施例5)
多孔質無機鉱物の粉粒体を平均粒子径48.4μmの天然ゼオライト(クリノプチライト、北海道産)に変え、実施例1で使用した水溶性無機塩バインダー水溶液との配合比を多孔質無機鉱物の粉粒体(g)/核となる粒状物(g)/水溶性無機塩バインダー水溶液(g)/無機フィラー(g)=5/3/10/8にした以外は全て実施例1と同様にして評価した。造粒物の評価の結果を表3に示す。
また、実施例5で形成された造粒物においては、水中で静置した状態で、該造粒物を構成する多孔質無機鉱物と核となる粒状物との分離は8時間を超えても見られなかった。
(Example 5)
The porous inorganic mineral powder was changed to natural zeolite (clinoptlite, produced in Hokkaido) having an average particle size of 48.4 μm, and the mixing ratio with the aqueous water-soluble inorganic salt binder solution used in Example 1 was changed to porous inorganic mineral. The same as Example 1 except that the granular material (g) / particulate matter (g) / water-soluble inorganic salt binder aqueous solution (g) / inorganic filler (g) = 5/3/10/8 And evaluated. Table 3 shows the results of evaluation of the granulated product.
Further, in the granulated product formed in Example 5, the separation between the porous inorganic mineral constituting the granulated product and the granular material serving as the nucleus in a state of standing in water exceeds 8 hours. I couldn't see it.

(実施例6)
多孔質無機鉱物の粉粒体を平均粒子径4.4μmの天然フロゴパイト(S−XF、レプコ)、核となる粒状物を平均粒子径1.1mmの天然ゼオライト(クリノプチライト、北海道産)に変え、実施例1で使用した水溶性無機塩バインダー水溶液を多孔質無機鉱物の粉粒体(g)/核となる粒状物(g)/水溶性無機塩バインダー水溶液(g)/無機フィラー(g)=2/5/8/5となるように計量し、配合した以外は全て実施例1と同様にして評価した。造粒物の評価の結果を表3に示す。
また、実施例6で形成された造粒物においては、水中で静置した状態で、該造粒物を構成する多孔質無機鉱物と核となる粒状物との分離は8時間を超えても見られなかった。
(Example 6)
Porous inorganic mineral powder is converted to natural phlogopite (S-XF, Repco) with an average particle size of 4.4 μm, and core particles are converted to natural zeolite with an average particle size of 1.1 mm (clinoptlite, produced in Hokkaido). By changing the water-soluble inorganic salt binder aqueous solution used in Example 1 to porous inorganic mineral particles (g) / core particles (g) / water-soluble inorganic salt binder aqueous solution (g) / inorganic filler (g ) = 2/5/8/5 were measured in the same manner as in Example 1 except that they were weighed and blended. Table 3 shows the results of evaluation of the granulated product.
Moreover, in the granulated product formed in Example 6, the separation between the porous inorganic mineral constituting the granulated product and the granular material serving as the nucleus in a state of standing in water exceeds 8 hours. I couldn't see it.

(実施例7)
多孔質無機鉱物の粉粒体として製造例で合成したシュベルトマナイト、核となる粒状物として平均粒子径242.9μmの粒状活性炭GW48/100(クラレケミカル株式会社)、水溶性無機塩バインダー水溶液として、塩化カルシウム/水=10/20(質量比)の混合水溶液を調製した。次にこれらを多孔質無機鉱物の粉粒体(g)/核となる粒状物(g)/水溶性無機塩バインダー水溶液(g)=2/3/3となるように計量した。パン型転動造粒機に多孔質無機鉱物の粉粒体/核となる粒状物を投入し、60rpmで回転させながら水溶性無機塩バインダーを噴霧しながら混合した。得られた造粒物を自然乾燥させ篩にて粒径を揃えることにより評価用造粒物を作製した。造粒物の評価結果を表3に示す。
(Example 7)
Schwertmannite synthesized in the production example as a granular material of a porous inorganic mineral, granular activated carbon GW48 / 100 (Kuraray Chemical Co., Ltd.) having an average particle size of 242.9 μm as a core granular material, a water-soluble inorganic salt binder aqueous solution A mixed aqueous solution of calcium chloride / water = 10/20 (mass ratio) was prepared. Next, these were weighed so that the porous inorganic mineral powder (g) / particles as core (g) / water-soluble inorganic salt binder aqueous solution (g) = 2/3/3. The porous inorganic mineral powder / core particles were put into a pan-type rolling granulator and mixed while spraying a water-soluble inorganic salt binder while rotating at 60 rpm. The obtained granulated product was naturally dried, and a granulated product for evaluation was prepared by aligning the particle size with a sieve. Table 3 shows the evaluation results of the granulated product.

本発明の造粒物及びその製造方法は、浄化処理能力の低下、吸着剤の交換頻度に支障をきたすことなく使用できる造粒物及びその製造方法に関するものであり、環境浄化産業等において利用可能性がある。   The granulated product of the present invention and the method for producing the same are related to a granulated product that can be used without deteriorating the purification treatment capacity and the frequency of replacement of the adsorbent and the method for producing the same, and can be used in the environmental purification industry, etc. There is sex.

5…カラム、5a…カラム吐出側、7…脱脂綿、10…ガラスビーズ、15…評価カラム、20…カラム材(造粒物)、31、33…造粒物、(A)…多孔質無機鉱物の粉粒体、(B)…核となる粉状物、(C)…水溶性無機塩バインダー、(c1)…鉄化合物、(D)…無機フィラー。 DESCRIPTION OF SYMBOLS 5 ... Column, 5a ... Column discharge side, 7 ... Absorbent cotton, 10 ... Glass bead, 15 ... Evaluation column, 20 ... Column material (granulated material), 31, 33 ... Granulated material, (A) ... Porous inorganic mineral (B) ... powdered material as a core, (C) ... water-soluble inorganic salt binder, (c1) ... iron compound, (D) ... inorganic filler.

Claims (12)

汚染水中の汚染物質を選択的に吸着し、かつ、前記汚染物質が除去された水を通水する造粒物であって、
(A)多孔質無機鉱物の粉粒体と、(B)核となる粒状物と、(C)水溶性無機塩バインダーと、(c1)鉄化合物とを含み、
前記(A)多孔質無機鉱物の粉粒体は、鉄水酸化物、粘土鉱物及びゼオライトからなる群から選択される少なくとも1種であり、
前記(B)核となる粒状物は、ケイ砂、ガラスビーズ、粘土、酸化チタン、炭酸カルシウム、活性炭及びゼオライトからなる群から選択される少なくとも1種であり、
前記(C)水溶性無機塩バインダーは、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩及びアンモニウム塩からなる群から選択される少なくとも1種であり、
前記(c1)鉄化合物は、硝酸鉄、硫酸鉄、水酸化鉄、酸化鉄、シュウ酸鉄及び硫酸アンモニウム鉄からなる群から選択される少なくとも1種であり、
前記(A)多孔質無機鉱物の粉粒体の粒子径が0.01μm以上100μm以下であり、前記(B)核となる粒状物の粒子径が0.1mm超2mm以下であることを特徴とする造粒物。
Pollutants contaminated water and selectively adsorb and water the pollutant has been removed to a granulated product which passed through,
(A) a porous inorganic mineral powder, (B) a granular material serving as a nucleus, (C) a water-soluble inorganic salt binder, and (c1) an iron compound,
The (A) porous inorganic mineral powder is at least one selected from the group consisting of iron hydroxide, clay mineral and zeolite,
The granular material as the core (B) is at least one selected from the group consisting of silica sand, glass beads, clay, titanium oxide, calcium carbonate, activated carbon, and zeolite,
The (C) water-soluble inorganic salt binder is at least one selected from the group consisting of potassium salt, sodium salt, calcium salt, magnesium salt and ammonium salt,
The (c1) iron compound is at least one selected from the group consisting of iron nitrate, iron sulfate, iron hydroxide, iron oxide, iron oxalate and ammonium iron sulfate,
(A) The particle diameter of the porous inorganic mineral powder is 0.01 μm or more and 100 μm or less, and the particle diameter of the granular material serving as the core (B) is more than 0.1 mm and 2 mm or less. Granulated product.
前記鉄水酸化物が、シュベルトマナイト、ゲータイト、ジャロサイト、フェリハイドライトより選択される少なくとも1種であることを特徴とする請求項1に記載の造粒物。   The granulated product according to claim 1, wherein the iron hydroxide is at least one selected from Schbertmanite, goethite, jarosite, and ferrihydrite. 前記粘土鉱物が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、又はスチブンサイトからなるスメクタイト類、マスコバイト、フロゴパイト、テニオライト、バイオタイト、マーガライト、クリントナイト、四珪素雲母、又はセリサイトからなる雲母類およびその変質鉱物であるバーミキュライト類、イモゴライト又はアロフェンからなる非晶性ケイ酸塩類からなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の造粒物。   The clay mineral is composed of montmorillonite, beidellite, nontronite, saponite, hectorite, or smectite consisting of stevensite, mascobite, phlogopite, teniolite, biotite, margarite, clintonite, tetrasilicon mica, or sericite. The granulated product according to claim 1, wherein the granulated product is at least one selected from the group consisting of amorphous silicates composed of mica and its modified minerals vermiculites, imogolite, or allophane. 前記(B)核となる粒状物が多孔質粒状活性炭であることを特徴とする請求項1〜3のいずれか1項に記載の造粒物。   The granulated product according to any one of claims 1 to 3, wherein the granular material serving as the core (B) is porous granular activated carbon. 前記(B)核となる粒状物が多孔質粒状ゼオライトであることを特徴とする請求項1〜3のいずれか1項に記載の造粒物。   The granulated material according to any one of claims 1 to 3, wherein the granular material serving as the nucleus (B) is a porous granular zeolite. (D)無機フィラーが更に含まれることを特徴とする請求項1〜5のいずれか1項に記載の造粒物。   (D) Inorganic filler is further contained, The granulated material of any one of Claims 1-5 characterized by the above-mentioned. 前記(A)多孔質無機鉱物の粉粒体と前記(B)核となる粒状物と前記(C)水溶性無機塩バインダーの配合比が、前記(A)多孔質無機鉱物の粉粒体100質量部に対して、前記(B)核となる粒状物が50以上300以下の質量部、前記(C)水溶性無機塩バインダーが5以上100以下の質量部であることを特徴とする請求項1〜6のいずれか1項に記載の造粒物。   The blend ratio of the (A) porous inorganic mineral powder, the (B) core granule, and the (C) water-soluble inorganic salt binder is the above-mentioned (A) porous inorganic mineral powder 100. The said (B) granular material used as a nucleus is 50-300 mass parts with respect to a mass part, and the said (C) water-soluble inorganic salt binder is 5-100 mass parts. The granulated product according to any one of 1 to 6. 請求項1〜7のいずれか1項に記載の造粒物の製造方法であって、
(A)多孔質無機鉱物の粉粒体と(B)核となる粒状物を混合する工程(α)と、
工程(α)で調整した混合物に(C)水溶性無機塩バインダー及び(c1)鉄化合物の水溶液を添加して混合及び造粒物を形成する工程(β)と、
工程(β)で得られた未乾燥の造粒物から水分を蒸発させ乾燥させる工程(γ)と、
を含んでなり、
前記(A)多孔質無機鉱物の粉粒体は、鉄水酸化物、粘土鉱物及びゼオライトからなる群から選択される少なくとも1種であり、
前記(B)核となる粒状物は、ケイ砂、ガラスビーズ、粘土、酸化チタン、炭酸カルシウム、活性炭及びゼオライトからなる群から選択される少なくとも1種であり、
前記(C)水溶性無機塩バインダーは、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩及びアンモニウム塩からなる群から選択される少なくとも1種であり、
前記(c1)鉄化合物は、硝酸鉄、硫酸鉄、水酸化鉄、酸化鉄、シュウ酸鉄及び硫酸アンモニウム鉄からなる群から選択される少なくとも1種であり、
前記(A)多孔質無機鉱物の粉粒体の粒子径が0.01μm以上100μm以下であり、前記(B)核となる粒状物の粒子径が0.1mm超2mm以下であることを特徴とする造粒物の製造方法。
It is a manufacturing method of the granulated material according to any one of claims 1 to 7,
(A) a step (α) of mixing a granular material of a porous inorganic mineral and (B) a granular material serving as a nucleus;
Step (β) of adding (C) a water-soluble inorganic salt binder and (c1) an aqueous solution of an iron compound to the mixture prepared in step (α) to form a mixture and granulated product,
A step (γ) of evaporating and drying water from the undried granulated product obtained in the step (β);
Comprising
The (A) porous inorganic mineral powder is at least one selected from the group consisting of iron hydroxide, clay mineral and zeolite,
The granular material as the core (B) is at least one selected from the group consisting of silica sand, glass beads, clay, titanium oxide, calcium carbonate, activated carbon, and zeolite,
The (C) water-soluble inorganic salt binder is at least one selected from the group consisting of potassium salt, sodium salt, calcium salt, magnesium salt and ammonium salt,
The (c1) iron compound is at least one selected from the group consisting of iron nitrate, iron sulfate, iron hydroxide, iron oxide, iron oxalate and ammonium iron sulfate,
(A) The particle diameter of the porous inorganic mineral powder is 0.01 μm or more and 100 μm or less, and the particle diameter of the granular material serving as the core (B) is more than 0.1 mm and 2 mm or less. A method for producing a granulated product.
前記混合及び造粒物を形成する工程(β)において、(D)無機フィラーの粉体、溶液又はスラリーが更に添加されることを特徴とする請求項8に記載の製造方法。   The method according to claim 8, wherein in the step (β) of forming the mixed and granulated product, (D) an inorganic filler powder, solution or slurry is further added. 前記混合及び造粒物を形成する工程(β)が、転動造粒、攪拌造粒、圧縮造粒、押出造粒、流動層造粒、及び噴霧造粒からなる群から選択されるいずれかの方法を用いて行われることを特徴とする請求項8又は9に記載の製造方法。   The mixing and granulating step (β) is any selected from the group consisting of rolling granulation, stirring granulation, compression granulation, extrusion granulation, fluidized bed granulation, and spray granulation. The production method according to claim 8 or 9, wherein the production method is performed using the method. 前記乾燥工程(γ)がスプレードライ、ドラムドライ、食品乾燥機、及び自然乾燥からなる群から選択されるいずれかの方法を用いて行われることを特徴とする請求項8〜10のいずれか1項に記載の造粒物の製造方法。   11. The method according to claim 8, wherein the drying step (γ) is performed using any method selected from the group consisting of spray drying, drum drying, food dryer, and natural drying. The manufacturing method of the granulated material as described in a term. 前記乾燥工程(γ)の温度が120℃以下であることを特徴とする請求項8〜11のいずれか1項に記載の造粒物の製造方法。   The temperature of the said drying process ((gamma)) is 120 degrees C or less, The manufacturing method of the granulated material of any one of Claims 8-11 characterized by the above-mentioned.
JP2014522680A 2012-06-28 2013-06-27 Granulated product and production method thereof Expired - Fee Related JP6153204B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012145995 2012-06-28
JP2012145995 2012-06-28
PCT/JP2013/067661 WO2014003120A1 (en) 2012-06-28 2013-06-27 Granulated substance, and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2014003120A1 JPWO2014003120A1 (en) 2016-06-02
JP6153204B2 true JP6153204B2 (en) 2017-06-28

Family

ID=49783257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014522680A Expired - Fee Related JP6153204B2 (en) 2012-06-28 2013-06-27 Granulated product and production method thereof

Country Status (2)

Country Link
JP (1) JP6153204B2 (en)
WO (1) WO2014003120A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910402A (en) * 2014-01-10 2014-07-09 周立祥 Granular Schwertmannite and its preparation method and use
CN106975451A (en) * 2017-05-17 2017-07-25 合肥绿洁环保科技有限公司 A kind of preparation method of quick adsorption Powdered Activated Carbon
JP7154598B2 (en) * 2019-06-20 2022-10-18 株式会社杉田製線 Water purification material and water purification method using the same
CN110841655A (en) * 2019-12-02 2020-02-28 新地环保技术有限公司 High-salt-resistance composite catalyst and preparation method thereof
CN111575016B (en) * 2020-06-18 2021-08-24 四川时代绿洲环境修复股份有限公司 Heavy metal contaminated soil remediation material and preparation method and application method thereof
CN116196889A (en) * 2023-03-09 2023-06-02 西南科技大学 Toluene adsorbent prepared from industrial vermiculite and method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333999A (en) * 1976-09-10 1978-03-30 Toyo Soda Mfg Co Ltd Granulated material of zeolite
JPS5528743A (en) * 1978-08-22 1980-02-29 Yakurigaku Chuo Kenkyusho:Kk Molding of powdery adsorbent
JPS6028814A (en) * 1983-07-25 1985-02-14 Satoo Morimoto Purifying agent of sewage or the like
JPH05179370A (en) * 1991-12-30 1993-07-20 Nippon Steel Corp Granulation method
JP3190277B2 (en) * 1997-01-10 2001-07-23 良和 藤 Cement composition
JP4082660B2 (en) * 2002-07-19 2008-04-30 中部電力株式会社 Zeolite-added granulated product and method for producing the same
JP3828887B2 (en) * 2003-02-05 2006-10-04 株式会社ソフィア Novel compound, stabilization method for Schwertmannite, purification method for contaminated water or soil, adsorption method for phosphoric acid
JP4611717B2 (en) * 2004-11-12 2011-01-12 中部電力株式会社 Method for granulating artificial zeolite and granulated product of artificial zeolite
JP4911762B2 (en) * 2006-10-16 2012-04-04 花王株式会社 Method for producing composite particles
JP5037950B2 (en) * 2007-01-09 2012-10-03 株式会社アムロン Water purification agent and method for producing the same
US20080207443A1 (en) * 2007-02-28 2008-08-28 Kishor Purushottam Gadkaree Sorbent comprising activated carbon, process for making same and use thereof
JP2011036846A (en) * 2009-08-17 2011-02-24 Natoo Kenkyusho:Kk Method of manufacturing moisture adsorbent, and moisture adsorbent

Also Published As

Publication number Publication date
WO2014003120A1 (en) 2014-01-03
JPWO2014003120A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6153204B2 (en) Granulated product and production method thereof
JP5361006B2 (en) Zeolite-based spherical agglomerates, processes for the production and adsorption of these agglomerates and the use of these agglomerates in catalysts
CA2953403C (en) Low density compositions with synergistic absorbance properties
TWI619549B (en) Radioactive material adsorbing material, adsorption container, adsorption tower, and water treatment device
US6107354A (en) Composite material, preparation and use thereof
WO2009108483A1 (en) Filtration media for the removal of basic molecular contaminants for use in a clean environment
KR101570130B1 (en) Multiple odor absorbents by using mixing the natural zeolite and method of fabricating the same
CN106824074A (en) A kind of liquid phase preparation technology of rapid dispersion granular activated carbon
JP4175726B2 (en) Pet toilet sand
WO2018181659A1 (en) Heavy metal adsorbent
Ghadiri et al. Potential of granulated modified nanozeolites Y for MTBE removal from aqueous solutions: Kinetic and isotherm studies
CN109071349A (en) Particulate composition and filter for purified water
JPH0665892A (en) Pitch adsorbent
JP2004073053A (en) Toilet sand for pet
JP2717717B2 (en) Odor absorbing clay mineral and its production method
JPH1189468A (en) Toilet sand for pet
ES2939269T3 (en) Silica Granules for Heat Treatment
JP6525927B2 (en) Urine treatment material for pets
JP7313922B2 (en) Iodide ion adsorbent and method for producing the same
JP7145020B2 (en) purification material
JP4146291B2 (en) Granular adsorbent
JP2006182623A (en) Core-cell type zeolite formed article
JPH10137581A (en) Production of granular adsorbent
EP0968051A1 (en) Composite material based on zeolite and active carbon, preparation and use thereof in water treatment
JP7418990B2 (en) Pet urine disposal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170525

R150 Certificate of patent or registration of utility model

Ref document number: 6153204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees